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Isotropic-nematic transition of self-propelled rods in three dimensions
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Using overdamped Brownian dynamics simulations we investigate the isotropic-nematic (IN) transition of
self-propelled rods in three spatial dimensions. For two well-known model systems (Gay-Berne potential and
hard spherocylinders) we find that turning on activity moves to higher densities the phase boundary separating
an isotropic phase from a (nonpolar) nematic phase. This active IN phase boundary is distinct from the boundary
between isotropic and polar-cluster states previously reported in two-dimensional simulation studies and, unlike
the latter, is not sensitive to the system size. We thus identify a generic feature of anisotropic active particles in
three dimensions.
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I. INTRODUCTION

Collective nonequilibrium behavior in suspensions of active
Brownian particles (ABPs) is the subject of much current
research interest [1]. Not only do these systems exhibit novel
dynamics and phase behavior, they are also relevant for
understanding self-organization phenomena in nature. Much
of the interest in ABPs has been driven by the introduc-
tion of new experimental model systems, such as catalytic
Janus particles [2–4], light-activated colloids [5], and col-
loids with artificial flagella [6]. Additionally, studies of min-
imal spherical active models have triggered a whole new
branch of fundamental research in nonequilibrium statistical
mechanics.

The striking similarities to an equilibrium system have been
exploited by developing a Cahn–Hilliard-like mechanism [7]
to describe the early-stage dynamics of motility-induced phase
separation [8–10], identifying an effective equilibrium regime
[11–14], defining effective interaction potentials [10,14–16],
or employing linear-response theory [17]. More fundamen-
tally, a better understanding of active pressure [18,19] or
chemical potential [20] is required to provide a solid framework
for active thermodynamics [21,22]. Recently, also the question
of how activity influences the well-studied phase transitions
in a passive system of soft disks has been addressed in
detail [23].

While spherical ABPs are ideal for exploring basic con-
cepts, suspensions of anisotropic ABPs are perhaps more
relevant, as these better represent the generic types of particles
encountered in nature [24,25]. Self-propelled rods (SPRs), the
anisotropic analog of ABPs, for which the self-propulsion
along the long axis of the particle breaks the up-down symme-
try, exhibit a rich dynamical phase behavior at high (infinite)
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activity [26–28] in two dimensions (2D). Simulations of large
2D systems (with rotational diffusion) [28–30] reveal that at
densities below the passive isotropic-nematic (IN) transition,
the initially isotropic state begins to destabilize due to the
emergence of moving polar clusters, which grow in size upon
increasing activity but do not form a global phase [30]. At
higher densities, a laning phase is found, which does have
nematic order on the range of the simulation domain but is not
homogeneous [26–28]. Experiments on a fluidized monolayer
of rods have identified giant number fluctuations in such states
[31]. For experiments on very long (and thus non-Brownian)
bacteria in quasi-2D, a nematic phase with long-range order
was reported [32].

The (enhanced) nematic ordering of a biologically inspired
2D nematic model has been studied in simulation [33]. In
extensions of the Vicsek model to incorporate local nematic
ordering (rather than the polar ordering of the original Vicsek
model), the region of stability of a homogeneous active nematic
phase (with giant number fluctuations) in 2D is determined
[34,35]. It is unsure whether this phase has long-range or quasi-
long-range order in these agent-based simulations; it even
seems to depend on the details of the model (compare Refs. [34]
and [35]). Returning to the SPRs interaction model, the lack
of observations of a homogeneous nematic phase in previous
simulations (in 2D) means that the IN phase boundary for
overdamped SPRs has not been addressed explicitly. To avoid
confusion of terminology we emphasize that in the literature
“active nematics” usually address anisotropic particles driven
randomly back and forth along their axis [25]. In this sense the
term “nematic” refers to the particle symmetry. The present
work concerns SPRs and the terms “polar” and “nematic” are
reserved to describe collective states.

The theoretical understanding of the phase behavior of
SPRs is a difficult problem. According to an early mean-
field approach [36], the density at the IN phase transition is
insensitive to activity. In contrast, more general collision-based
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FIG. 1. Isotropic-nematic (IN) transition of self-propelled rods
(SPRs). The solid line and the filled region corresponds to soft-
repulsive Gay-Berne (rGB) ellipsoids and the dashed line and symbols
to hard spherocylinders (HSC). The particles, sketched on the right
indicating their (approximate) length-to-width ratio, are propelled
with constant velocity v0 in the direction of their orientation ûi

(red arrows). In both systems, the state points are given by the
modified Péclet number Pe′ = v0/

√
6DTDR (swim speed rescaled

by a particle-geometry dependent factor) and the packing fraction
η, relative to the IN transition packing fraction η0

IN in equilibrium.
Beyond a certain threshold η (as indicated by the label “smectic”),
we find smectic clusters for HSC (more work is required to determine
whether these are a separate phase).

models [37,38] predict that the transition density decreases
with increasing activity. For overdamped (Langevin) dynam-
ics, the current numerical evidence suggesting that activity
might stabilize nematic order of SPRs only arises from the
observation that, as the density increases, the destabilization
of the isotropic phase with respect to polar fluctuations occurs
at lower activities [29,30]. In general, the existence of a
(nonpolar) nematic phase and its phase boundary remains an
open problem.

In this paper we address the activity dependence of the
IN transition of SPRs close to equilibrium using overdamped
Brownian dynamics simulations. We have chosen to mostly
work in three dimensions (3D), because (i) we expected a
greater stability of the homogeneous nematic phase in 3D
than in 2D (as for the phase-separated state of ABPs [39]),
(ii) giant number fluctuations are predicted to be reduced in
3D compared to 2D for active nematics [40] (it should be
noted that the validity of the linearized theory from which
these predictions stem is debated for 2D systems [34,35,41]),
and (iii) the equilibrium nematic phase has long-range order
in 3D (as opposed to quasi-long-range order in 2D), which
makes it easier to describe using particle-resolved computer
simulations and other theoretical approaches—leading to less
finite-size effects in the former—than in 2D. We will further
consider systems of lower aspect ratio, well away from the
Onsager limit.

Although we will focus on the repulsive Gay-Berne (rGB)
model, which is a classic model of thermotropic liquid crystals
[42–44], we have also performed simulations of lyotropic hard
spherocylinders (HSC) [45,46] to ensure that our findings are
not model specific. For both of the considered models we
observe a shift of the IN transition towards higher densities,
as the system is driven out of equilibrium by turning on the
activity (see Fig. 1). The IN transition line is independent of

system size, in contrast to the transition between isotropic and
polar-cluster states found at higher activities. A preliminary
survey of simulations of the rGB model in 2D (see the
Supplemental Material (SM) [47]) indicates that nematic order
is more rapidly disrupted by turning on activity than in 3D,
but finite-size effects preclude a definite statement. This might
be the reason why such an active IN transition has not been
reported earlier. The remainder of this paper is arranged as
follows. In Sec. II we present the two different models we
considered and describe the simulation method employed for
each of them. In Sec. III we present the simulation results of
the two models and identify the nematic phase at finite activity.
Finally, in Sec. IV we discuss our findings and provide an
outlook.

II. SIMULATION METHODS

A. Gay-Berne model

The regular Gay-Berne potential [42–44] between a pair of
particles is of the form of a Lennard-Jones potential, whose
depth and range depend on the interparticle separation and the
particle orientations:

φgb(û1,û2,r) = 4ε(û1,û2,r̂)

{(
σ0

r − σ (û1,û2,r̂) + σ0

)12

−
(

σ0

r − σ (û1,û2,r̂) + σ0

)6}
. (1)

Here the unit vectors û1 and û2 specify the orientation of
the interacting particles 1 and 2 and r, r , r̂ their center to
center-vector, -distance, and -direction. The attraction depth
ε(û1,û2,r̂) and the range σ (û1,û2,r̂) of the particle interaction
are dependent on the orientation. The length scale is σ0, which
in our case is the width of the particle (see also the Appendix
for a detailed description).

Here we consider a purely soft-repulsive version of the
potential [48], the rGB model

φrgb(û1,û2,r) =
{
φgb(û1,û2,r) + ε(û1,û2,r) r < rmin

0 r � rmin,
(2)

obtained by shifting and truncating the Gay-Berne potential.
We study particles with a length-to-width ratio which is
roughly given by κ−1 = 3 (see the sketch in Fig. 1). The
packing fraction is defined as η = NVE/V , with V being the
volume of the simulation box and VE = 4πσ 3

0 /(3κ) the volume
of the ellipsoidal particle.

The position and orientation vectors evolve in time accord-
ing to the coupled Langevin equations in the overdamped limit,

d

dt
ri(t) = γ −1 Fi(t) + v0ûi(t) + ξ i(t), (3)

d

dt
ûi(t) = α−1[Ti(t) × ûi] + [ηi(t) × ûi(t)], (4)

where γ =kBT/DT and α=kBT/DR are friction coeffi-
cients determined by the translational and rotational diffusion
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coefficients DT and DR, which we define as DT/σ 2
0 = 3DR.

The force and torque acting on particle i are related to
the total potential energy, which we take to be a sum of
pair potentials, UN = ∑

i<j φ(ûi,ûj ,rij ), according to Fi(t) =
−∇iUN and Ti(t) = −ûi × ∂UN/∂ûi . The stochastic vectors
ξ i(t) and ηi(t) are Gaussian distributed with zero mean and
have the time correlations 〈ξ i(t) ⊗ ξ j (t ′)〉 = 2DT1δijδ(t − t ′)
and 〈ηi(t) ⊗ ηj (t ′)〉 = 2DR1δijδ(t − t ′), where ⊗ refers to the
dyadic product of two vectors. The active component of the
dynamics enters via the second term in (3), where v0 is a
constant self-propulsion velocity. We define the dimensionless
time t∗ = tDT/σ 2

0 and activity as v∗
0 = v0σ0/DT.

B. Hard spherocylinders

We also consider HSCs interacting via a nearly hard-core
potential with aspect ratio l = 5 (well studied in equilibrium)
(see also the sketches in Fig. 1). The aspect ratio l = L/σ0

of a HSC is given by the ratio of the cylinder length L and
the diameter σ0 of the capping hemispheres. Its volume is thus
given by VS = π (l/4 + 1/6) σ 3

0 and the packing fraction fol-
lows as η = NVS/V . For the system of active HSC, we use an
existing simulation framework, the pe part of WALBERLA [49].
The pe part is a massively parallel framework for molecular
dynamics (MD) and a similar technique, the discrete element
method; we do not use the lattice-Boltzmann technique (for
which the WALBERLA framework is better known) in this
work. We implemented a friction and noise term in this MD
framework (while keeping the inertia term), which means that
the Langevin equation we are using is not fully overdamped:

dpi

dt
= −�i · vi + FS,i + FR,i, (5)

dLi

dt
= −γrωi + TS,i + TR,i , (6)

where pi = mvi and Li = Ii · ωi are the momentum and
angular momentum of a particle with mass m and inertia
tensor Ii . Here vi and ωi denote the translational and angular
velocity, respectively. The first term on the right-hand side
of Eqs. (5) and (6) accounts for friction due to the viscous
dissipation. The translational friction tensor �i depends on the
translational friction coefficients γ‖ and γ⊥ for motion parallel
and perpendicular to the symmetry axis ûi of particle i:

�i = γ‖ûi ⊗ ûi + γ⊥(I − ûi ⊗ ûi) (7)

(where I denotes the identity matrix). For reasons of symmetry,
only angular velocities ωi perpendicular to the symmetry axis
ûi of the HSC are considered; therefore, the rotational friction
coefficientγr for rotation of the particle axis suffices to describe
the viscous torque.

The subscript S in Eqs. (5) and (6) indicates the systematic
contributions to the force Fi and torque Ti , respectively. The
first contribution to the systematic force FS,i are the particle
interactions: The particles interact only when they intersect.
Overlaps are resolved by applying a fully elastic linear spring
force model to any contact points. The restitution force Frest in
the direction of the contact normal n acting at the contact point
is given by Frest = k δ, with k the stiffness of the potential and
δ the penetration depth. We set the stiffness k to a high value:
βkσ 2

HSC = 4 × 104, such that more than 99% of the collisions

at the higher densities have a penetration δ/σHSC < 0.02. The
second contribution to FS,i models the self-propulsion: FSP,i =
γ‖v0ûi .

The random contributions FR,i and TR,i , originating from
collisions with solvent molecules as mentioned above, have a
Gaussian probability distribution. The corresponding correla-
tion functions are related to the viscous friction according to
the fluctuation-dissipation theorem for particles i and j :

〈FR,i(t)〉 = 〈TR,i(t)〉 = 0

〈FR,i(t) ⊗ FR,j (t ′)〉 = 2kBT �i δijδ(t − t ′)

〈TR,i(t) ⊗ TR,j (t ′)〉 = 2kBT γr (I − ûi ⊗ ûi) δijδ(t − t ′)

〈FR,i(t) ⊗ TR,j (t ′)〉 = 0, (8)

with Boltzmann’s constant kB and the temperature T . δ(t − t ′)
represents the Dirac δ distribution, which in the case of discrete
time steps of size dt is replaced by δt t ′/dt . Since the angular
velocity ωi is kept perpendicular to the symmetry axis of the
HSC, only random torques TR,i normal to this axis are applied.

We define the mass m and the moment of inertia Ii of the
particle such that the relaxation time τI = m

γ̄
with 1

γ̄
= 1

γ‖
+

2
γ⊥

for the (linear) momentum is 100 times smaller than the

Brownian time scale σ 2
0 /DT and effects of the inertia are thus

expected to be small. For the HSC system, the translational
diffusion constant is given by DT = kBT/γ̄ .

C. Parameters

We analyze the orientational behavior of the system by
measuring the time averages S and P of the nematic order
parameter S(t) [50] and the polar order parameter P (t),
respectively, defined at each instant of time t as

S(t) = 1

N

N∑
i=1

3(ûi · n̂)2 − 1

2
, P (t) = 1

N

∣∣∣∣∣
N∑

i=1

ûi · n̂

∣∣∣∣∣, (9)

where ûi is the instantaneous orientation vector of particle i

and n̂ is the nematic director (see Sec. 3 of the Appendix).
Both quantities take values between 0 and 1, with the extreme
values indicating full disorder or perfect order, respectively. To
distinguish between the different states we choose the threshold
values St =0.35 for the onset of nematic and Pt =0.55 for
polar order. For the rGB ellipsoids, different choices for these
thresholds would lead to a slight shift of the transition lines in
the phase diagram but not affect our main conclusions. For the
HSC, the IN transition is more strongly discontinuous, leading
to a large jump in the order parameter, so the location of the
IN transition in the phase diagram is not affected by small
changes of the threshold St. In the HSC system, we never
observe global polar order (due to the system size and the
relatively low activities), so the value of Pt is irrelevant.

In the rGB model, we simulate N =500 particles for various
activities and densities. The size of the simulation box is
determined by the packing fraction which ranges from η = 0.1
to η = 0.59 in our computations. This corresponds to a side
length of the simulation box ranging between b ≈ 19.9 σ0 and
b ≈ 11.0 σ0. Our simulations yield a passive IN transition at
η = 0.53, which is in agreement with previous studies [48]. To
rule out finite-size effects, we repeated some simulation runs
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FIG. 2. Phase diagram of the 3D rGB model in the packing
fraction–activity plane for N = 500 particles. The stability of the
isotropic (I), nematic (N), and local polar (P) states is determined by
analyzing global order parameters. Typical snapshots are shown for
three distinct state points, as indicated by triangles. The IN boundary
(see Fig. 1 for a closeup) is insensitive to changes in the system size
and separates true nonequilibrium phases. In contrast, the boundary
separating I and P states is system-size dependent; the region P merely
indicates where system-spanning polar clusters occur. The differently
shaded squares near the IN phase boundary at v∗

0 = 5,10,15 denote
the stable phase found in the larger system with N = 1000 (see also
the SM [47]).

for N =1000 particles. To show that the active IN transition
is not specific to the rGB model, we compare the results to
larger-scale simulations of the active HSC model using N �
40 000 particles. The IN transition in the passive HSC system
lies at η = 0.415, in good agreement with previous work [51].
For a finite activity we have also performed some simulations
for N = 20 000 particles and observed no significant changes
in the results compared to N = 40 000.

To make a proper comparison of both systems we define a
dimensionless swimming speed that does not contain arbitrary
length and time scales. We thus consider the (square root
of) active part of the single-particle diffusivity relative to the
passive part [52] and define the dimensionless

Pe′ =
√

Da

Dp
= v0√

6DTDR
= v∗

0

√
DT

σ0
√

6DR
. (10)

Furthermore, we rescale the density by its value at the equilib-
rium IN transition for each system.

III. NUMERICAL RESULTS

For the rGB model, we mapped out an exemplary full
finite-size phase diagram, shown in Fig. 2, which reveals three
distinct states in the density-activity plane: isotropic, nematic,
and polar. We characterize the polar state, in which the majority
of particles are driven in the same direction, by S >St and
P >Pt. Its occurrence here is a known artifact of a finite system
[28–30], which we detail below. The purpose of showing it
here is to indicate the onset of large polar-cluster formation (a
“large” cluster contains a few hundred particles). Outside of
this region we can expect that the simulation results for the rGB
model indicating an isotropic phase are trustworthy. The large
finite-size effects in this polar state are not to be confused with
the distinct polar fluctuations observed at relatively low activity

FIG. 3. Simulation snapshots of the isotropic (I) and nematic (N)
phases for the active rGB system with v∗

0 = 10 and (a) η = 0.5 and
(b) η = 0.55 and for the active HSC system (side view) at packing
fractions just (c) below and (d) above the transition at Pe′ = 1.5 (see
Fig. 1). The color scheme serves to distinguish particles with different
orientations.

near the IN phase boundary, which arise due to a combination
of the finite-size effects and the enhanced tendency of the rods
to align parallel within the active nematic phase, indicating a
true phase transition.

Our main result is that we observe a nonequilibrium nematic
phase withS >St butP <Pt, whose boundary bends to the right
with increasing v0, suggesting that introducing a moderate
amount of activity can suppress orientational ordering. For
both the rGB and HSC systems the phenomenology depicted
in Fig. 1 is consistent; the IN transition line moves to higher
densities as the activity is increased. We explicitly verified
that the location of this active IN transition in each model is
independent of the system size, as indicated in Fig. 2.

Despite the similarity of the rescaled rGB and HSC phase
boundaries in Fig. 1 there are quantitative differences pre-
sumably related to both the interparticle interactions and the
aspect ratio. Most notably, we observe in Fig. 3 a different
microstructure and the rGB system begins to exhibit local polar
order as the IN phase boundary is approached. In addition, the
equilibrium phase diagram differs in the two models in that
a crystal is found for ellipsoids at higher densities, while the
phase diagram for HSC with this aspect ratio features also a
smectic phase (that is, a phase with fluidlike layers in which the
particles are nematically ordered with the director normal to the
layers). We see remnants of the latter in the active HSC system
in the form of smectic clusters (not shown). These clusters
usually span the system. Larger system sizes are required to
characterize these system-spanning smectic clusters, which we
leave for future work.

To understand the differences between the active nematic
phase in the two models, let us first analyze the rGB system
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FIG. 4. Nematic S and polar order parameter P used to determine
the phase behavior in the active rGB simulation. The state points
indicated by a square and a circle correspond to the snapshots in
Figs. 3(a) and 3(b), respectively. (a) Time average of S (the inset
shows P ) for different velocities v∗

0 as a function of packing fraction
η. The broken line indicates our threshold for determining the IN
phase boundary. Around this threshold, the error bars are comparable
to the symbol size, whereas they become significantly smaller in the
nematic phase and are barely visible in the isotropic phase (see also the
SM [47]). (b) Time evolution S(t) and P (t) for η = 0.55 and v∗

0 = 10.
The inset shows the same plots for a larger system with N = 1000
particles (see also the SM [47]).

in more detail. In Fig. 4(a) we show the time-averaged global
order parameters from Eq. (9) at packing fractions η close to
the IN phase boundary in the active rGB system. Following a
path of state points by increasing v0 at a fixed packing fraction
leads to a decrease in the nematic order parameter S, which
eventually falls below our chosen threshold St. Beyond this
transition point, we classify the state as isotropic and conclude
that the activity destabilizes the nematic phase. The transition
packing fraction shifts to higher values at higher activity. We
also observe a reduced slope of S(η) at higher activity, which
is why different threshold values St would result in a slightly
different phase boundary. As illustrated by the behavior of P

in the inset of Fig. 4(a), the emergence of nematic order is not
associated with persistent global polar ordering.

To make a clear statement about the behavior of the active
system, it is important to discuss the role of fluctuations. In
the global isotropic phase it is well known [28–30] that there
emerge local polar clusters with a critical size, which increases

upon increasing the activity or the density. The local polar state
depicted in Fig. 2 for the rGB ellipsoids thus corresponds to
a single cluster spanning the whole system. On increasing the
system size, the associated “phase boundary” shifts to higher
v0 for a given η, which consistently verifies that the polar
state in our finite-size simulation does not represent a true
nonequilibrium phase with global order in an infinite system
[28–30]. In the states which we characterize as nematic the
polar fluctuations are much more prominent than one would
expect for an isotropic phase with the same parameters. In
fact, even in the actual isotropic phase found at the same
density but higher activity, the fluctuations are significantly
weaker. In Fig. 4(b) we show the time evolution of both order
parameters associated with the nematic snapshot in Fig. 3(b).
The pronounced temporal fluctuations near the transition result
in slightly larger errors of the time-averaged values compared
to the bulk phases and also rationalize the decrease of the slope
of S(η) at higher activity, observed in Fig. 4(a). Moving deeper
into the nematic phase, the nematic order parameter can be
determined quite accurately.

In other words, we suspect that the fluctuations discussed
above for the rGB ellipsoids are related to an enhancement
of unphysical, finite-size induced self-interactions due to the
persistent motion of the aligned rods in the nematic phase.
However, the following considerations support our claim that
the IN phase boundary depicted in Fig. 1 is generic. First, we
stress that the observed long-time behavior is independent of
the (either polar or isotropic) initial conditions. Second, upon
further increasing the activity, the nematic phase eventually
turns into a distinct isotropic phase with significantly fewer
fluctuations, which points to a well-defined phase transition
even if the fluctuations in the nematic phase partially arise from
finite-size effects. Finally, both the lifetime and the magnitude
of the described fluctuations decrease with increasing system
size, as indicated in Fig. 4(b), whereas the average nematic
order parameter is robust, i.e., the IN phase boundary in Fig. 2
does not change. We even found indications that the transition,
i.e., the change of the nematic order parameter in Fig. 4(a),
becomes sharper in a larger system. For more details on the
finite-size effects and fluctuations in the rGB simulations see
the SM [47].

The above discussion is corroborated by our simulations
of the HSC system, where we do not observe significant
fluctuations of the global order parameters in the nematic
phase, which is similar to the equilibrium nematic order
parameter, even relatively close to the phase boundary. In
particular, the IN transition is always rather sharp, as illustrated
in Fig. 5. This is, at least partially, due to the much larger
system size of the HSC system. The error bars, which are a
measure of the standard deviation (not the standard error), in
the nematic order parameter increase drastically in the isotropic
phase at higher propulsion speed, especially Pe′ = 1.5 and
near the transition. Large error bars are an indication of large
fluctuations such as those found in the rGB system. However,
for the HSC system, the fluctuations are much less pronounced
than in the smaller rGB system. It is known that the IN
transition is first order in equilibrium, although the coexistence
region is very small [51]. Since the region of bistability cannot
completely disappear if an infinitesimal propulsion speed is
imposed, there must be a (small) region of bistability at nonzero
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FIG. 5. The nematic order parameter S for HSC as a function of
the packing fraction η for various swimming speeds Pe′. The error
bars indicate the standard deviation.

propulsion speed (at least for small v∗
0 ). The jump in the order

parameter, the magnitude of which is only weakly affected by
the self-propulsion (see Fig. 5), indicates that the IN transition
remains discontinuous, but the expected region of bistability
is smaller than our density resolution for all v∗

0 (including the
equilibrium system).

Due to the different aspect ratios of the two types of particles
and the resulting difference in friction, the swimming speed
at which the transition starts to shift towards higher densities
is reduced. In the isotropic phase near the IN transition, the
nematic order parameter fluctuates strongly as a function of
time for the larger swimming speeds. This explains the ragged-
ness of the curves in Fig. 5 for larger velocities (especially
Pe′ = 1.5). When investigating by eye the snapshots of the
isotropic phase in the HSC system, we made the following
observations: In the isotropic phase, as for the rGB model,
polar clusters were found that increase in size when increasing
activity or density (however, we made sure that the polar
clusters of HSC never span the system). In contrast, the typical
nematic configurations of the HSC do not show strong local
polar ordering, even at swimming speeds where the isotropic
phase clearly exhibits large polar clusters [compare Figs. 3(c)
and 3(d)].

IV. CONCLUSIONS

In conclusion, we identified in 3D and for small aspect ratios
a homogeneous nematic phase, close to equilibrium, which
can be clearly distinguished from the isotropic phase, even
in a relatively small system. By homogeneous, we mean that
there are no appreciable inhomogeneities in the local density.
This nonequilibrium nematic phase is gradually destabilized
by activity and we observe no evidence for giant number
fluctuations (but we cannot exclude the possibility entirely).
Our finding is not sensitive to the precise particle shape or
the details of the interaction, provided the rods are short. The
activity-induced stabilization of the nematic phase predicted
by mean-field theory [37] for 2D is thus not universal.

The reason for our observations could be related to the
shortness of the considered particles. In systems of long rods,
especially in 2D, head-to-side collisions dominate and will
rotate the particles towards either a parallel or antiparallel
orientation, which can be used as an argument in favor of
enhancing the nematic order rather than destroying it. As
the aspect ratio is reduced, head-on collisions become in-
creasingly frequent, generating disorder and destabilizing the
nematic phase. Moreover, as the aspect ratio is reduced, the
passive IN transition moves to higher densities, which further
increases the relative importance of head-on collisions. The
consequences of dense clustering and correlations beyond the
mean-field level have not been taken into account in previous
theoretical studies [37]. The finding that the active nematic
phase in 3D systems should be more stable than in 2D, is still
reasonable, since in the latter case the rods have less directions
in which they can escape upon a collision, so they would cluster
more readily.

The investigation of the effect of low-level activity on
established equilibrium states should, of course, also be carried
out with hydrodynamic interactions taken into account. One
fundamental question to be addressed is then whether there are
major differences between this more realistic model and our
overdamped simulations. If momentum is conserved in such
a more realistic model, is it possible that the nematic phase
becomes unstable with respect to inhomogeneous flows with
large wavelength, as predicted by (linear) hydrodynamic the-
ory [25,53]. In our system, these large-wavelength instabilities
are suppressed [25,53] by the friction and noise terms in the
equations of motion; as a result, momentum is not conserved.
Similarly, walls in an experimental system also act to violate
momentum conservation [32]. It will be interesting to see
to what extent these effects suffice to recover the behavior
found in this work. In any case, our work will provide an
important benchmark to understand the role of the ignored
hydrodynamic interactions in the near-equilibrium regime. We
thus hope that our work will motivate experiments on nematic
phases of SPRs in near equilibrium. Such active liquid crystals
could, for example, be constructed by rendering active a system
of synthetic colloidal rods [54]. We are thus confident that
the problem of active perturbations of equilibrium phases,
pioneered by our simulations (and similar efforts for other
systems [23,55]) is not only of pure theoretical interest.

An open task for our overdamped simulations is to provide
a more fundamental quantitative understanding of the nature
of the observed nonequilibrium IN transition and the active
nematic phase in particular. Although the transition appears
to remain of first order (as in equilibrium), which we suspect
from the sharp increase of the nematic order parameter in the
HSC system, a more careful analysis is required for a definite
statement. Since we have established a clear connection to
the IN transition in equilibrium, we do not believe that the
underlying mechanism driving this transition is comparable to
a liquid-vapor-like motility-induced phase separation [10]. The
latter (not to be confused with polar clustering) could rather
be observed within the isotropic region of the phase diagram,
i.e., at lower density, higher activity, and, perhaps, only for
shorter rods. In this sense, and to obtain clarity on the collision
argument, it will also be of interest to study the influence of
both the aspect ratio and interparticle interactions on the active
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IN phase boundary. To properly characterize the active nematic
phase and the transition region a detailed analysis of different
pair correlation functions and the orientational distribution will
be presented in future work. Along these lines, we will also
explore in detail the high-density region in the HSC system
to conclusively argue about the existence of an active smectic
phase.

The most important open task is, however, on the theoretical
side. It would be desirable to have a first-principles theoretical
approach to confirm our surprising predictions of the activity
dependence of the IN phase boundary, even if this is limited to
low activities, close to equilibrium. One obvious possibility
would be to develop a linear-response theory [17] for an
anisotropic and active system. While the phase behavior of
spherical ABPs can be explained solely by effective attractions
[10,15,16] and that of active nematic rods by an effective
(longer) aspect ratio [33], an appropriate effective potential for
SPRs should account for their characteristic broken up-down
symmetry. The most simplistic passive model system with this
property consists of hard pear-shaped objects, for which it
has been detailed recently that the nematic phase destabilizes
with increasing deviation from ellipsoidal shape [56]. This
observation suggests an intuitive mapping to describe the IN
transition, in qualitative agreement with our simulations, which
is yet to be quantified. Another promising and possibly com-
putationally efficient approach would be an implementation
within dynamical density functional theory [57] for anisotropic
and active systems [58], which recently has been generalized
also to microswimmers in a hydrodynamic medium [59].

In conclusion, there is much opportunity for further ex-
perimental, theoretical, and numerical studies of the active
nematic phase of SPRs. Beyond the bulk system, these should
also address the Frank elastic behavior, the response to (time-
dependent) external fields, and inhomogeneous systems in the
presence of confining walls.
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APPENDIX

In this Appendix we give a detailed description of the
Gay-Berne (GB) model, present how to calculate the forces
and torque, and describe how to extract the required order
parameters from the numerical data.

1. The Gay-Berne model

The Gay-Berne interaction potential for anisotropic parti-
cles is given by

φgb(û1,û2,r) = 4ε(û1,û2,r̂)

{(
σ0

r − σ (û1,û2,r̂) + σ0

)12

−
(

σ0

r − σ (û1,û2,r̂) + σ0

)6}
, (A1)

with the unit vectors û1 and û2 specifying the orientation of
the interacting particles 1 and 2 and r, r , r̂ their center to
center-vector, -distance, and -direction. The attraction depth
ε(û1,û2,r̂) and the range σ (û1,û2,r̂) of the particle interaction
are dependent on the orientation.

The shape of Gay-Berne particles is defined through an
anisotropy parameter

χ = 1/κ2 − 1

1/κ2 + 1
, κ = σs/σe.

Here σe is the “length” of the particle defined by the end-
to-end interaction and σs the “width” of the particle defined
though the side-to-side interaction. For infinitely long cigar-
shaped particles (σe → ∞) the anisotropy parameter χ → 1;
in contrast, for infinitely thin oblatelike particles (σs → 0) we
have χ → −1.

The orientation-dependent interaction range is given by

σ (û1,û2,r̂) = σ0

[
1 − 1

2
χ

{
(r̂ · û1 + r̂ · û2)2

1 + χ (û1 · û2)

+ (r̂ · û1 − r̂ · û2)2

1 − χ (û1 · û2)

}]− 1
2

.

The well depth is defined as

ε(û1,û2,r̂) = ε0 ε(û1,û2)ν ε′(û1,û2,r̂)μ,

ε(û1,û2) = {1 − χ2(û1,û2)2}−1/2,

ε′(û1,û2,r̂) = 1 − χ ′

2

{
(r̂ · û1 + r̂ · û2)2

1 + χ ′(û1 · û2)

+ (r̂ · û1 − r̂ · û2)2

1 − χ ′(û1 · û2)

}
,

with the parameter χ ′ describing the anisotropy in the well
depth:

χ ′ = 1 − κ
′ 1
μ

1 + κ
′ 1
μ

, κ ′ = εs

εe

.

In the limit of spherical particles, i.e., σe = σs , εe = εs , one
finds χ = 0 and χ ′ = 0 and therefore the Gay-Berne potential
becomes a regular Lennard-Jones interaction.

In our study we employed a soft repulsive version of
the Gay-Berne interaction, which is obtained by shifting and
truncating the Gay-Berne potential:

φrgb(û1,û2,r) =
{

φgb(û1,û2,r) + ε(û1,û2,r) r < rmin

0 r � rmin,

(A2)
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where rmin(û1,û2,r̂) = 21/6σ0 + σ (û1,û2,r̂) − σ0 is the mini-
mum of the Gay-Berne interaction.

2. Calculation of force and torque

The expression to calculate the force and torque we denote
for the regular Gay-Berne interaction (A1). For this we intro-
duce the scaled variable

R = r − σ (û1,û2,r) + σ0

σ0

and the interaction potential can be written as

φgb(û1,û2,r) = 4ε(û1,û2,r̂)

{(
1

R

)12

−
(

1

R

)6}
.

Furthermore, we define a function g(X) for the relative orien-
tation of two interacting particles

g(X) = 1 − X

2

{
(r̂ · û1 + r̂ · û2)2

1 + X(û1 · û2)
+ (r̂ · û1 − r̂ · û2)2

1 − X(û1 · û2)

}
.

Hence we have

σ (û1,û2,r) = σ0 g(χ )−1/2

and

ε′(û1,û2,r̂) = g(χ ′).

When changing the distance vector r between two particles
the interparticle vector r̂ changes as well, which can be made
explicit in g(X):

g(X) = 1 − X

2r2

{
(r · û1 + r · û2)2

1 + X(û1 · û2)
+ (r · û1 − r · û2)2

1 − X(û1 · û2)

}
.

Force. The force is given by F = −∇φgb. We here denote
the expression for the force in x direction:

−Fx = ∂φgb

∂x
= 4

∂ε

∂x

{(
1

R

)12

−
(

1

R

)6}
(A3)

+ 4ε

{(
6

R

)7

−
(

12

R

)13}
∂R

∂x
, (A4)

with

∂ε

∂x
= ε0ε(û1,û2)νμε′(û1,û2,r̂)μ−1 ∂g(χ ′)

∂x
,

∂R

∂x
= 1

σ0

(
x

r
− ∂σ

∂x

)
,

and
∂σ

∂x
= −1

2
σ0g(χ )−3/2 ∂g(χ )

∂x
.

Finally, the derivative of the orientation function g(X) is given
by

∂g(X)

∂x
= xX

r4

{
(r · û1 + r · û2)2

1 + X(û1 · û2)
+ (r · û1 − r · û2)2

1 − X(û1 · û2)

}

− X

r2

{
(r · û1 + r · û2)

1 + X(û1 · û2)

(
ûx

1 + ûx
2

)

+ (r · û1 − r · û2)

1 − X(û1 · û2)

(
ûx

1 − ûx
2

)}
.

The force in y and z direction can be calculated equivalently.

Torque. Due to the angular dependence of the Gay-Berne
potential, particles experience torque. So far we only deter-
mined the center-to-center force. We can calculate the torque
from an equivalent force E acting on a point at unit distance
from the center of the particles. This equivalent force can be
calculated from the derivative of the potential with respect to
the unit vector,

E = −

⎛
⎜⎝

∂φgb/∂ûx
1

∂φgb/∂û
y

1

∂φgb/∂ûz
1

⎞
⎟⎠.

Again we denote the derivatives of φgb with respect to ûx
1 , but

in other directions and for particle 2 one obtains equivalent
results:

−Ex = ∂φgb

∂ûx
1

= 4
∂ε

∂ûx
1

{(
1

R

)12

−
(

1

R

)6}

+ 4ε

{
6

R7
− 12

R13

}
∂R

∂ûx
1

,

where

∂ε(û1,û2,r̂)

∂ûx
1

= ε0νε(û1,û2)ν−1 ∂ε(û1,û2)

∂ûx
1

ε′(û1,û2,r̂)μ

+ ε0νε(û1,û2)νμε′(û1,û2,r̂)μ−1 ∂g(χ ′)
∂ûx

1

,

∂ε(û1,û2)

∂ûx
1

= ε(û1,û2)3χ2û1 · û2û
x
2,

∂R

∂ûx
1

= 1

2

(
σ (û1,û2,r)

σ0

)3
∂g(χ )

∂ûx
1

,

and the derivative of the orientation function is given by

∂g(X)

∂ûx
1

= −X

2

[
r̂x

{
2(r̂ · û1 + r̂ · û2)

1 + X(û1 · û2)
+ 2(r̂ · û1 − r̂ · û2)

1 − X(û1 · û2)

}

+Xûx
2

{
(r̂ · û1 − r̂ · û2)2

(1 − X(û1 · û2))2
− (r̂ · û1 + r̂ · û2)2

(1 + X(û1 · û2))2

}]
.

The second term in the first bracket changes sign when taking
the derivative with respect to orientation of particle 2. Finally,
we obtain the torque by the cross product of E and the
orientation vector û1:

T = û1 × E. (A5)

3. Calculation of order parameters

In this Appendix we provide information on how to extract
the order parameters from the simulation data. The orienta-
tional behavior of an ensemble of N anisotropic particles can
be analyzed using an order parameter S, which is defined as

S =
N∑

i=1

3 cos2 βi − 1

2N
,

where βi is the angle between the orientation vector of particle
i and the nematic director (unit vector indicating the mean
orientation of the particles). The order parameter can take
values between 0 and 1, where S = 0 indicates that the
system is in a fully isotropic state with random orientation
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and S = 1 means perfect alignment of the particles. However,
in simulations the nematic director is not known a priori.
Following Ref. [50] we consider a tensorial order parameter

Qαβ = 1

N

N∑
i=1

3

2
ûiαûiβ − 1

2
δαβ , α,β = x,y,z.

This second-rank tensor can immediately be computed from
the single-particle orientations û. It has three eigenvalues, of
which the largest is the order parameter and the corresponding
eigenvector the nematic director n̂.

In systems with polar order, the nematic order parameter is
also nonzero and the nematic director lies along the direction of
polar order. Thus, we can reuse the nematic director to calculate
the polar order parameter when we define it as

P = 1

N

∣∣∣∣∣
N∑

i=1

ûi · n̂

∣∣∣∣∣. (A6)

Again, the polar order parameter ranges between 0 and 1,
indicating no polar alignment and perfect polar ordering,
respectively.
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