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Stationary state in Brownian systems with Lorentz force
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In systems with overdamped dynamics, the Lorentz force reduces the diffusivity of a Brownian particle in the
plane perpendicular to the magnetic field. The anisotropy in diffusion implies that the Fokker-Planck equation for
the probability distribution of the particle acquires a tensorial coefficient. The tensor, however, is not a typical
diffusion tensor due to the antisymmetric elements, which account for the fact that Lorentz force curves the
trajectory of a moving charged particle. This gives rise to unusual dynamics with features such as additional
Lorentz fluxes and a nontrivial density distribution, unlike a diffusive system. The equilibrium properties are,
however, unaffected by the Lorentz force. Here we show that by stochastically resetting the Brownian particle,
a nonequilibrium steady state can be created that preserves the hallmark features of dynamics under Lorentz
force. We then consider a minimalistic example of a spatially inhomogeneous magnetic field, which shows how
Lorentz fluxes fundamentally alter the boundary conditions giving rise to an unusual stationary state.
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I. INTRODUCTION

The Lorentz force due to an external magnetic field mod-
ifies the trajectory of a charged, moving particle without
performing work on it. This results in characteristic helical
trajectories in the case of a constant magnetic field. Such
motion is an idealization that completely ignores dissipative
effects that are highly relevant in, for instance, plasma physics
[1]. In fact, dissipative effects are dominant in colloidal sys-
tems in which the dynamics are overdamped. Whereas the
effect of Lorentz force in the context of solid-state physics
and plasma physics has been thoroughly studied, much less
is known about its effect on diffusion systems subjected to an
external magnetic field.

A known consequence of the Lorentz force is a reduc-
tion of the diffusion coefficient in the plane perpendicular
to the magnetic field, whereas the diffusion along the field
is unaffected [2,3]. The anisotropy in diffusion implies that
the corresponding Fokker-Planck equation for the probability
distribution acquires a tensorial coefficient, the components
of which are determined by the applied magnetic field, the
temperature, and the friction coefficient. The tensor, however,
is not a typical diffusion tensor due to the antisymmetric
elements, which account for the fact that Lorentz force curves
the trajectory of a charged, diffusing particle, giving rise to ad-
ditional Lorentz fluxes [4,5]. We have recently shown that the
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dynamics under this tensor are fundamentally different from
purely diffusive [6]. In particular, the nonequilibrium dynam-
ics are characterized by features such as additional Lorentz
fluxes and a nontrivial density distribution (see Fig. 1). These
have implications for dynamical properties of the system such
as the mean first-passage time, escape probability, and phase
transition dynamics in fluids [3,6].

Since the Lorentz force arising from an external magnetic
field does no work on the system, the equilibrium properties
of the system are unaffected. This implies that to observe
the nontrivial effects of Lorentz force, the system must be
maintained out of equilibrium, possibly in a nonequilibrium
steady state. This can be done by driving the system out
of equilibrium, for instance via a time-dependent external
potential or shear. Alternatively, one may consider internally
driven systems, a particularly interesting example of which
is active matter, which is ubiquitous in biology [7–9]. We re-
cently demonstrated that a system of active Brownian particles
subjected to a spatially inhomogeneous Lorentz force relaxes
toward a nonequilibrium steady state with inhomogeneous
density distribution and macroscopic fluxes [10]. The distinc-
tive dynamics of a charged, passive, diffusing particle under
Lorentz force may be appreciated by noting that if the tensor
entering the Fokker-Planck equation was positive-symmetric,
i.e., a diffusionlike tensor, there would be no fluxes in the
steady state.

We take a different approach to drive the system into
a nonequilibrium steady state: the particle, while diffusing
under the influence of Lorentz force, is stochastically reset
to a prescribed location at a constant rate. The concept of
stochastic resetting was introduced by Evans and Majumdar
[11]. In their model, a Brownian particle diffuses freely until
it is reset to its initial location. The waiting time between two
consecutive resetting events is a random variable for which
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FIG. 1. The nonequilibrium dynamics of a Brownian particle under Lorentz force are different from purely diffusive. A hallmark signature
is the appearance of additional Lorentz fluxes that result from the deflection of diffusive fluxes [6]. The particles are initially distributed in a
disk of radius 0.5 and evolve under Lorentz force due to a constant magnetic field. The figures show the fluxes after 1.0 Brownian time unit.
The total flux, shown in (a), is decomposed in (b) the diffusive flux and (c) the Lorentz flux. The direction of the fluxes is shown by the arrows;
the magnitude is color-coded. Note that there is no flux in the steady state of a closed system where density is uniformly distributed [6].

the Poissonian distribution has been widely used. Evans and
Majumdar showed that diffusion under stochastic resetting
gives rise to a nonequilibrium stationary state with a non-
Gaussian position distribution and particle flux. They also
demonstrated that the mean first-passage time for this model
is finite and has a minimum value at an optimal resetting rate.
Over the past few years, stochastic resetting has been applied
to a wide variety of random processes [12–16] and generalized
to include non-Markovian resetting and dependence of reset-
ting on internal dynamics [17–20]. It has been shown that it
gives rise to intriguing phenomena such as dynamical phase
transitions [21,22], universal properties that are insensitive to
details of the underlying random process [23–25], and optimal
search strategies [26].

In this paper, we show that under stochastic resetting, a
Brownian system settles into an unusual stationary state that
preserves the hallmark features of dynamics under Lorentz
force. In the case of a constant magnetic field, the nonequi-
librium steady state is characterized by a non-Gaussian prob-
ability density, diffusive, and Lorentz fluxes. These Lorentz
fluxes reflect the behavior shown in Fig. 1 and are reminis-
cent of Brownian vortices in a system of colloidal particles
diffusing in an optical trap [27–29]. Due to the Lorentz
force, the flux is not along the density gradient. This holds
even for a constant tensorial coefficient. As a consequence,
the boundary conditions for diffusion in finite or semifinite
domains take a form different from the typical Neumann or
Dirichlet conditions. By considering a minimalistic example,
we show how the modified boundary condition gives rise to an
unusual stationary state with no counterpart in purely diffusive
systems.

The paper is organized as follows. In Sec. II, we provide a
brief theoretical description of diffusion under Lorentz force
and stochastic resetting. In Sec. III, we derive the steady-state
solution to the governing Fokker-Planck equation for constant
and inhomogeneous magnetic fields. Finally, we discuss our
results and present an outlook in Sec. IV.

II. THEORY AND SIMULATION

We consider a single diffusing particle that is stochastically
reset to its initial position r0 at a constant rate μ. The particle
is subjected to Lorentz force arising from an external magnetic
field B(r) = B(r)n, where n indicates the direction of the
magnetic field and B(r) is the magnitude. Our theoretical
approach is based on the Fokker-Planck equation for the
position distribution of the particle. For a spatially inhomo-
geneous magnetic field, the probability for finding the particle
at position r at time t , given that it started at r0, p(r, t | r0)
obeys the following Fokker-Planck equation [4,5,11]:

∂t p(r, t | r0) = ∇ · [D(r)∇p(r, t | r0)]

− μp(r, t | r0) + μδ(r − r0), (1)

where ∂t stands for derivative with respect to t , and the tensor
D is

D(r) = D

[(
1 + κ2(r)

1 + κ2(r)
M2

)
− κ (r)

1 + κ2(r)
M

]

= Ds(r) + Da(r), (2)

where D = kBT/γ is the diffusion coefficient of a freely
diffusing particle, and κ (r) = qB(r)/γ quantifies the strength
of Lorentz force relative to frictional force [10]. Here γ is
the friction coefficient, kB is the Boltzmann constant, T is
the temperature, and q is the charge of the particle. The
matrix M is defined by B(r) × v = B(r)Mv. Ds and Da are
the symmetric and antisymmetric parts of the tensor D.

Note that Eq. (1) is not of the form of a continuity equation.
The first term on the right-hand side of Eq. (1) represents the
contribution from overdamped motion under Lorentz force.
The second and third terms stand for the contribution due to
the resetting of the particle: the second term represents the
loss of the probability from the position r due to resetting to
the initial position r0, while the third term stands for the gain
of probability at r0 due to resetting from all other positions.
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The flux in the system is given as

J(r, t ) = −D(r)∇p(r, t | r0), (3)

which can be decomposed into the diffusive flux

Js(r, t ) = −Ds(r)∇p(r, t | r0), (4)

and the Lorentz flux

Ja(r, t ) = −Da(r)∇p(r, t | r0). (5)

Note that the diffusive flux does not depend on the sign
of the magnetic field. In contrast, the Lorentz flux can be
reversed by reversing the magnetic field. Moreover, it is
always perpendicular to the diffusive flux. These properties of
Lorentz flux, which are straightforward consequences of how
the Lorentz force affects a particle’s trajectory, constitute the
main rationale behind the above decomposition. Although the
dynamics are overdamped, it is the presence of these Lorentz
fluxes that makes the dynamics under Lorentz force distinct
from a purely diffusive system in which only diffusive fluxes
exist.

To confirm our analytical predictions, Brownian dynamics
simulations are performed using the Langevin equation of
motion [30]. It has been shown that the overdamped Langevin
equation for a Brownian motion in a magnetic field can yield
unphysical values for velocity-dependent variables such as
flux [5]. Therefore, we use the underdamped Langevin equa-
tion with a sufficiently small mass. Omitting hydrodynamics,
the dynamics of the particle are described by the following
Langevin equations [5,6]:

ṙ(t ) = v(t ),

mv̇(t ) = −γ v + qv × B(r) +
√

2γ kBT η(t ), (6)

where m is the mass of the particle and η(t ) is Gaussian white
noise with zero mean and time correlation 〈η(t )ηT (t ′)〉 =
1δ(t − t ′). The waiting time between two consecutive reset-
ting events is a random variable with Poisson distribution: in
a small time interval �t the particle is either reset to its initial
position with probability μ�t or continues to diffuse with
probability 1 − μ�t . Throughout the paper, we fix the mass to
m = 0.005 and the integration time step to dt = 1 × 10−6τ ,
where τ = γ /kBT is the time for diffusion over one unit
distance. In fact, it has been shown that even with a mass
m = 0.02 the trajectory of the particle from Eq. (6) converges
on the trajectory from the small-mass limit of this equation
[5]. However, to ensure that the dynamics are overdamped,
we have performed simulations with even a smaller mass.
The simulation results did not show any significant change.
Since the magnetic field is applied in the z direction, the
Lorentz force has no effect on the motion in this direction. As
a consequence, we restrict our analysis to the motion in the
xy plane. Accordingly, the vector r denotes the coordinates
(x, y) of the particle, and the tensorial coefficient D is a 2 × 2
matrix.

III. NONEQUILIBRIUM STEADY STATE

In this section, we determine the steady-state solution to
Eq. (1), first for a constant magnetic field and then for a special
choice of spatially inhomogeneous field.

A. Constant magnetic field

In the case of a constant magnetic field κ (r) = κ , it can be
easily shown that ∇ · [Da∇p(r, t | r0)] = 0. This implies that
the tensor D in Eq. (1) can be replaced by Ds = D/(1 + κ2)1,
which yields the following Fokker-Planck equation:

∂t p(r, t | r0) = D

1 + κ2
∇ · [∇p(r, t | r0)]

− μp(r, t | r0) + μδ(r − r0). (7)

The steady-state solution pss(r | r0) of this equation is ob-
tained by setting ∂t p(r, t | r0) = 0, which, in two dimensions,
can be written as [11]

pss(r | r0) = α2

2π
K0(α | r − r0 |), (8)

where K0 is the modified Bessel function of the second kind
of order zero and α =

√
(1 + κ2)μ/D. Using Eqs. (3) and (8),

the diffusive flux can be written as

Js(r) = α3D

2π (1 + κ2)
K1(αr)r̂, (9)

where K1 is the modified Bessel function of the second kind
of order 1, r =| r − r0 | is the distance from the starting point
of the particle, and r̂ is a unit vector in the radial direction.

The steady-state solution in the case of a constant magnetic
field is the same as that obtained in Refs. [11,31] with trivial
rescaling of the diffusion coefficient wherein D for a freely
diffusing particle is replaced by D/(1 + κ2) for diffusion
under Lorentz force. The distinctive feature of the steady state
is the presence of additional Lorentz fluxes, which can be
written as

Ja(r) = − α3Dκ

2π (1 + κ2)
K1(αr)θ̂, (10)

FIG. 2. The stationary probability density of the particle’s posi-
tion from Eq. (8) for a system with κ = 3.0 is shown in the surface
plot on top of the contour plot. The particle is stochastically reset to
the origin r0 = 0 with μ = 0.1. The steady state is characterized by
the symmetric, non-Gaussian probability density, the diffusive, and
Lorentz fluxes. Lorentz fluxes are shown by white arrows.
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FIG. 3. The stationary probability density distribution of the particle’s position, the diffusive, and Lorentz fluxes in the system obtained
from the underdamped Langevin equation (6) with a mass m = 0.005 are shown in (a)–(c), respectively. The applied magnetic field is constant
such that κ = 3.0. The particle is stochastically reset to its initial position r0 = 0 at a constant rate μ = 0.1. The direction of the fluxes is
shown by the arrows; the magnitude is color-coded.

where θ̂ is a unit vector in the azimuthal direction. On com-
paring Eqs. (10) and (9), it is evident that the Lorentz flux is
merely diffusive flux deflected by the applied magnetic field.

In Fig. 2 we show a surface plot together with a contour
plot of the probability density in the stationary state of the sys-
tem from Eq. (8). The applied magnetic field is such that κ =
3.0. The particle is stochastically reset to its initial position
r0 = 0 at a constant rate μ = 0.1. Lorentz fluxes [Eq. (10)] are
shown as white arrows on top of the contour plot. These fluxes
resemble a Brownian vortex observed in a system of colloidal
particles diffusing in an optical trap [27–29]. Figures 3(a)–
3(c) show, respectively, the results for the probability density,
diffusive fluxes, and Brownian vortices in the stationary state
of the system, obtained from Brownian dynamics simulations.
These results are in excellent agreement with the theoretical
results shown in Fig. 2.

B. Spatially inhomogeneous magnetic field: A minimal example

As shown above, Lorentz fluxes in the steady state result
from deflection of the radial fluxes. In fact, for a constant
magnetic field they do not affect the relaxation dynamics
[6]. This is no longer the case when the magnetic field is
inhomogeneous; the steady-state solution, as we show below,
is determined by the diffusive and Lorentz fluxes.

We consider a minimalistic example of a spatially inhomo-
geneous magnetic field to highlight how the Lorentz fluxes
fundamentally alter the boundary conditions giving rise to
an unusual stationary state. The system is divided into two
half-planes by the line x = 0 (see Fig. 4). Each half-plane is
subjected to a constant magnetic field with the same magni-
tude, but opposite direction such that

κ (r) =
{−κ0, x � 0,

+κ0, x < 0,
(11)

where κ0 is a (constant) parameter. In Fig. 4, two different
trajectories of the diffusing particle are shown. The red arrows
depict the motion of the particle at a given position without
Lorentz force, whereas a similar motion in the presence of
Lorentz force is shown by blue arrows. As the particle moves

away from the origin, the Lorentz force makes the particle
undergo a bias toward counterclockwise motion if x > 0 and
clockwise if x < 0. This implies that there is no flux across
the line x = 0.

This particular choice of the magnetic field ensures that
the symmetric part of the tensor, Ds, is a constant tensor in
the entire plane, whereas the antisymmetric part, Da, changes
sign at x = 0. It thus follows that the governing Fokker-Planck
equation for the position distribution of the particle is the same
as in Sec. III A [Eq. (7)] with the boundary condition that the
x component of the flux [Eq. (3)] is zero at x = 0. Since the
flux is composed of both diffusive and Lorentz components,
the boundary condition reads

s · ∇p = 0 at x = 0, (12)

where s = (1, κ ) is an oblique vector, the direction of which
is determined by the magnetic field. This boundary condition

FIG. 4. Schematic showing how the motion of a charged Brow-
nian particle is curved by Lorentz force. Two different trajectories
are shown. The particle is subjected to magnetic fields with the same
magnitude and opposite directions in each half-plane. The red arrows
(straight arrows) depict the direction that the particle follows in the
absence of a magnetic field, whereas in the presence of a magnetic
field this direction is curved, which is shown in blue.
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FIG. 5. The stationary probability density of the particle’s posi-
tion from Eq. (13) for a system with κ = −2.0 if x > 0 and κ = 2.0
otherwise is shown in the surface plot on top of the contour plot. The
particle is stochastically reset to the origin r0 = 0 with μ = 0.5. The
steady state is characterized by the non-Gaussian probability density,
which is symmetric with respect to the line x = 0, the diffusive, and
Lorentz fluxes. Lorentz fluxes are shown by white arrows.

is known as the oblique boundary condition and is often
employed in theory of wave propagation in the presence of
obstacles [32,33]. Note that for κ = 0, this reduces to the
ordinary Neumann boundary condition.

The Fokker-Planck equation (7) with the boundary con-
dition in Eq. (12) can be solved using the method of partial
Fourier transforms [34] (see the Appendix for details). The
steady-state solution, obtained for r0 = 0, is given as

pss(x, y) = α2

2π

∫ ∞

0
dξ

e−β|x|

β2 + κ2ξ 2
[β cos(ξy) − κξ sin(ξy)],

(13)
where β =

√
ξ 2 + α2. One can show that for a system without

Lorentz force, this expression correctly reduces to the (analyt-
ical) results obtained by Evans and Majumdar [11].

In Fig. 5 we show a surface plot on top of a contour
plot of the probability density in the stationary state from
Eq. (13). The Lorentz fluxes are shown by white arrows.
That an inhomogeneous magnetic field induces an unusual
stationary state in the system can be observed by a comparison
with Fig. 2.

Figure 6 shows the results from Brownian dynamics sim-
ulations with κ0 = 2.0 and μ = 0.5. The total, diffusive, and
Lorentz fluxes in the system are shown in (a)–(c), respectively.
As can be seen in Fig. 6, the x component of the total flux is
zero at x = 0.

Figure 7 shows the steady-state distribution of the particle’s
position, obtained from simulations for different values of
κ0. The particle is stochastically reset to its initial position
r0 = 0 at a constant rate μ = 0.5 for all values of κ0. As
can be seen in Fig. 7, the distribution has a candle-flame-like
form that is not symmetric with respect to the x axis. This
can be understood as the accumulation resulting from the
equal and opposite Lorentz fluxes at x = 0. The distribution
becomes increasingly stretched along the y direction with in-
creasing magnetic field. A comparison of numerical solutions
of Eq. (13) (not shown) with the simulations confirms our
analytical predictions.

In Fig. 8 we show the steady-state distribution of the
position of the particle from simulations for different values
of μ = 0.1, 0.4, and 0.8 with κ0 = 2.0. The distribution is
stretched along the y direction. The width of the distribution
along the x direction decreases with increasing μ.

This minimalistic example shows how Lorentz flux funda-
mentally alters the probability density and induces an unusual
stationary state. Experimentally realizable magnetic fields are
likely to have more complicated shapes; however, this does
not change the conclusions of this study.

IV. DISCUSSION AND CONCLUSION

Lorentz force has the unique property that it depends on
the velocity of the particle and is always perpendicular to it.
Although this force generates particle currents, they are purely

FIG. 6. The total, diffusive, and Lorentz fluxes in the stationary state of a diffusion system subjected to a magnetic field with κ = −2.0
if x > 0 and κ = 2.0 otherwise are shown in (a)–(c), respectively. The particle is stochastically reset to the origin r0 = 0 at a constant rate
μ = 0.5. The results are computed by Brownian dynamics simulations from Eq. (6) with a mass m = 0.005. The direction of the fluxes is
shown by the arrows; the magnitude is color-coded.
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FIG. 7. The stationary probability density distribution of the particle’s position. The applied magnetic field is such that κ = −κ0 if x > 0
and κ = κ0 otherwise. κ0 is 0.1, 0.5, 1.0, 2.0, 3.0, and 5.0 for systems (a)–(f), respectively. The distribution becomes increasingly stretched
along the y direction with increasing magnetic field. The results are computed by Brownian dynamics simulations from Eq. (6) with a mass
m = 0.005. The particle is stochastically reset to the origin r0 = 0 at a constant rate μ = 0.5 in all systems.

rotational and do no work on the system. As a consequence,
the equilibrium properties of a Brownian system, for instance
the steady-state density distribution, are independent of the
applied magnetic field. The dynamics, however, are affected
by Lorentz force: the Fokker-Planck equation picks up a
tensorial coefficient, which reflects the anisotropy of the parti-
cle’s motion. The diffusion rate perpendicular to the direction
of the magnetic field decreases with increasing field, whereas
the rate along the field remains unaffected. In addition to this
effect, Lorentz force gives rise to Lorentz fluxes, which result
from the deflection of diffusive fluxes [5,6].

The effects caused by the Lorentz force, however, occur
only in nonequilibrium and cease to exist when the distribu-
tion of particles reaches equilibrium. A system subjected to
stochastic resetting, in contrast, is continuously driven out of
equilibrium. In this paper, we showed that by stochastically
resetting the Brownian particle to a prescribed location, a
nonequilibrium steady state can be created that preserves the
hallmark features of dynamics under Lorentz force: a nontriv-
ial density distribution and Lorentz fluxes. We considered a
minimalistic example of a spatially inhomogeneous magnetic
field, which shows how Lorentz fluxes fundamentally alter the

FIG. 8. The stationary probability density distribution of the particle’s position for different values of μ = 0.1, 0.4, and 0.8 with κ0 = 2.0
for systems (a)–(c). As in Fig. 7, the distribution is stretched along the y direction. The width of the distribution along x decreases with
increasing μ. The results are obtained by Brownian dynamics simulations from Eq. (6) with a mass m = 0.005.
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boundary conditions giving rise to an unusual stationary state
with no counterpart in (purely) diffusive systems.

One may wonder about the choice of stochastic resetting
in this study. Although there are several methods to drive a
system into a nonequilibrium steady state, stochastic resetting
is unique in the sense that it simply renews the underlying
(random) process and therefore, in some sense, preserves
the dynamics of the underlying process in the steady state.
Contrast this with a system of active Brownian particles
subjected to Lorentz force [10] in which Lorentz force couples
with the nonequilibrium dynamics of an active particle via its
self-propulsion. Although most of the research in stochastic
resetting is theoretical, stochastic resetting has been realized
experimentally in a system of a colloidal particle that is
reset using holographic optical tweezers [35]. Resetting also
features naturally in the measurement of position-dependent
diffusion of a particle diffusing near a wall that experiences
inhomogeneous drag due to hydrodynamics. The position-
dependent diffusion coefficient is measured by letting the
particle diffuse freely from a given initial location for a certain
period of time before resetting it, using optical tweezers, to
the initial location [36]. From the “finite-time” ensemble of
measurements, the diffusion coefficient is obtained from the
mean-squared displacement.

In this work, we focused only on the steady-state properties
of the system. The investigation of how Lorentz force affects
the mean first-passage time and escape probability in such
systems is left for a future study.
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APPENDIX: OBLIQUE-DERIVATIVE HALF-PLANE
MASTER EQUATION

Partial differential equations with oblique derivative
boundary conditions often arise in the theory of waves, e.g.,
waves on the ocean or in a rotating plane [32,33]. There is a
vast amount of mathematical literature on this subject. Here
we use the method of partial Fourier transforms adopted from
Ref. [34]. We consider x = 0 as a reflecting boundary, for
which the zero flux condition can be written as

s · ∇p = 0 at x = 0, (A1)

where s = (1, κ ) is the oblique vector. We consider a diffusing
particle that is stochastically reset to (x0, 0) at a constant rate
μ. Later we will set x0 = 0 to obtain the solution for our
particular case.

The master equation for the stationary probability density
pss(x, y) is

D

1 + κ2
∇2 pss(x, y) − μpss(x, y) + μδ(x − x0)δ(y) = 0.

(A2)
We define the partial Fourier transform as

p̂(x, ξ ) = 1√
2π

∫ ∞

−∞
dy pss(x, y)eiξy (A3)

and its inverse as

pss(x, y) = 1√
2π

∫ ∞

−∞
dξ p̂(x, ξ )e−iξy. (A4)

The transformed Fokker-Planck equation [Eq. (A2)] becomes

∂2 p̂(x, ξ )

∂x2
− β2 p̂(x, ξ ) = −α2δ(x − x0)√

2π
, (A5)

where β =
√

ξ 2 + α2 and α =
√

μ(1 + κ2)/D. The trans-
formed boundary condition reads

∂ p̂(x, ξ )

∂x
− iκξ p̂(x, ξ ) = 0 at x = 0, (A6)

where i is the imaginary unit. The general solution to Eq. (A5)
is

(A7a)
p̂(x, ξ ) =

{
Aeβx + Be−βx, 0 < x < x0,

Ceβx + De−βx, x > x0. (A7b)

The boundary condition that p̂(x, ξ ) is zero as x → ∞
implies C = 0. That the probability density is continuous on
x = x0 implies

D = Ae2βx0 + B. (A8)

Substituting Eq. (A7a) into Eq. (A6) gives a relationship
between A and B:

A(β − iκξ ) = B(β + iκξ ). (A9)

Now one can rewrite Eqs. (A7a) and (A7b) as

p̂(x, ξ ) = Aeβx0 (e−β|x−x0| + �e−β|x+x0|), (A10)

where � = (β − iκξ )/(β + iκξ ). Using this expression, one
gets

∂2 p̂(x, ξ )

∂x2
= Aeβx0

[
β2e−β|x−x0| − 2βδ(x − x0)e−β|x−x0|

+ �β2e−β|x+x0|]. (A11)

The second derivative of p̂(x, ξ ) in Eq. (A5) can be replaced
by Eq. (A11), which results in A = (α2e−βx0 )/(2β

√
2π ). Af-

ter some simplifications, one gets

p̂(x, ξ ) = α2

√
2π

(
e−β|x−x0| − e−β|x+x0|

2β
+ e−β|x+x0|

β + iκξ

)
. (A12)

For the system studied in this paper, we set x0 = 0. Thus

p̂(x, ξ ) = α2

√
2π

e−βx

β + iκξ
. (A13)

We could not find a closed analytical form for the inverse
Fourier transform of Eq. (A13). Nevertheless, the following
integral can be evaluated numerically to obtain the steady-
state solution:

pss(x, y) = α2

2π

∫ ∞

0
dξ

e−β|x|

β2 + κ2ξ 2
[β cos(ξy) − κξ sin(ξy)].

(A14)

Note the factor 1/2 on the right-hand side of Eq. (A14), which
accounts for the (symmetric) extension of the solution to the
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x < 0 half-plane. For special case of κ = 0, it is easy to show
that the above integral reduces to

pss(r) = α2
0

2π
K0(α0|r|), (A15)

where α0 = √
μ/D, where |r| is the distance from

the origin, the same as reported in Ref. [11] for
two-dimensional (symmetric) diffusion under stochastic
resetting.
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