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Pseudochemotaxis in inhomogeneous active Brownian systems
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We study dynamical properties of confined, self-propelled Brownian particles in an inhomogeneous activity
profile. Using Brownian dynamics simulations, we calculate the probability to reach a fixed target and the mean
first passage time to the target of an active particle. We show that both these quantities are strongly influenced by the
inhomogeneous activity. When the activity is distributed such that high-activity zone is located between the target
and the starting location, the target finding probability is increased and the passage time is decreased in comparison
to a uniformly active system. Moreover, for a continuously distributed profile, the activity gradient results in a
drift of active particle up the gradient bearing resemblance to chemotaxis. Integrating out the orientational degrees
of freedom, we derive an approximate Fokker-Planck equation and show that the theoretical predictions are in
very good agreement with the Brownian dynamics simulations.
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I. INTRODUCTION

Active matter is ubiquitous in biology. Examples include
cytoskeletal molecular motors performing directed motion on
filaments inside a cell [1], nucleic acid motors involved in
transcription process inside nucleus [2], and even microscopic
living objects such as the Escherichia coli bacteria which
generates motion using helical flagella [3]. The defining
characteristic of active matter is that it is intrinsically nonequi-
librium. The constituents of active matter generate motion
by consuming energy from their local environment. In addi-
tion to the solvent-induced Brownian motion, active particles
undergo self-propulsion resulting in persistent character of
particle trajectories. It is the self-propulsion feature of these
particles, generally termed as the activity, which captures the
nonequilibrium nature of active matter.

There exist synthetic [4–7] and living systems [8–11] for
which the activity is not uniform but dependent on the spatial
location of the particles. Theoretical studies of inhomogeneous
active systems predict some very interesting phenomena such
as directional transport of colloids inside a bath of active
walkers [12], torque-free polarization of active Brownian
particles [13], pseudochemotaxis [14] in an activity profile and
activity density waves [15]. Inhomogeneous activity is a funda-
mental feature of self-phoretic active particles which exhibit
highly interesting pattern formation and dynamics [16–20].
These particles exhibit autochemotactic behavior in the sense
that their motion is governed by the gradients of chemicals
they produce. Position-dependent activity also features in the
energy depot model [21]. However, it is only recently that
position-dependent activity is realized in experiments. Using
an inhomogenous laser field [22], synthetic microswimmers
drifted towards increasing laser intensity exhibiting phototaxis.
In a very recent experimental development, even an archaic
form of chemotaxis has been observed: drift of self-propelled
supramolecular motors towards increasing fuel concentra-
tions [23].

The previous studies pose a fundamental question: Is active
motion directly related with chemotaxis by physical princi-
ples? A first step towards an answer is the inspection of a most
simple system which features both activity and a very primitive
concept for a “food-source” namely an increasing activity
towards the source caused by a gradient of available food in
the proximity of the source. Motivated by these considerations,
we consider in this work systems for which the activity varies
in space, focusing on two dynamical properties of an active
system: target finding probability and the mean first passage
time (MFPT) to target. The target finding probability is the
probability that a particle introduced at a given location, exits
through a specified boundary representing the target. The mean
first passage time to target is a measure of average reaction time
in finite domains [24].

In the context of active systems, the average reaction time
has been previously studied in homogeneous systems [25,26].
Here we show that both these dynamical properties are strongly
dependent on the spatial distribution of activity. In particular,
we find that the insights gained from steady-state inhomoge-
neous active systems, such as preferential accumulation in the
low-activity regions and orientation of particles antiparallel
to the activity gradient, cannot be used to understand the
dynamical properties of an inhomogeneous active system.
We show that these quantities are strongly influenced by the
inhomogeneous activity. When the activity is distributed such
that high-activity zone is located between the target and the
starting location, the target finding probability is increased
and the passage time is decreased in comparison to a uniformly
active system. Moreover, for a continuously distributed profile,
the activity gradient results in a drift of active particle up the
gradient bearing resemblance to chemotaxis. Our theoretical
predictions are based on an approximate Fokker-Planck equa-
tion and are shown to be in very good agreement with the
Brownian dynamics simulations.
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FIG. 1. Schematic of the inhomogeneous active system. The
surface of the yellow spherical shell r = r0 represents the target,
for instance fuel or energy source for active particles. The fuel
distribution in the spherical geometry is shown in red, the gradient of
which represents the decaying activity profile away from the source.
Active particles are shown as gray-white spheres together with their
embedded orientation vector. The size of the vector represents the
local self-propulsion speed of the particle.

II. MODEL AND THEORY

We consider a three-dimensional system of active, nonin-
teracting, spherical Brownian particles with position r and
orientation specified by an embedded unit vector p (see Fig. 1).
A space-dependent self-propulsion speed v0(r) acts in the
direction of orientation. Omitting hydrodynamic interactions
the motion can be modeled by the Langevin equations

ṙ = v0(r) p + ξ , ṗ = η × p. (1)

The stochastic vectors ξ (t) and η(t) are Gaussian distributed
with zero mean and have time correlations 〈ξ (t)ξ (t ′)〉 =
2Dt1δ(t − t ′) and 〈η(t)η(t ′)〉 = 2Dr1δ(t − t ′). The transla-
tional and rotational diffusion coefficients, Dt and Dr , are
treated as independent parameters. The set of equations in
Eq. (1) are convenient for Brownian dynamics simulations.
However, on averaging out the orientational degrees of free-
dom, one obtains a theoretically tractable model of active
particles evolving according to the Langevin equations [27–31]

ṙ = ξ + χ (r). (2)

Here, the stochastic force χ(r) is position-dependent and has
the time correlation 〈χ (r,t)χ(r,t ′)〉 = Da(r)1τ−1

a e−|t−t ′|/τa ,
where Da(r) = v2

0(r)τa/3 denotes a position-dependent coeffi-
cient and τa = (2Dr)−1 is the persistence time of the orientation
of the active particle. Due to the presence of colored noise in
Eq. (2), an exact Fokker-Planck equation for the time evolution
of probability density cannot be obtained. Here, we use the
simplest approximation of reducing χ (r) to a white noise with
time correlation 〈χ (r,t)χ(r,t ′)〉 = 2Da(r)1δ(t − t ′). This as-
sumption is valid in the limit of vanishing persistence time
of the active particle. Here, the multiplicative noise χ(r) is
implemented using the Itô’s prescription which results in the

following Langevin equation [32]:

ṙ = 1

2
∇Da(r) +

√
2(Dt + Da(r))N , (3)

where the term ∇Da(r)/2 is the noise-induced drift term and
N is Gaussian distributed with zero mean and time correlation
〈N (t)N (t ′)〉 = 1δ(t − t ′). We use Eq. (3) to derive Fokker-
Planck equation for P (r,t), defined as the probability density
of finding an active particle at position r at time t :

∂

∂t
P (r,t) = ∇ ·

[
1

2
(∇Da(r))P (r,t)

]

+∇ · [(Dt + Da(r))∇P (r,t)]. (4)

We note that Da(r) can be much larger than Dt and hence,
the diffusion of a particle may be governed predominantly
by the activity. For noninteracting particles, the enhanced
diffusivity of active particles is reminiscent of Brownian
particles at a vastly increased effective temperature [33]. In
fact, Eq. (4) describes a nonequilibrium process which breaks
detailed balance and can be interpreted as describing a passive
system with spatially varying temperature. The Fokker-Planck
equation obtained above is based on the Markovian process
in Eq. (3). However, even for the non-Markovian process in
Eq. (2), there exist different schemes [30,34,35], following
which an approximate Fokker-Planck equation can be derived.
These schemes yield a Fokker-Planck equation with first order
correction in the persistence time of the particle [25,28].
However, the correction is coupled to a potential term [25,28],
which is not present in our model, and therefore the error in
the white-noise approximation of χ (r) is of the order τ 2

a .
We consider activity to be distributed spherically symmet-

ric, continuously varying with distance r from the center as

v0(r) = c

rα

[∫ R

r0

dr4πr2 1

rα

]−1

, (5)

where the exponent α is varied to obtain different distributions.
We consider α � −1. The volume integral of the activity is c

which can be interpreted as the ‘total activity’ available in the
spherical geometry between r0 and R. The region 0 < r � r0

may represent a source of fuel for the active particles [23] (see
Fig. 1). We assume that the activity, i.e., the self-propulsion
speed of an active particle is proportional to the local con-
centration of the fuel. The total activity is, in this sense,
proportional to the total amount of fuel present in the system. If
one considers that the fuel source is emitting fuel at a constant
rate which then diffuses isotropically in the surroundings,
one obtains the steady state fuel distribution as 1/r which
corresponds to α = 1. If the source emits a constant number
of fuel particles per unit time which travel ballistically radially
outwards, the corresponding steady state fuel is distributed
as 1/r2. Since our focus in this study the effect of different
distributions, we do not concern ourselves with the specific
details of how a particular fuel distribution is obtained. In order
to compare the effect of different distributions, we impose the
constraint of fixed total activity (fuel) c for all values of α.

In Brownian dynamics simulations, we consider non-
interacting particles with translational diffusion constant
Dt = 1/30. The rotational diffusion constant Dr = 1/2.
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This corresponds to a quick rotation of the particle as compared
to translation in the spirit of our approximation of short
reorientation times made above. Based on the choice of
parameters, the radius a of the particle can be calculated using
the Stokes-Einstein Dr/Dt ∼ a−2 ≈ 1/4. The total activity c

is a free parameter. The trajectory of each particle is generated
by integrating the Langevin equations in Eq. (1) using a
time step dt = 3 × 10−3τD , where τD = 1/Dt is the time
scale of translational diffusion over a unit length. We fix the
inner boundary of the spherical geometry as r0 = 10. The
outer boundary is fixed to R = 50. With these parameters the
distance between the inner and outer boundary is much larger
than the particle’s diameter.

III. TARGET FINDING PROBABILITY

We first consider target finding probability, πr0 (r), defined
as the probability that a particle that is introduced at r at time
t = 0 reaches the specified target, i.e., exits through the inner
boundary r0 before it vanishes through the outer boundary. This
is shown in Fig. 2(a) as a function of the total activity c and
can be calculated from the Fokker-Planck Eq. (4) as (Chap. 5
Sec. 2 of [32])

πr0 (r) =
∫ R

r
dz z−2(Dt + Da(z))−

1
2∫ R

r0
dz z−2(Dt + Da(z))−

1
2

. (6)

The scenarios considered are (i) the activity increases as
one moves away from the target v0(r) ∝ r , corresponding to
α = −1, (ii) uniformly distributed activity as corresponding
to α = 0 and, (iii) activity distributed such that it increases
towards the inner boundary r0 (target) corresponding to
α = 1,2,3 [Eq. (5)]. The target finding probability does not
change in the case of uniform activity, see Fig. 2(a). It is
only when the activity is inhomogeneously distributed, the
probability is strongly biased to reach the target r0 located
at higher activities. As can be seen in Fig. 2(a), the theoretical
predictions are in good agreement with the simulation data.
The starting location r = 50/3 is chosen as it corresponds
to an equally likely exit from either of the two boundaries
in a passive or a uniformly active system. We note that the
qualitative behavior remains the same for any other starting
location, i.e., probabilities to exit from either of the boundaries
do not change in presence of uniform activity whereas in the
case of inhomogeneous activity, the probability increases at the
end where the activity increases. Although, here we consider
smoothly distributed activity as in Eq. (5), the same qualitative
behavior is obtained for piecewise distributed activity. For
instance, if the activity is assumed to be uniform between r0 and
R except a step-like larger activity of arbitrary length anywhere
between r0 and r , the probability of escaping through the target
boundary increases.

IV. MEAN FIRST PASSAGE TIME TO TARGET

The MFPT of an active particle starting at the outer bound-
ary r = R to reach the target at r = r0 is shown in Fig. 2(b).
Considering r = R as a reflecting boundary, MFPT to target of
a particle, τ (r), is the average time taken by a particle starting
at r to reach the target r = r0. This can be calculated from the

FIG. 2. Target finding probability (a) and the mean first passage
time to target (b) of active particles as a function of the total activity
c. The activity profiles considered are of the form v0(r) ∝ r−α . Each
profile is normalized such that the total activity is same for all
values of α. Simulation data are shown as symbols obtained from
Brownian dynamics simulation of Eqs. (1). The lines correspond to
the theoretical prediction of Eq. (6) in (a) and Eq. (7) in (b). The
target finding probability πr0 (r) is calculated for r = 50/3, which
yields equiprobable exit from r = r0 or r = R. πr0 (r) does not change
when the system is uniformly active (circles). However, when the
same amount of total activity is distributed such that it increases
towards the target r = r0, the probability is strongly biased. The mean
first passage time to target (r = r0) in (b) is calculated for a particle
starting at r = R. It is normalized to its corresponding value τ0 in a
passive system. Inhomogeneously distributed activity leads to a larger
decrease in MFPT in comparison to a uniformly active system.

Fokker-Planck Eq. (4) as (Chap. 5 Sec. 2 of [32])

τ (r) =
∫ r

r0

dz
z−2

√
Dt + Da(z)

∫ R

z

dy
y2

√
Dt + Da(y)

. (7)

We normalize the MFPT with its corresponding value in
a passive system (τ0). Increasing activity always decreases
the MFPT. However, the decrease in MFPT is much more
pronounced when the activity is spatially distributed such that
it increases towards the target. As can be seen in Fig. 2(b),
the theoretical predictions are in good agreement with the
simulation data. In our coarse-grained approach, it can be
easily seen from Eq. (4) that a uniformly active system is
equivalent to a passive system with an effective diffusion
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FIG. 3. Mean first passage time to target for stepwise uniform
activity as shown in the inset. Symbols denote data from Brownian
dynamics simulations and the lines to the theoretical predictions of
Eq. (7). The forward scenario corresponds to the active region close
to the target whereas in the backward scenario, the active region is
away from the target towards the outer boundary. Both scenarios have
the same amount of total activity. The forward scenario yields a much
faster passage to the target.

constant (Dt + Da). The decrease in the MFPT can thus be
simply attributed to the increased diffusivity of the particle.
However, when the activity is inhomogeneously distributed,
the decrease in MFPT is more pronounced.

As in the case of target finding probability, the spatial
distribution of the activity strongly influences the MFPT. A
particularly simple but instructive case that illustrates the role
of the spatial distribution of activity can be constructed as
follows. We consider two scenarios, called the forward and
the backward scenario. In the forward scenario, the region
r0 < r < rs is uniformly active and rs < r < R passive. In
the backward scenario, the situation is reversed with the active
region becoming passive and vice versa. The intermediate dis-

tance rs = 3

√
(r3

0 + R3)/2 is chosen such that the total activity
in both scenarios is the same (see inset of Fig. 3). The activity
gradient is everywhere zero except at r = rs implying that the
noise-induced drift of the particle occurs only at r = rs towards
r0 in the forward scenario and R in the backward scenario. In
Fig. 3, we plot the MFPT as a function of the total activity
c for the forward [τf (R)] and backward [τb(R)] scenarios.
Clearly, the forward scenario yields a much faster passage to
the target. One can show in a straightforward calculation that
the difference between the MFPTs of the backward and the
forward scenario, δτ = τb(R) − τf (R) is given as

δτ = Da

6(Dt + Da)

[
2r3

s

r0
− 2R3

rs

+ 3R2 − 4r2
s + r2

0

]
, (8)

where Da = c2/(6Dr ). It can be easily shown that δτ is
always positive. This simple case serves to illustrate the strong
influence of the spatial distribution of activity on the MFPT.
With the active region closer to the absorbing boundary, the
MFPT in the forward scenario is significantly smaller than in
the backward scenario.

The agreement between the theoretical predictions and the
simulations degrades with increasing α as can be seen in

Fig. 2. The theoretical description based on Eqs. (2) and (3)
ignores the coupling between fluctuations in orientation and
positional degrees of freedom. With increasing α, the activity
increases near the target and the position of the particle can
change significantly during orientational relaxation. Ignoring
this coupling between orientation and position is the main
reason for the disagreement between theory and simulations.

V. ROLE OF ACTIVITY GRADIENTS

There are two contributing factors to the increase in the
target finding probability: (a) more activity located between
the starting location and the target than outside and (b) noise-
induced drift due to the spatial variation of activity. We consider
these two factors individually by first considering a scenario
in which more activity is located between the starting location
r and the target r0 than outside. For instance, if the activity
is assumed to be uniform between r0 and R except a step-like
larger activity between r0 and r . This scenario can be mapped to
a system with larger temperature between r and r0 than outside
this region. A hot region is covered faster by diffusion than a
cold region leading to an increased target finding probability.
Next we consider the contribution of the noise-induced drift
for continuously distributed activity as in Eq. (5). As we show
below, the noise-induced drift is also the main reason for
the decrease in MFPT in an inhomogeneous active system.
The noise-induced drift arises due to spatial variation of
activity [Eq. (3)]. In order to find out the effect of the noise-
induced drift, we consider fictitious dynamics of the particle by
switching off the drift term in Eq. (3). In this case, the Langevin
dynamics correspond to ṙ = √

2(Dt + Da(r))N , from which
the following Fokker-Planck equation is obtained:

∂

∂t
P (r,t) = ∇ · [∇((Dt + Da(r))P (r,t))]. (9)

Using Eq. (9) we analytically calculate the target finding
probability and MFPT which is shown in Fig. 4. We consider
two inhomogeneous distributions (i) decaying as r−2 away
from the target [same as Eq. (5)] and (ii) increasing as r2

away from the target towards the outer boundary. The latter
corresponds to activity gradient pointing away from the target
whereas the latter corresponds to activity gradients pointing
towards the target. We find that on neglecting the noise-
induced drift term, the target finding probability remains 0.5
independent of the total activity c for both the distributions.
Interestingly, considering MFPT, we find that on neglecting
the noise-induced drift term, it becomes significantly larger
for the r−2 distribution. When the activity is distributed as
r2, i.e., with activity gradients pointing away from the target,
removing the noise-induced drift leads to a significant decrease
in the MFPT. It thus follows that whereas the noise-induced
drift facilitates the passage to the target for r−2 distributed
activity, the opposite holds true for r2 distribution.

Rather than removing the drift term, if one adds ∇Da(r)/2
to the Langevin equation (3), such that the dynamics corre-
spond to ṙ = ∇Da(r) + √

2(Dt + Da(r))N , one obtains the
corresponding Fokker-Planck equation as

∂

∂t
P (r,t) = ∇ · [(Dt + Da(r))∇P (r,t)]. (10)
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FIG. 4. Target finding probability (a,b) and MFPT (c,d) as
function of total activity c. The solid lines are calculated using Eq. (4)
corresponding to the ‘real’ dynamics of the particle according to
Eq. (3). The dashed lines are calculated using Eq. (9) and correspond
to the fictitious dynamics without drift. The dash-dotted lines are
calculated using Eq. (10) and correspond to the fictitious dynamics
with extra drift. α = −2 corresponds to the r2 distributed activity with
activity gradients pointing away from the target and α = 2 to the r−2

distributed activity [same as Eq. (5)] with activity gradients pointing
towards the target. In the case of no drift, the target finding probability
remains constant. On switching off the drift, the MFPT becomes larger
for the r−2 distributed activity and smaller for r2 distributed activity.
In the case of extra drift, the target finding probability becomes larger
for the r−2 distributed activity and smaller for the for r2 distributed
activity. The MFPT becomes smaller for the r−2 distributed activity
and larger for r2 distributed activity. Clearly, the noise-induced drift
facilitates the passage to the target for r−2 distributed activity whereas
the opposite holds true for r2 distribution.

This equation corresponds to a fictitious system with space-
dependent diffusion coefficient. We have also performed an-
alytical calculations corresponding to this case for the two
activity distributions as mentioned above (see Fig. 4). We find
that the addition of noise-induced drift leads to an even stronger
decrease in MFPT and a larger increase in the target finding
probability than that from the Langevin equation (3). It follows
that the noise-induced drift strongly affects both target finding
probability and the MFPT in an inhomogeneous active system.

VI. PSEUDOCHEMOTAXIS

The increase in likelihood of escaping through the target
boundary is reminiscent of the chemotaxis phenomenon [3].
Chemotaxis is a fundamental sensory mechanism by which
bacteria and other single- or multicellular organisms monitor
the concentration gradients of specific chemicals, translating
the information into motion either uphill or downhill to the
gradient. The increased likelihood of escaping from the inner
boundary, where activity increases, can be likened to an
active particle climbing up the fuel gradient. This chemo-
tactic behavior has been recently realised in experiments on

FIG. 5. (a) Mean first passage time to target as a function of the
starting location r for different values of c. The activity is distributed
according to Eq. (5). Symbols denote data from Brownian dynamics
simulations and the lines to the theoretical predictions of Eq. (7). The
rate of change of MFPT with r is calculated using Eq. (7) and is shown
in (b). The inset of (b) replots τ ′(r) corresponding to c = 16 × 104 to
better visualize the nonmonotonic behavior. When the same amount
of total activity is distributed as 1/r3, τ ′(r) exhibits a maximum which
moves away from r0 towards R with increasing c.

supramolecular nanomotors which climb up the hydrogen
peroxide concentration gradient [23].

Considering that the stationary distribution of active parti-
cles in an inhomogeneous activity profile tends to accumulate
in the low activity region, the chemotactic behavior of active
particles appears paradoxical. Recently, Ghosh et al. [14]
addressed this paradox by emphasizing the distinction between
the dynamical and stationary behavior of inhomogeneous
active systems. The stationary distribution is obtained under
the assumption that the active particle is trapped between
two reflecting boundaries. The target finding probability, in
contrast, is the likelihood of reaching a target boundary. In a
stationary scenario, the drift of the particle towards the end
where activity increases, is a dynamical effect and does not
impact the stationary distribution.

VII. PHASE-SPACE EFFECT

We consider how the MFPT changes as a function of the
distance r from the target r = r0. In Fig. 5(a) we plot the MFPT
as a function of r for different values of c when activity is
distributed inhomogeneously as in Eq. (5). As can be seen in
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the Fig. 5(a), the MFPT decreases monotonically with c for
any given r . For a fixed c, the MFPT, as expected, increases
with increasing r . This seems to be a trivial observation as
one expects τ (r) to increase with increasing distance from
the target. However, there is a subtle geometrical aspect
that becomes evident when one considers τ ′(r), the rate of
change of τ (r) with respect to r as shown in Fig. 5(b). For
a passive system (c = 0), τ ′(r) is largest for r = r0 and then
decreases monotonically with increasing r . However, in an
active system, τ ′(r) shows a qualitatively different behavior
with r . With increasing c, the decay of the τ ′(r) near r0 becomes
increasingly slow, becoming nearly flat.

The qualitative change in the behavior of τ ′(r) is due to an
underlying competing effect between the available phase-space
and activity which can be understood as following. For a
particle introduced at r such that r0 < r < R, the passage
to r = r0 includes trajectories spanning the volume between
r and the reflecting boundary at R. The smaller r − r0 is,
the larger is this extra volume (phase-space) between r and
R in which the particle can wander before being absorbed
at r = r0. This phase-space effect gives rise to the observed
strong decrease of τ ′(r) in a passive system. However, in an
inhomogeneous active system, there is an additional competing
effect due to the activity which tends to prevent the excursion
of the particle away from r0. With increasing c, the noise-
induced drift becomes increasingly important and counters
the wandering of the particle. These two competing effects
give rise to the observed slower decay of τ ′(r). We emphasize
that even for τ ′(r), the emergence of this subtle competing
effect between the available phase-space and activity is due
to the inhomogeneous distribution of the activity. In a system
with uniform activity, τ ′(r) decays strongly away from the
absorbing boundary as for the passive system. The behavior of
τ ′(r) is strongly dependent on the activity profile.

Interestingly, when the activity decays faster than 1/r2 in
three dimensions, τ ′(r) becomes nonmonotonic. In the inset
of Fig. 5(b), we plot τ ′(r) for the activity distributed as 1/r3

corresponding to a total activity of c = 16 × 104. With this
choice of activity profile, one obtains a maximum in τ ′(r)
which shifts away from r0 towards R with increasing c.
Such rapidly decaying activity profile would naturally arise in
systems in which the fuel molecules injected by the source,
have a finite lifetime. Fuel molecules may bind to species
other than the active particles resulting in an attenuation of
freely available fuel. An activity profile that decays faster than
r−(d−1) for d � 2 does not only compensate for the competing
phase-space effect but dominates it near r0 for larger c giving
rise to the observed nonmonotonicity of τ ′(r). This can be
easily demonstrated quantitatively by differentiating Eq. (7)
twice with respect to r for the chosen activity profile. We note
that the phase-space related effects as discussed here are absent
inside one-dimensional systems such as linear channels, but are
of significance in majority of natural scenarios.

Active particles exhibit non-isotropic distribution of their
orientation vectors in presence of an activity gradient [13]. In
the current setup, however, these gradients are insufficiently
steep to generate significant effects on the walker’s orien-
tations. In fact, our Fokker-Planck equation reproduces the
computational findings in complete absence of any orienta-
tional inhomogeneities, which is also in agreement with earlier

study by Ghosh et al. [14]. It is therefore safe to conclude
that orientational effects are of no relevance for the target
finding probability and MFPT in the context of our work. In our
simulations of active particles we find that τ (r) exhibits a small
but finite discontinuity at r = r0. This is a consequence of the
finite persistence time of active particles which is ignored in our
theoretical approach. Nevertheless, except in the immediate
neighborhood of r0, the theoretical predictions are in very good
agreement with the simulations.

VIII. CONCLUSIONS AND OUTLOOK

We studied the dynamical properties of noninteracting
active particles in an inhomogeneous activity profile. Using
Brownian dynamics simulations, we calculated the probability
to reach a fixed target and the mean first passage time to the
target of an active particle. We showed that both these quantities
are strongly dependent on the spatial distribution of the activity.
When the activity is distributed such that high-activity zone
is located between the target and the starting location, the
target finding probability is increased and the passage time
is decreased in comparison to a uniformly active system.
Moreover, for a continuously distributed profile, the activity
gradient results in a drift of active particle up the gradient
bearing resemblance to chemotaxis [14,15]. We further showed
that inhomogeneous activity can give rise to subtle effects such
as the nonmonotonic behavior of τ ′(r), which are absent in
uniformly active systems or linear channels.

We found that the insights gained from steady-state inhomo-
geneous active systems, such as preferential accumulation in
the low-activity regions and orientation of particles antiparallel
to the activity gradient, cannot be used to understand the
dynamical properties of an inhomogeneous active system. The
noise-induced drift emerges naturally in a system with spatially
varying noise and it points in the direction of the activity
gradient. As a consequence, a particle starting anywhere in
the system drifts towards higher activity. The particle moves
increasingly faster as it gets closer to the target. The drift
aids the passage of the particle to the target giving rise to the
observed increase in target finding probability. However, this
does not mean that the particle has a larger residence time in
the high activity regions. If the particle is reflected from the
target, it can move into low activity regions where it resides
for a longer time than in the high activity regions.

Finally, considering activity profiles in general the fol-
lowing interesting questions arise: Which activity profile,
for a given total activity c, yields the minimum mean first
passage time? Which profile yields the maximum target finding
probability? In a very recent study [36] on chemotaxis, the
authors have considered a source emitting a chemical signal
which develops a spatio-temporal distribution. It will be very
interesting to extend our study to such systems in which the
activity profile is dependent both on space and time. In partic-
ular, what will be the target finding probability in this scenario,
for both static and moving target? In the near future, we
will include interaction potential between the source (r0) and
active particle. It will be particularly interesting to investigate
under what conditions an active particle exhibits chemotactical
behavior when it interacts via a repulsive interaction with the
source of fuel.
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