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ABSTRACT
We investigate the mean first passage time of an active Brownian particle in one dimension using
numerical simulations. The activity in one dimension is modelled as a two state model; the particle
moves with a constant propulsion strength but its orientation switches from one state to other as
in a random telegraphic process. We study the influence of a finite resetting rate r on the mean first
passage time to a fixed target of a single free active Brownian particle and map this result using an
effective diffusion process. As in the case of a passive Brownian particle, we can find an optimal reset-
ting rate r∗ for an active Brownian particle for which the target is found with the minimum average
time. In the case of the presence of an external potential, we find good agreement between the the-
ory and numerical simulations using an effective potential approach.

1. Introduction

Mean first passage time (MFPT) of a diffusing Brownian

particle is a heavily researched problem. Recently, MFPT

has been studied in context of active Brownian particles

(ABPs) which under go self-propulsion in addition to

the Brownian motion [1]. An ABP performs persistent

motion along the direction of an embedded unit vector

which performs rotational diffusion. Often, the motion

of ABPs is modelled on a coarse grained level by averag-

ing out the orientational degree of freedom [2,3], result-

ing in a non-Markovian equation of motion. Following

this approach, the authors in Ref. [1] studied the MFPT

of an ABP diffusing in an external potential. In this paper,

we preserve the orientational degree of freedom of the

active particle and obtain its MFPT in one dimension.

This allows us to verify the validity and accuracy of the

coarse graining approach.Weobtain theMFPTof anABP
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in two scenarios, (a) freely diffusing ABP with stochastic

resetting and (b) escape of anABPover a potential barrier.

For both of these scenarios, we benchmark our findings

with existing literature.

Diffusionwith stochastic resetting appears naturally in

several search processes. A typical scenario would be to

find a lost object with a random search strategy which

is intermittently reset to its starting point. In Ref. [4],

the concept of stochastic resetting was applied to a freely

diffusing Brownian particle. It was shown that with a

fixed target located at an arbitrary location, the reset-

ting of the diffusion particle at a given rate, leads to a

finite MFPT. This is in contrast to a freely diffusion par-

ticle for which the MFPT is infinite. The most interest-

ing finding of their work was that there exists an optimal

resetting rate that yields the minimum MFPT. The con-

cept of stochastic resetting has been extended to diverse

fields such as search strategies [5], microbiology [6] and
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even the search and hopping behaviour of capuchinmon-

keys [7].

We focus our study on ABPs, a more general situation

where Brownian particles are a special case. This gener-

alisation allows a more flavoured and realistic descrip-

tion in various fields, such as those described above. For

example, in a biological context, the constituting com-

ponents of a system are active agents such as molecular

motors inside animal cells. These motors are active par-

ticles which, in addition to the directed active motion,

undergo Brownian motion [8]. Another example could

be, on a macroscopic scale, the persistence of path in the

context of the search of an object. While searching for

a lost object, one persists on a certain time scale before

resetting to the origin.Motivated by these considerations,

we introduce activity as a key component of the motion

of particle and study its impact on the MFPT.

We first investigate theMFPTof anABP in one dimen-

sion with stochastic resetting using numerical simula-

tions. The self propulsion in one dimension can be mod-

elled by a two state model in which the particle moves

with a constant velocity v0 but switches the direction at

a rate τ−1 in a random uncorrelated fashion. Introduc-

ing stochastic resetting to an ABP, as for a passive par-

ticle, leads to a finite MFPT. Moreover, one expects to

find a corresponding optimal resetting rate for which the

MFPT is minimum. The main question we focus on in

this study is whether, one can reduce this problem of ABP

to a passive Brownian particle with effective transport

coefficients. For a freely diffusing ABP, this would corre-

spond to an effective diffusion constant which is deter-

mined by v0 and τ . Can one express the optimal resetting

rate in terms of this effective diffusion constant?

The mapping of ABPs to an effective equilibrium has

been successful in describing the escape of an ABP over a

potential barrier [1]. In the coarse grained approach, the

stochastic equation of motion of an ABP includes a cor-

related coloured noise and a white Gaussian noise. The

strength and autocorrelation of the colored noise is deter-

mined by the activity parameters, the propulsion strength

v0 and τ , the time scale of persistent motion of an ABP.

We explicitly include the propulsion of ABP as a two state

velocity and show that the MFPT of an ABP diffusing in

an external potential can again be obtained as for a passive

particle with effective diffusion constant and an effective

potential; both of which are determined by the activity

parameters.

2. Model and theory

We consider a one-dimensional system of a single Brow-

nian particle of size d with coordinate x and orientation

specified by an embedded unit vector p. The orienta-

tion vector can point either along the positive x-axis or

the negative one. The switching between these two states

occurs at an average rate of τ−1 in an independent, uncor-

related fashion. A constant self-propulsion of speed v0
acts in the direction of orientation. The motion can be

modelled by the Langevin equation:

ẋ = v0 p+ γ −1F + ξ (1)

where γ is the friction coefficient and the force on parti-

cle is generated from the external potential �(x) accord-
ing to F=−∇�. The stochastic term ξ(t ) is Gaussian

distributed with zero mean and has time correlation

〈ξ(t )ξ(t ′)〉 = 2Dtδ(t − t ′) where Dt is the translational

diffusion coefficient.

The stochastic resetting is implemented as a Poisso-

nian process with a mean rate r such that at every reset-

ting event, the particle is put back to its starting point

(x= 0).When there is no external potential and no reset-

ting, Equation (1) describes thewell-knowndichotomous

diffusion [9]. The probability distribution of the particle

can be obtained analytically in terms of modified Bessel

functions. However, since we are interested in the MFPT,

we consider the long time limit t � τ , where it can be

shown that the probability distribution reduces to aGaus-

sian with the diffusion constant:

D = Dt + Da = Dt + v2
0τ

2
. (2)

In order to perform analytics for a finite resetting rate

r, we make the assumption that the motion of an active

particle can be described at all time by the ordinary diffu-

sion equation with the diffusion constant given in Equa-

tion (2). This is a reasonable assumption only under the

self-consistency condition that the MFPT is much larger

than τ . As shown below, this assumption holds when

the target is placed sufficiently far from the initial posi-

tion of theABP, such that theMFPT ismuch larger than τ .

Under this assumption, the problem of finding theMFPT

as well as the optimal resetting rate r∗ reduces to that

presented by Evans and Majumdar in Ref. [4]. Using the

expression derived in Ref. [4], it follows that the MFPT

T(x0) is given as

T (x0) = 1

r

(
exp

(
x0

√
r
D

)
− 1

)
, (3)

where x0 is the location of the target object for an ABP

which starts at the origin.

The optimal resetting rate r∗ for an ABP freely diffus-

ing in one dimension is given as

r∗ = z∗2D
x20

, (4)
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where z∗ is the solution of the transcendental equation

z∗/2 = 1 − e−z∗
.

This optimal rateminimises theMFPTof a particle to a

target object in a one-dimensional system. The first aimof

this work is to test Equation (4) using Brownian dynamics

simulations. In the second part of this work, we consider

an ABP diffusing in an external potential.We particularly

focus on the case of an ABP escaping a potential barrier.

The escape problem is studied for the resetting rate set to

0. As in Ref. [1], we choose the potential to have the form

β�(x) = 1

2
ω0x2 − α | x |3, (5)

where β = 1/kBT, and ω0 and α are parameters. We are

interested in the MFPT of a particle starting at the ori-

gin escaping over the barrier to be captured by a sink

located sufficiently far from the barrier. In the effective

equilibrium approach [1,2] to ABP in an external poten-

tial, one obtains an approximate Fokker–Planck equation

with an effective external potential �eff(x) and an effec-

tive position-dependent diffusion constant D(x):

D(x) = Dt + Da

1 + τDt
d2 β�′′(x)

, (6)

β�eff(x) =
∫ x

0

dy
β�′(y) + D′(y)/Dt

D(y)/Dt
. (7)

The effective diffusion constant is determined jointly

by the activity and the potential and it reduces to the

expression in Equation (2) when there is no external

potential.

The expressions in Equations (6) and (7) were

obtained under the assumption [1–3] that the stochastic

process corresponding to time evolution of the orienta-

tion vector can be considered as a Gaussian noise process

with a finite correlation time. In other words, one can dis-

regard the explicit time evolution of the orientation vec-

tor of an ABP by including a coloured noise term (expo-

nentially correlated Gaussian noise) in the equation for

the time evolution of the position of the ABP. There are

two important conditions underlying this assumption:

(1) the variance of the stochastic process corresponding

to the orientation of anABPdecays exponentially in time-

independent of the spatial dimensions allowing the map-

ping to a coloured Gaussian noise. However, themapping

is only approximate because the process is not Gaussian.

This is most evident in one dimension where the pro-

cess is a random telegraphic process and (2) the corre-

lation time τ is sufficiently small such that the particle’s

displacement during this time period is negligible. This

is required to ensure that there is no significant change

in the potential that the particle experiences over a time

period τ .

In Ref. [1], the authors validated the theoretical pre-

dictions of the effective equilibrium approach against the

numerical simulations of a stochastic process driven by

coloured Gaussian noise. The strength and autocorrela-

tion of the coloured noise were determined by the activ-

ity parameters v0 and τ . In our numerical simulations,

we explicitly consider the orientation of the particle. Since

we consider one-dimensional system, the orientation can

only take two values which is why we model it as a two

state random telegraphic process.Wewill calculateMFPT

and compare with the predictions of the effective equilib-

rium approach. For the sake of completeness, the expres-

sion for the inverse MFPT obtained in the effective equi-

librium approach is given as [1]

T−1 = rpass exp
(
Da (βE0 − ω0τ )

Dt + Da

)
, (8)

where rpass = βDtω0exp ( − βE0)/(2π) is the escape rate
of a passive particle over the potential barrier (Equa-

tion (5)) and βE0 = ω3
0/(54α

2) is the height of the

barrier.

Before presenting the results, we give a brief descrip-

tion of the simulations performed in this study.We set the

particle size to d= 1. Time is always measured in units of

d2/Dt and we have chosen Dt = 1 which together with

kBT = 1 gives the friction coefficient γ = 1. Equation (1)

is integrated in time to generate the particle trajectory by

advancing time in steps of dt = 10−4 for the free diffus-

ing particles and dt = 10−3 in the case with an external

potential. The integral of the stochastic process ξ(t ) over
a time interval dt is taken as a Gaussian distribution with

zero mean and variance 2dt. At every time step, the ori-

entation of the particle is flipped with a probability dt/τ .
Similarly, stochastic resetting is implemented by resetting

the particle to the origin with a probability of rdt dur-
ing every time step. The first passage time is calculated by

averaging over 105 trajectories for a freely diffusing ABP.

In the case of an external potential, theMFPT is obtained

by averaging over 103 − 104 trajectories.

3. Results and discussion

We first discuss the MFPT for a freely diffusing ABP

with resetting. We investigate the effect of activity on the

MFPT by considering two cases: (a) fixed value of v0 =
3 and two different values for τ = 0.02 and τ = 0.05 in

Figure 1(a,b) fixed τ = 0.05 and two different values of

v0 = 1 and v0 = 2 in Figure 1(b). In both cases, the target

object is located at x0 = 2. In Figure 1, we plot the MFPT

as a function of the resetting rate. As expected, theMFPT
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Figure . (Colour online) Mean first passage time in (a) for differ-
ent persistence times τ and in (b) for different velocities v (see
legends). In both figures we also show the results for the Brow-
nian case (red), upper lines. The lines represent the theoretical
predictions of Equation () and the filled circles are the simula-
tions results. The black diamonds show the optimal resetting rate
(Equation ()) and the corresponding MFPT using Equation ().
The arrow indicates the decreasing optimal rate with increasing
activity.

exhibits a minimum at a particular r∗. As can be seen in

Figure 1, the theoretical predictions of Equation (3) are in

good agreement with the numerically obtained values.

In order to obtain the optimal resetting rate from sim-

ulations, one needs to determine the location of the min-

imum from the numerical data. However, as can be seen

in Figure 1, an unambiguous determination of the min-

imum is difficult in simulations. Nevertheless, on plot-

ting the analytical prediction for the optimal resetting rate

(Equation (4)) together with the numerically obtained

data for MFPT, one can clearly see that Equation (4) pro-

vides an accurate measure for the optimal resetting rate.

The good agreement between the theoretical predic-

tions of Equations (3) and (4) with the numerical results

Figure . (Colour online) MFPT in a case where x ∼ vτ (see leg-
end). The line represents the theoretical prediction of Equation (),
the black diamond shows the optimal resetting rate fromEquation
() with the corresponding MFPT and the symbols are obtained
from the numerical simulations. Clearly, the theoretical predic-
tions strongly deviate from the numerical measurements.

can be qualitatively understood in the following way. The

MFPT shown in Figure 1 is much larger than τ , the time

scale of the persistent motion of an ABP. With x0 cho-

sen to be sufficiently large and resetting rate to be suffi-

ciently small, an active particle diffusing away from the

origin will undergo several transitions in its orientation

such that the motion of the particle would resemble that

of a passively diffusing particle with an effective diffusion

constant (Equation (2)). However, if x0 ∼ v0τ , one can-

not consider the particle as performing pure diffusion as

the discrete nature (in time) of the transitions from one

orientation to the other cannot be ignored. In Figure 2,

we show a case with the following choice of parameters:

v0 = 8, τ = 0.1 and x0 = 1. These parameters are chosen

such that the object can be reached from the origin by the

ABP on time scale of the order τ .

As shown in Figure 2, the particle reaches the object in

a relative short time t ∼ τ . On such short time scale the

ABP does not undergo enough orientational transitions

and therefore does not admit a description in terms of an

effective diffusion (passive).

We now discuss the MFPT for an ABP diffusing in an

external potential (Equation (5)). We compare the the-

oretical predictions of Equation (8) with the numerical

simulations for a specific case where the parameters of the

potential are set to be: α = 1 and ω0 = 10. These parame-

ters are chosen to be the same as in Ref. [1]. These numer-

ical results together with the theoretical predictions of

Equation (8) are shown in Figure 3. As can be seen in

the log-linear plot in Figure 3, the MFPT decreases by

orders of magnitude with increasing Da, an indication
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Figure . (Colour online) Mean first passage time for active parti-
cles overtaking anexternal potential of the formgivenby Equation
(), with the parameters α =  and ω = . The dashed line rep-
resents the theoretical prediction using Equation () and the sym-
bols are obtained fromnumerical simulations. There is anexcellent
agreement between the theoretical predictions and the numerical
measurements. The simulations start to deviate from the theoret-
ical results for large Da. In the inset, the bare external potential,

Equation () and analytic effective potentials �eff(x), Equation (),
for the parameter τ = . is shown for different values of Da. The
sink is positioned at x = , indicated with a black arrow.

of an exponential dependence on the activity. The expo-

nential dependence of the MFPT on activity is captured

in Equation (8) which is derived in the effective equilib-

rium approach. In the effective equilibrium approach, an

ABP diffusing in an external potential is mapped to a pas-

sive Brownian particle with amodified diffusion constant

as well a modified potential. Both the potential and the

diffusion constant are determined by the activity param-

eters. The excellent agreement between the simulations

and the theory suggests that a coarse grained description

of an ABP diffusing in an external potential is well suited

to investigate the MPFT of an ABP. The slight deviation

of the numerics from the theoretical predictions for high

Da is due to the fact that for high activities, the modified

potential does not satisfy the assumptions (large potential

barrier and locally quadratic potential) underlying Equa-

tion (8). This can be seen in the inset of Figure 3 where

the effective potential is plotted for different values ofDa.

4. Conclusion

We investigated the MFPT of an ABP in one dimension

using numerical simulations. The particle moves with

a constant propulsion speed and switches direction at

an average rate τ . We studied the influence of a finite

resetting rate r on the MFPT to a fixed target of a sin-

gle free ABP and mapped this result using an effective

diffusion process approach. In order to perform analytics,

we made the assumption that the motion of an ABP can

be described at all time by the ordinary diffusion equation

with the diffusion constant given in Equation (2). This is

a reasonable assumption only under the self-consistency

condition that the MFPT is much larger than τ , which is

a limitation of this approach. The theoretical predictions

are in good agreement with the simulations if the target is

located at a distance much larger than the distance trav-

elled by the particle over a period τ , i.e. x0 � v0τ . As in

the case of a passive Brownian particle, we found an opti-

mal resetting rate r∗ for an ABP for which the target is

found with the minimum average time.

In the case of an ABP diffusing in an external poten-

tial, we found excellent agreement between the theoreti-

cal prediction of the effective equilibrium approach and

the computer simulations for ABP. We focussed on a sin-

gle potential, but similar calculations can bemade involv-

ing any other trapping potentials. As it was already men-

tioned in [1], this excellent agreement suggests that in

one dimension, the effective potential can yield accurate

quantitative description of the escape process. The valid-

ity of the theoretical prediction is limited to low/medium

activities.

In this work we focussed on a simple one-dimensional

problem. It will be of interesting to extend this approach

to higher dimensions with the goal of treating more real-

istic problems.
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