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ABSTRACT Collagen forms fibrous networks that reinforce tissues and provide an extracellular matrix for cells. These
networks exhibit remarkable strain-stiffening properties that tailor the mechanical functions of tissues and regulate cell
behavior. Recent models explain this nonlinear behavior as an intrinsic feature of disordered networks of stiff fibers. Here,
we experimentally validate this theoretical framework by measuring the elastic properties of collagen networks over a
wide range of self-assembly conditions. We show that the model allows us to quantitatively relate both the linear and nonlinear
elastic behavior of collagen networks to their underlying architecture. Specifically, we identify the local coordination number
(or connectivity) hzi as a key architectural parameter that governs the elastic response of collagen. The network elastic response
reveals that hzi decreases from 3.5 to 3 as the polymerization temperature is raised from 26 to 37�C while being weakly
dependent on concentration. We furthermore infer a Young’s modulus of 1.1 MPa for the collagen fibrils from the linear modulus.
Scanning electron microscopy confirms that hzi is between three and four but is unable to detect the subtle changes in hzi with
polymerization conditions that rheology is sensitive to. Finally, we show that, consistent with the model, the initial stress-
stiffening response of collagen networks is controlled by the negative normal stress that builds up under shear. Our work
provides a predictive framework to facilitate future studies of the regulatory effect of extracellular matrix molecules on collagen
mechanics. Moreover, our findings can aid mechanobiological studies of wound healing, fibrosis, and cancer metastasis, which
require collagen matrices with tunable mechanical properties.
INTRODUCTION
Collagens form a family of around 30 proteins that are
crucial structural molecules in the human body (1). The
most abundant family member is collagen type I, which
forms fibrillar networks that shape and reinforce tissues
such as skin, tendons, and bone. The structure of these
networks is tailored toward diverse tissue-specific functions
by auxiliary extracellular matrix molecules and by the
biochemical and mechanical activities of cells. Collagen
in load-bearing tendons, for instance, forms thick fibers
(200 nm) that are aligned along the tendon to optimize
force transmission and tendon strength (2). In contrast,
collagen in the cornea forms woven sheets of thin fibers
(�30 nm) that provide strength combined with optical trans-
parency (3). Collagen in interstitial tissue forms mostly
isotropic networks, which provide mechanical strength
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combined with porosity to facilitate nutrient transport and
cell migration (4).

Collagen structure and mechanics not only determine the
function of the tissue as a whole but also the functions of the
cells that are resident in the tissue. Collagen fibers provide
cells with topographical, biochemical, and mechanical
cues, which regulate cell proliferation, differentiation,
migration, and apoptosis (5). The mechanobiological inter-
play between cells and the surrounding collagen extracel-
lular matrix is essential to guide physiological processes
such as wound healing and immune cell trafficking, but it
can also trigger pathological processes. Abnormal stiffening
of interstitial collagen networks, for instance, promotes cell
invasion, which contributes to cancer, atherosclerosis, and
chronic fibrosis.

The importance of collagen mechanics in biology has
triggered a long history of research on the relation between
collagen structure and mechanics. It has long been known
that collagenous tissues exhibit a distinctive nonlinear elas-
ticity characterized by strain-induced stiffening (6). This
                                          2665

mailto:fcmack@gmail.com
mailto:g.koenderink@amolf.nl


           
mechanical design allows tissues such as skin and arteries to
be soft at low strain yet stiff at high strain, ensuring mechan-
ical stability under large loads (7). However, the complex ar-
chitecture of collagenous tissues, which comprises multiple
scales, has made it difficult to pinpoint the structural basis of
the strain-stiffening response. Tissues contain networks of
fibril bundles, which in turn contain hundreds of molecules
per cross section packed in an axially ordered lattice (8). In
situ x-ray scattering studies suggest that multiple mecha-
nisms operating at different length scales contribute to the
overall mechanical response at the tissue level (9).

The challenge to elucidate the origin of the nonlinear
elasticity of collagenous tissues has motivated intensive ef-
forts to study simplified model systems reconstituted from
purified collagen. This development was further fueled by
the rapid growth of the interdisciplinary field of mechanobi-
ology, in which reconstituted collagen networks are popular
as tissue equivalents in basic studies of the biology of tis-
sues, wound healing, immunity, and cancer and in more
applied studies relating to regenerative medicine (10,11).
Conveniently, the self-assembly of collagen into fibrillar
networks is encoded in the collagen molecule itself. Under
physiologically relevant buffer conditions, collagen sponta-
neously assembles into axially ordered fibrils, which branch
and cross-link to form a three-dimensional (3D) network
(1). The diameter of the fibrils can be tuned from tens of
nanometers to several microns by changing environmental
conditions such as the solution pH (12–14) and polymeriza-
tion temperature (15–17).

It is well established that reconstituted collagen networks
stiffen in a similar manner as whole tissues when they are
subjected to a mechanical stretch or shear (12,18–21).
However, even in this more simplified context of reconsti-
tuted networks, theoretical modeling remains challenging
because of the range of scales. The most detailed models,
based on full-atom simulations, are limited to single
collagen molecules and microfibrils and require coarse-
graining approaches to reach up to the fibril level (22,23).
Recent models aimed to describe collagen at the network
level therefore usually treat the fibrils as homogeneous
elastic beams (20,24,25). These models predict that the elas-
ticity of collagen networks is primarily governed by the
local connectivity z, meaning the number of fibers that
meet at each network junction. Because collagen fibers are
connected by a combination of branch points (z ¼ 3) and
crosslinks (z ¼ 4), z is on average between three and four
(20,25,26). In networks of springs that possess only stretch-
ing energy, such a low connectivity is insufficient for
mechanical stability in 3D, in which the isostatic limit is
z ¼ 6 (27). Fibrous networks such as collagen networks,
however, are stabilized by the high bending rigidity of the
fibers (20,28).

Recent experiments on reconstituted collagen I networks
confirmed some of the predictions of these fiber-based
network models (20,25,29). However, the general validity
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of this model for collagen networks reconstituted over a
wider range of self-assembly conditions remains untested.
Consequently, a clear consensus on the physical basis of
the elasticity of collagen networks is still lacking. Random
fiber models generally predict that the network stiffness at
small strain should go up with collagen concentration as a
power law with an exponent of two (30,31), but experimen-
tally, a wide range of exponents between one and three has
been observed (18,19,32–36). It was recently suggested that
this range can be accounted for by a systematic variation
in local architecture with concentration (25), although this
hypothesis has yet to be tested experimentally. Moreover,
this model also made another interesting prediction that still
lacks experimental verification: strain-stiffening is predicted
to be coupled to a build-up of a negative (contractile) normal
stress under shear (20). Although there have been reports of
negative normal stresses in filamentous networks including
collagen (37,38), which is opposite to the response of most
elastic solids and polymer hydrogels (37,39), the relation-
ship of negative normal stress to strain-stiffening has not
been quantitatively demonstrated experimentally.

The goal of this work is to quantitatively decipher the
relation between the mechanics and underlying architecture
of fibrillar collagen networks reconstituted from purified
collagen I. We show that a model of disordered fiber
networks provides a self-consistent framework to quantita-
tively explain both the linear and nonlinear elastic properties
of collagen networks over a wide range of concentrations
(0.5–5 mg/mL) and assembly temperatures (between 26
and 37�C). We probed the elastic properties of the networks
by macroscopic shear rheometry and characterized the
network architecture by combining light scattering, scan-
ning electron microscopy, and confocal reflectance micro-
scopy. We find that as the stress applied to a collagen
network is increased, the network stiffens in two stages. In
the first regime, network stiffening is coupled to the simul-
taneous build-up of self-generated negative normal stress,
as predicted for bending-dominated networks (20). In the
second stage, stiffening is caused by a mechanical phase
transition to a stretch-dominated response above a critical
strain value gc (25). Interestingly, our data suggest that
the elastic properties of collagen networks are sensitive
to subtle changes in network architecture with changing
collagen concentration and polymerization temperature.
MATERIALS AND METHODS

A detailed description of the experimental and computational methods

is provided in the online Supporting Materials and Methods. Experi-

ments were performed on collagen networks reconstituted from rat-tail

collagen type I in a buffer that is compatible with in vitro cell culture

(Dulbecco’s modified Eagle’s medium cell culture, 1% fetal bovine serum,

50 mM HEPES, 1.5 mg/mL sodium bicarbonate, and 0.1% antibiotics

(pH 7.3–7.4)). Networks were polymerized at temperatures between

22 and 37�C and at collagen concentrations between 0.7 and 5 mg/mL.

Rheology was performed with a stress-controlled rheometer (Physica



                                    
MCR 501; Anton Paar, Graz, Austria) using a cone-plate geometry with

40-mm diameter and 1� cone angle. The networks were polymerized

in situ for 6 h before rheological testing. Turbidity measurements were per-

formed using a Cary300 UV-Vis spectrophotometer (Agilent Technologies,

Amstelveen, the Netherlands) on networks prepared in plastic cuvettes

(UV-Cuvette micro, Plastibrand, Germany) for 6 h or overnight. Rheolog-

ical and turbidity data shown are averages 5 SD for a minimum of three

independently prepared samples. Collagen networks were imaged by

confocal reflectance microscopy with an inverted Eclipse Ti microscope

(Nikon, Tokyo, Japan), using a 488 Ar laser (Melles Griot, Albuquerque,

NM) for illumination and a 100� numerical aperture 1.49 or 40� numerical

aperture 1.30 objective. Fixed and dried networks of 4 mg/mL collagen

coated with Au/Pd were imaged by scanning electron microscopy (Verios

460; FEI Company, Eindhoven, the Netherlands). Computational modeling

of collagen networks was performed by representing the networks as

two-dimensional (2D) disordered triangular lattices, described in detail

elsewhere (20,25,40). These lattices have a spacing lc and dimensions

W � W, where W ¼ 50lc. We enforce local fourfold connectivity by a

phantomization procedure, in which a binary cross-link is formed between

two randomly selected fibers at each vertex while treating the third fiber as a

phantom that does not interact with the other two fibers. Next, we reduce hzi
to a value between three and four by bond dilution, which involves random

removal of segments with a probability q. This procedure reduces the

average fiber length to L ¼ lc=q. Thus, the networks are, by construction,

subisostatic and floppy in the absence of bending interactions. Each fila-

ment is assigned a stretching modulus, ms, and a bending modulus, k.

The lattices are subjected to a simple shear strain, g, and allowed to relax

by minimization of the total elastic energy per unit volume, H, which is

calculated according to a discrete form of the extensible wormlike chain
FIGURE 1 Temperature dependence of the microstructure of 4 mg/mL collage

Confocal reflection images (row 1), showing an open network of ‘‘fan-shaped

networks with increasing temperature, are given. SEM images are shown at tw

(rows 1 and 2) and 200 nm (row 3). See Fig. S1 for additional data.
Hamiltonian. The stress follows from the minimal energy as s ¼ dH/dg,

whereas the differential elastic shear modulus follows as K ¼ d2H/dg2.

Stress and stiffness are measured in units of m=ld�1
c , where d is the

dimensionality.
RESULTS

Collagen network architecture depends on
polymerization conditions

Our goal was to quantitatively decipher the relation between
the mechanics and underlying architecture of fibrillar
collagen networks reconstituted from purified collagen I.
To tune the structure of the networks, we varied the
polymerization temperature, motivated by prior work
demonstrating that temperature strongly influences the
architecture of collagen networks (15,41,42). To visualize
the network structure, we use confocal reflectance micro-
scopy (CRM), which is an ideal technique for noninvasive
and label-free imaging of collagen (43). We observe striking
changes in network structure when we polymerize 4 mg/mL
collagen at different temperatures between 22 and 37�C, as
shown in the top row of images in Fig. 1 (see Fig. S1 for
the full range of temperatures and a broader range of mag-
nifications). The networks are dense, isotropic, and uniform
n networks. The temperature is indicated above each column in units of �C.
’’ fibril bundles at 22�C and more homogeneous and progressively denser

o different magnifications (rows 2 and 3). The scale bars represent 20 mm
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FIGURE 2 Comparison of fibril diameter measurements by electron

microscopy on dried samples and turbidity measurements on hydrated sam-

ples. (A) Average fiber diameters for 4 mg/mL collagen networks polymer-

ized at different temperatures, determined from SEM images (main graph)

and turbidimetry (inset), are given. (B) The concentration dependence of

the mass-length ratio obtained from turbidimetry for collagen networks

formed at temperatures of 22� (triangles down), 26� (stars), 30 (circles),

34� (triangles up), and 37�C (squares) is given. The left y axis corresponds

to the mass-length ratio m, whereas the right y axis shows the corresponding

number of monomers per fibril cross section, N (see Eq. S3). Turbidity

data are averages 5 SD for three samples per condition. SEM data are

averages5 SD of three samples per condition, for which at least 250 fibrils

were analyzed.

           
at temperatures of 30�C and above. In contrast, they appear
more heterogeneous and open at lower temperatures, espe-
cially at 22�C, where we observe fan-shaped bundles of
collagen fibrils. Similar fan-shaped bundles were observed
previously at polymerization temperatures between 4 and
27�C (15,41,42) and were proposed to arise from the kinetic
arrest of growing fibrils during network formation (42).

To obtain more high-resolution information regarding
the network structure, we supplement confocal reflectance
microscopy with scanning electron microscopy (SEM) of
dehydrated networks. The fan-shaped bundles at 22�C are
also visible in SEM images, in which they are seen to be
bundles of fibrils that splay out at one end (Fig. 1, two
bottom rows). Networks formed at 26�C also display bun-
dles in SEM images, but their width is more uniform, and
the network microstructure appears more uniform than at
22�C. As the temperature is raised further, the networks
remain homogeneous and become progressively less
bundled. At 37�C, the network looks homogeneous at all in-
spected length scales, and bundling is minimal. To quantify
the change in diameter of the fibers (i.e., fibril bundles) with
temperature, we measured the cross-sectional width of at
least 250 randomly sampled fibers per condition in SEM
images recorded at magnifications between 10,000 and
50,000 for three independently prepared samples. We did
not attempt to perform this analysis for SEM images of
networks prepared at 22�C because of the open fan shape
of the collagen fibers of these networks. As shown in
Fig. 2 A, the average fiber diameter is around 150 nm at tem-
peratures of 26 and 30�C (with a large spread at 26�C),
whereas it is around 70 nm at both 34 and 37�C. We note
that these values are expected to be different from the actual
diameters of the fibers in their native, hydrated state. On
the one hand, fiber shrinkage is expected because of the
solvent-removal procedure required to prepare samples
for electron microscopy, whereas on the other hand, some
thickening is expected because of the deposition of a metal
coating that is required for imaging.

For comparison, we therefore also probed the fiber diam-
eter by light scattering, a technique that is noninvasive and
does not require dehydration (44). The basic idea is that
the wavelength dependence of the turbidity of a fibrous
gel, t(l), encodes information on the average diameter
d and mass-length ratio m of the fibers. Theoretical models
for light scattering from random fiber networks (assumed
to be monodisperse in diameter) predict that tl5 should in-
crease linearly with l2 with a slope that depends on m and an
intercept dependent on m and d (for details, see Supporting
Materials and Methods). We indeed find approximately
linear dependencies for collagen networks formed at tem-
peratures between 26 and 37�C, consistent with the uniform
microstructure seen in confocal reflectance microscopy and
SEM images (Fig. S2). By contrast, we find a strongly
nonlinear dependence for networks formed at 22�C,
indicating that light scattering is sensitive to the structural
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heterogeneities in these networks. The m and d values
obtained at 22�C (by fitting the data for wavelengths be-
tween 650 and 890 nm) should therefore be regarded as
approximate.

The diameters obtained by light scattering are nearly
twofold higher than the values obtained from SEM images,
indicating that the dehydration procedure needed to prepare
SEM samples induces fiber shrinkage (see Fig. 2 A). But the
trend as a function of temperature is similar as observed by
SEM: fibers formed at 22�C are thickest with an average
diameter of 300 nm, fibers formed at 26 and 30�C have
comparable average diameters of �200 nm, and fibers
formed at 34 and 37�C have smaller diameters of around
150 nm. The average mass-length ratio of the fibers also
decreases with increasing polymerization temperature (see
Fig. 2 B). From the change in m, we can estimate the corre-
sponding change in average mesh size, x ¼ ð1=rlÞ0:5, where
rl ¼ cp=m is the total length of collagen fibers per unit
volume (in m�2) and cp is the collagen concentration



                                    
(in mg/mL). At 4 mg/mL collagen, we expect a twofold
reduction in x from 3.3 to 1.6 mm as the polymerization tem-
perature is raised from 26 to 37�C, a trend that is qualita-
tively consistent with the confocal reflectance microscopy
images. At each polymerization temperature, we find that
both m and d decrease with increasing collagen concentra-
tion (see Fig. 2 B; Fig. S2 B).
Collagen mechanics depend on polymerization
conditions

Strain-stiffening behavior of collagen networks

To test how the changes in network structure identified by
microscopy and turbidimetry influence collagen mechanics,
we first investigated the nonlinear elastic response of the
collagen networks. Specifically, we probed the differential
modulus, K0 ¼ ds/dg, by subjecting the network to a step-
wise increasing prestress, s, while superposing small ampli-
tude stress oscillations. We find that with increasing strain,
the elastic modulus, K0, strongly increases (Fig. 3 A) until
a maximal strain of 20–50% is reached, at which the net-
works fail (Fig. S3). We will refer to this strain as the failure
point, but we note that it is unclear whether failure is due to
FIGURE 3 Comparison of the strain-stiffening response of collagen net-

works with simulations of disordered 2D fibrous networks. The differential

elastic modulus K0 is plotted as a function of the applied shear strain, g. Red
symbols denote the onset strain at which stiffening sets in (g0; see Fig. S5).

Blue symbols denote the critical strain for the transition to stretch-domi-

nated elasticity (gc; see Fig. S6). Data shown are representative examples

measured on single networks. Symbols are shown for clarification only,

and every fifth data point is shown. (A) The measurements for 4 mg/mL

collagen networks polymerized at temperatures between 26 and 37�C are

given (see legend). (B) Simulation data for 2D fibrous networks with a fixed

dimensionless rigidity, ~k ¼ 10�4, and varying average connectivity hzi are
given (see legend). To see this figure in color, go online.
internal network rupture or detachment from the rheometer
plates. The final stiffness just before network rupture is typi-
cally one order of magnitude higher than the linear modulus,
consistent with prior reports (19,34). The strain-stiffening
response is reversible for all networks formed between 26
and 37�C, with little hysteresis between forward and back-
ward sweeps and reproducible strain-stiffening in consecu-
tive runs (Fig. S4). By contrast, networks formed at 22�C
show significant hysteresis and progressive softening in
repeated stress ramps.

A closer inspection of the strain-stiffening curves reveals
two distinct stiffening regimes demarcated by two distinct
characteristic strain values. The first characteristic strain,
which we denote as g0, corresponds to the end of the linear
elastic regime and onset for strain stiffening (red symbols in
Fig. 3 A). Although g0 is difficult to identify unambiguously
from the strain-stiffening curves, it can be clearly identified
when we plot K0(s)/s as a function of s (Fig. S5). The
second characteristic strain, which we denote as gc (blue
symbols in Fig. 3 A), is closer to the failure point. This
characteristic strain is well-defined as the inflection point
of the strain-stiffening curves (see Fig. S6). We see that
both g0 and gc increase with the polymerization temperature
(Fig. 4 A).

Can we quantitatively explain these changes in the strain
dependent elasticity of the collagen networks in terms of
their architecture? To answer this, we employ a computa-
tional model that represents a collagen network as a disor-
dered network of elastic fibers, based on an initial 2D
triangular lattice (20,25,40). We use 2D simulations because
these are much less computationally intensive than 3D sim-
ulations, which allows us to scan a wider parameter space
with larger systems that are less sensitive to finite-size
effects. Prior work has shown good consistency between
2D and 3D simulations of such models, provided that the
average coordination number hzi is well below the 2D
isostatic point of four (28,45). This model assumes that ther-
mal fluctuations are negligible, an assumption that is amply
justified by fluctuation analysis (46) and various mechanical
measurements (47–53) on single collagen fibers. Each fila-
ment is assigned a stretching modulus, ms, and a bending
modulus, k. These two parameters define a dimensionless
measure of the relative bend-stretch stiffness: ~k ¼ k=msl

2
c .

We note that our model networks are disordered even
though they are based on an initial lattice structure: both
the connectivity and fiber length, for instance, vary from
point to point within the network.

Consistent with the experimental observations, the simu-
lations reveal a two-stage strain-stiffening response with an
onset strain g0 (red circles) and an inflection at a critical
strain gc (blue squares), as shown in Fig. 3 B (see also
Figs. S5 and S6). As we progressively increase hzi from
3.12 (black line) to 3.56 (lightest gray line), we see that
G0 increases, whereas g0 and gc decrease. These shifts are
qualitatively consistent with the shifts we observe in
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FIGURE 4 Comparison of the onset strain and the critical strain that

characterize the strain-stiffening response of collagen networks with pre-

dictions for 2D fibrous networks. (A) Measurements of g0 (open symbols)

and gc (closed symbols) for 4 mg/mL collagen networks are given. Data

points are averages5 SD for three samples per condition. (B) Correspond-

ing simulation results are given showing the hzi -dependence of g0 and gc

for 2D networks with ~k ¼ 10�4, a value that is representative of collagen

networks at concentrations in the range of several mg/mL (25). The

hzi -range relevant to the experiments is highlighted in gray. (C) The exper-

iments (main plot) are in excellent agreement with the simulations (inset),

which predict a power-law dependence of g0 on gc with an exponent given

by f � f. The lines have slopes of 1.3 (main) and 1.1 (inset), based on

predicted values of f and f in Table S2. Data points represent individual

measurements (at least three per condition) obtained at collagen concentra-

tions cp between 0.7 and 5 mg/mL and polymerization temperatures be-

tween 26 and 37�C (see legends). To see this figure in color, go online.

FIGURE 5 Average connectivity hzi of collagen networks inferred from

rheology data by calibrating measurements of g0 with simulation data for

2D fibrous networks (see Fig. 4,A andB). (A) The concentration dependence

of hzi at a polymerization temperature of 37�C (black squares) and 30�C
(gray circles) is given. (B) The temperature dependence of hzi at a collagen
concentration of 4mg/mL is shown. Data points are averages5 SD for three

samples per condition. The data are also tabulated in Table S1.

           
collagen networks as we reduce the polymerization temper-
ature. We therefore hypothesize that the temperature depen-
dence of the nonlinear elasticity of collagen networks may
be caused by a change in the network connectivity.

To test this hypothesis, we directly compare the g0 and gc

values determined in experiments and in simulations (Fig. 4,
A and B). In the experimentally relevant hzi range (between 3
and 3.5), the strain values in experiments and simulations
are in close agreement. Using the simulations as a reference
point, we can infer from the correspondence with the
experiments that the shift to larger g0 values as the polymer-
ization temperature is raised from 26 to 37�C is consistent
with a decrease in hzi from �3.5 to 3 (see Fig. 5 B;
Table S1). We note that all concentrations tested at
30�C show higher hzi values compared to the 37�C case
(Fig. 5 A). At 37�C, hzi is below three at the lowest concen-
trations of 0.7 and 1 mg/mL, whereas it is close to three
for collagen concentrations between 2 and 4 mg/mL and
increases to almost 3.2 at 5 mg/mL (see Fig. 5 A (black
squares); Table S1).
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The values of hzi we infer from the nonlinear rheology
predicted by our model are qualitatively consistent with
the SEM images of 4 mg/mL networks prepared at different
temperatures. In these images, we observe predominantly
threefold branches and fourfold junctions (see Fig. S7).
The images do not reveal a significant dependence of hzi
on polymerization temperature. It is difficult, however, to
measure hzi reliably from imaging alone. The problem is
that imaging cannot unambiguously distinguish whether
an apparent junction of two fibers in a static image is a
cross-linked pair or just an entangled pair, and it is further-
more difficult to determine whether the fiber ends are cross-
linked to other fibers or dangling. The SEM images show
that fibers emerging from branch points often have unequal
diameters. In the context of our model, such variation in
fiber diameter and possible unequal distribution of material
at branch (z¼ 3) or crossing (z¼ 4) points represents a kind
of (quenched) disorder. We do not include variation in
the fiber diameter in this model. In previous theoretical
work in which we tested the effect of inhomogeneous fiber
diameter in branched networks, we did not find qualitative
differences in the network rheology (54).

As a further test of our hypothesis that the fibrous network
model can explain the nonlinear elasticity of collagen
networks, we check for the correlation between g0 and gc.
The simulations predict that g0 should increase with gc ac-
cording to g0 � g

ðf�f Þ
c (inset of Fig. 4 C). The physical basis

of this relationship is that collagen networks undergo a
strain-controlled transition from an elastic regime governed
by fiber bending to an elastic regime governed by fiber
stretching when the strain reaches gc (25,40). Simulations
predict that this phase transition is governed by two critical
exponents, f and f, which are nearly identical for 2D and 3D
networks (25,29). Using values for these exponents deter-
mined in simulations of 2D lattices for varying hzi (see
Table S2), we find quantitative agreement of the measured
values of g0 and gc with the theory (solid line) for all poly-
merization temperatures (color-coded symbols) without any



FIGURE 6 Comparison between measurements of the linear elastic

modulus of collagen gels (closed symbols) and theoretical predictions for

3D fibrous networks (open symbols). The theoretical values are calculated

according to Eq. 1, which takes as input hzi as inferred from the nonlinear

rheology (Fig. 5; Table S1), the fiber mass length as measured by turbidim-

etry (Fig. 2), and the fiber Young’s modulus E as the sole fitting parameter.

(A) The temperature dependence of G0 ¼ G0 (0.5 Hz) for 4 mg/mL collagen

gels is shown. (B) The concentration dependence of G0 for networks poly-

merized at 37�C and (C) 30�C is shown. The lines in (B) and (C) denote

power-law fits with exponents of 2.6 and 2.1, respectively. Data points

are averages5 SD for three samples per condition. The data are also tabu-

lated in Table S1.

                                    
adjustable parameters (Fig. 4 C). This remarkable agree-
ment provides additional strong evidence that collagen net-
works over a range of concentrations (0.7–5 mg/mL) and
polymerization temperatures (26–37�C) can be modeled as
athermal random networks of elastic fibers. Our findings
furthermore suggest that the nonlinear elasticity of collagen
networks is sensitive to small changes in average network
connectivity that are not readily apparent from microscopy
images.

Low-strain mechanics of collagen

We have shown that a coarse-grained model that describes
collagen networks as disordered networks of elastic fibers
can successfully explain the nonlinear elastic response of
collagen networks over a wide range of collagen concentra-
tions and polymerization temperatures. An additional crit-
ical test of the model is whether it can also predict the
magnitude of the linear elastic modulus at small strains
below the onset of the nonlinear regime. We find that the
linear modulus of the collagen networks, as quantified by
G0 ¼ G0 (0.5 Hz), shows a nonmonotonic dependence on
polymerization temperature (solid symbols in Fig. 6 A): at
a concentration of 4 mg/mL, the collagen gels are stiffest
at 22 and 26�C, whereas they are softest between 30 and
37�C. To test whether we can relate this temperature depen-
dence to the changes in network structure, we compare the
measured moduli to theoretical predictions, according to
which G0 can be written as follows:

G0 ¼ FðzÞE42; (1)

where FðzÞxðA=zÞð ffiffiffi

2
p

=12pÞðL=lcÞ2 and L is the average fi-
ber length. The network geometry as characterized by hzi en-
ters Eq. 1 only through F(z). In case hzi (and therefore F(z))
is independent of collagen concentration, the linear modulus
should scale quadratically with the fiber-volume fraction 4,
consistent with prior athermal network models (30,31).
Any deviation from a quadratic scaling therefore signifies a
concentration dependence of hzi. We observe a clear devia-
tion from this scaling for collagen networks polymerized at
37�C, where the power-law exponent is 2.6 (indicated by
the line in Fig. 6B). This indicates an increase of hziwith con-
centration, consistent with the conclusions we draw from the
concentration dependence of g0 (see Fig. 5 A). For networks
polymerized at 30�C, the concentration dependence is closer
to quadratic, with a best-fit exponent of 2.1.

To test this apparent self-consistent agreement between
the linear and nonlinear elastic behavior more closely,
we compare for each experimental condition the measured
G0 with the theoretically expected modulus, calculated
from Eq. 1 using as input the hzi values inferred from the
onset strain (see Table S1). The sole unknown parameter
used for fitting is the fiber Young’s modulus E. As
shown in Fig. 6, the theory captures both the temperature
dependence of G0 at a fixed collagen concentration
(Fig. 6 A) and the concentration dependence of G0 at
37�C (Fig. 6 B) and 30�C (Fig. 6 C) rather well when we as-
sume E ¼ 1.1 MPa throughout. Note that we excluded data
obtained for networks polymerized at 22�C from this anal-
ysis, because these networks were too heterogeneous to
extract reliable values for the fiber mass-length ratio by light
scattering (see Fig. S2 A), and also because the nonlinear
rheology data show hysteresis (Fig. S4 A).
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FIGURE 7 Comparison of the stress-stiffening response of collagen net-

works with predictions for 2D fibrous networks. (A) Example stiffening

curves for 4 mg/mL collagen gels polymerized at different temperatures

are given (see legend). The data shown are representative measurements

on single networks. (B) Example stiffening curves for 2D fibrous networks

with different connectivities hzi (see legend) and ~k ¼ 10�4 (B) are given.

(C) The stiffening exponent b, defined as the maximal slope of the stress-

stiffening curves in the nonlinear regime, increases with temperature.

Data points are averages 5 SD for three samples per condition. (D) The

simulations show that b depends on both ~k and hzi. The highlighted region

depicts the hzi -range relevant to the experiments.

           
The agreement between theory and experiment is less
good in Fig. 6 A than it is in Fig. 6, B and C. We suspect
that this is due to inaccuracies in the fiber mass-length
ratio m, which is required as input to calculate G0 (see
Eq. S8). We obtain m from turbidimetry, which requires a
theoretical model with several simplifying assumptions,
including diameter monodispersity. We suspect that m is
more accurate for the more homogeneous networks formed
at 30 and 37�C (data in Fig. 6,B andC) than for the somewhat
bundled networks formed at lower temperatures (data in
Fig. 6 A). Note that the fact that we use experimental input
for m, and that m apparently changes with polymerization
temperature and collagen concentration, also explains the
nonmonotonicity of the predicted dependencies of G0 in
Fig. 6. Altogether, we think that the overall good agreement
of theory and experiment over a range of collagen concentra-
tions and assembly temperatures and for a reasonable value
of E (see Discussion) provides convincing evidence that
collagen networks over a wide range of assembly conditions
can indeed be modeled as random networks of elastic fibers.

Stress-stiffening behavior of collagen networks

In addition to considering the dependence of collagen
elasticity on strain, it is also instructive to consider its
dependence on the applied shear stress. As shown in
Fig. 7 A, K0 increases as a power law in s with a stiffening
exponent b that increases as the polymerization temperature
is raised. As shown in Fig. 7 C, b increases from a value
close to one at 26�C to 1.6 at 37�C. When we perform a
set of simulations on 2D fibrous networks for connectivities
hzi between 3.12 and 3.56 and a fixed ~k of 10�4, we find that
b strongly depends on hzi (Fig. 7 B). By contrast, b changes
little when ~k is varied in the relevant hzi range (Fig. S8 B).
Consistent with this prediction, we find only a weak concen-
tration dependence for b in the experiments (Fig. S8 A).

As summarized in Fig. 7 D, the simulations predict that
b should decrease with increasing hzi. The predicted values
for b � 1.0–1.6 in the relevant hzi range between 3 and 3.5
are consistent with the experimentally observed range of
b-values. By comparing the observed temperature depen-
dence and predicted hzi -dependence of b, we infer an
apparent decrease of hzi from 3.7 to 3 as we raise the poly-
merization temperature from 26 to 37�C. This conclusion is
entirely in line with the apparent decrease of hzi we inferred
from the temperature dependence of g0 and gc. We once
again conclude that the nonlinear elasticity of collagen net-
works appears to be sensitive to small changes in network
connectivity.
Normal stress stabilizes collagen networks

We have shown that both the linear and nonlinear elasticity
of collagen networks are in close agreement with theoretical
predictions for networks of elastic fibers. As a final critical
test of the model, we consider the normal stress that the net-
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works develop when they are sheared. It is well established
that fibrous networks develop a negative (contractile)
normal stress when they are sheared between two plates
with a fixed gap (37). Several analytical models and simula-
tions for fibrous networks predict that stress-stiffening
should be accompanied by an increase of the magnitude
of this normal stress (37,55,56). Recent simulations suggest
that there is a fundamental connection between the elastic
modulus K0 and the self-generated normal stress sN in sub-
marginal fibrous networks under shear (20,40). Specifically,
it was shown that K0 grows in direct proportion to sN:

K0xG0 þ cjsN j ; (2)

where c is the susceptibility. It was hypothesized that the
normal stress stabilizes the network once the network is
strained out of the linear regime ðg>g0Þ and before it un-
dergoes a strain-driven transition to a stretch-dominated
regime (at gc). Here, we experimentally test this intriguing
hypothesis by measuring the normal stress that collagen gels
exert on the top plate of the rheometer as a function of the
applied shear stress. As shown in Fig. 8 A, shearing indeed
induces a significant negative normal stress that increases in
magnitude with increasing shear stress. We observe this ef-
fect for all collagen gels polymerized at concentrations



FIGURE 8 Sheared collagen networks develop a negative normal stress

whose magnitude is linearly related to the nonlinear elastic modulus.

(A) An example measurement is given, showing simultaneous stiffening

(black line, left y axis) and the development of a negative normal stress

(sN , right y axis) for a 4 mg/mL collagen network at 37�C. The inset shows
a schematic side view of the cone-platemeasurement geometry and indicates

the directions of the shear stress s and normal stress sN . (B) K increases lin-

early with�sN for 4 mg/mL collagen gels polymerized at temperatures be-

tween 26 and 37�C (see legend). One representative measurement per

temperature condition is plotted. The solid line shows the expected linear

dependence from Eq. 2. To see this figure in color, go online.

FIGURE 9 The self-generated normal stress stabilizes collagen networks

and controls the initial strain-stiffening response. (A) Both in experiments

(main plot) and in simulations (inset), the susceptibility c determined

from stress-stiffening curves (symbols) is linear in 1=g0 (dashed lines).

Collagen gels were polymerized at temperatures between 26 and 37�C
and collagen concentrations between 0.7 and 5 mg/mL (blue-pink) (see

legend and color bar on the right). Simulations in the inset were performed

for different ~k values (see legend) and for hzi between 3 and 3.87 (see

Table S2). (B) The stress-stiffening response of 4 mg/mL collagen networks

polymerized at temperatures ranging from 26 to 37�C is correctly predicted

by Eq. 2 (red symbols, calculated using measurements of the normal stress

as input) to within a factor of two. (B, inset) The simulations likewise show

agreement between simulated K0 values (gray line) and calculations from

the normal stress using Eq. 2 (red dashed line), as exemplified for a network

with ~k ¼ 10�4 and hzi ¼ 3:2. In (A), all individual measurements (at least

three per conditions) are plotted, whereas in (B), representative curves are

shown. To see this figure in color, go online.

                                    
above �1 mg/mL and polymerization temperatures of 26�C
or higher. We were unable to obtain measurable normal-
stress signals for collagen gels polymerized at 22�C, likely
because we are unable to reach large enough strains to enter
far enough into the nonlinear regime. We note that we
always observed a nonzero normal stress even at small
strain, which is likely dominated by the surface tension of
the sample at its edge (38). Because this effect is not related
to the elastic properties of the collagen network itself, we
subtracted this offset from the normal stress data.

To test the validity of the model, we first verified that K0

exhibits the expected linear dependence on sN by plotting
data for different collagen concentrations and polymeriza-
tion temperatures together. As shown in Fig. 8 B, we indeed
find a linear dependence of K0 on sN:According to Eq. 2, we
should in principle be able to determine the susceptibility
c from a linear fit to these data. However, because sN was
rather noisy, especially at collagen concentrations below
2 mg/mL, we used an alternative approach. According to
the simulations, right at the point at which strain-stiffening
sets in, the shear stress and the normal stress are comparable
in magnitude (37,40,55). We can therefore rewrite Eq. 2 as
K0=s0xc. Using the s0 -values we already determined from
stress-stiffening curves, we find that c is linear in 1=g0 (see
Fig. 9 A), in line with the simulations (inset). Finally, taking
these values for c as input, we tested whether the stress-stiff-
ening behavior of collagen networks is controlled by normal
stress as predicted by Eq. 2. As shown in Fig. 9 B, we indeed
observe a reasonable correspondence between the stiffening
behavior predicted on the basis of the measured normal
stress response (lines) and the measured stiffening response
(symbols) for 4 mg/mL collagen networks polymerized at
temperatures of 26�C and above. We observe a similarly
good agreement at other collagen concentrations (Fig. S9).
We consistently observe a factor of two difference between
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theory and experiment, perhaps because Eq. 2 is only valid
at stresses below sc. Altogether, the experiments provide
strong support for the hypothesis, made on the basis of
simulations, that a shear-induced normal force governs the
nonlinear elasticity of collagen gels at intermediate strains
between g0 and gc. Moreover, this agreement provides
further evidence that elastic fiber network models provide
an appropriate description of collagen elasticity over a
wide range of assembly conditions.
DISCUSSION

We combined experiments and computational modeling to
elucidate the origin of the nonlinear elastic properties of
fibrillar collagen networks. By varying the polymerization
temperature between 22 and 37�C and the collagen mono-
mer concentration between 0.5 and 5 mg/mL, we obtained
collagen networks with an architecture ranging from a
sparse meshwork of thick collagen fibril bundles to a dense
meshwork of thin collagen fibrils. We modeled the networks
as random networks of stiff fibers with an average local con-
nectivity between three (branch points) and four (junctions
of crosslinked fibers). We showed that the model provides
a self-consistent description of all aspects of the nonlinear
elastic response of collagen networks (i.e., G0, g0, gc, b,
and the relation between shear modulus and normal stress)
with reasonable parameter values for the average connectiv-
ity hzi and the fiber Young’s modulus E. We furthermore
showed that the quantitative agreement between theory
and experiment holds over the entire concentration range
and all polymerization temperatures between 26 and 37�C.
Only for networks formed at 22�C could we not use the
model, because these networks were too heterogeneous
and exhibited marked inelastic behavior. Several recent
studies likewise identified inelastic behavior in collagen
networks (57,58), which allows cells to align and bundle
collagen fibers by applying traction forces (59–61). Our
data suggest that the extent to which collagen behaves
inelastically can be tuned by the polymerization tempera-
ture, probably through a modulation of the hydrophobic
interactions that dominate collagen association. It will be
an interesting challenge to include such inelastic effects in
our random network model by extending it with transient
fiber-fiber bonding.

Our work suggests that microscopic properties of
collagen can be inferred from macroscopic rheology data
by comparing experiments against theoretical predictions
for fibrous networks. The conditions under which this
approach is valid are well defined and easily verified
by microscopy and rheology experiments: the network
needs to be isotropic, athermal, elastic, and subisostatic
(i.e., hzi needs to be below six).

We propose that the bending rigidity of the fibrils can be
inferred from the linear elastic modulus, G0. We were able
to explain the dependence of G0 on collagen concentration
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and polymerization temperature with a single value for the
fibril Young’s modulus of 1.1 MPa. It is difficult to directly
validate this number, because this requires challenging
in situ micromanipulation measurements on individual
collagen fibrils within 3D networks. Until now, microma-
nipulation measurements have been restricted to isolated
collagen fibrils. Furthermore, those measurements vary
over a wide range depending on whether the fibers are re-
constituted from purified collagen or extracted from tissue,
on sample preparation, and on the measurement technique.
A direct comparison to literature values is therefore difficult.
Values for (hydrated) native collagen fibrils range from 2–5
MPa (51) to 10–30 MPa (53), 50–120 MPa (48,49,52), and
even 100–360 MPa (47). The few reports we are aware of in
which reconstituted collagen fibrils were used report smaller
moduli of just a few kPa (62) or several MPa (53). It is not
surprising that reconstituted fibrils would be softer than
native fibrils, given that they are much less cross-linked
(63,64). In light of the existing literature, we consider the
value of 1.1 MPa we infer for the Young’s modulus of recon-
stituted collagen I fibers as reasonable. In the future, it will
be interesting to perform micromanipulation measurements
on fibrils within 3D networks using optical or magnetic
tweezers to test the Young’s modulus under physiologically
relevant assembly conditions.

Our findings also suggest that the nonlinear elastic
response of collagen networks can reveal microscopic prop-
erties of the networks, specifically the average coordination
number hzi. The strain-stiffening response has two phases,
with an onset of stiffening at a strain g0 and a strain-
controlled transition from a bend-dominated regime to a
stretch-dominated elastic regime at a strain gc. We observed
that g0 and gc both increase with increasing polymerization
temperature. In the context of the model, this observation
tells us that hzi decreases from 3.5 to 3 on going from 26
to 37�C. We reach the same conclusion when we consider
the linear modulus G0, which drops on going from 26 to
30�C, and the stress-stiffening exponent, b, which increases
with increasing polymerization temperature. The structure
of collagen networks is known to be kinetically determined.
With increasing temperature, we expect an increased rate of
nucleation and growth of collagen fibers, which will in-
crease the likelihood of branching. Networks formed at
37�C have hzi close to 3, consistent with a highly branched
network, over a range of concentrations between 2 and
5 mg/mL. Indeed, with increasing temperatures, we expect
an increased rate of nucleation and growth of collagen fi-
bers, which will increase the likelihood of branching. Below
2 mg/mL, we find hzi values below 3, suggesting the pres-
ence of dangling (elastically inactive) ends. Admittedly,
the determination of hzi is currently model dependent. We
find that it is difficult to determine hzi precisely from imag-
ing alone. Imaging cannot distinguish whether fibers form a
true junction or are merely entangled or in close proximity.
Moreover, it is difficult to determine whether the fiber ends



                                    
are cross-linked to other fibers or dangling. A further issue is
the difficulty in reliably tracing all fibers in dense 3D net-
works (26,65,66). In the future, it may be possible to solve
these issues by using time-lapse imaging or micromanipula-
tion experiments to test whether an apparent junction of two
fibers is a cross-linked pair or just an entangled pair. Our
work suggests that rheological measurements meanwhile
provide a robust and convenient assay to measure the
ensemble-averaged network connectivity. At the same
time, the sensitivity of the rheology to small changes in con-
nectivity can explain the diversity of concentration depen-
dencies observed in studies performed with different
collagen batches and assembly conditions, with power-law
dependencies of G0 on concentration with exponents vary-
ing between one and three (18,19,32–36).

Our model provides a mechanistic basis for explaining
the strain-stiffening behavior that is characteristic of
collagen networks and collagenous tissues. Earlier compu-
tational studies had suggested that strain-stiffening origi-
nates from a transition from bending-dominated elasticity
at low strain to a stretch-dominated elasticity regime at
high strain (67). However, here we showed that collagen net-
works already stiffen substantially, well before the transition
to the stretch-dominated state occurs. Thus, the initial
strain-stiffening response that sets in at g0 is actually not
caused by a bend-to-stretch transition. A recent theoretical
study put forward the hypothesis based on simulation data
that the initial stiffening is induced by a self-generated
normal stress (20,40). Here, we experimentally confirm
this hypothesis. We find that sheared collagen networks
indeed develop a large negative (contractile) normal stress
and that the elastic modulus K0 grows in direct proportion
to the magnitude of this normal stress. It is only for strains
above gc that the networks undergo a transition to a rigid
stretch-dominated elastic regime (25,29).

The microscopic model we propose opens up several
interesting avenues of future research. First, our findings
provide a starting point to develop multiscale models of
collagen networks that incorporate the different hierarchical
levels of structure. In this study, we coarse-grained the
collagen fibers as uniform elastic beams. This approach al-
lows us to model the effective elastic properties of the fibers,
but it cannot account for the mechanical anisotropy of
collagen fibers associated with their bundle-like structure
(68,69) nor for strain-dependent changes in their molecular
packing (9,70). Depending on the required level of detail,
the fibers could be modeled as Timoshenko beams to ac-
count for intrafibrillar shear (69), or one could even inte-
grate the model with constitutive relations determined
from full-atom simulations to account for the viscoelastic
properties of the fibers (22) and strain-induced fiber length-
ening via subunit sliding (20).

Second, our findings provide a quantitative framework
to understand how auxiliary extracellular matrix proteins
regulate the structure and mechanics of collagen networks.
Although collagen I is the most abundant type of collagen
in noncartilaginous tissues (>90%), it nevertheless always
forms ‘‘heterotypic’’ fibrils together with other fibrillar
collagens such as collagens III and V and noncollagenous
molecules such as glycosaminoglycans. This co-assembly
is thought to provide an essential mechanism for regulating
the diameter of the fibrils and tailoring collagen networks
for the specific biomechanical requirements of different
adult tissues and of remodeling tissues (1). Using the
random network model, it should now be possible to relate
the mechanical properties of collagen networks to the
underlying changes in structure at both the fibril and
network scale.

Third, our findings provide a quantitative framework to
investigate the mechanobiology of cell-matrix interactions.
Cell-seeded collagen networks are widely used as extracel-
lular matrix model systems for tissue morphogenesis,
wound healing, cell migration, and cancer biology (10,11).
The elastic modulus of collagen networks was shown to in-
fluence many cell functions such as cell migration and pro-
liferation (17,71,72). Our work facilitates systematic studies
of this mechanoregulation by making it possible to design
the network structure to achieve a desired elastic response.
Our work also facilitates measurements of the transmission
of forces generated by cells cultured in collagen networks.
Recently, several methods have been proposed to infer the
traction forces that cells exert on the collagen matrix at focal
adhesion sites from imaging-based measurements of the
matrix strain (61,73,74). This has been a challenging prob-
lem due to the fibrous architecture of collagen networks,
which causes cells to stiffen the matrix around them
(75,76) and makes force transmission long-ranged (61,77).
Our findings strongly support the validity of using athermal
random network models to provide a quantitative relation
between stresses and strains in collagen matrices.
CONCLUSIONS

Our findings show that models of disordered networks of
elastic fibers provide a unifying framework to understand
the relation between collagen network mechanics and
microstructure over a wide range of assembly conditions
as long as the network structure is isotropic and sufficiently
uniform. Interestingly, our work suggests that macroscopic
measurements of the nonlinear elastic behavior are able to
reveal microscopic information about the average network
connectivity, a parameter that is difficult to determine reli-
ably from microscopy images. It will be important in future
work to find model-independent methods of measuring the
network connectivity to validate this conclusion based on
imaging. Our work establishes a strong basis to predict the
elastic properties of more physiologically relevant collagen
systems, in which the fibril diameter is regulated by copoly-
merization of collagen I with other fibril-forming collagens
and glycosaminoglycans. Moreover, our study provides a
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quantitative framework to design collagen networks with
desired mechanical properties, which is useful for biophys-
ical studies on the mechanoregulation of cell migration,
wound healing, and tissue morphogenesis. Our model is
generally applicable to fibrous networks, provided that the
networks are isotropic, athermal, and subisostatic. There
are many biological materials that fulfill these criteria in
addition to collagen, including fibrin, which mediates blood
clotting in animals, and cellulose, which provides support to
plant and tree tissues.
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