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1. Introduction

Many ecosystems are threatened by collapse if overused.
Examples include the eutrophication of lakes due to agricultural
runoff (Scheffer et al., 2001), sudden shifts in vegetation cover due to
land-use changes (Anderies et al., 2002; Dekker et al., 2007), and the
collapse of fish stocks, such as Canadian cod or capelin in the Barents
Sea (Frank et al., 2005; Hjermann et al., 2004). In the climate system,
drivers of a potential regime shift could be a disintegration of the
West-Antartic ice sheet (Feldmann and Levermann, 2015), a shut-
down of the thermohaline circulation (Nævdal and Oppenheimer,
2007), or a melting of Permafrost (Lenton et al., 2008).

The danger that a disastrous regime shift occurs once a thresh-
old – or tipping point – is crossed, obviously imperils the sustainable
provision of ecosystem services. However, the existence of a catas-
trophic threshold may also be beneficial in the sense that it enables
non-cooperative agents to coordinate their actions (Barrett and
Dannenberg, 2012). This aspect is important because most real-
world problems are characterized by the presence of many interact-
ing agents and the absence of central enforcement. Moreover, a key
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feature of tipping points is that their exact location is almost always
unknown. This threshold uncertainty may induce a “safe minimum
standard of conservation” (Mitra and Roy, 2006), but, depending
on the trade-off between the cost of control and the gain from
risk reduction, it may also lead to less precaution (Brozović and
Schlenker, 2011).

In this paper, I develop a dynamic game in which agents jointly
use a replenishing resource that loses (some or all) its productivity
upon crossing some (potentially unknown) threshold. In order to iso-
late the effect of threshold uncertainty on the ability to cooperate, I
abstract – as a first step – from the dynamic common pool aspect of
non-cooperative resource use.

The model is presented in Section 2. It is general and applicable
to many different settings, but to fix ideas, consider the problem of
saltwater intrusion in a freshwater reservoir: The reservoir is used
by several agents. Its overall volume is approximately known, and
the annual recharge (due to rainfall or snowmelt) is sufficient to fully
replenish it. However, the agents fear that saltwater may intrude
and irreversibly spoil the resource once the water table falls too
low. Further, suppose the geology is so complex that it is not known
how much water must be left in the reservoir to avoid intrusion.
Saltwater intrusion has not occurred in the past, so that the current
level of total use is known to be safe. Thus, the agents now face the
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trade-off whether to expand the current consumption of water, or
not. If they decide to expand the current level of use, by how much
should extraction increase, and in how many steps should the expan-
sion occur? Moreover, could it be in one agent’s own best interest to
empty the remaining reservoir even when all others take just their
share of the historical use?

In Section 3.1, I expose the underlying strategic structure of the
game by considering the case where the location of the thresh-
old is known. I show that there is a Nash equilibrium where the
resource is conserved indefinitely and a Nash equilibrium where the
resource is depleted immediately. In terms of the above example,
the former equilibrium will only exist if sharing the amount of water
that leaves just enough in the reservoir to avoid intrusion is suffi-
ciently valuable compared to the incentives to deviate and empty the
reservoir.

When the location of the threshold is fixed but unknown, any
increase in resource use will – in the absence of passive learning –
only reveal whether the updated state is safe or not. The agents will
not obtain any new information on how much closer they have come
to the threshold.1 I call this type of learning “affirmative”. When the
consequence of crossing the threshold is disastrous in the sense that
it does not matter by how far the threshold has been overstepped,
then there is no point in splitting any given increase in resource use
in several steps. Any experimentation is – if at all – undertaken in the
first period. Moreover, the degree of experimentation is decreasing
in the value of current use that is known to be safe.

This means that both in the sole-owner’s solution (Section 3.2)
and in the non-cooperative game (Section 3.3), the steady-state con-
sumption level will depend on history: When the current level of
resource use is sufficiently valuable, coordination on not expand-
ing the set of safe consumption values is a Nash equilibrium. If it is
socially optimal to use the water reservoir at its current level, this
Nash equilibrium will in fact coincide with the first-best resource
use. If preserving the status quo is not sufficiently valuable, agents
may still refrain from depleting the resource, but they will increase
their consumption by an inefficiently high amount. However, pro-
vided that the increase in consumption has not caused the disastrous
regime shift, the players can coordinate on keeping to the updated
level of consumption, which is, ex post, socially optimal.

The “once-and-for-all” dynamics of experimentation and
resource use under “affirmative learning” are robust to several
extensions that are explored in Section 4. While the threat of the
threshold may no longer induce coordination on the first-best when
the externality relates to both the (endogenous) risk of passing the
threshold and resource itself, the threshold may still encourage
coordination on a time-profile of resource use that is, in expected
terms, Pareto-superior compared to the Nash equilibrium without a
threshold. As I show in Section 4.4, repeated experimentation will
take place only if the post-threshold value depends negatively on
the pre-threshold degree of experimentation, and if this effect is
sufficiently strong.

Section 5 concludes the paper and points to important future
applications of the modeling framework. All proofs are collected in
the Appendix.

1.1. Relation to the literature

This paper links to three strands of the literature. First, it con-
tributes to the literature on the management of natural resources
under regime-shift risk by explicitly analyzing learning about the
location of a threshold in a tractable dynamic model. Second, the
paper extends the literature on coordination in face of a catastrophic

1 Empiricists will agree that there is no learning without experiencing.

public bad, that has hitherto been analyzed in a static setting. Third,
it relates to the broader literature by characterizing optimal experi-
mentation in a set-up of “affirmative learning”.

The pioneering contributions that analyze the economics of
regime shifts in an environmental/resource context were Cropper
(1976) and Kemp (1976). There are by now a good dozen papers on
the optimal management of renewable resources under the threat of
an irreversible regime shift (see Polasky et al., 2011 for a summary).
Most previous studies translate the uncertainty about the location of
the threshold in state space into uncertainty about the occurrence of
the event in time. This allows for a convenient hazard-rate formula-
tion (where the hazard rate could be exogenous or endogenous), but
it has the problematic feature that, eventually, the event occurs with
probability 1. In other words, even if the agents were to totally stop
extracting/polluting, the disastrous regime shift would be inevitable.
Arguably, it is more realistic to model the regime shift in such a way
that when it has not occurred up to some level, the agents can avoid
the event by staying at or below that level (Tsur and Zemel, 1994;
Nævdal, 2003; Lemoine and Traeger, 2014). To the best of my knowl-
edge, this paper is the first to apply this modeling approach to a
non-cooperative game.

In general, the literature in resource economics has been pre-
dominantly occupied with optimal management, leaving aside the
central question of how agent’s strategic considerations influence
and are influenced by the potential to trigger a disastrous regime
shift. Still, there are a few notable exceptions: Crépin and Lindahl
(2009) analyze the classical “tragedy of the commons” in a grazing
game with complex feedbacks, focussing on open-loop strategies.
Ploeg and Zeeuw (2015b) compare the socially optimal carbon tax to
the tax in the open-loop equilibrium under the threat of a produc-
tivity shock due to climate change. Reverting to numerical methods,
Kossioris et al. (2008) analyze feedback equilibria in a “shallow lake”
model. They show that, as in most differential games with renewable
resources, the outcome of the feedback Nash equilibrium is in gen-
eral worse than the open-loop equilibrium or the social optimum. In
this paper, I am able to solve for the feedback equilibrium analytically
by simplifying the dynamics of resource use.

Fesselmeyer and Santugini (2013) introduce an exogenous event
risk into a non-cooperative renewable resource game à la Levhari
and Mirman (1980). As in the optimal management problem with
an exogenous probability of a regime shift, the impact of shifted
resource dynamics is ambiguous: On the one hand, the threat of a
less productive resource induces a conservation motive for all play-
ers, but on the other hand, it exacerbates the tragedy of the commons
as the players do not take the risk externality into account. As risk is
exogenous in Fesselmeyer and Santugini (2013), they can obtain ana-
lytical solutions in the Levhari-Mirman framework, but their model
does not allow learning or adaptions to an evolving regime-shift risk.
Sakamoto (2014) analyzes a non-cooperative game with an endoge-
nous regime shift hazard by combining analytical and numerical
methods. He shows that the regime-shift risk may lead to more pre-
cautionary management, also in a strategic setting. Miller and Nkuiya
(2016) also combine analytical and numerical methods to investigate
how an exogenous or endogenous regime shift affects coalition for-
mation in the Levhari-Mirman model. They show that an endogenous
hazard rate increases coalition sizes and it allows the players, in some
cases, to achieve full cooperation. Using a different model setup that
allows analytic solutions, this paper corroborates that the effect of a
regime shift is qualitatively the same in a non-cooperative setting as
under optimal management: for some combinations of parameters
it induces more caution and for some combinations it induces less
caution. Moreover, both the literature on optimal resource manage-
ment under regime-shift risk and its non-cooperative counterpart
have not explicitly addressed learning about the unknown loca-
tion of the tipping point, which is the main focus of the present
work.
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There is a related literature on strategic experimentation in one-
armed bandit problems (e.g.: Bolton and Harris, 1999; Keller et
al., 2005; Bonatti and Hörner, 2015) that differs from the current
paper in that there are no structural irreversibilities. Learning is then
“informative” in the sense that agents obtain a random sample on
which they base their inference about the state of the world and
it pays to obtain repeated samples (but only finitely many in most
cases) as this improves the estimate. The public nature of informa-
tion introduces free-rider incentives in a strategic setting, so that
learning is often sub-optimally slow. Here, experimentation will be
overly aggressive in most cases.

The current paper is closely related to three articles that discuss
the role of uncertainty about the threshold’s location on whether
a catastrophe can be avoided. Barrett (2013) shows that players
in a linear-quadratic game are (in most cases) able to form self-
enforcing agreements that avoid catastrophic climate change when
the location of the threshold is known, but not when it is unknown.
Similarly, Aflaki (2013) analyzes a model of a common-pool resource
problem that is, in its essence, the same as the stage-game devel-
oped in Section 3. Aflaki shows that an increase in uncertainty leads
to increased consumption, but that increased ambiguity may have
the opposite effect. Bochet et al. (2013) confirm the detrimental
role of increased uncertainty in the stochastic variant of the Nash
Demand Game: Even though “cautious” and “dangerous” equilib-
ria co-exist (as they do in my model), they provide experimental
evidence that participants in the lab are not able to coordinate on
the Pareto-dominant cautious equilibrium.2 However, the models in
Aflaki (2013), Barrett (2013), and Bochet et al. (2013) are all static.
Here, I show that the sharp distinction between known and unknown
location of a threshold does not survive in a dynamic context. More
uncertainty still leads to increased consumption, but this is now
partly driven by the increased gain from experimentation.

As noted above, a key result of my model is that it is a Nash
equilibrium to experiment once or never. Although I am unaware of
an earlier comparable application to a strategic setting, results on
optimal experimentation in the context of affirmative learning have
appeared at various places before. For example, the classical book
of Dubins and Savage (1965) analyzes circumstances under which
it is optimal for gamblers to expose themselves to uncertainty in as
few rounds as possible. Riley and Zeckhauser (1983) discuss price-
negotiation strategies where the seller does not know the valuation
of the buyer. They find that “[a] seller encountering risk-neutral buy-
ers one at a time should, if commitments are feasible, quote a single
take-it-or-leave-it price to each.” Another well-known study is from
Rob (1991), who analyzes optimal and competitive capacity expan-
sion when market demand is unknown. Rob finds that learning will
take place over several periods. In his model, experimenting too
much (in the sense of installing more capital than is needed to sat-
isfy the revealed demand) is very costly compared to experimenting
too little several times (so that the true size of the market remains
unknown). Consequently, learning takes place gradually. Under com-
petition, learning is even slower due to the private nature of search
costs but the public nature of information.

In an application to environmental economics, Costello and Karp
(2004) investigate optimal pollution quotas when abatement costs
are unknown. In their model, the initial quota is binding with prob-
ability 1, but an increased quota may be slack (which is inefficient).
While the information gain from a marginal increase in quota is
small, there is no additional harm from experimenting too much. In

2 Bochet et al. (2013 p.1) conclude that a “risk-taking society may emerge from the
decentralized actions of risk-averse individuals”. Unfortunately, it is not clear from the
description in their manuscript whether the participants were able to communicate.
The latter has shown to be a crucial factor for coordination in threshold public goods
experiments (Barrett and Dannenberg, 2012; Tavoni et al., 2011). Hence, it may be that
what they refer to as “societal risk taking” is simply the result of strategic uncertainty.

line with the baseline model of the current paper, this feature leads
to the conclusion that any experimentation takes place in the first
period only. Similarly, Groeneveld et al. (2014) show that the upper
bound of the belief about the threshold’s location is updated only
once in their model of a reversible flow-pollution threshold.

Lemoine and Traeger (2014) find that learning occurs over sev-
eral periods. In Section 4, I analyze two features that are present in
their climate-change application and that may both induce repeated
experimentation: First, as in Rob’s model, the damage of the regime
shift is larger the farther the threshold has been overstepped. Second,
the dynamics of capital accumulation in Lemoine and Traeger (2014)
effectively imply a constraint on the choice set. This leads mechani-
cally to repeated experimentation.

When analyzing learning in a strategic setting, I point out that
there are three different forces at work: First, the immediate gains
from experimentation are certain and private while the cost of
experimentation in terms of an increased regime-shift risk is borne
by all. These two forces lead to more experimentation than socially
optimal, but they are, to some extent, attenuated by the public
nature of information: all agents gain from an expansion of the
set of safe consumption values, provided the experiment has not
triggered the regime shift. I provide sufficient conditions for when
non-cooperative learning is more aggressive than socially optimal.
Furthermore, I show that experimentation is decreasing in the value
of the state that is known to be safe: The more the agents know
that they can safely consume, the less will they be willing to risk
triggering the regime shift by enlarging the set of consumption
opportunities. This aspect has, to the best of my knowledge, not yet
been appreciated.

Analyzing how strategic interactions shape renewable resource
use under the threat of a disastrous regime shift is important
beyond mere curiosity driven interest. It is probably fair to say that
international relations are characterized by an absence of suprana-
tional enforcement mechanisms which would allow to make binding
agreements. But also locally, within the jurisdiction of a given nation,
control is seldom complete and the exploitation of many com-
mon pool resources is shaped by strategic considerations. Extending
our knowledge on the effect of looming regime shifts by taking
non-cooperative behavior into account is therefore a timely con-
tribution to both the scientific literature and the current policy
debate.

2. The model

This section presents the basic model setup (resource dynam-
ics; agents, choices, and payoff; regime-shift risk) and discusses a
number of tractability assumptions.

2.1. Resource dynamics

• Time is discrete and indexed by t = 0, 1, 2, ....
• Each period, agents can, in total, consume up to the avail-

able amount of the resource. There are two regimes: In the
productive regime, the upper bound on the available resource is
given by R, and in the unproductive regime, the upper bound is
given by r (with r < R).

• The game starts in the productive regime and will stay in
the productive regime as long as total consumption does not
exceed a threshold T. The threshold T is the same in all periods,
but it may be known or unknown.

• To highlight the effect of uncertainty about the threshold,
I define the state variable st, denoting the upper bound of
the “safe consumption possibility set” at time t. That is, total
resource use up to st has not triggered a regime shift before,
and it is hence known that it will not trigger a regime shift in
the future (i.e. Prob(T ≤ st) = 0).
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2.2. Agents, choices, and payoff

• There are N identical agents. Each agent i derives utility from
consuming the resource according to some general function
u(ci

t), where ci
t is the consumption of agent i at time t. I assume

that u is continuous, increasing (u′ > 0), concave (u
′ ′ ≤ 0), and

bounded below by u(0) = b.
• For clarity, I split the agent’s per-period consumption in two

parts: ci
t = st

N + di
t . This means:

1. The agents obtain an equitable share of the amount of the
resource that can be used safely.

2. The agents may choose to consume an additional amount
di

t , effectively pushing the boundary of the safe consump-
tion possibility set at the risk of triggering the regime
shift.

• In other words, di
t is the effective choice variable with di

t ∈[
0, R − st − d−i

t

]
, where d−i

t is the expansion of the safe con-

sumption set by all other agents except i. I denote d without
superscript i as the total extension of the safe set, i.e. dt =∑N

i=1 d
i
t .

• The objective of the agents is to choose that sequence of state-
dependent decisions Di = di

0, di
1, ... which, for given strategies

of the other agents D−i, and for a given initial value s0, maxi-
mizes the sum of expected per-period utilities, discounted by
a common factor b ∈ (0, 1). I concentrate on Markovian strate-
gies because they are “the simplest form of behavior that is
consistent with rationality” (Maskin and Tirole, 2001, p.193).

2.3. The probability of triggering the regime shift

• Let the probability density of T on [0, A] be given by a continu-
ous function f such that the cumulative probability of triggering
the regime shift is a priori given by F(x) =

∫ x
0 f (t)dt. F(x) is the

common prior of the agents, so that we are in a situation of risk
(and not Knightian uncertainty).

• The variable A with R ≤ A ≤ ∞ denotes the upper bound of the
support of T. When R < A, there is some probability 1−F(R) that
using the entire resource is safe and the presence of a critical
threshold is immaterial. When R = A using the entire resource
will trigger the regime shift for sure. Both R and A are known
with certainty.3

• Knowing that a given consumption level s is safe, the updated
density of T on [s, A] is given by fs(d) = f (s+d)

1−F(s) (see Fig. 1). The
cumulative probability of triggering the regime shift when, so
to say, taking a step of distance d from the safe value s is:

Fs(d) =
∫ d

0
fs(t)dt =

1
1 − F(s)

∫ d

0
f (s + n)dn =

F(s + d) − F(s)
1 − F(s)

(1)

So that Fs(d) is the discretized version of the hazard rate. I
assume that the hazard rate does not decrease in s.

• The (Bayesian) updating of beliefs is illustrated in Fig. 1. Note
that it is only revealed whether the state s is safe or not,
but no new knowledge about the relative probability that the
threshold is located at s1 or s2 (with s1, s2 > s) has been
acquired.

3 The idea that a system is more likely to experience a disastrous regime shift
the lower the amount of the resource that has been left untouched could simply be
included in the belief F(x). Additive disturbances, such as stochastic (white) noise, are
independent of the current state and would not affect the calculations in a meaningful
way. They could be absorbed in the discount factor.

0 s R

D
e
n
s
it
y

Fig. 1. Updating of belief upon learning that T > s: Gray area is F, blue hatched area is
Fs .

• The key expression that I use in the remainder of the paper is
Ls(d), which I call the conditional survival function. It denotes
the probability that the threshold is not crossed when taking a
step d, given that the event has not occurred up to s. Let L(x) =
1 − F(x):

Ls(d) = 1 − Fs(d) =
1 − F(s) − (F(s + d) − F(s))

1 − F(s)
=

L(s + d)
L(s)

(2)

The conditional survival function has the following
properties:

– It decreases with the step size d: ∂Ls(d)
∂d

= −f (s+d)
1−F(s) < 0.

– It decreases with s: ∂Ls(d)
∂s = −f (s+d)(1−F(s))+(1−F(s+d))f (s)

[1−F(s)]2 ≤
0 ⇐⇒ f (s)

1−F(s) ≤ f (s+d)
1−F(s+d) (as the hazard rate is non-

decreasing).

2.4. Clarifications and tractability assumptions

• It is well known that the static non-cooperative game of shar-
ing a given resource has infinitely many equilibria: Even when
the agents are assumed to be symmetric, any given division
of the total resource is an equilibrium. Moreover, the game
requires a statement about the consequences when the sum
of consumption plans exceeds the total available resource.
Here, I assume that each agent gets an equal share. This
assumption could be justified by relying on a cooperative
bargaining solution such as Nash (1953) or as the outcome
of a non-cooperative bargaining game where each agent is
allowed to make a take-it-or-leave-it offer with equal probabil-
ity (Harstad, 2012). The important assumption of symmetry is
further discussed in Section 5.

• The agent’s prior F(x) is fixed. The absence of any passive learn-
ing (an arrival of information simply due to the passage of time)
is justified in a situation where all learning opportunities from
other, similar resources have been exhausted. The only way to
learn more about the location of the threshold in the specific
resource at hand is to experiment with it.4

4 An everyday example is blowing up a ballon: We all know that they will burst at
some point, and we have blown up sufficiently many balloons, or seen our parents
blow sufficiently many balloons to have a good idea which size is safe. But for a given
balloon at hand, I do not know when it will burst.
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• The regime shift is irreversible. Moreover, I consider the regime
shift to be disastrous, in the sense that crossing the thresh-
olds breaks all links between the pre-event and the post-event
regime. Because the post-event value function is then indepen-
dent of the pre-event state, I set, for simplicity’s sake, r = 0 and
b = 0. In Section 4.4, I discuss the case when the post-event
value function depends on the pre-event state.

• The model abstracts from the dynamic common pool problem
in the sense that the consumption decision of an agent today
has no effect on the consumption possibilities tomorrow,
except that a) the set of safe consumption possibilities may
have been enlarged and b) the disastrous regime shift may have
been triggered. This assumption is relaxed in Section 4.2.

3. Social optimum and non-cooperative equilibrium

In this main part of the paper, I will first expose the underly-
ing strategic structure of the model by analyzing the situation when
the threshold is known (Section 3.1). In Section 3.2, I describe the
optimal course of action in absence of strategic interactions to high-
light that any experimentation is – if at all – undertaken in the first
period. Moreover, experimentation is decreasing with the value of
the consumption level that is known to be safe. I then show that this
feature of learning may allow for a cautious non-cooperative equi-
librium: Either the resource is conserved with probability 1 or the
agents experiment once (Section 3.3). The degree of experimentation
will be inefficiently large in most cases, but if the threshold has not
been crossed, staying at the updated safe level is – ex post – socially
optimal. In Section 3.4, I analyze how optimal and non-cooperative
resource use shifts with changes in the parameters. Finally, I pro-
vide an instructive example for which I derive closed-form solutions
(Section 3.5).

3.1. Known threshold location

When the threshold T is known, the first-best resource use,
maximizing the sum of agent’s utilities, is to equitably share just
the amount of the resource that can be used safely if and only if

Nu(R/N) ≤ N u(T/N)
1−b .

Intuitively, when T is small, too much of the resource must be
left untouched to ensure its future existence. As a consequence, it
is socially optimal to cross the threshold and consume the entire
resource immediately. When T is large, however, the per-period util-
ity from staying at the threshold is sufficiently high so that the
first-best is to indefinitely use exactly that amount of the resource
which does not cause the regime shift. Whether a given T is large
enough to induce conservation depends on the overall amount of the
resource R and the discount factor b. The more of the resource must
be left untouched, or the more the future is discounted, the less will-
ing one is to sacrifice today’s consumption of R to ensure continued
consumption of T. Thus, I define the critical value T∗

c such that imme-
diate depletion is first-best when T < T∗

c and staying at T is first-best

when T > T∗
c . That is, T∗

c is given by u(R/N) − u(T/N)
1−b = 0.

In the non-cooperative game with a known threshold, immediate
depletion is always a Nash equilibrium. Clearly, an agent’s best reply
when the other agents cross the threshold is to demand the maxi-
mal amount of the resource as well. However, also here there will
be a critical value Tnc

c so that staying at the threshold T is also Nash
equilibrium when T ≥ Tnc

c . In fact, as Proposition 1 states, there will
always be a parameter combination so that the first-best of staying
at T can be supported as a Nash equilibrium. Similarly, when T < T∗

c ,
the Nash-equilibrium of immediate depletion will again be socially
optimal.

As the setup is stationary, it is clear that if staying at the thresh-
old can be rationalized in any one period, it can be done so in
every period. The payoff from avoiding the regime shift is u(T/N)

1−b .
Conversely, the payoff from deviating and immediately depleting the
resource when all other players intend to stay at the threshold is

given by u
(

R − N−1
N T

)
. The lower T is, the lower the payoff from stay-

ing at the threshold, and the higher the payoff from deviating. I can
therefore define a function X that captures agent i′s incentive to grab
the resource when all other agents stay at T:

X(T, R, N,b) = u
(

R − N − 1
N

T
)

− u(T/N)
1 − b

(3)

The function X is positive at T = 0 and declines as T gets
larger. Staying at the threshold can be sustained as a Nash equilib-
rium whenever X ≤ 0. The critical value Tnc

c is implicitly defined by

X(Tc, R, N,b) = 0. Note that T∗
c < Tnc

c because u
(

R
N

)
< u

(
R − N−1

N T
)

as N > 1 and R > T.

Proposition 1. When the location of the threshold is known with cer-
tainty, then there exists, for every combination of b, N, and R, a value Tnc

c
such that the first-best of staying at T can be sustained as a Nash equi-
librium when T ≥ Tnc

c , where Tnc
c is defined by X = 0. The critical value

Tnc
c is higher, the larger N or R are, or the smaller b is.

Proof. The proof is placed in Appendix A.1. �

In other words, when T is known and T ≥ Tnc
c , the game exhibits

the structure of a coordination game with two Nash equilibria in
symmetric pure strategies. Here, as in the static game from Barrett
(2013, p.236), “[e]ssentially, nature herself enforces an agreement to
avoid catastrophe.” When staying at or below the threshold is not
sufficiently valuable, immediate depletion is the only equilibrium.

Having exposed the underlying strategic structure of the game,
I now turn to the situation when the location of the threshold is
unknown: First, I disregard strategic interactions and study opti-
mal experimentation of a single agent. Then, I analyze the non-
cooperative game with unknown location of T.

3.2. Optimal experimentation when the location of T is unknown

Consider the problem of a single decision maker (a “sole-owner”)
with the following objective:

max
∞∑

t=0

btu(ct) subject to: Rt+1 =

{
Rt if ct ≤ T

0 if ct > T or Rt = 0
; R0 = R.

(4)

Starting from a historically given safe value st, and a belief about
the location of the threshold, the sole-owner has in principle two
options: She can either stay at st (choose d = 0), thereby ensur-
ing the existence of the resource in the next period. Alternatively,
she can take a positive step into unknown territory (choose d > 0),
potentially expanding the set of safe consumption possibilities to
st+1 = st + d, albeit at the risk of a resource collapse. Recall that
Ls(d) is the probability of surviving (that is, not crossing the thresh-
old when taking a step of size d from the safe value s). We can thus
write the sole-owner’s Bellman equation as:

V(s) = max
d∈[0,R−s]

{
u(s + d) + bLs(d)V(s + d)

}
(5)
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The crux is, of course, that the value function V(s) is a priori not
known. However, we do know that once the sole-owner has decided
to not expand the set of safe consumption possibilities, it cannot be
optimal to do so at a later period: If d = 0 is chosen in a given period,
nothing is learned for the future (st+1 = st), so that the problem
in the next period is identical to the problem in the current period.
If moving in the next period were to increase the payoff, it would
increase the payoff even more when one would have made the move
a period earlier (as the future is discounted).

To introduce some notation, let s∗ be a member of the set of
admissible consumption values [0, R] at which it is not optimal to
expand the set of safe consumption values (as the threat of a dis-
astrous regime shift looms too large). Denote this set of values by
S and let s̄∗ be the smallest member of S. In Appendix A.2, I show
that S must exist and that it is convex when the hazard rate is non-
decreasing. Thus, for s ≥ s̄∗, it is optimal to choose d = 0. In this case,
we know V(s). It is given by V(s) = u(s)

1−b .
This leaves three possible paths when starting from values of s0

that are below s̄∗. The decision maker could: 1) make one step and
then stay, 2) make several, but finitely many steps and then stay, and
3) make infinitely many steps. I now argue that 1) is optimal.

Suppose that a value at which it is optimal to remain standing is
reached in finitely many steps. This implies that there must be a last
step. For this last step, we can explicitly write down the objective
function as we know that the value of staying at s∗ forever is u(s∗)

1−b .
Denote by v(d; s) the sole-owner’s valuation of taking exactly one
step of size d from the initial value s to some value s∗ and then staying
at s∗ forevermore, and denote by d∗(s) the optimal choice of the last
step. Formally:

v(d; s) = u(s + d) + bLs(d)
u(s + d)

1 − b
. (6)

This yields the following first-order-condition for an interior
solution:

v′(d; s) = u′(s + d) + b

[
L′

s(d)
u(s + d)

1 − b
+ Ls(d)

u′(s + d)
1 − b

]
= 0. (7)

With these explicit functional forms in hand, I can show that it
is better to traverse any given distance before remaining standing
in one step rather than two steps (see Appendix A.2). A fortiori, this
holds for any finite sequence of steps. Also an infinite sequence of
steps cannot yield a higher payoff since the first step towards s∗ will
be arbitrarily close to s∗ and concavity of the utility function ensures
that there is no gain from never actually reaching s∗.

Let g∗(s) be the interior solution to the first-order-condition (7).
Note that we need not have an interior solution so that d∗(s) = 0
when v′(d; s) < 0 for all d and d∗(s) = R − s when v′(d; s) > 0 for
all d. The first corner solution arises when s ≥ s̄∗. Similarly, I define
a critical value s∗ so that the second corner solution arises when s ≤
s∗. (In most cases, this corner solution is not relevant.) That is, the
optimal expansion of the set of safe consumption values is given by:

d∗(s) =

⎧⎪⎪⎨
⎪⎪⎩

R − s if s ≤ s∗

g∗(s) if s ∈ (s∗, s̄∗)

0 if s ≥ s̄∗
(8)

The optimal consumption pattern is summarized by the following
proposition:

Proposition 2. There exists a set S so that for s ∈ S, it is optimal to
choose d∗(s) = 0. That is, if s0 ∈ S, the optimal use of the resource is s0

for all t. If s0 /∈ S, it is optimal to experiment once at t = 0 and expand

the set of safe values by d∗(s0). When this has not triggered the regime
shift, it is optimal to stay at s1 = s0 + d∗(s0) for all t ≥ 1.

Proof. The proof is given in Appendix A.2. �
In other words, any experimentation – if at all – is undertaken in

the first period. The intuition is the following: Given that it is optimal
to eventually stop at some s∗ ∈ S, the probability of triggering the
regime shift when going from s0 to s∗ is the same whether the dis-
tance is traversed in one step or in many steps. Due to discounting,
the earlier the optimal safe value s∗ is reached, the better.5

Moreover, the degree of experimentation depends on history.
When the second-order condition is fulfilled6 it can be shown that
the optimal step size d∗(s) is declining in s (Proposition 3). The intu-
ition for this effect is clear: The more valuable the current safe level
of use, the less the sole-owner can gain from an increased use, but the
more she can lose should the experiment trigger the regime shift. In
other words, the more the decision maker knows, the less she wants
to learn. In fact, this implies that the largest step is undertaken when
s = 0, which is reminiscent of Janis Joplin’s dictum that “freedom is
just another word for nothing left to lose”.

Proposition 3. The optimal step size d∗(s) is decreasing in s for s ∈
(s∗, s̄∗) .

Proof. The proof is placed in Appendix A.3. �
With this characterization of the optimal experimentation in

absence of strategic interactions in place, I turn to the non-
cooperative game.

3.3. Non-cooperative equilibrium when the location of T is unknown

For a given value of the total consumption that is known to be
safe, and a given state-dependent strategy of the other players that
extends, in sum, the set of consumption values by d−i, the Bellman
equation of agent i is:

V i(s, d−i) = max
di∈[0,R−s−di]

{
u(s/N + di) + bLs(di + d−i)V i(s + d, d−i)

}
(9)

Also here, the crux is that agent i′s value function Vi is a priori
unknown. However, as the analysis in the previous section has
highlighted, we do know that s divides the state space into a safe
region and an unsafe region. Moreover, due to the stationarity of the
problem, we know that if the agents can coordinate to stay in the
safe region once, they can do so forever. Below, I will show that there
indeed exists a set Snc where for any s ∈ Snc staying at s is an equi-
librium. However, just as in the case when the threshold’s location
is known, immediate depletion is always also a Nash equilibrium.
But different from the case when the threshold’s location is known,
immediate depletion need not be the best-reply when s /∈ Snc. Rather,
the agents may coordinate on expanding the set of safe consump-
tion values by some amount dnc and this experiment need not trigger

5 The astute reader will wonder whether the adopted timing “action-consumption-
reaction” is critical for the result of immediate experimentation. In Appendix A.2, I
show that immediate experimentation is also optimal under the alternative timing
assumption of “action-reaction-consumption” (i.e. when utility in the first period is
only obtained when the regime shift has not occurred).

6 The second-order condition is fulfilled when
(

1−b
b + Ls(d∗)

)
u′′ + 2L′

s(d∗)u′ +
L′′

s (d∗)u < 0. Note that while the first term is negative because b ∈ (0, 1), Ls(d∗) ≥ 0,
and u

′ ′ ≤ 0, and the second term is also negative because u′ > 0 and L′
s(d∗) < 0, the

third term L′′
s (d∗)u may be positive.
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the regime shift. Provided that the regime shift has not occurred,
the set of safe consumption possibilities will be expanded up to a
level where it is a Nash equilibrium to not expand it further. Paral-
lel to the socially optimal experimentation pattern, it will be a Nash
equilibrium to reach the set Snc in one step. This “cautious” pat-
tern of non-cooperative resource use is summarized by the following
proposition.

Proposition 4. There exists a set Snc such that for s0 ∈ Snc, it is a
symmetric Nash equilibrium to stay at s0 and consume s0

N for all t. For
s0 /∈ Snc, it is a Nash equilibrium to take exactly one step and consume
s0
N + dnc(s0) for t = 0 and – when this has not triggered the regime shift
– to stay at s1 = s0 + Ndnc(s0), consuming s1

N for all t ≥ 1.

Proof. The proof is given in Appendix A.4. �
The key intuition for the existence of this “cautious equilibrium”

is that 1) for high values of s, staying at s is individually rational
when all other agents do so, too, and 2) that when s /∈ Snc, no
agent has an incentive to deviate from a one-step experimentation
that expands the set of safe consumption values into the region in
which staying is optimal. Of course, there will always also exist an
“aggressive equilibrium” in which the resource is depleted imme-
diately, simply because the best-reply for player i when all other
players plan to expand the consumption set by R−s

N is to choose R−s
N as

well. Note that, for a given s, both the “cautious” and the “aggressive
equilibrium” are unique.7

Let 0 denote the payoff for agent i when she takes exactly one
step of size di and then remains standing and the strategy of the other
agents, D−i = {d−i, 0, 0, 0, ...}, is also to take only one step (of total
size d−i):

0(di; d−i, s) = u
(

s
N

+ di
)

+ bLs(di + d−i)
u
(

s+di+d−i

N

)
1 − b

(10)

The corresponding first-order-condition for an interior maximum
is:

0′(di; d−i, s) = u′
(

s
N

+ di
)

+ bL′
s(d

i + d−i)
u
(

s+di+d−i

N

)
1 − b

+ b
1
N

Ls(di + d−i)
u′
(

s+di+d−i

N

)
1 − b

= 0 (11)

Denote the interior solution to the first-order-condition (if it
exists) by g(d−i, s). Three forces determine g: The first term repre-
sents the gain from a marginal increase in current utility. For a given
s, this term is larger the more agents there are (as u

′ ′ ≤ 0). The second
term represents the marginal decrease in the probability of surviving,
which is evaluated at the updated safe consumption value. As agent
i obtains only 1

N th of the updated safe consumption value, these cost
weigh less the more agents there are. Third, conditional on survival,
there is the marginal utility gain from an expanded safe consumption
set. As this benefits all agents equally, it is devalued by the factor 1

N .

7 Uniqueness of the latter type of equilibrium simply follows from the assumption
that in case of incompatible demands, the resource is shared equally among the play-
ers. Uniqueness of the symmetric “cautious equilibrium” (should it entail dnc(s) < R−s

N )
can be established by contradiction. Suppose all other players j 
= i choose to expand
the consumption set to a level at which – should the threshold have not been crossed
– no player would have an incentive to go further. Player i′s best-reply cannot be to
choose di = 0 in this situation as the gain from making a small positive step (which
are private) exceed the (public) cost of advancing a little further. Hence, the only
equilibrium at which the players expand the consumption set once is the symmetric
one.

The first two terms capture the “tragedy of the commons” with
respect to the regime shift risk in the sense that the current gains
from an experiment are private but the cost in terms of increased
risk is public and shared by all. Therefore, the first two terms push
for a sub-optimally large expansion. However, the third term pulls
in the opposite direction as the agents do not take the informa-
tional value that their experiment has for the other agents into
account. Without further assumptions on functional forms, one can-
not exclude the possibility that there may be cases where non-
cooperation implies too little experimentation. A sufficient condition
for when the first two terms outweigh the informational external-
ity is N

N+1 ≥ u′
(

R
N

)
/u′

(
R

N+1

)
; see Proposition 5 (b). Moreover,

Section 3.5 highlights how the non-cooperative expansion of the set
of safe consumption possibilities is inefficiently large for the illustra-
tive example. Nevertheless, experimentation is still “cautious” in the
sense that it does not trigger the regime shift with probability 1.

Clearly, for a given s and d−i there need not be an interior solution.
When the gain from expanding the set of safe consumption values
is small, but the threat of triggering the regime shift is large, it may
be individually rational to choose di = 0. Conversely, when the gain
from expanding the set of safe consumption values is large and/or it
is unlikely that there is a regime shift, it may be individually rational
to choose di = R − s − d−i.

For a symmetric step size d−i = (N − 1)di, we can write Eq. (11)
as follows:

0′(dnc; s) = u′
(

s
N

+ dnc
)

+ b

[
L′

s(Ndnc)
u
( s

N + dnc
)

1 − b

+
1
N

Ls(Ndnc)
u′ ( s

N + dnc
)

1 − b

]
= 0 (12)

Let gnc(s) be the individual symmetric interior non-cooperative
expansion. It is implicitly defined by 0′(dnc; s) = 0. Noting the simi-
larity of Eq. (12) to Eq. (7) when replacing d∗ with Ndnc, it is possible
to show that gnc(s) is decreasing in s. We can therefore define s̄nc, the
smallest member of the set Snc, by gnc(s̄nc) = 0. In other words, for
s ≥ s̄nc, the threat of triggering a disastrous regime shift is sufficiently
large so that the agents find it in their own best interest to stay at
s when all other agents do so, too. Conversely, we can define the
value snc by the other corner solution gnc(snc) = R−s

N . In other words,
for s ≤ snc, the threat of triggering a regime shift is so small com-
pared to the gains from increasing one’s own consumption that it is
individually rational to use the resource up to its maximal capacity R.

To sum up, in the non-cooperative game when the location of T is
unknown, there is a “cautious equilibrium” that is described by the
following set of Markov-strategies:

dnc(s) =

⎧⎪⎪⎨
⎪⎪⎩

R−s
N if s ≤ snc

gnc(s) if s ∈ (snc, s̄nc)

0 if s ≥ s̄nc

(13)

Fig. 2 illustrates the aggregate expansion of the set of safe con-
sumption possibilities in the cautious equilibrium and contrasts it
with the optimal expansion of a sole-owner.

In short, the game has the structure of a coordination problem.
Clearly, the “cautious equilibrium” Pareto-dominates the “aggressive
equilibrium”.8 Without strategic uncertainty, the cautious equilib-
rium would thus be the outcome of the game. But what happens
when the agents are uncertain about the other agents’ behavior?

8 This follows immediately from the fact that, by definition, dnc(s) is the interior
solution to the symmetric maximization problem (9) (with d−i = (N − 1)dnc) where
the policy d(s) = R − s was an admissible candidate.
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Fig. 2. Illustration of policy function d(s). The blue circles represent the optimal
expansion d of the safe consumption set s (on the y-axis) as a function of the safe con-
sumption set (on the x-axis) when N=1 (where obviously s ≤ R and d ∈ [0, R − s]).
For values of s below s∗ , it is optimal to consume the entire resource (choose d(s) =
R − s). For values of s above s̄∗ , it is optimal to remain standing (choose d(s) = 0).
The red dashed line plots the cautious non-cooperative equilibrium, showing how
s∗ ≤ snc and s̄∗ ≤ s̄nc (in some cases we may even have snc < s̄∗). It illustrates how
even the “cautious” experimentation under non-cooperation implies excessive risk-
taking. The figure also shows that the non-cooperative outcome may coincide with
the sole-owner’s choice for very low and high values of s.

As the disastrous regime shift is irreversible, there is no room for
dynamic processes that lead agents to select the Pareto-dominant
equilibrium (Kim, 1996). Therefore, I turn to the static concept of
risk-dominance (Harsanyi and Selten, 1988).

Since the game is symmetric, applying the criterion of risk-
dominance has the following intuitive interpretation: The cautious
equilibrium is selected if the expected payoff from playing cau-
tiously exceeds the expected payoff from playing aggressively when
agent i assigns probability p to the other agents playing aggressively.
Whether the cautious or the aggressive equilibrium is risk-dominant
depends both on this probability p as well as on the safe value s. We
can, for a given safe value s, solve for the probability p∗ at which agent
i is just indifferent between playing cautiously or aggressively:

p∗ • p[all aggressive] + (1 − p∗) • p[only i aggressive] = p∗ • p[only i cautious]

+(1 − p∗) • p[all cautious]

⇐⇒
p∗ =

p[all cautious] − p[only i aggressive](
p[all cautious] − p[only i aggressive]

)− (
p[only i cautious] − p[all aggressive]

)
In the above calculation, p[all aggressive] refers to the payoff of play-

ing aggressive when all other agents play aggressively, p[only i aggressive]
refers to the payoff of playing aggressive when all other agents play
cautiously, etc. In order to explicitly solve for the value of p∗, we need
to put more structure on the problem. For the specific example devel-
oped in Section 3.5 below, we can calculate and plot p∗ as a function
of s (see Fig. 3). The gray area below the line drawn by p∗ shows the
set of values for which agent i prefers to play cautiously. Fig. 3 illus-
trates how robust the cautious equilibrium is in this example: Even
when the agents think that there is a 50% chance that all other agents
play the aggressive strategy, it still pays to play cautiously for a wide
range of initial values s. (Clearly, p∗ is not defined for s < snc when
the cautious and the aggressive equilibrium coincides.)
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Fig. 3. The black line plots p∗ as a function of s for u(c) =
√

c, f = 1
A and b = 0.8,

A = R = 1 and N = 10. It shows, for a given value of s the maximum value that agent
i can assign to the probability that all other agents play aggressively and still prefer to
play cautiously.

3.4. Comparative statics

In this section, I analyze how the consumption pattern in the cau-
tious equilibrium shifts with changes in the parameters. Recall that
gnc is defined as the interior solution 0′ = 0 where 0′ is given by
Eq. (12). The effect of an increase in a parameter a in the interior
range s ∈ (snc, s̄nc) is given by dgnc

da = − ∂0′/∂a
∂0′/∂gnc . Further, recall that I

assume that the second-order condition holds for s ∈ (snc, s̄nc). Thus,
to show that aggregate experimentation (the total expansion of the
set of safe consumption values) is larger the higher the parameter a,
it is sufficient to show that ∂0′

∂a > 0 (since the second-order condition
implies that ∂0′

∂gnc < 0). Because gnc is monotonically decreasing in s, it
is also sufficient to show that, for a given value of R, neither boundary
snc or s̄nc decreases and at least one boundary increases with a. The
reason is that for a given value of R, an upward shift of snc or s̄nc (and
no downward shift of the respective other boundary) implies that all
new values of gnc must lie above the old values of gnc (see Fig. 2).

Proposition 5 summarizes the comparative statics results with
respect to b, N, R and the agent’s prior belief about the location of the
threshold.

Proposition 5.

(a) The boundaries snc and s̄nc, and aggregate experimentation in the
cautious equilibrium, Ngnc, decrease with b.

(b) A sufficient condition for aggregate experimentation to increase
with N is that N

N+1 ≥ u′
(

R
N

)
/u′

(
R

N+1

)
.

(c) The more likely the regime shift (in terms of a first-order stochas-
tic dominance), the larger the range where a separate cautious
Nash-equilibrium exists and the lower aggregate experimenta-
tion.

(d) An increase of R to R̃ for an unchanged risk of the regime shift
(i.e. R < R̃ ≤ A) decreasessnc and leads to a larger range where a
separate cautious equilibrium exists.

Proof. The proofs are given in Appendix A.5. �
The first comparative static result conforms with basic intuition:

The more patient the agents are, the more they value the annuity of
staying at s, and the more cautious they are.
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The second result provides a sufficient condition for when an
increase in the number of agents exacerbates the “tragedy of the
commons” in terms of aggregate experimentation. As discussed in
relation to Eq. (11) above, there are three effects that an increase in N
has on a given agent’s incentives to expand the set of safe consump-
tion values: First, a larger N implies that the marginal utility from a
larger di today increases. Second, a larger N means that the cost of
an experiment in terms of an increased regime shift risk is diluted.
Third, also the gain in marginal utility from an experiment that did
not trigger the regime shift is shared among more agents. While the
first two effects push towards a larger expansion, the last effect pulls
in the other direction. When N

N+1 ≥ u′
(

R
N

)
/u′

(
R

N+1

)
, it is guaran-

teed that the first two effects dominate. Technically, this is shown by
arguing that the range where a separate cautious equilibrium exists
must shrink when N

N+1 ≥ u′
(

R
N

)
/u′

(
R

N+1

)
.

The third comparative static result also conforms with basic intu-
ition: The more dangerous any step is, the more cautiously the agents
experiment.

The last comparative statics result highlights the difference to the
situation when the location of the threshold is known with certainty.
In that situation, an increase in R leads to an increase in Tc, which
shrinks the range in which the socially optimal outcome is a Nash
equilibrium (Proposition 1). Here, immediate depletion is not neces-
sarily the dominant strategy. An increase in R essentially means that
the scope for an interior solution is widened so that the range for
which immediate depletion is the only Nash equilibrium shrinks.

3.5. Specific example

For a given utility function and a given probability distribution
of the threshold’s location it is possible to solve for d∗(s), dnc(s) and
calculate the value function V(s). To obtain closed form solutions, I
assume that u(c) =

√
c and that the agents believe that every value in

[0, A] is equally likely to be the threshold, i.e. f = 1
A , and accordingly

Ls(d) = A−s−d
A−s .

I first define the first-best. The problem of maximizing the sum of
agent’s utilities is:

max
di

N∑
i=1

⎧⎪⎨
⎪⎩
√

s
N

+ di + b
A − s −∑

di

A − s
•

√
s
N + di

1 − b

⎫⎪⎬
⎪⎭

Because the agents are assumed to be identical, we can write the
optimal total expansion of the set of safe consumption possibilities
as:

∑
di = Nd∗ =

A − (1 + 2b)s
3b

Note that in this specific example, the socially optimal experi-
mentation is invariant to N, i.e. it is the same as the optimal experi-
mentation of a sole-owner. Clearly, d∗ is decreasing in b and s. There
will only be an interior solution to Eq. (7) when s ∈ [s∗, s̄∗]. We have:9

s∗ = max
{

0,
A − 3bR
(1 − b)

}

s̄∗ = min
{

A
1 + 2b

, R
}

9 At s∗ it is optimal to consume the entire resource, so that s∗ is found by solving

R−s∗ = A−(1+2b)s∗
3b . At s̄∗ it is optimal to remain standing, so that s̄∗ is found by solving

0 = A−(1+2b)s̄∗
3b .

Let us now consider the cautious equilibrium of the non-
cooperative game. Solving Eq. (12) for the interior equilibrium gnc,
we have that total non-cooperative expansion is given by:

Ndnc(s) =

⎧⎪⎪⎨
⎪⎪⎩

R − s if s ≤ snc

Ngnc = ((1−b)N+b)A−((1−b)N+3b)s
3b if s ∈ (snc, s̄nc)

0 if s ≥ s̄nc

where

snc = max
{

0,
((1 − b)N + b) A − 3bR

(1 − b)N

}

s̄nc = min
{
((1 − b)N + b) A

(1 − b)N + 3b
, R
}

The closed form solutions make it easy to confirm the compara-
tive statics results.

First, an increase in the discount factor implies that each agent is
more patient and values the preservation of the resource for future
consumption more. Thus, the boundaries snc and s̄nc and aggregate
experimentation decrease with b, which can be readily confirmed by
noting that the denominator of ∂gnc

∂b
is 3N(s − A), which is negative

because s ≤ A.
The second comparative static result provides a sufficient con-

dition for when an increase in N leads to more experimentation.
This condition is not fulfilled for this specific example as N

N+1 <

u′
(

R
N

)
/u′

(
R

N+1

)
=

√
N

N+1 . However, N
N+1 < u′

(
R
N

)
/u′

(
R

N+1

)
is not

a necessary condition. In fact, it is straightforward to check for this
specific example that ∂Ngnc

∂N = gnc + N 1−b
3b (A − s) > 0 (as A ≥ s

by definition). In other words, any non-cooperative experimentation
will be inefficiently large, and more so the larger N.

Third, a monotonic increase in the risk of a regime shift is here
equivalent to a decrease in A (say, from A to Â). Clearly, when R
is unchanged (so that R < A and R ≤ Â when Â < A), a lower
A means a lower snc, a lower s̄nc, and a decreased expansion of
the set of safe consumption values when s ∈ (snc, s̄nc) because
((1 − b)N + b) > 0 for N ≥ 1. The same holds when A = R and
R̂ = Â with Â < A, because R only appears in the condition for snc

and snc > 0 ⇐⇒ (1 − b)N − 2b > 0.
Finally, when R increases to R̃ but A remains unchanged (so that

R < A and R̃ ≤ A), it only has an effect on snc (provided that s̄nc < R).
Provided that snc > 0, it is plain to see that ∂snc

∂R = − 3b
(1−b)N < 0. The

range where a separate cautious equilibrium exists is larger.
Fig. 4 plots the value function of a given agent for a uniform prior

(with A = R = 1) and a discount factor of b = 0.8, illustrating how
it changes as the number of agents increases. The more agents there
are, the greater the distance of the non-cooperative value function
(plotted by the red dashed line) to the socially optimal value func-
tion (plotted by the blue open circles). In particular when N = 10,
one sees the region (roughly from s = 0 to s = 0.2) where there
is no separate cautious equilibrium. Furthermore, the value when it
becomes individually rational to remain standing, s̄nc, is relatively
large (roughly 0.62). All in all however, this example shows that
the threat of a irreversible regime shift is very effective when the
externality applies only to the risk of crossing the threshold.10 In par-
ticular, for s ≥ s̄nc, the cautious equilibrium coincides with the social
optimum.

10 At least for this specific utility function and these parameter values. Note that
b = 0.8 implies a unreasonably high discount rate, but it was chosen to magnify the
effect of non-cooperation for a small number of agents.
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Fig. 4. Illustration of the value a given agent derives from the socially optimal and non-cooperative use of the resource with u =
√

s
N + di , b = 0.8, and A=R=1 for N=5 and

N=10. Note that the individual value, also in the social optimum, is lower when N=10 than N=5, simply because the resource is shared among more agents.

4. Extensions

The paper’s main results do not rely on specific functional forms
for utility or the probability distribution of the threshold’s location.
Tractability is achieved by considering extremely simple resource
dynamics, namely the resource remains intact and replenishes fully
in the next period as long as resource use in the current period has
not exceeded T. In other words, there is no common-pool external-
ity relating to the resource dynamics itself. In this part of the paper,
I explore to what extent the main results are robust to more gen-
eral resource dynamics (Sections 4.1 and 4.2). Moreover, I show that
the result of once-and-for-all experimentation does not rely on the
assumption that the regime shift occurs immediately if the threshold
is crossed (Section 4.3). However, once-and-for-all experimentation
may no longer be optimal when the regime shift is not disastrous in
the sense that the post-event value function depends on the extent
to which the threshold has been overstepped (Section 4.4).

4.1. Growing R and constraints on the choice set

In this subsection, I shall relax the assumption that R is constant.
Instead, I consider the case that R grows according to some func-
tion G(R). However, I maintain the assumption that f and A are fixed,
so that Rt converges to some R∞ ≤ A with time. This situation may
mechanically lead to repeated experimentation as long as the upper
bound of the feasible choice set in the respective period is binding. As
a consequence, the overall consumption plan will be more cautious.

Formally, the resource dynamics can be expressed as:

Rt+1 =

{
Rt + G(Rt) if

∑
ic

i
t ≤ T

0 if
∑

ic
i
t > T or Rt = 0

(15)

where G(R) > 0 for R ∈ (0, R∞), G(R∞) = 0, and R0 < R∞ ≤ A.
Let us first consider the social optimum. As the set of safe values

at which no more experimentation is optimal, S, depends only on the
belief about the location of the threshold F and not on R, it will be
optimal to expand the set of safe consumption values as long as Rt /∈
S. Specifically, in this initial phase, it will be optimal to choose d∗

t =
Rt − st−1. Once Rt ∈ S for some t (say at t = t), it will be optimal to
choose one last step d∗(st) (which may be of size zero) and to remain
at st+1 = st + d∗(st) for all remaining time.

Note that constraints on the choice set (such that d ∈ [0, dmax]
where dmax < R − st for some period t = 0, . . . , t) will lead to
repeated experimentation for the same mechanistic reason: When
the first-best unconstrained expansion is d∗(s0), but dmax is such that

it requires several steps to traverse this distance, then the safe value
s will be updated sequentially (conditional on not causing the regime
shift, of course). The optimal plan prescribes choosing dmax for some
period t = 0, . . . , t and then choose d∗(st). Because ∂d∗(s)

∂s < 0
(Proposition 3), this implies an overall more cautious plan (that is:∑t

t=0 dmax + d∗(st) < d∗(s0)).
The exact same reasoning applies in the non-cooperative game.

Given that the agents coordinate on the cautious equilibrium, the
set Snc does not depend on R. Consequently, the equilibrium path
prescribes choosing dnc

t = Rt−st−1
N for some period t = 0, . . . , t and

then staying at st+1 for the remaining time (even though Rt may
continue to grow). Note that this rests on the assumption that all
agents rationally anticipate the evolution of Rt. Analyzing the effect
of uncertainty about G(R) could be very interesting, but is left for
future work. That said, even with perfect knowledge about G(R),
strategic uncertainty will matter a lot in the real world. Given that
a real-world agent knows that the incentive to grab is increasing
through time and he or she is uncertain whether the other agents will
actually stick to the cooperative choice, he or she will have strong
incentives to pre-empt the other agents.

The discussion in this subsection highlights how the result of
once-and-for-all experimentation is linked to the assumption of an
unconstrained choice set d ∈ [0, R − s]. The discussion further sheds
light on the difference of this model to e.g. the climate change appli-
cation of Lemoine and Traeger (2014): One reason for the gradual
approach in their model is that their assumed capital dynamics
implicitly translate into a constrained choice set (as it is very rea-
sonable in their setting, capital cannot be adjusted instantly and
costlessly).

4.2. Non-renewable resource dynamics

So far, I have assumed that the resource replenishes fully every
period unless the threshold has been crossed. In other words, the
externality was only related to the risk of crossing the threshold.
Here, I study the opposite case of a non-renewable resource to ana-
lyze the effect of a disastrous regime shift when the externality
relates both to the risk of crossing the threshold and to the resource
itself. Specifically, I consider the following model of extraction from
a known stock of a non-renewable resource:

max
ci

t

∞∑
t=0

btu
(

ci
t

)
subject to:

Rt+1 =

{
Rt −∑

ic
i
t if

∑
ic

i
t ≤ T

0 if
∑

ic
i
t > T

; R0 given (16)
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A simple interpretation of this model could be a mine from which
several agents extract a valuable resource. If aggregate extraction is
too high in a given period, the structure of the shafts may collapse,
making the remainder of the resource inaccessible.11

I assume that the utility function is of such a form, that in a world
without the threshold, there is a non-cooperative equilibrium in
which positive extraction occurs in several periods. Due to discount-
ing, it is clear that the extraction level will decline as time passes,
both in the social optimum and in the non-cooperative equilibrium.
Due to the stock externality, it is clear that the extraction rate in the
non-cooperative equilibrium is inefficiently large (see e.g. Harstad
and Liski, 2013). To introduce some notation, let c̃nc(Rt) be the total
non-cooperative extraction level (as a function of the resource stock
Rt) in absence of the regime shift risk.

The threat of a regime shift has the potential to limit non-
cooperative extraction below c̃nc(Rt) and thereby improve welfare.
Also in the case of a non-renewable resource, with dynamics given
by Eq. (16), it is possible to show that experimentation continues
to exhibit once-and-for-all dynamics.12 Thus, for a given value s0,
agents will either experiment once to learn whether they can safely
extract snc

1 = s0 + Ndnc(s0), or they will not experiment at all. As
the extraction path will decline, snc

1 will only be binding on the per-
period extraction for an initial phase (say until t = t, where t is
implicitly defined by c̃nc(Rt) = snc

1 . After time period t, the extraction
path will follow the same non-cooperative path as in the absence of
a regime shift.

Consequently, the threat of a regime shift cannot induce coordi-
nation on the intertemporal first-best.13 Nevertheless, the threat of
a regime shift may induce an equilibrium that is, in expected terms,
Pareto-superior to a situation without the regime shift risk: While
the agents would obviously be better off without the regime shift
risk when the initial experiment triggers the collapse, the agents
benefit from the initial constraint on the per-period extraction (up
to t = t) when the regime shift is not triggered by the initial
experiment.

4.3. Delay in the occurrence of the regime shift

In this subsection, I depart from the assumption that all agents
observe immediately whether last period’s expansion has triggered
the regime shift or not, but consider a situation where the agents
observe only with some probability whether they have crossed the
threshold. In fact, it is not unreasonable to model that the true
state will manifest itself only after some delay. For example, the
process of saltwater intrusion, though irreversible once the water
table has fallen under a critical level, may take time to unfold (for
a recent paper that focusses on this effect in the context of opti-
mal climate policies, see Gerlagh and Liski (2014)). Hence, as time

11 Granted, in spite of this natural interpretation, two things are peculiar about this
model setup: First, any player can extract any amount up to Rt . (The option to intro-
duce a capacity constraint on current extraction – though realistic – would come
at the cost of significant clutter without yielding any apparent benefit.) Second, the
assumption that R0 is known and that T is constant means that this is not a problem
of eating a cake of unknown size. This problem has since long been dealt with in the
literature (see e.g. Kemp, 1976; Hoel, 1978) and is not considered here.
12 The proof is omitted because it follows the same steps as the proof of

Proposition 4. In particular, the argument that agent i′s payoff is higher when expand-
ing the set of safe values in one step rather than two rests on a comparison of the
risk encountered by the two strategies and that staying after the first expansion is
sub-optimal for agent i. Neither of these two arguments use the specific form of the
continuation value (it is irrelevant when comparing the regime-shift risk and held
constant in the second argument).
13 Except in the very special case that snc

1 = s0 = c∗(RT ) where c∗(RT ) is the socially
optimal extraction at the finite exhaustion period T

passes the agents will update their beliefs about whether the thresh-
old has been located on the interval [st, st + dt]. How does this
learning affect the optimal and non-cooperative strategies? This
becomes an extremely difficult question as the problem is no longer
Markovian.

Nevertheless, it is possible to show that also when crossing the
threshold at time t triggers the regime shift at some (potentially
uncertain) time t > t, it is still socially and individually rational to
experiment – if at all – in the first period only. The key is to real-
ize that yesterday’s decisions are exogenous today. This means that
threat of a regime shift can be modeled as an exogenous hazard rate:
Let ht be the probability that the regime shift, triggered by events
earlier than and including time t, occurs at time t (conditional on not
having occurred prior to t, of course). The agent’s problem in this
situation can be formulated as:

V i
(

s,D−i
)

= max
di∈[0,R−s]

{
u
(

s+di
)

+(1 − ht)bLs

(
di +d−i

)
V i
(

s+d,D−i
)}

(17)

The structure of Eq. (17) is identical to the one in Eq. (9), only
the effective discount factor decreases by (1 − ht). Agents anticipate
how the effective discount factor changes with time, but their belief
about the location of the threshold, given that it has not been crossed
by the current step, is not affected. Thus, the learning dynamics are
unchanged.

In other words, the once-and-for-all dynamics of experimenta-
tion are robust to a delay in the occurrence of the regime-shift. This
does of course not imply that the optimal decision under the two
different models will be the same. It will almost surely differ, as
delaying the consequences of crossing the threshold decreases the
costs of experimentation. Yet, as the agents only learn that they
have crossed the threshold when the disastrous regime shift actually
occurs, they cannot capitalize on this delay by trying to expand the
set of safe consumption possibilities several times.

4.4. Non-disastrous regime shift

A central feature of the baseline model was that the regime shift
is disastrous: Crossing the threshold breaks any links between the
state before and after the regime shift. The pre-event choices did not
matter for the post-event value. This structure allowed me to sim-
ply normalize the continuation value in case of a regime shift to zero.
For some applications, this independence of the post-event value is
a fitting description. However, when the system under consideration
is large, and the threshold effect on the damage is not truly catas-
trophic, but just one of many parts in the equation, a model with
independent post-event value is not adequate. In such a setting, one
would need to take into account how the continuation value depends
on how far the set of consumption values has been expanded before
the regime shift.

Denote the function that captures how the post-event continua-
tion value depends on the pre-event expansion by W(st+1) (where
st+1 = st + dt). How W would depend on the pre-event values
of the state st and the choice variable dt is not generally clear.
For example, Ren and Polasky (2014) discuss under which condi-
tions regime-shift risk implies more cautionary or more aggres-
sive management of renewable resources. In particular, they high-
light the role of an “investment effect” that induces incentives
for more aggressive management: Harvesting less (investing in
the renewable resource stock) pays off badly should the regime
shift occur. Ren and Polasky go on to show how these incen-
tives are balanced (and potentially overturned) by the “risk reduc-
tion effect” and a “consumption smoothing effect” (that leads to
more precaution in their application). Similarly, the capital stock
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in a climate change application likely has an ambiguous effect
(Ploeg and Zeeuw, 2015a). On the one hand, it buffers against the
adverse effects of the regime shift and hence smoothes consump-
tion over regimes. On the other hand, a higher capital stock implies
more intense use of fossil fuels, which aggravates climate dam-
ages.

Regardless of whether W′(st+1) > 0 or W′(st+1) < 0, the fact that
the pre-event choices matter for the post-event value means that it is
no longer immaterial by how much one has stepped over the thresh-
old. I argue that 1) even when the regime shift is not disastrous, there
will still be a set S or Snc at which it is socially or individually ratio-
nal to not experiment further, and 2) I point out that a necessary
condition for a gradual approach to S is that the post-event value
declines sufficiently strongly in st+1. As the analysis of the different
forces at play is the same for the non-cooperative game, I concentrate
on the sole-owner case for the general discussion below. With help
of the concrete example, I then explicitly compare optimal experi-
mentation in the absence of strategic interaction to the “cautious”
equilibrium of the non-cooperative game.

To put some structure to the argument, I write down the Bellman
equation of the sole owner before the regime shift has occurred:

V(s) = max
d∈[0,R−s]

{
u(s + d)+b [Ls(d) • V(s + d) + (1 − Ls(d)) • W(s + d)]

}
(18)

The sole-owner seeks to choose that expansion of the set of
consumption values that maximizes her current utility plus the dis-
counted continuation value. With probability Ls(d), the step of size d

turns out to be safe and the continuation value is given by V(s + d).
With probability (1 − Ls(d)), the threshold is located on the inter-
val between s and s + d and the continuation value is given by
W(s + d).

It will still be the case that there is a non-empty set S for which
the optimal choice is d∗ = 0. The reason is that, as long as the regime
shift is a negative event (V(s) > W(s)), the gains from further expan-
sion of the set of safe consumption values are bounded above, while
the risk of triggering the regime shift grows exceedingly large as
s → R.

To obtain more insights about how the optimal expansion choice
is changed by the existence of an endogenous continuation value,
consider the derivative of the RHS of Eq. (18) (denoting this function
by v′ again should not cause confusion):

v′ = u′ + b [L′
s(d)(V − W) + Ls(d) • V ′ + (1 − Ls(d)) • W ′] = 0 (19)

The size of d∗ that solves Eq. (19) is determined by three fac-
tors: First, there is the gain in marginal utility u′. Second, there is
the term involving L′

s(d) which captures the increased risk of the
regime shift. This term is negative as before. Third, the optimal
choice of d is affected by the marginal continuation value. Previ-
ously, only the event of not crossing the threshold mattered here.
Now, the event of crossing the threshold also has to be evaluated
explicitly.

Analyzing how an endogenous post-event value affects d∗, I first
note that the negative term L′

s(d)(V − W) decreases in absolute value.
When the second-order condition for an interior solution is satisfied,
v′ is a decreasing function in the neighborhood of d∗. A decrease in
absolute value of the term L′

s(d)(V − W) shifts the function upwards.
Intuitively, a non-zero continuation value in case of a regime shift
pushes for a larger current consumption. However, when W′ < 0, the
term (1−Ls(d)) • W′ is negative, which, ceteris paribus, leads to a lower
value of d∗. If, and only if, the post-event value declines sufficiently
strongly in st+1 will the optimal d∗ be so small that for st /∈ S, we have

st + d∗
t = st+1 /∈ S. The approach to S will then be gradual, implying

periods of repeated experimentation.
To illustrate more concretely how these effects play out, I assume

specific functional forms. As in Section 3.5, I set u(c) =
√

c and
assume a uniform distribution for the location of the threshold so
that Ls(d) = A−s−d

A−s with A = R. For the post-event continuation
value, I assume that the resource loses all its productivity once the
regime shift occurs. In other words, W is the highest value that
can be obtained when spreading the consumption of the now non-
renewable resource rt = R − st − dt over the remaining time horizon.

We have W∗(st + dt) =
√

R−(st+dt)
1−b2 . Clearly, W′(st + dt) < 0.

For a square-root utility function and without exogenous con-
straints on extraction, the number of agents cannot be too large in
order to have an interior equilibrium with positive extraction over
the entire time path in the non-cooperative game. Here I choose

N=2. We have Wnc(st + di
t + d−i

t ) =

√
R−

(
st+di

t+d−i
t

)
1−b2+

√
1−b2

.

The analytic closed form solutions are not particularly instructive.
Instead, I present the results graphically.

Fig. 5 plots the first-period expansion d as a function of s for a high
and a low value of the discount factor. The blue dotted line shows
the optimal expansion of a sole-owner and the light-blue area indi-
cated, for a given s, by how much this first step falls short of the total
step size (experimentation stops when ŝ∗ is reached). Note how the
first experiment is a much larger fraction of the eventual area that is
explored when b = 0.75 instead of b = 0.95.

The red dashed line shows the corresponding total expansion in
the non-cooperative case. Note that here, no second step is taken –
any experimentation is undertaken in the first period only. This is
however not a general result: for very high values of b (0.998 and
above; not shown here) the cautious non-cooperative equilibrium
also implies repeated experimentation. Conversely, the lower is b,
the steeper the first-period expansion as a function of s. Thus, non-
cooperation has two effects: not only is the non-cooperative exper-
imentation inefficiently large, the approach to the set at which it is
optimal to cease experimenting is inefficiently fast. The latter aspect
is caused by the fact that the sole-owner’s marginal continuation
value declines more steeply than its non-cooperative counterpart:
The agents do not internalize the additional damage from the extent
by which the threshold has been crossed.

5. Discussion and conclusion

The threat of a disastrous regime shift can be beneficial because
it allows coordination on a Pareto-dominant equilibrium, even when
the location of the threshold is unknown. When the consequence
of the regime shift is catastrophic, and learning is only affirmative,
it is socially optimal and a Nash equilibrium to update beliefs only
once (if at all). For a sufficiently valuable level of safe use, the threat
of loosing the productive resource discourages any experimenta-
tion and effectively enforces the first-best consumption level. When
the agents experiment, the expansion of the consumption set is in
most cases inefficiently large. However, when the experiment has
not triggered the regime shift, staying at the updated level is ex
post socially optimal. In addition to this “cautious” Nash equilibrium
there is always also an “aggressive” Nash equilibrium, in which the
agents immediately deplete the resource. When the initial value of
safe use is not valuable enough, immediate depletion will be the only
equilibrium.

Empirically, we do not observe many resources where the safe
level of use is updated once and the resource then either collapses
or is used sustainably at the updated level. Whereas my model iso-
lates the threat of a disastrous regime shift, many additional aspects
that dilute the sharp once-and-for-all learning dynamics are likely
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Fig. 5. Illustration of optimal experimentation when pre-event choices matter for post-event value. Parameters and functional forms: u(c) =
√

c, N=2, A=R=1, Ls(d) = 1−s−d
1−s ;

for b = 0.75 and b=0.95.

to matter in the real world. In this paper, I explore the condi-
tions under which the once-and-for-all learning dynamics and the
existence of a “cautious” Nash equilibrium emerge. Importantly, I
show that the threat of the disastrous regime shift loses impor-
tance when the externality applies both to the risk of triggering
the regime shift and to the resource itself. Nevertheless, it can still
act as a “commitment device” to at least dampen non-cooperative
extraction.

These conclusions have been derived by developing a dynamic
model that has placed only minimal requirements on the utility
function and the probability distribution of the threshold. Never-
theless, there are a number of structural assumptions that warrant
discussion.

First, a prominent aspect of this model is that the threshold itself
is not stochastic. The central motivation is to isolate the effect of
uncertainty about the threshold’s location. This is arguably the core
of the problem: We don’t know which level of use triggers the
regime shift. This assumption is consistent with Lemoine and Traeger
(2014, p.28) who argue, “we would not actually expect tipping to
be stochastic. Instead, any such stochasticity would serve to approx-
imate a more complete model with uncertainty (and potentially
learning) over the precise trigger mechanism underlying the tipping
point.” This being said, it would still be interesting to investigate how
the choice between a hazard-rate formulation (as in Polasky et al.,
2011 or Sakamoto, 2014) or a threshold formulation influences the
outcome and policy conclusions in an otherwise identical model.

Second, to focus on the coordinating effect of the threat of the
regime shift, I have assumed identical agents. One dimension along
which players could differ is their valuation of the future. How-
ever, it is likely that a contract that gives a larger share of the
gains to more impatient players could smooth out any such differ-
ences. One could also investigate the effect of heterogenous beliefs
about the existence and location of the threshold. Agbo (2014) and
Koulovatianos (2015) analyze this in the framework of Levhari and
Mirman (1980). In the current set-up, such a heterogeneity could
lead to interesting dynamics and possible multiple equilibria, where
some players rationally do not want to learn about the probability
distribution of T whereas other players do invest in experimentation.
Another dimension along which players could differ is their size or
the degree to which they depend on the resource. As larger players
are likely to internalize a larger part of the externality than smaller
players, different sets of equilibria may emerge. Especially in light of
the discussions surrounding a possible climate treaty (Harstad, 2012;
Nordhaus, 2015), it is topical to analyze situations where groups of
players can form a coalition to ameliorate the negative effects of
non-cooperation.

Third, I have assumed the regime shift to be irreversible. This
is obviously a considerable simplification. Groeneveld et al. (2014)
have analyzed the problem of how a sole-owner would learn about
the location of a threshold in a setting where repeated crossings are
allowed, but the exact location of the threshold remains unknown
upon crossing it. If one presumes that crossing the threshold implies
that one learns where it is, the game turns into a repeated game.
This may imply that cooperation is sustainable for sufficiently patient
agents (van Damme, 1989). However, there could also be cases
where irreversibility emerges “endogenously” when it is possible –
but not an equilibrium – to move out of a non-productive regime.
The tractability of the current modeling approach may prove fruitful
to further explore this issue.

A final, related, point is the fact that I have concentrated on
Markovian strategies. When the agents are allowed to use history-
dependent strategies, the threat of a threshold may allow them to
coordinate on the social optimum in all phases of the game. They
could simply agree on expanding the set of safe consumption possi-
bilities by the socially optimal amount and threaten that if any agent
steps too far, this triggers a reaction to deplete the resource in the
next period. This obviously begs the question of renegotiation proof-
ness, but it is plausible that a contract that is binding for two periods
is already sufficient to achieve the first-best.

The threat of a disastrous regime shift is a very strong coordi-
nating device. This is true irrespective of whether the threshold’s
location is known or unknown, because the agents learn only after
the fact whether the disastrous regime shift has occurred or not.
Would a catastrophic threshold lose its coordinating force when
the agents can learn about its location without the risk of crossing
it? Importantly, an extension of the model along these lines would
speak to the recent debate on “early warning signals” (Boettiger and
Hastings, 2013; Scheffer et al., 2009) and is the task of future work.
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Appendix A. Appendix

A.1. Proof of Proposition 1

Recall that Proposition 1 states that when the location of the threshold is known with certainty, then there exists, for every combination of b, N,
and R, a value Tnc

c such that the first-best of staying at T can be sustained as a Nash equilibrium when T ≥ Tnc
c , where Tnc

c is defined by X = 0. The
critical value Tnc

c is higher, the larger N or R are, or the smaller b is.
It is useful to replicate Eq. (3) that describes the gain from immediate depletion over staying at T when all other agents stay at T:

X(T, R, N,b) = u
(

R − N − 1
N

T
)

− u(T/N)
1 − b

(3)

To show that a value Tc, defined by X = 0, always exists, I first note that X declines monotonically in T: ∂X
∂T = − N−1

N u′
(

R − N−1
N T

)
−

1
N

u′(T/N)
1−b < 0 as u′ > 0, N ≥ 1 and b ∈ (0, 1). Then, I show that X is larger than zero at T = 0: X(0, R, N,b) = u(R) > 0. Finally, I show that

X is smaller than zero as T → R: limT→RX = − b
1−b u(R/N) < 0 as b ∈ (0, 1) and u(R/N) > 0. Thus, by the mean value theorem, for every

combination of b, N, and R, there must be a value of T at which X = 0.
Now, to show that staying at T > Tc is indeed the socially optimal action (the first-best), I show that dTc

dN > 0. This means that the critical
value at which staying is a Nash equilibrium is higher the larger N is, which implies that Tc is the smallest when N = 1 (the sole-owner case).
As X is monotonically declining in T, it will be socially optimal to stay at T for all values of T that are larger than the social-planner’s Tc. Tc is
implicitly defined by X = 0 and dTc

dN is therefore given by dTc
dN = − ∂X/∂N

∂X/∂T .

We know that the denominator is negative, so that dTc
dN > 0 when the numerator is positive. We have: ∂X

∂N = T
N2

(
u′
(

R − N−1
N T

)
− u′(T/N)

)
> 0.

Finally, it remains to show that Tc is higher the larger R is and the smaller b is. Again, a sufficient condition for the former statement is ∂X
∂R >

0, which holds because ∂X
∂R = u′

(
R − N−1

N T
)

> 0. A sufficient condition for dTc
db < 0 is that ∂X

∂b
< 0 which holds because ∂X

∂b
= − u(T/N)

(1−b)2 < 0.

A.2. Proof of Proposition 2

Recall that Proposition 2 consists of two parts: First, it states that there exists a set S so that for s ∈ S, it is optimal to choose d(s) = 0. That
is, if s0 ∈ S, the socially optimal use of the resource is s0 for all t. Second, the proposition states that if s0 /∈ S, it is optimal to experiment once at
t = 0 and expand the set of safe values by d∗(s0). When this has not triggered the regime shift, it is socially optimal to stay at s1 = s0 + d∗(s0) for all
t ≥ 1.

Part (1) First, I show that there is a non-empty set S ⊂ [0, R] at which it is optimal to stay. Assume for contradiction that for all s in [0, R]:

max
d∈(0,R−s]

{
u(s + d) + bLs(d)V(s + d)

}
> u(s) + bV(s) (A-1)

Then there is a value of d such that:

V(s) − L(s + d)
L(s)

V(s + d) <
u(s + d) − u(s)

b
(A-2)

Now as u is concave, positive, and bounded above by u(R), we know that for an s sufficiently close to R, the numerator of the RHS of (A-2) is
bounded above: u(s + d) − u(s) < bKd. Using this and multiplying both sides by L(s) as well as dividing both sides by d we have:

L(s)V(s) − L(s + d)V(s + d)
d

< KL(s) (A-3)

Now, take the limit as s → R. Because d ∈ (0, R − s], we have that d → 0 when s → R so that the LHS of (A-3) is the negative of the derivative
of L(s)V(s): lims→R − ∂[L(s)V(s)]

∂s = f (R)V(R), which is positive while the RHS of (A-3) vanishes when F(R) = 1. Thus, we have a contradiction and
there must be some s at which it is optimal to choose d(s) = 0. When there is a positive probability that there is no threshold on [0, R] (that is,
F(R) < 1), the RHS of (A-3) does not vanish. Nevertheless, there will always be value of s, namely s = R, at which it is optimal to stay – simply
because there is no other choice.

Thus, the set S is not empty. Moreover, when the hazard rate is not decreasing with s (that is when ∂Ls(d)
∂s = −f (s+d)(1−F(s))+(1−F(s+d))f (s)

[1−F(s)]2 <

0 ⇐⇒ f (s)
1−F(s) < f (s+d)

1−F(s+d) ), it can be shown that the set S is convex, so that S = [s̄∗, R] where s̄∗ is defined in the main text as the lowest value

of s at which it is optimal to never experiment. First, note that convexity of S is trivial when s̄∗ = R. Consider then the case that s̄∗ < R. By

definition, the first-order condition (Eq. (7) in the main text) must just hold with equality for s̄∗:

v′(d; s) = 0 ⇐⇒ u′(s̄∗) = b
f (s̄∗)

1 − F(s̄∗)
u(s̄∗)
1 − b

S is convex if for any s ∈ (s̄∗, R] we have v′ < 0 (i.e. a boundary solution of d∗ = 0). That is:

u′(ks̄∗ + (1 − k)R) < b
f (ks̄∗ + (1 − k)R)

1 − F(ks̄∗ + (1 − k)R)
u(ks̄∗ + (1 − k)R)

1 − b
for all k ∈ (0, 1] (A-4)
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Because u′ > 0 and u
′ ′ ≤ 0, the term on the LHS of (A-4) is smaller the larger k is. Because u′ > 0 the rightmost fraction of (A-4) is larger

the larger k is, and b is a positive constant. The term in the middle is the hazard rate, which is non-decreasing by assumption.
Part (2) When s0 /∈ S, it is not optimal to stay. Thus, it is optimal to expand the set of safe consumption values by choosing d > 0. Due to

discounting, it cannot be optimal to approach S asymptotically but never actually reach it. Thus, there must be a last step from some st /∈ S to
st+1 = st +dt with st+1 ∈ S. Below, I show that it is in fact optimal to take only one step. It then follows that when s0 /∈ S, it is optimal to choose
s0 + d∗(s0) for t = 0 and, if the resource has not collapsed, s1 for all t ≥ 1.

Denote d∗(s̃) the optimal last step when starting from some value s̃ /∈ S and s∗ = s̃ + d∗ with s∗ ∈ S. The following calculations show that
going from some s to s̃ (by taking a step of size d̃) and then to s∗ (by taking a step of size d∗) yields a lower payoff than going from s to s∗ directly
(by taking a step of size d̂ = d̃ + d∗; see the box below for a sketch of the involved step-sizes).

That is, I claim:

u(s + d̃) + bLs

(
d̃
)⎛⎝u

(
s + d̃ + d∗

)
+ bLs+d̃(d∗)

u
(

s + d̃ + d∗
)

1 − b

⎞
⎠ ≤ u

(
s + d̂

)
+ bLs

(
d̂
) u

(
s + d̂

)
1 − b

(A-5)

The important thing to note is that: Ls

(
d̃
)

Ls+d̃(d∗) =
L(s+d̃)

L(s)
L(s+d̃+d∗)

L(s+d̃)
=

L(s+d̃+d∗)
L(s) = Ls(d̃ + d∗). Hence, (A-5) can, upon using d̂ = d̃ + d∗

and splitting the RHS into three parts (t = 0, t = 1, t ≥ 2), be written as:

u
(

s + d̃
)

+ bLs

(
d̃
)

u
(

s + d̂
)

+ b2Ls

(
d̂
) u

(
s + d̂

)
1 − b

≤ u
(

s + d̂
)

+ bLs

(
d̂
)

u
(

s + d̂
)

+ b2Ls

(
d̂
) u

(
s + d̂

)
1 − b

which simplifies to: u
(

s + d̃
)

≤
[
1 + b

(
Ls

(
d̂
)

− Ls

(
d̃
))]

u
(

s + d̂
)

u
(

s + d̃
)

≤
⎡
⎣1 + b

L
(

s + d̂
)

− L
(

s + d̃
)

L(s)

⎤
⎦u

(
s + d̂

)
(A-5’)

Because the term in the squared bracket is smaller than 1 (as L(s + d̂) < L(s + d̃)), it is not immediately obvious that the inequality in the
last line holds. However, we can use the fact that because s̃ /∈ S, and because d∗ is defined as the optimal last step from s̃ into the set S, the
following must hold:

u (s̃)
1 − b

< u (s̃ + d∗) + bLs̃ (d
∗)

u (s̃ + d∗)
1 − b

.

Using the fact that s̃ = s + d̃ and that s̃ + d∗ = s + d̂, this can be re-arranged to give:

u
(

s + d̃
)

1 − b
< u

(
s + d̂

)
+ b

L
(

s + d̂
)

L
(

s + d̃
) u

(
s + d̂

)
1 − b

⇐⇒

u
(

s + d̃
)

<

⎡
⎣1 + b

L
(

s + d̂
)

− L
(

s + d̃
)

L
(

s + d̃
)

⎤
⎦u

(
s + d̂

)
(A-6)

Since L′(s) < 0, we know that
L(s+d̂)−L(s+d̃)

L(s+d̃)
<

L(s+d̂)−L(s+d̃)
L(s) < 0. Therefore, combining (A-5’) and (A-6) establishes the claim and completes

the proof:

u
(

s + d̃
)

<

⎡
⎣1 + b

L
(

s + d̂
)

− L
(

s + d̃
)

L
(

s + d̃
)

⎤
⎦u

(
s + d̂

)
<

⎡
⎣1 + b

L
(

s + d̂
)

− L
(

s + d̃
)

L(s)

⎤
⎦u

(
s + d̂

)
(A-7)
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As pointed out in footnote 5, it may not immediately obvious that the assumption on the timing adopted in the model (“action-
consumption-reaction”) is innocuous. Below, I show that immediate experimentation is also optimal under the alternative timing assumption
of “action-reaction-consumption”.

Consider two plans, “A” and “B” (where plan A implies cautious experimentation and plan B immediate experimentation). Under the timing
assumption of “action-reaction-consumption”, I decide in plan A to expand the set of safe values by d̃, but before I obtain the utility from
consuming s+ d̃ I must first see whether the regime shift occurs or not (the latter event happens with probability Ls

(
d̃
)

. The payoff from period
2 and the remaining periods follows the same logic. The expected payoff from plan A is therefore:

PA = Ls

(
d̃
)

u
(

s + d̃
)

+ bLs

(
d̂
)

u
(

s + d̂
)

+ b2Ls

(
d̂
) u

(
s + d̂

)
1 − b

(A-8)

The payoff from “plan B” is almost identical, only that all uncertainty is revealed before any utility from consumption is obtained:

PB = Ls

(
d̂
)

u
(

s + d̂
)

+ bLs

(
d̂
)

u
(

s + d̂
)

+ b2Ls

(
d̂
) u

(
s + d̂

)
1 − b

(A-9)

As can be clearly seen from (A-8) and (A-9) PA < PB when Ls

(
d̃
)

u
(

s + d̃
)

< Ls

(
d̂
)

u
(

s + d̂
)

. As Ls

(
d̃
)

=
L(s+d̃)

L(s) , and s + d̃ = s̃, this is
equivalent to:

u (s̃) <
L(s∗)
L (s̃)

u(s∗) (A-10)

Now, the same argument as above can be used. Because s̃ /∈ S, and because d∗ is defined as the optimal last step from s̃ into the set S, the
following must hold:

u(s̃)
1 − b

< Ls̃(d∗)u(s∗) + bLs̃(d
∗)

u(s∗)
1 − b

(A-11)

Simple reformulation then yields (A-10).

A.3. Proof of Proposition 3

Proposition 3 states that the optimal step size d∗(s) is decreasing in s for s ∈ (s∗, s̄∗).
Recall that d∗(s) is implicitly defined by the solution of v′(d∗; s) = 0 for s ∈ (s∗, s̄∗), where v′ is:

v′(d∗; s) = u′ (s + d∗) +
b

1 − b
[L′

s(d∗)u (s + d∗) +Ls(d∗)u′ (s + d∗)] (7)

I assume that the second-order condition v
′ ′
< 0 is satisfied:

v′′(d∗; s) = u′′ +
b

1 − b
(L′′

s (d∗)u + 2L′
s(d

∗)u′ + Ls(d∗)u′′) < 0 (A-12)

To show that d∗ is declining in s, I can use the implicit function theorem and need to show that:

dd∗

ds
= − ∂ [v′(d∗; s)] /∂s

∂ [v′(d∗; s)] /∂d∗ < 0

The denominator is negative when the second-order condition is satisfied. Therefore, a sufficient condition for dd∗
ds < 0 is that ∂[v′(d∗ ;s)]

∂s < 0
holds. In other words, we must have:

∂ [v′(d∗; s)]
∂s

= u′′ +
b

1 − b

(
∂L′

s(d∗)
∂s

u + L′
s(d∗)u′ +

∂Ls(d∗)
∂s

u′ + Ls(d∗)u′′
)

< 0 (A-13)

Noting the similarity of (A-13) to the second-order condition (A-12), and realizing that (A-12) can be decomposed into a common part A and
a part B, and that (A-13) can be decomposed into the common part A and a part C, a sufficient condition for (A-13) to be satisfied is that B > C.

[
u′′ +

b

1 − b
(L′

sL(d∗)u′ + Ls(d∗)u′′)
]

︸ ︷︷ ︸
A

+
b

1 − b
(L′′

s (d∗)u + L′
s(d∗)u′)︸ ︷︷ ︸

B

< 0 (A-12’)
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[
u′′ +

b

1 − b
(L′

s(d∗)u′ + Ls(d∗)u′′)
]

︸ ︷︷ ︸
A

+
b

1 − b

(
∂L′

s(d∗)
∂s

u +
∂Ls(d∗)

∂s
u′
)

︸ ︷︷ ︸
C

< 0 (A-13’)

In order to show that L′′
s (d)u + L′

s(d)u′ > ∂L′
s(d)
∂s u + ∂Ls(d)

∂s u′, I use the first-order condition for an interior solution from Eq. (7) to write u′ in
terms of u:

u′ =
−L′

s(d)
1−b
b + Ls(d)

u

Upon inserting and canceling u, I need to show that:

L′′
s (d) + L′

s(d)

⎡
⎣ −L′

s(d)
1−b
b + Ls(d)

⎤
⎦ >

∂L′
s(d)
∂s

+
∂Ls(d)

∂s

⎡
⎣ −L′

s(d)
1−b
b + Ls(d)

⎤
⎦ (A-14)

Recall that Ls(d) = L(s+d)
L(s) and hence:

L′
s(d) =

L′(s + d)
L(s)

∂Ls(d)
∂s

=
L′(s + d)L(s) − L(s + d)L′(s)

[L(s)]2

L′′
s (d) =

L′′(s + d)
L(s)

∂L′
s(d)
∂s

=
L′′(s + d)L(s) − L′(s + d)L′(s)

[L(s)]2

Tedious but straightforward calculations then show that (A-14) is indeed satisfied.

[
1 − b

b
+

L(s + d)
L(s)

]
︸ ︷︷ ︸

a

L′′(s + d)
L(s)

−
[

L′(s + d)
L(s)

]2

>

[
1 − b

b
+

L(s + d)
L(s)

]
︸ ︷︷ ︸

a

∂L′
s(d)
∂s

− ∂Ls(d)
∂s

L′
s(d)

⇐⇒

a
L′′(s + d)

L(s)
−
[

L′(s + d)
L(s)

]2

> a
L′′(s + d)L(s) − L′(s + d)L′(s)

[L(s)]2
− ∂Ls(d)

∂s
L′

s(d)

⇐⇒
aL′′(s + d)L(s) − [L′(s + d)]2 > a (L′′(s + d)L(s) − L′(s + d)L′(s)) − (L′(s + d)L(s) − L(s + d)L′(s))

L′(s + d)
L(s)

⇐⇒
− [L′(s + d)]2L(s) > −aL′(s + d)L′(s)L(s) − L′(s + d)L(s)L′(s + d) + L(s + d)L′(s)L′(s + d)

⇐⇒
aL′(s + d)L′(s)L(s) > L(s + d)L′(s)L′(s + d)

⇐⇒
aL(s) > L(s + d) ⇐⇒

[
1 − b

b
+

L(s + d)
L(s)

]
L(s) > L(s + d) ⇐⇒ 1 − b

b
L(s) > 0. True because b, L ∈ (0, 1).

A.4. Proof of Proposition 4

Recall that Proposition 4 states that There exists a set Snc such that for s0 ∈ Snc, it is a symmetric Nash equilibrium to stay at s0 and consume s0
N

for all t. For s0 /∈ Snc, it is a Nash equilibrium to take exactly one step and consume s0
N + dnc(s0) for t = 0 and – when this has not triggered the regime

shift – to stay at s1 = s0 + Ndnc(s0), consuming s1
N for all t ≥ 1.

Preliminarily, note that the game’s stationarity implies that if it is a Nash equilibrium to stay at some s in any one period, it will be a Nash
equilibrium to stay at that s in all subsequent periods.

The first part of the proof, showing the existence of Snc, is parallel to the first part of the proof of Proposition 2 and is not repeated here. It
rests on the same argument, namely that there is some s at which the gains from increasing consumption are small compared to the expected
loss, even when the short term gain does not have to be shared among all N agents.

To prove the second part of the proposition, I need to show that, for s0 /∈ Snc, any agent i prefers to reach the set Snc in one step rather than
two when the strategy of all other agents is to first take one step of fixed size and then a second feedback step d−i*(s1) that ensures reaching
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snc ∈ Snc. Importantly, I use the symmetry of the agents, that is, the second step d−i*(s) is given by d−i*(s) = (N − 1)di*(s) where di*(s) is the
state-dependent best reply defined by Eq. (11) in the main text. Moreover, I assume that all agents coordinate on staying at snc whenever it is
reached.

The setup is the following: All agents stand at s0 at the beginning of the first period. All agents except i take a step of fixed size and their
combined expansion is given by d̃−i. If agent i chooses the same symmetric fixed step, her expansion being denoted by d̃i, the state s̃ /∈ Snc is
reached (provided the regime shift has not occurred). That is, s0 < s̃ < snc and s̃ − s0 = Nd̃i. Agent i can also choose her first step so that snc is
already reached in the first period. Denote this step that expands the set of safe consumption values from s0 to snc when the total expansion of
all other agents taken together is d̃−i by d̂i∗(s0). The size of the step d̂i∗(s0) is thus d̂i∗(s0) = snc − s0 − d̃−i. Because all other agents remain at snc

once it is reached, agent i′s payoff is in this case:

p(1) = u
(

s0

N
+ d̂i∗(s0)

)
+

b

1 − b
Ls0

(
d̂i∗ + d̃−i

)
u
(

snc

N

)
(A-15)

When agent i takes two steps, first a step of size d̃i to the value s̃ (with s̃ /∈ Snc) and then a second step di∗(s̃) of size di∗(s̃) = snc − s̃ − d−i∗(s̃),
her payoff is:

p(2) = u
(

s0

N
+ d̃i

)
+ bLs0

(
d̃i + d̃−i

)(
u
(

s̃
N

+ di∗
)

+
b

1 − b
Ls̃(d

i∗ + d−i∗)u
(

snc

N

))
(A-16)

I now show that p(2) < p(1). For clarity, rewrite (A-15) and (A-16) by splitting it in three terms (t = 0, t = 1, and t ≥ 2) and using the fact
that Ls0

(
d̂i∗ + d̃−i

)
= Ls0

(
d̃i + d̃−i

)
Ls̃

(
di∗ + d−i∗

)
= L(snc)

L(s0) :

p(1) = u
(

s0

N
+ d̂i∗(s0)

)
+ b

L(snc)
L(s0)

u
(

snc

N

)
+ b2 L(snc)

L(s0)
u(snc/N)

1 − b
(A-15’)

p(2) = u
(

s0

N
+ d̃i

)
+ b

L(s̃)
L(s0)

u
(

s̃
N

+ di∗(s̃)
)

+ b2 L(snc)
L(s0)

u(snc/N)
1 − b

(A-16’)

Thus, p(2) < p(1) if:

u
(

s0

N
+ d̃i

)
< u

(
s0

N
+ d̂i∗(s0)

)
+ b

[
L(snc)
L(s0)

u
(

snc

N

)
− L(s̃)

L(s0)
u
(

s̃
N

+ di∗(s̃)
)]

(A-17)

First, by symmetry of the agents and the definition of di∗(s̃), we have s̃
N + di∗(s̃) = s̃+Ndi∗(s̃)

N = snc

N .

u
(

s0

N
+ d̃i

)
< u

(
s0

N
+ d̂i∗(s0)

)
+ b

L(snc) − L(s0)
L(s0)

u
(

snc

N

)
(A-17’)

Similarly, we have s0
N + d̃i = s0+Nd̃i

N = s̃
N :

u
(

s̃
N

)
< u

(
s0

N
+ d̂i∗(s0)

)
+ b

L(snc) − L(s̃)
L(s0)

u
(

snc

N

)
(A-17”)

Now, note that s0
N + d̂i∗(s0) = s0+Nd̂i∗(s0)

N and that the step d̂i∗(s0) is larger than the symmetric step that would be necessary to reach snc from
s0. Formally: d̂i∗(s0) = snc − s0 − d̃−i > snc−s0

N ⇐⇒ Nsnc − Ns0 − N(N − 1)d̃i > snc − s0 ⇐⇒ snc − s0 > Nd̃i = s̃ − s0which is true by construction.

It follows that s0+Nd̂i∗(s0)
N > snc

N and we therefore have u
(

snc

N

)
+ b L(snc)−L(s̃)

L(s0) u
(

snc

N

)
< u

(
s0
N + d̂i∗(s0)

)
+ b L(snc)−L(s̃)

L(s0) u
(

snc

N

)
so that a sufficient

condition for p(2) < p(1) is:

u
(

s̃
N

)
< u

(
snc

N

)
+ b

L(snc) − L(s̃)
L(s0)

u
(

snc

N

)
(A-18)

Parallel to the argument in Proposition 2, we can use the fact that because s̃ /∈ Snc we must have

u (s̃/N)

1 − b
< u

(
s̃
N

+ di∗(s̃)
)

+ bLs̃

(
di∗(s̃) + d−i∗(s̃)

) u (snc/N)

1 − b

Using that agents are symmetric, we have s̃
N + di∗(s̃) = snc

N and re-arranging shows that (A-18) holds, so that p(2) < p(1) as claimed.
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A.5. Proof of Proposition 5

Let me repeat the argument from the main text: The effect of an increase in a parameter a in the interior range s ∈ (snc, s̄nc) is given by
dgnc

da = − ∂0′/∂a
∂0′/∂gnc . Thus, to show that aggregate consumption is higher the higher the parameter a, it is sufficient to show that ∂0′

∂a > 0 (because

the second-order condition implies that ∂0′
∂gnc < 0). Because gnc is monotonically decreasing in s, it is also sufficient to show that, for a given

value of R, neither boundary snc or s̄nc decreases and at least one boundary increases with a. The reason is that for a given value of R an upward

shift of snc or s̄nc (and no downward of the respective other boundary) necessarily implies that all new values of gnc must lie above the old

values of gnc.

(a) The boundaries snc , s̄nc , and aggregate consumption in the cautious equilibrium, Ngnc, decrease with b.

Here, it is simple to show that ∂0′
∂b

< 0. We have ∂0′
∂b

= [...]
(1−b)2 , where the term in the squared brackets [...] is the term in the squared

brackets of Eq. (12). We know that this term must be negative for an interior solution because u′ > 0.

(b) An increase in N leads to higher resource use in the cautious equilibrium when N
N+1 ≥ u′

(
R
N

)
/u′

(
R

N+1

)
.

Here, I argue that both snc and s̄nc increase when adding another player and N
N+1 ≥ u′

(
R
N

)
/u′

(
R

N+1

)
:

First, for a given number of players N we have at a given snc = ŝ that

0′
(

R − s
N

; ŝ
)

= u′
(

ŝ
N

+
R − ŝ

N

)
+

b

1 − b

[
L′

ŝ(Ndnc)u
(

R
N

)
+

1
N

Lŝ(Ndnc)u′
(

R
N

)]
= 0

I now show that for N + 1 we have 0′
(

R−s
N+1 ; ŝ

)
> 0 when N

N+1 ≥ u′( R
N )

u′( R
N+1 )

:

0′
(

R − s
N + 1

; ŝ
)

− 0′
(

R − s
N

; ŝ
)

> 0

⇐⇒
u′
(

R
N + 1

)
− u′

(
R
N

)
+

b

1 − b

[(
u
(

R
N + 1

)
− u

(
R
N

))
L′

ŝ +Lŝ

(
1

N + 1
u′
(

R
N + 1

)
− 1

N
u′
(

R
N

))]
> 0

The first part of the last line is positive due to concavity of u, the first term in the squared bracket is positive since L′
s < 0 and

u
(

R
N+1

)
< u

(
R
N

)
, and the last term in the squared bracket is positive whenever N

N+1 ≥ u′( R
N )

u′( R
N+1 )

. Thus, when N
N+1 ≥ u′( R

N )
u′( R

N+1 )
, it is

guaranteed that 0′
(

R−s
N+1 ; ŝ

)
> 0, which implies that for N+1 the upper bound of the choice set is a binding constraint at ŝ and that the

corresponding smallest value of s at which the agents can coordinate on cautious experimentation is larger. Note that N
N+1 ≥ u′( R

N )
u′( R

N+1 )

is not a necessary condition: Of course, we may have 0′
(

R−s
N+1 ; ŝ

)
− 0′

(
R−s

N ; ŝ
)

> 0 also when N
N+1 <

u′( R
N )

u′( R
N+1 )

as the specific example

in Section 3.5 shows.
Second, for a given number of players N we have at a given s̄nc = š that

0′(; š, N) = u′
(

š
N

)
+

b

1 − b

[
L′

š()u
(

š
N

)
+

1
N

u′
(

š
N

)]
= 0

Clearly, we can make exactly the same argument as above to show that 0′(0; š, N + 1) > 0 when N
N+1 ≥ u′( R

N )
u′( R

N+1 )
.

(c) The more likely the regime shift (in terms of a first-order stochastic dominance), the larger the range where a separate cautious Nash-
equilibrium exists and the lower aggregate consumption.
Suppose that for some given value ŝ, Eq. (12) has an interior solution that defines gnc:

0′(dnc; ŝ, L) = u′
(

ŝ
N

+ dnc
)

+
b

1 − b

[
L′

ŝ(Ndnc)u
(

ŝ + Ndnc

N

)
+

1
N

Lŝ(Ndnc)u′
(

ŝ + Ndnc

N

)]
= 0 (12)

I now show that a more likely regime shift (in terms of a first-order stochastic dominance) means a change in Ls to L̃s in such a way
that 0′(dnc; ŝ, L̃) < 0 so that for every s ∈ (snc, s̄nc) we have that the resulting interior solution g̃nc is smaller than the orginal gnc. As a
consequence, the range where a separate cautious Nash-equilibrium exists will also be larger.
A first-order stochastic dominance means that F̃ ≥ F (where the inequality is strict for at least one s). Because the hazard rate is non-

declining, this means that F̃(s+d)−F̃(s)
1−F̃(s)

≥ F(s+d)−F(s)
1−F(s) and consequently L̃s ≤ Ls. This implies also that L̃′

ŝ = −f̃ (s+d)
1−F̃(s)

< −f (s+d)
1−F(s) = L′

ŝ < 0.

Thus, both the negative first term and the positive second term in the squared bracket of Eq. (12) are smaller, which implies that
0′(dnc; ŝ, L̃) < 0.

(d) An increase of R to R̃ for an unchanged risk of the regime shift (i.e. R < R̃ ≤ A ) decreases snc and thus leads to a larger range where a separate
cautious equilibrium exists.
Note that R does not affect Eq. (12) when R < R̃ ≤ A, but it has an effect on the first value snc: As the diagonal line defining the upper
bound of d shifts outwards, and gnc(s) is a downward sloping function steeper than R − s, the first value at which it is not optimal to
deplete the resource, snc, must be smaller when R increases to R̃.
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