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1 Introduction21

Real world fisheries management is affected both by stochastic risk (stock growth uncertainty)22

and by catastrophic risk (regime shifts) that could be caused by natural or political forces.23

For example, recruitment to the North East Arctic cod fishery, which is currently the most24

valuable whitefish fishery in the world, varies up to sevenfold from one year to the next25

(ICES, 2018). At the same time, resource managers have to account for the risk of a sudden26

shutdown of the fishery caused by, e.g., an oil spill, a collapse caused by climatic events, or27

by a moratorium that is mandated by political pressure groups. In this paper, we ask how28

these two sources of risk interact and which consequences this has for optimal management29

strategies.30

To address this issue, we develop a stylized renewable resource extraction model that31

accounts for the resource stock dynamics. Current harvest, biological growth, and environmental32

conditions determine future resource stocks. Following Reed (1979), Weitzman (2002), and33

Costello and Polasky (2008), we focus our attention on scenarios in which the resource price34

is constant, harvesting cost are (potentially) stock-dependent and consider a multiplicative,35

i.i.d., shock to the resource dynamics. We also allow for the possibility of a sudden, and36

irreversible regime shift that triggers a permanent closure of the fishery. We consider both37

exogenous regime shifts or endogenous regime shifts. In the former case, the probability of38

regime shift is time-dependent, but is not affected by harvest decisions. In the latter case,39

the probability of a regime shift endogenously depends on harvest decisions. With the help40

of this model, we characterize situations under which optimal resource extraction becomes41

more cautious or more aggressive.42

Our analysis reveals that an exogenous regime shift threat prescribes an aggressive43

management policy, but when the threat of regime shift is sufficiently sensitive to extraction,44

management ought to be more cautious. For some structures of the harvesting cost function,45
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we find that anticipating a greater variability in biological growth induces a cautious management46

policy, but only in the presence of regime shift risk. Ignoring regime shift risk prescribes47

small changes in escapement (the resource stock left in the water after harvesting) as a48

response to random changes in biological growth, whereas accounting for the regime shift risk49

may prescribe large changes in escapement. Furthermore, we find that optimal escapement50

declines stronger with the discount rate when the regime shift risk is sensitive to harvest51

decisions than when it is exogenous, or when it is not present. Hence, it is important to52

account for regime shift risk when designing management strategies to respond to multiple53

uncertainties (Crepin et al., 2012).54

2 Literature review55

Our paper connects two strands of the economic literature on renewable resource management.56

The first strand analyzes the effect of stochastic risk without considering the possibility of57

regime shift. The second strand of literature studies the effects of regime shift risk in an58

otherwise deterministic environment.59

The seminal paper in the first strand of literature is by Reed (1979) who shows that the60

optimal escapement level (the resource stock left in the water after harvesting) is constant61

when the resource price does not depend on harvest and is constant. Several papers have62

hence refined and extended Reed’s model by adding spatial structure (Costello and Polasky,63

2008), or the choice of regulatory instrument (Weitzman, 2002). In particular, a number of64

papers have shown that the result that optimal escapement is constant does not hold when65

also stock measurements or harvest levels are uncertain (Sethi et al., 2005) or when there are66

capital- or policy adjustment costs (Singh et al., 2006; Boettiger et al., 2016). In this paper,67

we show that the threat of regime shift may also be a factor giving rise to a time dependent68

optimal escapement.69
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The pioneering contributions in the second strand of literature include the studies by70

Cropper (1976) and Kemp (1976), which investigate the effects of regime shift risks in a71

resource extraction context. In line with the growing realization of the importance of regime72

shift risk, there are by now a number of contributions that analyze a range of applications73

from saltwater intrusion (Tsur and Zemel, 1995) to the disintegration of the West-Antarctic74

ice sheet (Nævdal, 2006). Tsur and Zemel (2021) and Long (2021) provide a recent survey75

of these and related studies. Polasky et al. (2011) summarize and characterize the literature76

at hand of a simple fishery model with a linear objective function. The main distinctions in77

the literature are whether the regime shift implies a collapse of the resource or a reduction78

of its renewability, and whether the probability of a regime shift is exogenous or endogenous79

(i.e., depends on the state of the system). The resource manager should be cautious in cases80

in which the occurrence of regime shift entails a decline in biological growth and the regime81

shift risk is endogenous. When the regime shift risk is exogenous in these cases, there is no82

change in optimal extraction. In contrast, exploitation should be more aggressive in cases83

in which the occurrence of regime shift triggers a stock collapse and the regime shift risk84

is exogenous. In the collapse/endogenous-risk cases, there are two countervailing effects:85

The risk of future collapse incentivizes more aggressive extraction today, while the fact that86

the collapse risk can be influenced incentivizes more cautious extraction. Which of the two87

effects dominates depends on the likelihood that caution successfully avoids the regime shift.88

Combining analytical with numerical methods, Sakamoto (2014) shows that the ambiguous89

result in the collapse/endogenous-risk cases is amplified in a non-cooperative setting. In90

simple terms, agents try to grab what they can before it is too late when catastrophe91

avoidance becomes unlikely, but cooperation and caution increases when the catastrophe92

may be avoided. Miller and Nkuiya (2016) analyze coalition formation in a fishery model93

and show that an endogenous regime shift risk increases coalition sizes and it allows the94

players, in some cases, to achieve full cooperation.95
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Ren and Polasky (2014) and de Zeeuw and He (2017) point out that the optimal management96

response to the threat of a sudden change in the renewability of the resource can also97

be more aggressive harvesting, rather than more cautious harvesting, when the objective98

function is not linear. While our model considers the case when the regime shift implies the99

collapse of the resource rather than a loss of renewability, the structure of the harvesting100

cost, and hence the properties of objective function, also play a central role in our paper.101

Utilizing numerical simulations and allowing for a reversible regime shift in both biological102

and economic conditions, Kvamsdal (2022) re-affirms the sensitivity of the management103

response to the curvature of the objective function. Moreover, Kvamsdal (2022) investigates104

whether regime shifts are observable or non-observable to the manager, finding only small105

differences in the respective management response.106

The distinction between observable and non-observable regime shift also plays a key role107

in Baggio (2016) and Baggio and Fackler (2016). The latter two papers allow for two sources108

of uncertainty (stock growth uncertainty and regime shift risk). Baggio (2016) presents a109

calibrated numerical fishery model and shows that, compared to an uniformed situation,110

resource rents are doubled when the manager is informed about the (exogenous) regime111

shift risk. Baggio and Fackler (2016) similarly present a numerical model under different112

information structures, focussing on differences in the reactions to endogenous or exogenous113

regime shift risk. A key difference to our work is that Baggio (2016) and Baggio and Fackler114

(2016) consider reversible regime shifts that affect the growth dynamics. In this paper, we115

focus on irreversible regime shift issues that entail a closure of the fishery.116

Our analysis is also related to a substantial body of economic papers that investigates117

the optimal management of a pollution stock in a setting where the system dynamic may118

randomly change over time. Two modelling approaches that rely on two ecological regimes119

(an “ecologically desirable regime” and an “ecologically undesirable regime”) have been120

intensively used so far. In the first approach, the pollution stock dynamics shift between121
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the “ecologically desirable regime” and the “ecologically undesirable regime” whenever a122

pollution stock is crossed (Brozović and Schlenker, 2011). In this context, the ecologically123

undesirable regime is modelled as a state in which pollution accumulates faster. The second124

approach models the “ecologically undesirable regime” through a penalty function with an125

exogenous or endogenous hazard rate. Interesting contributions in this category include126

the seminal paper by Clarke and Reed (1994), which models irreversible events like global127

warming as a permanent decline in the payoff function. Our study complements these128

contributions as in addition to considering the risk of abrupt regime shifts, the particular129

nature of our ecosystem requires the manager to account for the effects of random changes130

in the resource stock dynamics.131

A number of papers investigate the optimal exploitation of various resources under132

environmental uncertainty and the risk of irreversible regime shifts.1 In an early contribution133

within a framework that allows for the risk of extinction, Saphores (2003) proposes the134

management of a renewable resource population subject to stochastic growth due to random135

changes in environmental conditions. In contrast to this paper, he concentrates on the136

exogenous risk of extinction case only and relies on numerical simulations to show that137

the optimal management policy may change non-monotonically with the variance of the138

stochastic shock. Leizarowitz and Tsur (2012) extend the above paper to a sophisticated139

multiple species model. In contrast to our paper, this latter study concentrates on scenarios140

in which environmental uncertainty affects resource growth additively and does not address141

the effects of changes in the variance of the stochastic shock. In a setting where the pollution142

stock decays at a stochastic rate, Zemel (2012) addresses the management of polluting goods143

in a system prone to a climate tipping point. In contrast to our discrete-time fishery model144

case, his pollution control model reveals that an increase in the variance of the stochastic145

1While they do not address the management of a natural resource stock, Cai and Lontzek (2019) examine
economic growth in the presence of economic and climate risks, two different sources of uncertainty.
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shock first increases and then decreases the response to the regime shift risk.2 Sims and146

Finnoff (2016), at the hand of an invasive species example, illustrate how financial and147

environmental uncertainties can create opposing irreversibilities. The attempt to avoid bad148

financial outcomes (inefficient mitigation expenditures) counteracts the incentives to avoid149

bad environmental outcomes. The net effect depends on the size of the damages, and the150

variability of the different processes.151

3 The model152

The manager of a renewable resource makes inter-temporal harvest decisions to maximize her153

expected net present value. We consider a discrete time framework with T + 1 time periods154

denoted by t = 0, 1, 2, ..., T . In addition to considering scenarios in which the planning155

horizon is infinite (i.e., T = +∞), we also allow for cases in which T < +∞. The resource156

stock at the beginning of period t is Xt and ht represents period-t harvest. Variations157

in environmental conditions (e.g., temperature, upwelling, salinity) affect stock dynamics,158

which are given by:159

Xt+1 = Ztg(yt). (1)160

Zt captures random changes in period-t environmental conditions and g represents the growth161

function, which is increasing and concave. The variable yt = Xt − ht stands for period-t162

escapement (the resource stock after harvest). As in Reed (1979) and Costello and Polasky163

(2008), we assume that the mean of Zt equals one and Zt, t = 0, 1, 2, ... are independent164

and identically distributed random variables. Moreover, any realization of Zt falls within the165

interval [Z Z̄], with 0 < Z < Z̄ <∞.166

2While they do not explicitly account for the risk of a potential future regime shift, Grass et al. (2015)
rely on bifurcation theory to investigate a shallow lake system subject to a stochastic recharge rate.
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The regime shift process operates as follows. At the beginning of the initial period, the167

manager anticipates that a regime shift may occur at the beginning of period τ ≥ 1. More168

precisely, the manager can derive value from exploiting the resource in periods 0, 1, 2, ...,169

τ−1. However, in periods τ, τ+1, τ+2,..., the manager cannot derive value from the resource170

anymore. As such, the post-event value function is set to zero. This does not necessarily171

mean that the resource itself is wiped out after the regime shift, it could also represent172

scenarios where the market of the resource collapses due to e.g. a drop in consumer demand173

after an oil spill. Similarly, our model could represent a situation where access to the fishery174

is closed due to a moratorium or the introduction of a marine reserve.175

The occurrence date τ is a random variable. The possibility to access to the resource

is captured by a Markovian process Mt with two states: Op (for “open fishery”) or C` (for

“closed” or “collapsed fishery”). Changes from one state to the other work according to the

transition probabilities

Pr(Mt+1=C`|Mt=Op) = ρ(yt); Pr(Mt+1=Op|Mt=Op) = 1− ρ(yt);

Pr(Mt+1=Op|Mt=C`) = 0; Pr(Mt+1=C`|Mt=C`) = 1,

(2)

where 0 ≤ ρ(yt) ≤ 1 represents the hazard rate. We assume that ρ(yt) (weakly) decreases176

in yt (i.e., ρ′(yt) ≤ 0). In some cases, the regime shift risk is exogenous and constant.177

Notable examples include scenarios in which the regime shift is triggered by abrupt climate178

change, or an unanticipated oil spill. In other cases, the probability of a regime shift may179

depend on the resource stock. This would be particularly appropriate when modelling a180

catastrophic trophic cascade that occurs once the resource stock falls below a certain level,181

or a moratorium that is politically mandated (e.g. due to environmental pressure groups)182

when resource extraction drives the stock to a low level.183

At the beginning of period t, the manager learns the current resource stock (Xt). Thereafter,184

she chooses her harvest (ht), which determines current escapement (yt = Xt − ht). Towards185
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the end of the period, growth and the random shock determine the resource stock for the186

next period according to (1). In making her current harvest decision, the manager accounts187

for the possibility of a regime shift as well as the effects of current harvest on the regime188

shift risk and the evolution of the resource stock. Mathematically, the Bellman equation for189

the problem (formulated in terms of escapement) faced by the manager reads:190

Vt(Xt) = max
yt

{
p(Xt−yt)−

∫ Xt

yt

c(s)ds+ β(1−ρ(yt))E
[
Vt+1(Xt+1)

]}
(3)

subject to (1)

In the optimization problem (3), E stands for the expected value operator and β ∈ (0, 1) is the191

discount factor. The term p(Xt−yt) is the revenue resulting from harvesting Xt−yt resource192

units and p is a positive constant representing the resource price. The third right-hand side193

term in (3) represents the continuation value of the problem. The second right-hand side194

term in (3) is the total cost function. c(s) is the marginal harvesting cost function, which is195

differentiable and (weakly) decreasing in the fish stock. To cleanly expose harvest responses196

to environmental instability, we will separately consider two scenarios. First, we examine197

the constant marginal cost scenario in which c′(s) = 0 for all s > 0. In the second scenario,198

the “stock effect” prevails, that is, marginal harvesting cost strictly decline as the resource199

stock increases (i.e., c′(s) < 0).200

Denote by X∞ the resource stock defined as: p = c(X∞) if c(0) ≥ p and X∞ = 0 if201

c(0) < p. The variable X∞ can be interpreted as the smallest resource stock that gives202

rise to non-negative economic profit. For the sake of tractability, we assume that X∞ is203

self-sustaining. That is, even the worst realization of the random shock cannot prevent the204

smallest economically viable resource stock from growing (i.e., Z × g(X∞) > X∞). A clear205

implication of this assumption is that in periods t = 0, 1, 2, ..., T − 1, it cannot be optimal to206
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harvest the resource stock down to an escapement level smaller than or equal to X∞. To see207

why this result holds, denote by ϕt(yt) = p(Xt−yt)−
∫ Xt
yt
c(s)ds+β(1−ρ(yt))E

[
Vt+1(Ztg(yt))],208

the objective function in (3). From this formula, we derive209

ϕ′t(yt) = (−p+ c(yt)) + β(1−ρ(yt))E
[
Ztg

′(yt))V
′
t+1(Ztg(yt))

]
− βρ′(yt)E

[
Vt+1(Ztg(yt))

]
.210

The first right-hand side term of this expression is non-negative for 0 ≤ yt ≤ X∞ because211

X∞ is self-sustaining and c′ ≤ 0. The sum of the second and third right-hand side terms212

of the expression is positive for 0 ≤ yt ≤ X∞ because X∞ is self-sustaining and ρ′(yt) ≤ 0.213

Therefore, ϕ′(yt) > 0 for all 0 ≤ yt ≤ X∞. This result reveals that it is suboptimal to choose214

any escapement smaller than or equal to X∞. In other words, in periods t = 0, 1, 2, ..., T −1,215

optimal escapement must be strictly greater than X∞.216

To simplify the analysis, we restrict our attention to interior solutions in the remainder217

of this paper. The first-order condition for the maximization of the right-hand side of (3)218

can be written as219

p− c(yt) = β(1−ρ(yt))E
[
Ztg

′(yt))V
′
t+1(Xt+1)

]
− βρ′(yt)E

[
Vt+1(Xt+1)

]
. (4)220

This condition shows how the interplay between environmental, economic, and political221

conditions affects current escapement decisions. For an interior solution, (4) shows that the222

manager chooses current escapement so as to equate marginal revenue to the value forgone223

from harvesting today rather than saving the resource for future harvests. Using the above224

computations, we derive the following proposition.225

Proposition 1. Assuming that the planning horizon is finite (i.e., T < +∞), the following226

results hold.227

(i) If ρ(yt) is strictly decreasing in yt, then optimal escapement varies across periods t =228
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0, 1, 2, ..., T .229

(ii) Assuming that ρ(yt) is a constant function, then optimal escapement remains unchanged230

across periods t = 0, 1, 2, ..., T − 1.231

Proof. See Appendix A.1.232

The results of this proposition hold under both deterministic stock growth and stock233

growth uncertainty. Such results add to the seminal papers by Reed (1979) and Costello234

and Polasky (2008) that investigate optimal renewable resource management in a context235

where the resource price is constant. These papers do not consider the effects of regime236

shift risk and concentrate on scenarios in which resource growth is uncertain due to random237

changes in environmental conditions (e.g., temperature, nutrients). They find that, for an238

interior solution, optimal escapement does not change across periods prior to the last one239

when the planning horizon is finite. In this paper, we have shown in Proposition 1 that such240

conventional wisdom does not necessarily hold when the manager faces regime shift risk in241

addition to stock growth uncertainty.3242

The intuition underlying this result can be gleaned from above derivations. Recall that243

the manager chooses period-t escapement so as to equate the marginal cost of increasing244

escapement (p−c(yt)) and the marginal benefit of increasing escapement (i.e., the right-hand245

side of (4)). The marginal cost of increasing escapement (p − c(yt)) does not depend on246

ρ(yt). As shown in Appendix A.1, E
[
Vt+1(Xt+1)

]
= E

[
p− c(Xt+1)

]
= E

[
p− c(Ztg(yt))

]
for247

t = 0, 1, 2, ..., T − 1. As a result, in the case where ρ(yt) is constant, the marginal benefit of248

increasing escapement depends on yt and does not explicitly depends on time. These results249

explain why optimal escapement is time independent across periods t = 0, 1, 2, ..., T − 1250

when ρ(yt) is a constant function. In the case where ρ(yt) is strictly decreasing in yt, the251

second right-hand side term in (4) in addition to depending on yt, explicitly depend on time252

3As shown in Appendix A.2, this conclusion does not qualitatively change when ρ(y) is neither strictly
decreasing over the whole range of y nor constant.
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because Vt+1(Xt+1) is time-dependent as shown in Appendix A.1. This result implies that,253

when ρ′(yt) < 0, optimal escapement becomes time dependent because the marginal benefit254

of increasing escapement is time dependent in this scenario.255

To further unveil implications of both sources of uncertainty, from now on, we restrict our256

attention to scenarios in which the planning horizon is infinite. Since Xt+1 is a function of yt,257

condition (4) suggests that our model may sustain an optimal escapement policy that does258

not depend on the current stock size. We formally examine this question in the following259

proposition.260

Proposition 2. (i) Period-t escapement is stock-independent, and (ii) escapement, denoted

by y∗, is the solution to

p− c(y) = β(1− ρ(y))E
[
Ztg

′(y)(p−c(Ztg(y)))
]

− βρ′(y)

1− β(1−ρ(y))
× E

[
p(Ztg(y)−y)−

∫ Ztg(y)

y

c(s)ds
]
. (5)

Proof. See Appendix A.3.261

Although the manager makes escapement decisions before observing the realization of Zt,262

the optimal escapement policy y∗ is deterministic. As shown in condition (5), y∗ depends on263

the distribution of Zt. Moreover, condition (5) illustrates how the harvesting cost structure,264

distribution of Zt, resource growth, discount factor, resource price, and the probability of265

regime shift affect current escapement. For scenarios in which the marginal harvesting cost266

function is constant and there is no threat of regime shift (i.e., ρ = 0 and ρ′ = 0), using the267

fact that E(Zt) = 1, condition (5) simplifies to268

1

β
= g′(y∗).269

This formula represents the standard golden rule of growth stating that at the optimum, the270
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expected biological return and the financial rate of return are equal. In the setting of this271

paper where in addition to stock growth uncertainty, the manager faces the threat of regime272

shift, such a golden rule modifies to273

1

β
= g′(y∗)(1− ρ(y∗))− ρ′(y∗)

1− β(1−ρ(y∗))
(g(y∗)−y∗).274

This expression reveals that the standard golden rule of growth is adjusted to account for275

the possibility of regime shift. We next investigate the sensitivity of escapement incentives276

to changes in the distribution of random shocks.277

4 Effects of uncertainty278

Keeping fixed the probability of regime shift, this section concentrates on the manager’s279

responses to random changes in environmental conditions. Specifically, we investigate whether280

changes in the distribution of Zt intensifies or lowers extraction. We first discuss scenarios281

in which the function xc(x) is concave in x, then when it is linear, and finally when it is282

convex.283

We make use of the concept of second-order stochastic dominance defined as follows.284

Definition 1. Denote by Z̃ and Ẑ two random variables with the same mean (i.e., E(Z̃) =285

E(Ẑ)). The variable Ẑ is a mean preserving spread of Z̃ if the inequality E(U(Z̃)) ≥ E(U(Ẑ))286

is valid for any concave utility function U .287

Since c(x) represents the unit cost of extraction, when marginal harvesting costs are288

constant, xc(x) can be interpreted as the cost of completely depleting the resource stock.289

Our analysis suggests that the shape of xc(x) critically affects the manager’s attitude toward290

stock growth uncertainty as revealed in the following proposition.291
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Proposition 3. Provided that the function xc(x) is concave in x.292

A mean preserving spread of Zt always increases current escapement.293

Proof. See Appendix A.4.294

To shed light on forces driving the result of Proposition 3, it can be useful to first compare295

escapement under uncertain stock growth with escapement under deterministic stock growth.296

In the particular case where Zt = 1, condition (5) retrieves optimal escapement from the297

deterministic setting (denoted by ȳ), which is the solution to298

p− c(y) = β(1−ρ(y))g′(y)
[
p− c(g(y))

]
− βρ′(y)

1− β(1−ρ(y))
×

[
p(g(y)−y)−

∫ g(y)

y

c(s)ds

]
. (6)

In the case where xc(x) is concave, we derive three important properties for the optimum.299

First, for a given level of escapement and – consequently – a given level of regime shift300

risk, we call the first right-hand side term of (5) the “Direct Effect”, as it represents the direct301

effect of uncertainty. Moreover, the function β(1 − ρ(y))Ztg
′(y)[p − c(Ztg(y))] is convex in302

the random variable Zt. As such, for a fixed level of escapement, the Direct Effect is greater303

than the first right-hand side term of (6).304

Second, since a lower level of escapement implies a higher probability of regime shift305

when ρ′(.) < 0, we call the second right-hand side term of (5) the “Risk Effect”. Given that306

the marginal harvesting cost function is decreasing (i.e., c′ < 0), the function − βρ′(y)
1−β(1−ρ(y))

×307

[p(Ztg(y) − y) −
∫ Ztg(y)

y
c(s)ds] is convex in the random variable Zt. Consequently, holding308

escapement constant, the Risk Effect is greater than the second right-hand side term of (6).309

Third, the left-hand side terms of (5) and (6) are identical and increasing in escapement.310

These three properties imply that optimal escapement under stock growth uncertainty is311

greater than optimal escapement under the deterministic stock growth scenario when xc(x)312
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is concave.313

Holding escapement constant, the Direct Effect increases in response to a mean preserving314

spread as long as xc(x) is concave. This pulls towards a higher escapement level. In315

addition, a mean preserving spread raises the Risk Effect, which also pulls towards a higher316

escapement. Therefore, the manager optimally increases current escapement in response to317

a mean preserving spread when xc(x) is concave. This result is valid irrespective of whether318

or not the probability of regime shift is endogenous.319

To further understand extraction responses to uncertainty, we next examine the scenario320

where xc(x) is linear;4 the results are summarized in the following proposition.321

Proposition 4. Provided that the function xc(x) is linear in x.322

(i) A mean preserving spread of Zt does not affect current escapement if ρ′(.) = 0 or marginal323

harvesting costs are constant.324

(ii) A mean preserving spread of Zt increases escapement if ρ′(.) 6= 0 and marginal harvesting325

costs are not constant.326

Proof. See Appendix A.5.327

The result (i) of Proposition 4 is driven by the fact that, for a given level of escapement,328

the Direct Effect and Risk Effect do not depend on the distribution of Zt when ρ′(.) = 0 or329

marginal harvesting costs are constant. Consequently, in this context, the manager does not330

change current escapement in response to mean preserving spreads.331

Result (ii) of Proposition 4 illustrates the importance of accounting for the threat of332

regime shift. An interesting body of economic papers examine how a renewable resource333

manager responds to stock growth uncertainty (Reed, 1979; Costello and Polasky, 2008),334

but in scenarios where regime shifts cannot occur (i.e., ρ ≡ 0). In this specific context,335

the Direct Effect does not depend on mean preserving spreads , when xc(x) is linear, and336

4There are two interesting scenarios in which the function xc(x) is linear. First, if c(x) is constant, then
xc(x) is linear in x. Second, if c(x) = A/x, then marginal harvesting costs are not constant and xc(x) is
linear in x.
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the Risk Effect is of course nil. For these reasons, the manager does not modify its current337

harvest in response to any mean preserving spreads as long as xc(x) is linear.338

In this paper, we analyze the situation where the manager faces the threat of a regime339

shift, in addition to stock growth uncertainty. In this context, not yet explored, the Risk340

Effect emerges as a new channel in response to a mean preserving spread. We show that the341

Direct Effect does not change in response to mean preserving spread. Moreover, holding342

escapement constant, a mean preserving spread raises the Risk Effect if ρ′(.) 6= 0 and343

marginal harvesting costs are not constant. The increased Risk Effect implies that the344

manager optimally raises current escapement in response to mean preserving spreads.345

For completeness, we next discuss extraction responses to stock growth uncertainty under346

scenarios in which ρ′ 6= 0 and xc(x) is convex. In this particular context, escapement347

responses to mean preserving spreads are still driven by the Direct Effect and the Risk348

Effect, which now work in opposite directions. The Direct Effect tends to lower escapement349

while the Risk Effect tends to increase escapement. Each of both forces may dominate the350

other depending on economic, environmental, and biological conditions.351

Under scenarios where the ecosystem is not prone to a regime shift, a prominent class of352

economic papers (e.g., Reed, 1979) consider marginal harvesting cost of the form353

c(X) =
A

Xθ
, for all X > 0, (7)354

where A > 0 and θ ≥ 0 are parameters. It is important to notice that xc(x) is concave as355

long as 0 < θ < 1, linear when θ = 0 or θ = 1, and convex for θ > 1. To illustrate our356

contribution with respect to such papers, we next examine how the cost structure defined in357

(7) affects harvest responses to environmental instability. Findings are summarized in the358

following proposition.359

Proposition 5. Provided that the marginal harvesting cost function in defined (7) with360
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θ > 0.361

A mean preserving spread increases current escapement if y∗ satisfies362

−ρ′(y∗) > (θ − 1)(1− β(1− ρ(y∗)))(1− ρ(y∗))g′(y∗). (8)363

Proof. See Appendix A.6.364

In the case where c(.) is defined in (7), this proposition provides three interesting properties365

of harvest responses to changes in environmental conditions. First, a mean preserving spread366

always increases current escapement when ρ′ 6= 0 and θ = 1. This finding is consistent with367

the results of Proposition 4. Second, a mean preserving spread increases escapement when368

0 < θ < 1. This finding is consistent with the result of Proposition 3. Third, the finding369

sheds new light on prior economic papers (e.g., Reed, 1979; Costello and Polasky, 2008;370

Kapaun and Quaas, 2013), which analyze a risk neutral manager’s responses to resource371

growth uncertainty in a system that is not prone to regime shifts and where the resource372

price is constant. In this context, when xc(x) is convex, a mean preserving spread always373

diminishes the Direct Effect whereas the Risk Effect is nil. As a result, the manager optimally374

lowers current escapement in response to mean preserving spreads when xc(x) is convex.375

In our model, where in addition to stock growth uncertainty, the manager faces the threat376

of a regime shift, the Risk Effect counteracts with the Direct Effect when xc(x) is convex.377

In the particular case where c(.) is defined in (7), Proposition 5 suggests that in response378

to a mean preserving spread, the interplay between the Direct Effect and the Risk Effect379

may give rise to a novel result: The manager raises current escapement in response to mean380

preserving spreads when xc(x) is convex and the biological growth of the resource stock is381

small.382
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5 Numerical example383

This section proposes a numerical example to further illustrate harvest responses to potential384

changes in environmental conditions. To quantify the regime shift risk, we consider the385

probability function ρ(y) = a × e−γy. The variable γ ≥ 0 represents the elasticity of the386

regime shift risk with respect to escapement. Such a probability is more sensitive to changes387

in escapement as γ increases.5 The marginal harvesting cost function is defined in (7) such388

that X∞ = (A
p
)
1
θ > 0.389

We make use of the Beverton-Holt growth function defined as: g(y) = y/α
1+(y/υ)

. We focus390

our attention on a binomial shock Zt, which takes the value ZH = TH + (1 − pH)λ with391

probability 0 ≤ pH ≤ 1 and where TH is a positive real number. Moreover, Zt takes the392

value ZL = TL − pHλ > 0 with probability 1 − pH , where 0 < TL ≤ TH and λ ∈ [0, TL/pH)393

are parameters. To ensure that X∞ is self-sustaining (i.e., ZLg(X∞) > X∞), we assume that394

0 ≤ λ < λ̄ ≡ [TL − α(1 + (X∞/υ))]/pH .395

To be consistent with the assumption E(Zt) = 1, we assume that the parameters of396

the distribution satisfy the equality pHTH + (1 − pH)TL = 1. For two arbitrary numbers397

0 ≤ λ1 < λ2 < λ̄, define Zt|λ=λ2 = Zt|λ=λ1 + ε where ε is a random variable that takes398

the value (1− pH)(λ2 − λ1) with probability pH and −pH(λ2 − λ1) with probability 1− pH .399

It can be shown that the equality E(ε/Zt|λ=λ1) = 0 is always valid. Following Rothschild400

and Stiglitz (1970), these last two results reveal that Zt|λ=λ2 is a mean preserving spread401

of Zt|λ=λ1 for any λ1 and λ2 that satisfy 0 ≤ λ1 < λ2 < λ̄. Consequently, any increase in402

λ over the interval [0 λ̄) represents a mean preserving spread. The set of parameters used403

in simulations is portrayed in Table 1. The values of λ used in our numerical analysis are404

produced following the sequence λj = λj−1 + h, j = 1, 2, ..., 99 with λ0 = 0 and h = 0.0393.405

Keeping fixed the distribution of Zt with λ = 0.4, we first examine how escapement under406

5At γ = 0, the regime shift risk is exogenous and as γ →∞ the regime shift risk traces the abscissa and
the ordinate, that is, ρ is practically zero everywhere, except close to the origin where it rises steeply.
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Table 1: Parameters used in simulations

Hazard function parameter a = 0.8 and γ ∈ [0, 8]
Growth function parameters α = 0.1 and υ = 0.3
Random variable parameters TH = TL = 1, pH = 0.1, and λ = 0.4
Resource price p = 1
Initial resource stock X0 ≥ 3
Marginal cost function parameters A = 0.95 and θ = 1.12
Discount rate r = 1

β
− 1 = 0.052

the no-regime shift risk scenario (thin horizontal line in Figure 1) changes in response to the407

introduction of regime shift risk (thick black line in Figure 1). Changes in γ obviously do not408

affect escapement under the no-regime shift risk scenario. When regime shift risk is positive,409

optimal escapement depends on γ. The relationship between escapement under the regime410

shift risk and γ is not monotonic.411

When the probability of regime shift is exogenous (γ = 0), we find that escapement is412

lower than when there is no regime shift risk at all. In this case, and for our specific numerical413

example, optimal escapement is about 11% below optimal escapement when the regime shift414

risk is not present or is ignored. When the probability of regime shift risk is endogenous415

(γ > 0), escapement under the regime shift risk case initially increases as γ rises. For small416

values of γ, accounting for regime shift risk still implies a lower optimal escapement level.417

However, above a certain value of γ (0.151 in our example) this result is reversed.418

Note that the distance between escapement under regime shift risk and escapement under419

the no-regime shift risk case may reach a peak. In our numerical example, the maximum420

escapement level is 1.3 times greater than escapement under the no-regime shift risk case.421

After this peak at γ = 0.91, the gap between optimal escapements under the no-regime shift422

risk and regime shift risk cases narrows again. As γ takes large values, optimal escapement423

under regime shift risk approaches the no-regime shift risk level from above.424

Keeping fixed the probability of a regime shift, we have also investigated how escapement425
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Figure 1: Escapements under the threat of regime shift and no-threat scenarios as a
function of γ.

optimally changes in response to mean preserving spreads of stock growth uncertainty426

(increases in λ). Our baseline corresponds to cases in which stock growth is uncertain427

and the manager does not face the regime shift risk. As illustrated in Figure 2(a), any428

mean preserving spread always reduces optimal escapement under the baseline scenario.6
429

Moreover, the sensitivity (elasticity) of escapement with respect to any mean preserving430

spreads is small.431

When, in addition to stock growth uncertainty, the manager faces the regime shift risk,432

we have investigated implications of considering low and high values for the sensitivity of433

6Note that the elasticity of escapement and the derivative of escapement with respect to λ have the same
signs. As such, when the elasticity of escapement with respect to λ is always negative, escapement decreases
in λ. However, when the elasticity of escapement with respect to λ is always positive, escapement increases
in λ.
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the regime shift risk with respect to escapement (i.e., γ). As shown in Appendix A.7, mean434

preserving spreads lower optimal escapement as long as θ > 1, 0 ≤ a < 1, and γ is small435

or high. This analytical finding is in line with our numerical derivations. Indeed, results436

obtained under the baseline no-regime shift risk scenario remain qualitatively valid if the437

sensitivity of the regime shift risk with respect to escapement is sufficiently small or high438

(e.g., 0 ≤ γ ≤ 0.001 or γ ≥ 8, not shown). Specifically, in this setting, any mean preserving439

spread considered in our numerical analysis diminishes optimal escapement under regime440

shift risk, but not in a significant way.441
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Figure 2: Elasticity of optimal escapement with respect to λ when θ = 1.12

When γ is neither very small nor sufficiently high (e.g., γ ∈ [0.1, 7]), simulations reveal442

that mean preserving spreads can have profound effects on optimal escapement. In particular,443

in contrast to the no-regime shift risk case, the manager actually increases optimal escapement444

under regime shift risk in response to mean preserving spreads. Moreover, Figure 2(b)445

illustrates that, for γ = 0.85, unlike the no-regime shift risk case, the mean preserving spread446

associated with any substantial increase in λ, significantly increases the optimal escapement447

level under regime shift risk.448
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Holding the risk of regime shift constant, changes in the discount rate further unveil449

harvest responses to uncertainties. The results depicted in Figure 3 suggest that both450

escapement under the regime shift risk and stock growth uncertainty and escapement under451

the baseline scenario decline as the discount rate is increased. Our sensitivity analysis452

suggests that this result remains valid for a wide array of values for υ, α, γ, and p > 0453

in the relevant range. However, relative to the baseline scenario, escapement under stock454

growth uncertainty and regime shift risk declines faster (see Figure 3) when the sensitivity455

of ρ with respect to escapement is sufficiently high (e.g., γ = 2, ..., 5). This result is reversed456

when γ is sufficiently small (e.g., γ = 0, ..., 0.1).457
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Figure 3: Escapements under the threat of regime shift and no-threat scenarios as a
function of the discount rate.

Finally, holding the probability of regime shift constant, changing the marginal harvesting458

cost function parameter to θ = 0.12 helps further unveil harvest responses to uncertainties.459

When γ is neither high nor small, simulations show that stock growth uncertainty can460
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considerably change optimal escapement, but only in the presence of the threat. For example,461

as depicted in Figure 4 (right panel) for γ = 0.85, relative to the deterministic growth case462

(i.e., λ = 0), the level of stock growth uncertainty associated with λ = 6.8251 raises the463

optimal escapement level under regime shift risk by about 67.33%. However, relative to the464

deterministic growth case, such a level of uncertainty raises optimal escapement under the465

baseline scenario by 17.1% only (note the different scales of the y-axis of Figure 4). Moreover,466

in response to any mean preserving spread (i.e., any increase in λ), the manager optimally467

increases the escapement levels under both the regime shift risk and no-regime shift risk468

cases. This result accords with Proposition 5 and remains valid under the baseline scenario.469

Our sensitivity analysis reveals that this latter result is robust to changes in γ, v, α, and470

p > 0.471
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Figure 4: Elasticity of optimal escapement as a function of λ when θ = 0.12
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6 Conclusion472

In this paper, we have examined how a renewable resource manager optimally responds to473

uncertainty. Such uncertainty results from two specific channels. First, resource growth is474

subject to natural uncertainty due to stochastic changes in ecological conditions. Second,475

the manager faces the threat of a possible future regime shift. We have designed a simple476

bio-economic framework to illustrate harvest incentives under such conditions.477

We find that changes in the distribution of stock growth uncertainty affect optimal478

extraction through two channels. The ‘Direct Effect’ prevails and captures the fact that479

natural uncertainty, by affecting stock growth, alters the structure of harvesting costs.480

The ‘Risk Effect’ illustrates the idea that the manager has incentives to diminish current481

extraction. This second channel exists because the likelihood of regime shift increases as482

extraction intensifies. We find that in response to random changes in biological growth,483

the manager may increase, reduce, or not change her current extraction. Importantly, as484

portrayed in Table 2, we delineate conditions under which new behavioral responses to stock485

growth uncertainty emerge relative to prior economic papers (e.g., Reed, 1979; Costello and486

Polasky, 2008) that do not account for the possibility of regime shifts.487

Table 2: Overview of key results, optimal escapement, denoted by y∗, responses to mean preserving
spreads of stock growth uncertainty for different combinations of regime shift risk and structures
of harvesting cost.

xc(x) linear xc(x) convex xc(x) concave

no regime shift risk (ρ=0) no effect on y∗ decrease y∗
always increases y∗

(Prop 3)exogenous risk (ρ >0, ρ′=0)
no effect on y∗

(Prop 4-i)
ambigous; increase y∗

when cond (8) holds

(Prop 5)
endogenous risk (ρ >0, ρ′ 6=0)

no effect on y∗ when c(x) constant;

increase y∗ when c(x) not constant

(Prop 4-ii)

Our results may shed new light on how a sole owner responds to uncertainty. For instance,488

relying on numerical simulations, prior economic papers (e.g., Clark and Kirkwood, 1986;489
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Sethi et al., 2005; Kapaun and Quaas, 2013) have examined how a risk neutral renewable490

resource manager adapts to stock growth uncertainty, but in a setting where there is no491

possibility of regime shift. They find that the manager does not significantly change optimal492

escapement in response to mean preserving spreads. Our findings, however, suggest that if493

the manager faces regime shift risk in addition to stock growth uncertainty (for example,494

fearing expropriation, an oil spill, or a biological collapse of the resource) such conventional495

wisdom does not necessarily hold.496

The ecosystem considered in this paper is prone to an irreversible closure of the fishery.497

Baggio and Fackler (2016) address the optimal management of a fishery subject to two498

sources of uncertainty that affect the resource biological growth. Specifically, they consider499

random shocks along with the possibility of future reversible regime shift that entails a drop500

in biological growth. They find that optimal escapement in the low productivity regime501

is smaller relative to the high productivity regime when the probability of regime shift is502

exogenous.503

While more work is needed, it seems fair to speculate that (i) the consequence of the504

regime shift (collapse or loss in renewability) is not decisive for whether the management505

response is cautious or aggressive, and (ii) that the irreversible set-up analyzed here is the506

limiting case of a setup with a reversible regime shift. While the irreversibility of the regime507

shift allowed a particularly tractable model formulation that enabled us to present analytical508

solutions, studying reversible regime shifts is a promising avenue for future work because it509

would naturally open to study issues of experimentation and learning about the tipping point510

at which the regime shift occurs (Groeneveld et al., 2014; Diekert, 2017).511

Furthermore, our model may serve as a starting point for empirical case-studies or512

more detailed theoretical work that acknowledges that socio-ecological systems are complex513

adaptive systems (Levin, 2003; Crepin et al., 2011). The possibility of regime shift importantly514

shapes in situ resource stock (e.g., wild fish stocks) dynamics. Moreover, stock growth of such515
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resources is often subject to random chocks triggered by sudden changes in environmental516

conditions. Our results would guide policy aimed at sustainably managing such socio-ecological517

systems (Crepin et al., 2012). Extensions of this paper could broaden our model applicability.518

For example, we have concentrated on a risk neutral sole owner case, assuming a deterministic519

resource price, and a stock independent environmental shock. In some contexts, the resource520

price may adjust to random or systemic changes in market conditions. A fishery (e.g.,521

high sea) could also be exploited strategically by risk neutral and risk averse agents. The522

environmental shock may be stock-dependent because the resource stock may be more523

susceptible to changes in environmental conditions (e.g., drought) if it is near a minimum524

viable population. Incorporating these features into our model represents an important525

avenue for future research.526
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Appendix527

A Mathematical derivations528

A.1 Proof of Proposition 1529

Recall that by assumption, the planning horizon is finite. In this context VT+1(XT+1) = 0530

because T represents the last period and the manager does not value the resource stock531

in period T + 1. This result combined with (3) reveals that y∗T = X∞. Evaluating the532

maximization problem (3) at the optimum, we derive533

VT (XT ) = p(XT − y∗T )−
∫ XT

y∗T

c(s)ds and V ′T (XT ) = p− c(XT ). (9)534

Substituting (9) into (4) for t = T − 1, we find that period T − 1 optimal escapement,

denoted by y∗T−1 is the solution to

p− c(yT−1) = β(1−ρ(yT−1))E
[
ZT−1g

′(yT−1)) (p− c(ZT−1g(yT−1)))
]

(10)

− βρ′(yT−1)E
[
VT (ZT−1g(yT−1)))

]
.

This formula shows that y∗T−1 does not depend on XT−1. Evaluating the maximization

problem in (3) at the optimum for t = T − 1, we derive

VT−1(XT−1) = p(XT−1 − y∗T−1)−
∫ XT−1

y∗T−1

c(s)ds (11)

+ β(1− ρ(y∗T−1))E
[
VT (ZT−1g(y∗T−1))

]
and V ′T−1(XT−1) = p− c(XT−1).

Substituting (11) into (4) for t = T − 2, we find that period T − 2 optimal escapement,
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denoted by y∗T−2 is the solution to

p− c(yT−2) = β(1−ρ(yT−2))E
[
ZT−2g

′(yT−2)) (p− c(ZT−2g(yT−2)))
]

(12)

− βρ′(yT−2)E
[
VT−1 (ZT−2g(yT−2)))

]
.

This expression reveals that y∗T−2 does not depend on XT−2.535

(i) Assume that ρ(y) strictly declines as y is increased. In this case, the second right-hand536

side terms in (10) and (12) differ. As a result, y∗T−2, y∗T−1, and y∗T are not identical. Using537

the above approach, it can be generally shown that optimal escapement differs across all538

periods.539

(ii) Assume that ρ(y) does not change as y is increased. In this case, the second right-hand

side term in (4) vanishes. Moreover, the above derivations reveal that V ′t (Xt) = p−c(Xt) for

t = 0, 1, 2, ..., T . These last three results imply that for t = 0, 1, 2, ...T − 1, y∗t is the solution

to

p− c(yt) = β(1−ρ(yt))E
[
Ztg

′(yt)) (p− c(Ztg(yt)))
]
. (13)

Hence, y∗t does not change across periods t = 0, 1, 2, ...T − 1.540

A.2 Proof for the time-dependence issue541

Here, our goal is to proof that optimal escapement can be time dependent prior the last period542

when ρ(y) is neither strictly decreasing everywhere nor constant. Since by assumption, ρ(y)543

is weakly decreasing in y, only three scenarios are possible. (S1) ρ(y) is strictly decreasing544

in y; (S2) ρ(y) is constant; and (S3) ρ(y) is strictly decreasing in y over an interval and545

constant over another interval.546

To shed light on scenario (S3), assume that the escapement space can be divided into547
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two disjoint intervals. In the first interval, say (a1, a2), ρ(y) is strictly decreasing in y. In548

the second interval, say (a3; a4), ρ(y) is constant. Denoting by y∗t , t = 0, 1, 2, ..., T period-t549

optimal escapement, it can be helpful to distinguish three cases.550

-Case 1: y∗0, ..., y
∗
T−1 ∈ (a1, a2). Since this setting is similar to the one in which ρ(y)551

strictly decreasing in y over the whole range of y, the result (i) of Proposition 1 holds in this552

case.553

-Case 2: y∗0, ..., y
∗
T−1 ∈ (a3, a4). Since this setting is similar to the one in which ρ(y)554

constant over the whole range of y, the result (ii) of Proposition 1 is valid in this case.555

-Case 3: Only some of values of y∗t , t = 0, 1, 2, ..., T − 1 fall within the interval (a1, a2)556

and the others fall within the interval (a3, a4). In this setting, if y∗t ∈ (a1, a2) and y∗s ∈557

(a3, a4), then we necessarily have y∗t 6= y∗s because by assumption, (a1, a2) and (a3, a4) are558

disjoint intervals. This result suggests that optimal escapement is time-dependent prior the559

last period. Therefore, the conventional wisdom highlighted in the paragraph right below560

Proposition 1 does not hold in this case.561

A.3 Proof of Proposition 2562

Evaluating (3) at the optimum, we get563

V (Xt) = p(Xt − y∗)−
∫ Xt

y∗
c(s)ds+ β(1− ρ(y∗))E [V (Xt+1)] . (14)564

Here, we restrict our attention to scenarios in which y∗ does not depend on Xt. In this565

context, (1) reveals that Xt+1 depends on y∗ and is independent of Xt. Therefore, the third566

right-hand side term in (14) does not depend on Xt. Using this result, we differentiate both567

sides of (14), which leads to568

V ′(Xt) = p− c(Xt). (15)569
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Since this expression holds for an arbitrary value of Xt, it implies that570

V ′(Xt+1) = p− c(Xt+1) = p− c(Ztg(yt)). (16)571

Integrating condition (15) gives rise to572

V (X) = p(X − y∗)−
∫ X

y∗
c(s)ds+ ξ, for all X, (17)573

where ξ represents a constant of integration. To determine ξ, we proceed as follows. Evaluating

Conditions (14) and (17) at Xt = y∗, we get V (y∗) = ξ = β(1−ρ(y∗))E(V (Xt+1)). Evaluating

the function in (17) at Xt+1, we derive

ξ = β(1− ρ(y∗))E(V (Xt+1)) = β(1− ρ(y∗))× E
[
p(Xt+1 − y∗)−

∫ Xt+1

y∗
c(s)ds+ ξ

]
.

Solving this equation with respect to ξ, and using (1), we find that

ξ =
β(1− ρ(y∗))

1− β(1− ρ(y∗))
× E

[
p(Ztg(y∗)− y∗)−

∫ Ztg(y∗)

y∗
c(s)ds

]
.

Combining this result with the fact that ξ = β(1− ρ(y∗))E(V (Xt+1)), we derive

E{V (Xt+1)} =
1

1− β(1− ρ(y∗))
× E

[
p(Ztg(y∗)− y∗)−

∫ Ztg(y∗)

y∗
c(s)ds

]
.

Substituting this finding and the formula in (16) into (4), the result follows.574
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A.4 Proof of Proposition 3575

Holding escapement constant, it can be helpful to define the function

R(Zt) = β(1− ρ(y)){Ztg′(y))(p− c(Ztg(y)))} (18)

− βρ′(y)

1− β(1− ρ(y))
× {p(Ztg(y)− y)−

∫ Ztg(y)

y

c(s)ds}.

Differentiating both sides of this equality with respect to Zt, we obtain

R′(Zt) = β(1− ρ(y)){g′(y))(p− `′(Zt))} −
βρ′(y)

1− β(1− ρ(y))
× {pg(y)− g(y)c(Ztg(y))},

where `(Zt) = Ztc(Ztg(y)). Differentiating this formula with respect to Zt, we get

R′′(Zt) = −β(1− ρ(y))g′(y)`′′(Zt)) +
βρ′(y)

1− β(1− ρ(y))
× (g(y))2c′(Ztg(y)).

Since by assumption xc(x) is concave, `′′(Zt) < 0 and the first right-hand side term of this576

expression is positive. It second right-hand side term is also positive because ρ′(y) ≤ 0577

and c′ < 0. These results imply that R′′(Zt) > 0 for all Zt. Therefore, R(Zt) is convex in578

Zt. Since E{R(Zt)} represents the right-hand side of (5), this result implies that a mean579

preserving spread increases the right-hand side of (5), holding fixed escapement. It is also580

important to note that the left-hand side of (5) increases in y. These findings show that a581

mean preserving spread increases optimal escapement whenever xc(x) is concave.582

A.5 Proof of Proposition 4583

(i) Since xc(x) is linear, the right-hand side of (5) does not depend on the distribution of Zt584

when ρ′ = 0 or c′ = 0. In this context, any mean preserving spreads do not affect optimal585

escapement because the left hand side of (5) does not depend on Zt.586
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(ii) Here we assume that xc(x) is linear, ρ′ 6= 0, and c′ 6= 0. In this context, the first587

right-hand side of (5) does not depend on the distribution of Zt. The second right-hand side588

of (5) increases as a result of a mean preserving spread because − βρ′(y)
1−β(1−ρ(y))

× [p(Ztg(y) −589

y) −
∫ Ztg(y)

y
c(s)ds] is convex in Zt. Therefore, a mean preserving spread increases optimal590

escapement.591

A.6 Proof of Proposition 5592

Holding escapement constant, R(Zt) is the function defined in (18).

R′′(Zt) = β(1− ρ(y))g′(y)[−2g(y)c′(Ztg(y))− Zt(g(y))2c′′(Ztg(y))]

− βρ′(y)

1− β(1− ρ(y))
× {−g(y)c′(Ztg(y))}.

Using c(.) defined in (7), this expression simplifies to

R′′(Zt) = βAθ × g(y)−θ

Zθ+1
t

× [−(θ − 1)(1− ρ(y))g′(y)− ρ′(y)

1− β(1− ρ(y))
]. (19)

R(.) is convex in Zt if and only if the bracketed term is positive. Moreover, E{R(Zt)} is593

equal to the right-hand side of (5) and y∗ is the solution to (5). These results reveal that594

if the bracketed term in (19) evaluated at y = y∗ is positive, a mean preserving spread of595

Zt optimally raises current escapement. That is, if y∗ satisfies condition (8), then a mean596

preserving spread of Zt optimally raises current escapement.597
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A.7 Proof that “mean preserving spreads lower y∗ if θ > 1, 0 ≤598

a < 1, and γ is small or high”599

For scenarios in which ρ(y) = ae−γy and g(y) = y/α
1+(y/v)

, condition (8) simplifies to

aγαe−γy
∗
>

(θ − 1)

(1 + (y∗/v))2
[1− ae−γy∗ ][1− β(1− ae−γy∗)].

Notice that this inequality does not hold when θ > 1, 0 ≤ a < 1, and γ is small or high.600

Therefore, by Proposition 5, mean preserving spreads reduce optimal escapement when θ > 1,601

0 ≤ a < 1, and γ is small or high.602
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