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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• ML applications in therapeutics can 
enhance drug delivery. 

• Protein modifications through ML can 
improve their targeted bioactivity. 

• Detection of protein-solid interactions 
through ML can aid in nanomedicine. 

• ML can predict the interactions between 
carbohydrate and protein. 

             

          
                 
                          
                                 
               
             

A B S T R A C T  

Machine learning (ML) applications have become ubiquitous in all fields of research including protein science 
and engineering. Apart from protein structure and mutation prediction, scientists are focusing on knowledge 
gaps with respect to the molecular mechanisms involved in protein binding and interactions with other com-
ponents in the experimental setups or the human body. Researchers are working on several wet-lab techniques 
and generating data for a better understanding of concepts and mechanics involved. The information like bio-
molecular structure, binding affinities, structure fluctuations and movements are enormous which can be 
handled and analyzed by ML. Therefore, this review highlights the significance of ML in understanding the 
biomolecular interactions while assisting in various fields of research such as drug discovery, nanomedicine, 
nanotoxicity and material science. Hence, the way ahead would be to force hand-in hand of laboratory work and 
computational techniques. 
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1. Introduction 

Studying proteins is an obligatory field of research since these 
macromolecules maintain and regulate all human bodily functions 
because of their distinct physicochemical properties. They are involved 
in innumerable inter- and intracellular interactions. They bind with li-
gands such as metals, organic molecules, inorganic molecules and other 
proteins for specific functions like catalysis or cell signaling (Dhakal 
et al., 2022; Rausell et al., 2010). These interactions happen at specific 
binding sites which have ignited a lot of interest amongst scientists in 
molecular modelling and drug design (Yang et al., 2013). When these 
interactions are to be predicted, a number of considerations have to be 
made such as free energy, enthalpy, entropy and binding kinetics (Du 
et al., 2016). 

Protein interactions with other proteins, biomolecules, ligands or 
surfaces involve numerous forces acting simultaneously or one after the 
other. For instance, when a soluble antibody interacts with an antigen, it 
acts based on the lock and key model which is an amalgam of van der 
Waals forces, hydrogen bonding, hydrophobic interaction and steric 
hindrances (Leckband, 2000). Conventionally, knowledge of protein 
structures, interactions and functions was heavily based on structure 
determining techniques like X-ray crystallography, cryo-electron mi-
croscopy and biochemical assays to map functional consequences of 
altering protein structures (Ramanathan et al., 2021). Further, the 
complete genome sequencing projects have collected large data sets 
with respect to structure, function, genomic and biological context 
(Skrabanek et al., 2008). This information can be applied to investigate 
various protein–ligand interactions. Nevertheless, experimentation is 
time-consuming, expensive, and labor intensive (Skrabanek et al., 
2008). Hence, molecular dynamics (MD) can be used as a computational 
tool to study biophysical processes (Wang et al., 2020). The major 
challenges with MD are where to store the huge amount of data and how 
to make it comprehensible. Conversely, machine learning (ML) can 
facilitate accurate approximation of complex relationships between 
variables and establish non-linear correlations (Ding et al., 2022; Huang 
et al., 2022; Xing et al., 2022). 

Recently, artificial intelligence (AI) and ML have found ground- 
breaking applications in this area of research. For instance, geometric 
deep learning has been applied to predict interactions between the 
SARS-CoV-2 virus and human proteins with an accuracy of 97.76 % 
(Alakus and Turkoglu, 2021). Further, it has been shown that laccase 
and lignin compounds interact with each other by using hydrogen bond 
with the help of AI and ML programs (Wang et al., 2022a). Additionally, 
the most important step in drug discovery and design is protein folding 
and its interaction. Interactions based on protein binding domains can 
be predicted using a ML tool called hierarchical statistical mechanical 
modelling (Cunningham et al., 2020). Principal component analysis- 
ensemble extreme learning machine can give insight into the in-
teractions by using sequence information with 87 % accuracy in 
significantly less time (You et al., 2013). Also, the structure-based 
threading regression tool is the first structure-based predictor to eval-
uate interaction probability (Singh et al., 2010). Computational tech-
niques have not only been applied to study protein–protein interactions, 
but they can also be used to investigate hindrances in the interactions by 
using Naïve Bayesian, K-nearest neighbor, artificial neural network 
(ANN), decision tree (DT), random forest (RF) and support vector ma-
chine (SVM) (Gupta et al., 2021). 

So far, the reviews focus on application of ML in protein structure 
prediction, protein–ligand interaction prediction, binding site predic-
tion, or accelerating drug discovery (Dhakal et al., 2022; Y. Wang et al., 
2022b; Zhao et al., 2020, 2022). Pandiyan and Wang (2022) summa-
rized 136 papers elaborating the booming application of AI and ML in 
early detection and diagnosis followed by imaging and anti-cancer drug 
discovery. They concluded that it can support judicious utilization of 
resources and quality of cancer therapy (Pandiyan and Wang, 2022). 
However, none of the reviews incorporate how the proteins interact with 

other proteins and biomolecules in the body. Thus, this review focuses 
majorly on three aspects which are missing in the presented literature so 
far. The first aspect is how ML can be a vital tool in protein mutations to 
enhance their properties like an affinity towards a particular target or 
bioactivity. The next part of this review focusses on the application of 
ML in studying the interaction of proteins with solid surfaces and how it 
has been widely applied in nanomedicine. The final aspect of this review 
discusses the interactions between proteins and carbohydrates which is 
important for cell defense mechanisms. 

2. ML in peptide modifications 

Peptides are short chains of 2 to 50 amino acids connected via amide 
bonds and are naturally found in all living beings. Based on the amino 
acid sequence and the conformation they adopt; the peptides exhibit 
highly specific biological activities. Numerous functions of peptides as 
co-factors, activators, hormones, modulators, enzyme inhibitors and 
antimicrobials have been studied in the past (Hayashi et al., 2012). 
Apart from their diverse mode of action, due to their small size and less 
immunogenicity, they have been recognized as a valuable asset for 
human diagnosis and therapy (Apostolopoulos et al., 2021). For 
instance, insulin was debuted as a therapeutic peptide in 1922, and 
within the time span of 100 years, more than 80 functional peptides 
have reached the market for a wide range of diseases (Muttenthaler 
et al., 2021). Fig. S1 in supporting information summarizes key mile-
stone achieved in field of therapeutic peptide from 1920 to 2020 
(Muttenthaler et al., 2021). 

Recently, a study has reported the use of peptides to inhibit SARS- 
CoV-2 (Chen et al., 2021a). Peptide driven technologies could also be 
advantageous in the pandemic situation considering the structural and 
functional versatility those peptides have to offer, along with their 
possible sequence combination and synthesis techniques. However, like 
any other drug discovery program, the development of lead peptides 
appears to be costly, challenging and a tedious task. In such a scenario, 
taking advantage of ever-growing peptide datasets, or generating a small 
amount of experimental data could help to run ML-based data-driven 
algorithms (Table 1). These algorithms assist to predict the evolution of 
the low bioactive peptides to peptides being highly active. It is evident 
that such an approach could resolve de novo design, directed evolution 
and property prediction problems (Fig. 1) (Chen et al., 2021a). 

One such study has predicted highly active inhibitors of α-amylase 
and α-glucosidase using ML algorithms (Yamashita et al., 2020). 
α-amylase and α-glucosidase tend to elevate blood glucose levels after 
consuming meals. Their inhibitors are used in managing blood glucose 
levels and in the treatment of postprandial hyperglycemia. Through the 
peptide search method, the study conducted by Yamashita et al. (2020) 
used physiochemical properties (such as Isoelectric point, polarity, hy-
dropathy index, side chain contribution to protein stability, molecular 
weight etc.) of amino acids as input feature for regression analysis, 
which assist in activating peptides with a large structural contribution. 
Yamashita et al. (2020) constructed 1-amino acid substitution library 
consisting of 153 peptides using “GHWYYRCW” as a design template 
and its inhibitory activity against α-amylase and α-glucosidase was 
experimentally determined. Regression analysis was conducted using 
120 physiochemical properties of amino acids as input feature and the 
same from each peptide was related to enzyme inhibitory activity. The 
data from the 1-amino acid substitution peptide library was taken as 
training data set, whereas the 2- and 3- amino acid substitution peptide 
library was used as test data for the prediction of the highly inhibitory 
peptide. As per the report, all the predictions of 2-amino acid substitu-
tion peptides for high inhibition activity were in line with experimental 
assays. However, the same was not found for peptides with 3-amino acid 
substitution. Out of all the 3-amino acid substitution peptides predicted 
to have significant inhibitory activity, 86.7 % of them correlated with 
experimental data (Yamashita et al., 2020). Recently, ML methods has 
also been applied to identify short linear peptides as novel therapeutics 
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Table 1 
AI-ML enhancing bioactivity of peptides. 

Target Peptide attribute Input data Training data Output data Highlight Reference 

Type 2 diabetes 
mellitus 

Anti-Diabetic 
peptide for control 
of type 2 diabetes 
mellitus 

Peptide sequences Structured data from public 
databases*, unstructured data 
from scientific papers and 
patents 

Predicts novel 
peptides glucose 
uptake efficacy 

• 5 peptide tested for 
experimental validation 
that were distinct from 
human signaling peptides 

• Peptides predicted were 
less than 16 amino acid 
long 

• Candidate peptide were 
able to stimulate glucose 
transporter type 4 
translocation and glucose 
uptake 

• Reduced glycated 
hemoglobin, significantly 
lower the plasma glucose 
levels and improve 
hepatic steatosis in obese 
insulin-resistant mice 

Casey et al. 
(2021) 

Class II MHC complex Peptide vaccines 82 seed sequences 
having some affinity 
for HLA-DR401 
87 seed sequences 
having some affinity 
for HLA-DR402 
44 seed sequences 
having high affinity 
for HLA-DR402 and 
some affinity for 
HLA-DR401 

Enrichment data from a library 
consisting of 108 random 9- 
mer peptides flanked by 
invariant peptide flanking 
residues 

Optimize seed 
sequence having 
affinity either to 
HLA-DR401, HLA- 
DR402 or both MHC 
allele 

• Evaluation and 
optimization of peptide- 
MHC binding 

• Optimize the anchor 
residues from Zika, HIV 
and Dengue proteomes 

• Yeast display assay 
demonstrated the 
improvement in the 
peptide binding by 
modulating anchor 
residues 

• 44 out of the 82 seed 
sequences performed 
better then seed sequence 
for HLA-DR401 

• 72 out of the 87 seed 
sequences outperformed 
seed sequence for HLA- 
DR402 

• The sequence optimized 
for both the allele had 
generally performed 
better for HLA-DR401 
whereas perform the same 
HLA-DR402 

Dai et al. 
(2021) 

S. epidermidis Antimicrobial 
peptides 

Antimicrobial 
peptide form APD3 

Positive training dataset 
containing 1,274 unique 
sequences**, negative training 
dataset contains 1,440 unique 
sequences** 

Customized active 
peptides 

• Study incorporates a 
transparent machine 
learning algorithm and 
rough set theory 

• Improved diversity 
generator and 
evolutionary search was 
also incorporated 

• Designing peptides 
against specific strains 
along with desired 
properties 

• Out of three peptide 
tested, one resulted 
positive for clear zone of 
inhibition 

Boone et al. 
(2021) 

α-amylase Enzyme inhibitors 
for managing blood 
glucose levels and 
postprandial 
hyperglycemia 

2- and 3- amino acid 
substitution peptide 
library using 
GHWYYRCW as 
template 

Inhibitory activity from 1-ami-
noacid substitution peptide 
library using GHWYYRCW as 
template. Regression analysis 
using enzyme inhibitory 
activity and 120 
physicochemical properties of 
amino acid as input feature. 

Prediction of 
inhibitory activity 

• Prediction based on 2- 
amino substituting pep-
tide library were 100% 
accurate 

• Prediction based on 3- 
amino substituting pep-
tide library were 86.7% 
accurate 

Yamashita 
et al. (2020) α-glucosidase 

(continued on next page) 
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to combat Type 2 diabetes mellitus (T2DM) (Casey et al., 2021). 
Ensemble of neural network was used to build the predictive model. For 
training set, structured data from public database of bioactivity anno-
tation, pathways and structural annotation was incorporated. Whereas 
data from peer-reviewed scientific papers and patents were referred to 
build unstructured database. Apart from that, predict–test–refine loop 
method was applied for additional refinement and testing. Out of 109 

peptides, 100 were classified as active at the end of refinement process. 
Additionally, property filtering such as cell penetrability, toxicity, pep-
tide length, stability in blood and odd number of cysteine residues were 
used to narrow down the peptides to be tested during the iterations that 
resulted ten of peptides from 100. As per the report, the algorithm was 
able to determine peptides that are distinct from human signaling pep-
tides and are less than 16 amino acids in size. Furthermore, during in 
vitro studies, the same was also able to stimulate glucose transporter type 
4 (GLUT4) translocation and glucose uptake (Casey et al., 2021). 

Similarly, ML has also been used to optimize the affinity of peptides 
against class II Major Histocompatibility Complex (MHC). Class II MHC 
molecules present the antigenic peptides, which are contained in the 
peptide vaccines that further activate T-cells. T-cells are an important 
component of the immune system to combat pathogens and cancer (Dai 
et al., 2021). In the study conducted by Dai et al. (2021), all possible 
changes in the anchor residues of the pathogenic peptides were used to 
evaluate and optimize the peptide-MHC binding. Using an in silico 
objective function, scoring of peptide was done and the best was 
selected. The prediction from the PUFFIN (Prediction of Uncertainty in 
MHC-peptide aFFInity using residual Networks) peptide-MHC binding 
model was used for their objective function. PUFFIN uses deep residual 

network based computational approach that not only results affinity 
prediction of given peptide-MHC pair but also aids in quantifying un-
certainty in peptide-MHC affinity prediction, resulting in state-of-the-art 
peptide-MHC binding prediction (Zeng and Gifford, 2019). Dai et al. 
(2021) optimize the anchor residues drawn from Zika, HIV and Dengue 
proteomes. A high-throughput yeast display assay was used to demon-
strate the improvement in the peptide binding by modulating anchor 
residues (Dai et al., 2021). 

ML can assist to screen the potential peptides for desire bioactivity by 
generating small amount of experimental data or using published 
datasets. Learning predictors could use this dataset and may lower the 
cost of expensive laboratory experiments. The work done by Giguere 
et al. (2015) focused on kernel method and ML to learn predictive 
model. Once a model is learned, the intense computational time is 
required to predict the peptides with soaring bioactivity. In order to 
overcome such an issue, Giguere et al (2015) have proposed an efficient 
algorithm that is based on graph theory. This graph theory-based algo-
rithm proposed by them when combined with multi-target model 
enabled the user to predict the binding motif of the target with no prior 
knowledge of the ligand. As per the report, 100 and 1000 randomly 
generated peptides were used to find the peptides with high bio-
activities. Increasing the number of the peptide from 100 to 1000 
resulted predictions that are more beneficial on the bioactivity mea-
surements. In total, the authors selected four peptides from the list of 
1000 peptide candidates predicted to have high bioactivity. The selec-
tion was based on such a criteria that the peptide should at least differ by 
four amino acids to each other. These peptides were 15 amino acid long 
having 40 to 46 % similarity with their training dataset and minimal 

Table 1 (continued ) 

Target Peptide attribute Input data Training data Output data Highlight Reference 

E. coli Antimicrobial 
peptide 

Peptide library 
distantly related to 
Temporin-Ali 

In vitro evaluation data to train 
a generalized liner model. 
Regression analysis using 
amino acid substitutions and 
IC50 values 

Evolved peptide 
with greater 
antimicrobial 
activity 

• Improve the antimicrobial 
properties of Temporin- 
Ali against E. coli 

• Identification of 44 
peptides within 3 rounds 
of iteration having 160- 
fold more antimicrobial 
activity compared to wild 
type counter part 

• The most potent predicted 
peptides displayed IC50 

(half-maximal inhibitory 
concentration) in the 
range of 0.50 to 2 µM 

• Selected peptides had a 
change in conformation 
from random coil to 
α-helical 

Yoshida 
et al. (2018) 

Phosphopantetheinyl 
transferase 

Peptide substrate Known/confirmed 
peptide sequences 

Truncated portions of the ACP 
from that are substrate for Sfp, 
AcpS and AcpH 
peptide substrate for PPTases 
truncated peptide substrate 
that are inactive for Sfp, AcpS 
and AcpH 

Short peptides 
substrate of 8-20 
amino acid long 

• A pipeline to optimize the 
peptide substrate for 
enzymes via prediction 
and targeted 
experimentation 

• Steadily increase in 
number of orthogonal 
peptide hit with each 
round of iteration 

Tallorin 
et al. (2018) 

E. coli Cationic 
antimicrobial 
peptides 

1000 Randomly 
generated peptides 

Data from approximately 100 
peptides with their 
corresponding validated 
bioactivity 

Peptides with high 
bioactivity 

• Efficient algorithm based 
on graph theory 

• Tested peptide had MIC in 
range of 2-16 µg/mL 

Giguere 
et al. (2015) S. aureus 

*Bioactivity annotations, biological pathways, and structural annotations. 
**the data set were taken from the study published by Xiao et al. (2013). 
MHC: Major histocompatibility complex. 
APD3: Antimicrobial Peptide Database. 
IC50: half-maximal inhibitory concentration. 
Sfp: Surfactin phosphopantetheinyl transferase from B. subtilis. 
AcpS: Holo-acyl carrier protein synthase from S. coelicolor. 
ACP: Acyl carrier Protein. 
AcpH: Enzyme known to unlabel some substrates previously labeled by PPTase from P. fluorescens. 
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inhibitory concentration (MIC) in the range of 2 to 16 µg/mL against 
Escherichia coli and Staphylococcus aureus (Giguere et al., 2015). Simi-
larly, novel antimicrobial peptides using transparent ML algorithm has 
been discovered that enabled better comprehension of design problems 
(Boone et al., 2021). The study incorporates a transparent ML algorithm 
and rough set theory (using datasets from Xiao et al., (2013)). This was 
combined with evolutionary search and an improved diversity gener-
ator, which in turn predicted peptides enabling ease of solid-state pep-
tide synthesis while also maintaining their activity. Moreover, the 
proposed computer-aided molecular design approach facilitates 
designing of peptides against specific strains along with desired prop-
erties. Thus, the peptide with improved activities may help to address 
the concern of microbiome dysbiosis, immune system suppression and 
antimicrobial resistance simultaneously (Boone et al., 2021). The algo-
rithm was applied to find antimicrobial peptides against S. epidermidis 
which is among the pathogens responsible for transplant infection. As 
per the report, three peptides were tested and only one resulted positive 
zone of inhibition (Boone et al., 2021). In another study, artificial 
evolutionary workflow was used to improve the chemical trait of anti-
microbial peptides (Yoshida et al., 2018). A combination of genetic al-
gorithm, ML and in vitro experimentation was applied with a closed loop 
approach. This artificial evolutionary workflow was challenged to 
improve the antimicrobial properties of Temporin-Ali against E. coli. 
Temporin-Ali is a naturally occurring 13 amino acid long antimicrobial 
peptide, which is known for its modest antimicrobial activity (Yoshida 
et al., 2018). Within three rounds of experiments, this approach enabled 
to identify 44 peptides having 160-fold more antimicrobial activity 
compared to its wild type counterpart. The most potent antimicrobial 
peptides were having IC50 (half-maximal inhibitory concentration) in 
the range of 0.50 to 2 µM. Furthermore, it was observed that the peptide 
selected had a change in conformation from random coil to α-helical 
during the experimentations (Yoshida et al., 2018). Thus, this approach 
not only gives an opportunity to study the evolution of a peptide but also 
allows us to quickly determine most potent functional molecules by 
conducting fewer sets of experiments. 

Moreover, ML algorithms have also been used to discover de novo 
peptide substrates for enzymes (Tallorin et al., 2018). The same could be 
applied to protein labeling and protein purification. A methodology 
titled “Peptide Optimization with Optimal Learning” (POOL) helps to 
optimize the peptide substrate for enzymes via prediction and targeted 
experimentation. POOL has been applied to discover peptide substrates 
for phosphopantetheinyl transferase (PPTase) (Tallorin et al., 2018). 
POOL has also enabled peptide identification to meet certain criteria, 
such as, peptide substrate specifically for a particular class of PPTase. 
POOL combines a predictive model with information across enzymes, it 
uses Bayesian optimization to diversify selections against prediction 

uncertainty and comprise feedback iteratively. Thus, POOL could help to 
ease the complex biological problems that are faced by the conventional 
method used for peptide substrate discovery of post-translational 
modification enzymes (Tallorin et al., 2018). Table 1 summarizes the 
AI-ML programs used for discovery of peptide-based antimicrobials, 
antidiabetic, enzyme substrate, vaccines and enzyme inhibitors. 

Computers have always been an asset for recognition and identifi-
cation of complex patterns in text and images. The constant advance-
ments in the era of omics technology improved biological database 
consisting of sequencing, biochemical and functional datasets. With the 
discovery of high-throughput techniques, ML has emerged as a valuable 
tool in de novo design for modification of functional peptide molecules. It 
is evident from the current literature that such an approach significantly 
eases pre-experimental screening and not only aids in improving the 
chemical trait but also gives an opportunity to study the evolution of 
improved functionality. 

3. Solid surface and protein interaction 

Interaction of proteins with a solid surface is a key phenomenon for 
implications in biomaterials, nanotechnology, and biotechnology (Gray, 
2004). Protein adsorption is a first step for preparation of implant device 
whereas immobilization of enzymes is widely known for several bio-
processes like holocellulases immobilization on acrylic resins for bio-
ethanol production (Gray, 2004; Vaz et al., 2016). Thus, an extensive 
knowledge about the underlying interactions would enable advance-
ment of these fields. Consequently, the proteins as well as the surfaces 
could be tailored to produce desired affinity. 

Fundamentally, the interaction involves both protein unfolding and 
binding (Gray, 2004). Their adsorption depends on external factors (pH, 
buffer composition and ionic strength), protein properties (composition, 
size, structure) and surface properties (polarity, charge and 
morphology) as shown in Fig. 2(a) (Rabe et al., 2011). Thus, performing 
experiments to study the mechanism requires extensive planning of re-
sources, labor, money and advanced techniques. Computational tech-
niques can overcome these bottlenecks. Hence, this section will 
summarize the applications of ML in protein and solid surface 
interaction. 

3.1. ML in biomaterials 

The immobilization of biomolecules on solid surfaces is an integral 
part of biological research. Important examples are enzyme immobili-
zation in reactors and enzyme-linked immunosorbent assay (ELISA) 
among others. In principle, the target part of the molecule to be 
immobilized should be oriented appropriately and there should not be 

Fig. 1. Simplified schematic of machine learning 
used in enhancing peptide activity. The data input 
could include physicochemical descriptors, biolog-
ical activity and library screening. The physico-
chemical properties such as molecular weight, net 
charge, hydrophobicity, hydrophobic moment, iso-
electric point, aliphatic index etc. can be used as 
input features. The biological activity includes pep-
tide attributes such as inhibition activity, antimicro-
bial activity, antidiabetic activity etc. of which 
optimization is desired. For training the model, this 
biological activity can be taken from the published 
literature and available database. An alternative is to 
perform an in vitro library screening and to generate 
a small amount of experimental dataset. Statistical 
methods are employed assisting computer systems to 
steadily learn and improve the performance to 
generate bioactive compounds form the input data. 
Figure adapted from Torres & de la Fuente-Nunez 
(2019) © Royal Society of Chemistry 2019. 

                



                                    

6

any non-essential interaction between the biomolecule and solid surface 
(Meng et al., 2020). A commonly used protein binding surface is poly-
styrene due to its biological inertia (Kumada et al., 2010). The density 
and biological activity of the proteins immobilized on the solid surface is 
less when physically adsorbed on the surface. Thus, affinity peptide tags 
called polystyrene binding peptides (PSBPs) were developed to mitigate 
these issues. These PSBPs along with the target peptide can avoid 
denaturation and ensure proper orientation (Meng et al., 2020). 
Therefore, the identification of correct PSBPs is a key first step in such 
applications. Wet lab experiments would be an expensive and time 
taking option. This paves the way for the application of ML in biomol-
ecule immobilization. Meng et al. (2020) have developed an identifier 
using ML-based algorithms that can identify if the protein or the peptide 
is a PSBP. Firstly, the amino acid composition (AAC) and dipeptide 
composition (DPC) is extracted from the peptide in question. The fea-
tures are then ranked according to analysis of variance scores (ANOVA) 
followed by 123-dimensional optimal feature set selection using incre-
mental feature selection (IFS) considering AAC as the criterion. Then the 
selected feature vectors are applied to the PSBP-SVM model to identify 
its role as a PSBP. 

3.2. ML in nanotechnology 

Recently, nanoparticles are being investigated as a viable alternative 
drug and drug delivery system for multi-drug resistant strains (MDR) 
(Diéguez-Santana et al., 2022). However, testing each combination of 
drugs with the bacterial strains is a strenuous process. ML can accelerate 
drug discovery against such bacteria. Diéguez-Santana et al. (2022) have 
developed an information fusion perturbation-theory-based machine 
learning (IFPTML) analysis to identify antibacterial drugs (AD) and 
nanoparticle (NP) combinations against resistant strains. Applying ML, 
they could quickly study if the interaction between the epitopes and the 
nanoparticle-based drug could provide for the required treatment effect. 
However, studying the interactions at the molecular level is compli-
cated, given, the lack of high-quality data, effective modelling methods, 
descriptors, dynamic alterations and biotransformation of nano-
materials (Feng et al., 2021). Nevertheless, ML is interference-resistant 
and requires no a priori functional formulae. It can embody unlimited 
complexities in a model and filter out the factors that actually impact the 
immune response to develop immunotherapies involving nanomaterials 
(Feng et al., 2021). Wang et al. (2017) prepared a gold nanomaterial 

Fig. 2. (a) Reorientation of proteins while adsorbing on surfaces. Figure reproduced with permission from Rabe et al. (2011) Copyright © 2011 Elsevier. (b) Ex-
amples of interaction between nanomaterials and peptides (created with BioRender.com). (c) Flow-diagram showing the use of AI-ML in nanomaterial-protein 
interaction prediction. 
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library, characterized them and collected data on their bioactivity. Each 
nanomaterial was simulated against diverse biological activities like 
interaction or passage through the biological membranes and models 
were built using computational intelligence. Consequently, these models 
were used to predict the nanomaterials that would be suitable for the 
desired bioactivity. Simulation results were consistent with the experi-
mental results. Hence, with the increased flow of data today from 
experimental setups, ML will definitely be indispensable for 
nanomaterials-based drug discovery. 

Scientists have also explored the protein adsorption properties of 
nanomaterials using ML and guided the formation of anti-protein 
coating surfaces (Le et al., 2019). Preventing biofouling is a vital step 
towards the development of bioinert surfaces for the advancement of 
nanomaterial-based therapy. Although, the adsorption of proteins on the 
solid surface is a common mechanism, the absence of mechanistic in-
formation makes it harder to design surfaces which can prevent bio-
logical contamination. Ideally, the surfaces should not have any charge, 
polar groups, hydrogen bond donors or acceptor groups. The authors 
demonstrated that robust linear and non-linear models can be developed 
to accurately predict the adsorption percentage of model proteins, that 
is, fibrinogen or lysozyme using sparse multiple linear regression with 
expectation maximization (MLREM) and non-linear Bayesian regular-
ized artificial neural networks with Bayesian prior (BRANNGP) model-
ling methods. They achieved a test set with r2 value as 0.82 and a 
standard error of 13 %. The authors were able to distinguish between 
low and high adsorption polyethylene glycols. Further details can be 
referred to in Le et al. (2019). 

3.3. ML in nanomedicine and nanotoxicology 

The nanomaterials are generally capped by proteins before intro-
ducing them into the biological system to prevent any undue cellular 
damage and participate in protein exchange (Nel et al., 2009). In com-
parison to the bulk materials, nanomaterials have higher free energy to 
adsorb proteins (Mukhopadhyay et al., 2018). This free energy is 
fundamental to analyzing the driving force for the interaction. The free 
energy could be enthalpic or entropic or both. Enthalpic changes are 
associated with hydrogen bonds or coordination bonds, whereas, 
entropic changes are due to dehydration or removal of electric double 
layer of the surface. In general, nanomaterials can either cause confor-
mational changes in proteins or self-aggregate as shown in Fig. 2(b). 
Most of the adsorption studies have been performed in vitro, so how 
adsorption would differ in vivo is still an enigma. Apart from adsorption, 
there could be other modes of interactions like self-assembly, entrap-
ment, cross-linking and encapsulation (Mukhopadhyay et al., 2018). 
Therefore, AI-ML could play a pivotal role in studying the nano-bio 
interface as shown in Fig. 2(c). 

Modelling the surfaces for biological applications require good de-
scriptors for designing and optimizing tailored functional materials. 
Current methods use complex mathematical features for characteriza-
tion. Mikulskis et al. (2019) used ML methods based on 
chemically-interpretable descriptors (dragon and signature) to model 
the attachment of three important hospital-acquired pathogens, Staph-
ylococcus aureus (SA), Pseudomonas aeruginosa (PA), uropathogenic 
Escherichia coli (UPEC). Sparse feature selection methods brought down 
the number of dragon and signature descriptors from around 1645 and 
831 to 24 and 11, respectively. They obtained predictive models with 
small errors for the attachment of these pathogens against a polymer 
library. The r2 values for SA, PA and UPEC were 0.85, 0.88 and 0.89 
respectively. Further, Singh et al. (2021) have employed ML-based 
graph modelling to quantify the nanomaterial and cell interaction 
indices. They proposed that phenotypic changes in the cells such as 
shape and nuclear area factors are associated with nanomaterial char-
acteristics (Singh et al., 2021). Moreover, Findlay et al. (2018) have 
developed a predictive system using ML to provide protein corona 
fingerprinting. This model predicts the corona population by analyzing 

protein biophysicochemical characteristics, solution conditions and 
nanomaterials properties (Findlay et al., 2018). Thus, ML can be used to 
gain mechanistic insights into protein and solid interactions and prepare 
maps for the same. 

4. ML in protein-carbohydrate interactions 

Protein-carbohydrate interactions are crucial for biological processes 
that are involved in cell development, immune responses, carcinogen-
esis and infections. They are also important in catalytic reactions and 
signaling pathways including cellular adhesion, recognition and trans-
duction (Cao et al., 2021). A thorough molecular level understanding of 
these interactions can lead to advancements in the field of therapeutics. 
Glycoproteins and glycolipids on surfaces of living cells promote 
cell–cell communication and during any pathogen attack, they act as the 
primary line of defense (Majdoul and Compton, 2022). A class of pro-
teins called lectins can specifically identify and bind to these cell surface 
carbohydrates (Chettri et al., 2021). Lectins are non-immune in nature 
and recognized as biomarkers helpful for drug targeting. Although these 
interactions help in developing novel drugs that are patient specific, 
experimentally detecting them is challenging. This is due to the diffi-
culty in synthesizing the specific carbohydrate molecule. Moreover, 
weak binding affinity of carbohydrate to the protein limits their in-
teractions (Gattani et al.,2019). To overcome these drawbacks, 
computational prediction through ML tools have come into operation. 
This approach helps to interpret the binding sites reducing complica-
tions of the experimental procedure. Particular methods for predicting 
specific carbohydrate (glucose, galactose, mannose) binding proteins 
are also important to get an in depth understanding of protein- 
carbohydrate interactions taking place in cell defense mechanisms 
(Zhao et al., 2018). For example, mannose binding proteins (MBP) play a 
key role in innate immune response by binding to pathogen surfaces 
containing mannose and activating lectin complement pathway (Agar-
wal et al., 2011). 

4.1. Structure based approaches for predicting protein-carbohydrate 
interactions 

The first method developed using ML algorithm was based on the 
characteristic properties of 19 non-homologous carbohydrate binding 
sites (Taroni et al., 2000). In this model, six parameters of amino acids 
(solvation potential, hydrophobicity, relative accessible surface area, 
residue propensity, planarity and protrusion index) were considered. 
When these parameters were ranked based on their binding site scores, 
residue interface propensity (tendency of amino acid to be in close 
proximity to the sugar molecule) suited best for discriminating the 
carbohydrate binding sites. The presence of multiple binding sites on a 
single protein chain can be distinguished using a combination of pro-
trusion index and relative accessible surface area, as their distribution 
varies between lectins and enzymes. A combination of only these three 
attributes could show an overall prediction accuracy of 65 % on a group 
of 40 protein-carbohydrate complexes. However, this simple model 
could only act as a primary filter for identifying the possible carbohy-
drate binding sites and further detailed analysis with more data points is 
suggested. Based on the three-dimensional probability density distri-
bution of interacting atoms, an ML algorithm was developed by Tsai 
et al. (2012) for predicting the carbohydrate binding sites. In this al-
gorithm, distribution patterns specific for carbohydrate binding sites 
from known protein structures were used to identify the tentative car-
bohydrate binding sites on a query protein and integrated based on the 
normalized prediction confidence level. This model resulted into a 
specificity of 97 % with a sensitivity of 47 % predicted over a dataset of 
108 proteins using ANN bagging algorithm. 

ML algorithms have also been applied for more specific prediction of 
sugar binding proteins. Among them, a structure-based approach was 
developed using 18 protein-galactose complexes from 7 non- 

                



                                    

8

homologous protein families for determining galactose-binding sites 
with COTRAN program (Sujatha & Balaji, 2004). COTRAN is a C pro-
gram based on 3D structure searching algorithm. This model in-
corporates a combination of solvent accessibility and three-dimensional 
structural characteristics to search for unknown galactose binding sites 
from known ones sharing the same fold. Furthermore, to predict the 
inositol and carbohydrate binding sites on protein surface, an ML tool 
called InCa-SiteFinder was developed and tested on 80 protein–ligand 
complexes (Kulharia et al., 2009). This model considered amino acid 
inclination behavior and van der Waals energy releasing from the in-
teractions of protein and a methylene probe positioned at each point. 
These interactions form clusters and are ranked based on the spatial 
proximity of energetically favorable probe sites. This model was able to 
give 98 % specificity with a sensitivity and error rate of 73 % and 12 %, 
respectively. Another model for predicting glucose binding sites used RF 
selection coupled with SVM considering the physio-chemical properties 
such as hydrophobicity, charge and hydrogen bonding (Nassif et al., 
2009). This classifier algorithm was able to give 93.3 % specificity with a 
sensitivity and error rate of 89.66 % and 8.11 %, respectively. An ML 
algorithm for predicting mannose binding sites was developed by Khare 
et al. (2012) that used ligand centroid approaches employing RF. With 
this algorithm, a prediction accuracy of 95 % was achieved with 10-fold 
cross validation. All the above mentioned are structure-based models 
that predict carbohydrate binding sites based on the availability of 
protein structures. 

4.2. Sequence-based approaches for predicting protein-carbohydrate 
interactions 

The first sequence-based approach for determining the carbohydrate 
binding proteins used structural features such as secondary structure 
conformation, solvent accessibility and packaging density as a pre-
liminary step (Malik and Ahmad, 2007). In the next step, the corre-
sponding binding sites were predicted based on position specific scoring 
matrix (PSSM) incorporating amino acid sequence profiles from their 
evolutionary origin collected from protein database (PDB). When eval-
uated for a data set of 40 protein-carbohydrate complexes, this method 
could predict a carbohydrate binding site with 87 % sensitivity at a 
specificity of 23 %. Mannose-interacting residues were predicted with 
PSSM as an input using the method of MOWGLI (prediction of protein- 
mannose interacting residues with ensemble classifiers using evolu-
tionary information) while exploring RF and SVM as base classifiers (Pai 
and Mondal, 2016). This method could show a prediction accuracy of 92 
% for a data set of 29 protein chains. In another study, mannose inter-
acting and non-interacting sites were predicted using SVM based 
approach with a dataset of 120 protein chains (Agarwal et al., 2011). In 
this model, composition of peptide, segment or pattern is taken into 
consideration for determining the mannose binding sites and an accu-
racy of 86 % was achieved. The above-mentioned sequence-based 
methods rely on limited test datasets subjected to leave-one-out analysis 
and depend on sequence profiles taken only from PSSM. 

A more accurate ML algorithm called SPRINT-CBH (sequence-based 
prediction of residual level interaction sites of carbohydrates) based on 
SVMs was developed to predict carbohydrate-binding sites (Taherzadeh 
et al., 2016). This method incorporates PSSM profiles with additional 
information on both the sequence and structural features beyond the 
evolutionary profiles. This model was able to give 99 % specificity with 
18.8 % sensitivity when tested for a dataset of 102 complexes using a 10- 
fold cross validation (CV). However, when tested with an independent 
data set of 50 protein-carbohydrate complexes, this model was able to 
show a specificity of 98 % with 22.3 % sensitivity. Hence, it is found to 
yield imbalanced predictions with either a low sensitivity and high 
specificity or low specificity and high sensitivity. This might be due to 
selection of some features that affect the prediction sensitivity nega-
tively. The secondary structure feature was eliminated by Gattani et al., 
(2019) as it was found to negatively affect the sensitivity. A stacking- 

based classifier called StackCBPred (carbohydrate binding site predic-
tor accessible at: https://bmll.cs.uno.edu/) was built based on features 
extracted from PSSM. A more recent method of prediction has come 
forth considering effective parameters including the binding affinity and 
docking score. With this approach, a new ML tool cutoff scanning matrix 
(CSM)-carbohydrate was developed considering the biophysical data 
and structural features of 370 protein-carbohydrate complexes (Nguyen 
et al., 2022). Considering the drawbacks of other previous models, the 
CSM-carbohydrate model (accessible at: https://biosig.unimelb.edu.au/ 
csm_carbohydrate/) is made user-friendly by allowing the data available 
in a web interface as well as an application programming interface 
(Nguyen et al., 2022). All the above-mentioned details have been sum-
marized in Table 2. 

5. ML for aptamer design and protein targeting 

Aptamers are short sequences of 25–80 bases of oligonucleotides 
(DNA or RNA) that bind specifically to target molecules with high af-
finity. They are considered as a replacement for monoclonal antibodies 
in therapeutics and used as biorecognition elements in sensors and 
nanoscale devices (Ni et al., 2020). Designing an aptamer through 
experimental procedure with the method of systematic evolution of li-
gands by exponential enrichment (SELEX) is complex and time 
consuming with low reproducibility (Zhou and Rossi, 2017). Moreover, 
the specific aptamer characterization from an enriched pool of oligo-
nucleotides is laborious. The half-life of an aptamer can be improved in 
vivo by mutations, substitutions or chemical modifications of its natural 
bases (Yang et al., 2022). Hence, focus has been shifted towards 
advanced and rapid screening of aptamers with AI using ML algorithms. 
Based on the information of target protein, AI can aid in designing the 
aptamer under de novo conditions following a stepwise procedure 
(Navien et al., 2021; Kohlberger and Gadermaier, 2021). In the first step, 
potential binding sites present on the targeted protein are considered 
and analyzed. This is followed by designing the specific sequence of 
ssDNA or RNA oligonucleotides that could show highest binding affin-
ities with the targeted protein. The final step involves the automatic 
speculation of aptamer sequence from the predicted structure (Fig. 3). 
With this approach, time and cost required for aptamer design can be 
reduced while screening them from large sets of oligonucleotide li-
braries. Furthermore, appropriate mutations or modification of bases for 
specific targeting can also be done through ML tools (Bashir et al., 
2021). 

Some of the conventional methods in bioinformatics for designing an 
aptamer used structural information as a tool to predict the binding 
affinity. For determining the 2D and 3D structures of ssDNA and RNA 
molecules, online platforms like RNAComposer and RNAfold have been 
proposed (Chen et al., 2021b). These servers also provide structural 
information of short oligonucleotides and hence can be used for iden-
tifying the structures of specific aptamers. The novel computational 
methods for selection of an aptamer to predict the binding affinity rely 
on virtual screening and molecular docking scores (Buglak et al., 2020; 
Chen et al., 2021b). In the in silico methods for aptamer design, several 
steps are followed. Initially the 2D and 3D structures are predicted for 
studying the folding of desired aptamers and calculating the minimal 
amount of free energy generated. In the next step, docking scores are 
determined by calculating the binding energy through studying the 
interaction between target molecule and aptamer. Later, through mo-
lecular dynamics, the binding affinity is evaluated for the formed target 
molecule aptamer complex. The final step involves the aptamer/ligand 
complex analysis followed by data interpretation that can allow us to 
perform mutations or any required chemical modifications to the pre-
dicted aptamers. 

Various ML algorithms for determining aptamer-protein binding af-
finities through structural and sequence-based clustering has already 
been described by Chen et al. (2021b). The latest approach for designing 
an aptamer employed extreme gradient boosting and RF classifiers for 
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selecting the dominant features of the amino acids (Manju et al., 2022). 
50 principal components were selected in this approach and a 98 % 
accuracy in detecting aptamer protein interactions was achieved. 
Another approach using RF was investigated by Emami and Ferdousi, 
(2021) that incorporated k-mer and complement k-mer frequency to 
predict aptamer protein interactions. A deep neural network tool called 
AptaNet was developed that used both interacting and non-interacting 
pairs of aptamer-protein. Although this model could provide an accu-
racy of 99 % on training dataset and 91 % on test dataset, a web server is 
required to further carry forward the research on aptamer-protein in-
teractions. Recently, due to the outbreak of novel coronavirus, an ML 
algorithm was developed for screening the high affinity aptamers to-
wards SARS-CoV-2 Receptor binding domain (RBD) (Song et al., 2020). 
During infection, an interaction of glycoprotein (S protein) of SARS- 
CoV-2 RBD with angiotensin-converting enzyme II (ACE2) expressed 
on the host cells was found. Through this study, two aptamers were 
recognized to have identical binding sites with the virus and new probes 
can be generated for recognizing the virus ultimately assisting the 
treatment of the infection (Song et al., 2020). Hence, ML algorithms 
provide a better opportunity to build unique and efficient aptamers that 
can bind to specific protein targets for usage in diagnostics, therapeutics 
and biosensing of disease-causing pathogens. 

6. Research needs and future directions 

The application of AI and ML has evolved to mimic human behavior 
and process huge data in short span of time due to its high computing 
capability and efficient algorithm. In this review, it has been shown that 
ML has been widely applied in drug discovery, nanomedicine, biomed-
ical sciences and immunotherapy. Regression analysis and neural 
network based-ML algorithms appear to be an attractive option for 
modifying and predicting sequences for enhanced peptide functionality. 
Further, Quantitative structure–property relationship (QSPR) methods 
with ML and quantitative nanostructure activity relationship (QNAR) 
models are currently prominent in material science and nano-bio in-
teractions. It enables delving into the details of the various molecular 
interactions. RF and SVM classifiers can be used for ML methods while 
predicting protein-carbohydrate interactions. Furthermore, ML algo-
rithms rely on the datasets derived from the available database and they 
are as good as the training and test datasets provided. Thus, datasets 
from varying experimental conditions and from multiple sources could 
greatly increase the reliability of the predictions. Therefore, there is a 
need to harmonize and connect the data sets. Apart from this, another 
important challenge is the validation of models to be accepted by reg-
ulatory authorities. Using mechanistic information from peptide struc-
tures may help to guide the model better. Moreover, for it to be applied 

Table 2 
Sequence and structural based prediction models for determining carbohydrate protein interactions. 

Prediction Data sets for 
optimization 

Parameters considered Test datasets Accuracy of the 
model 

References 

Structural characteristics 
Patch prediction algorithm for 

carbohydrate binding sites 
19 non-homologous 
carbohydrate binding 
proteins 

Relative accessible surface area, hydrophobicity, 
planarity, protrusion, residue propensity, 
solvation potential 

40 protein- 
carbohydrate 
complexes 

65 % Taroni et al. 
(2000) 

ANN_BAGGING algorithm 36 non-covalent 
interacting atoms 

Three-dimensional probability density maps of 
non-covalent interacting atoms 

108 proteins Sensitivity of 49 % 
and specificity of 97 
% 

Tsai et al. 
(2012) 

COTRAN (C computer 
program) 

18 protein galactose 
complexes from 7 non- 
homologous families 

Secondary structure type and solvent accessibility — — Sujatha and 
Balaji (2004) 

InCa-SiteFinder for 
carbohydrate binding sites 

30,000 protein–ligand 
complexes 

Van der Waals energy of interaction between 
protein and probe, amino acid propensities 

40 carbohydrate 
binding sites 

Sensitivity of 73 % 
and specificity of 98 
% with error rate of 
12 % 

Kulharia et al. 
(2009) 

Glucose binding site classifier 
program 

29 protein glucose 
binding sites 

Hydrophobicity, charge, hydrogen bonding and 
nature of amino acid side chains 

14 protein 
glucose binding 
sites 

Sensitivity of 89 % 
and specificity of 93 
% with error rate of 8 
% 

Nassif et al. 
(2009) 

Mannose binding sites 55 mannose binding sites 
derived from 11 proteins 

Hydrophobicity, charge, hydrogen bonds, nature 
of amino acid side chains, accessible surface area 

— 95 % Khare et al. 
(2012) 

Sequential characteristics 
Galactose binding proteins 20 residue types Amino acid composition, solvent accessibility, 

packing density, accessible surface area, 
secondary structure 

18 galactose 
specific proteins 

63 % sensitivity and 
79 % specificity 

Malik and 
Ahmad (2007) 

Ensemble classifier (MOWGLI) 
for mannose binding 
residues 

128 residue types Ensemble of base classifiers, evolutionary 
information 

29 mannose 
binding proteins 

92 % Pai and 
Mondal (2016) 

Web server (PreMieR) for 
mannose binding sites 

120 residue types Binary profile and local composition of patterns, 
evolutionary information 

1029 mannose 
interacting 
residues 

86 % Agarwal et al. 
(2011) 

SPRINT-CBH (sequence-based 
prediction of residual level 
interaction sites of 
carbohydrates) 

113 protein 
carbohydrate complexes 

Sequence information, evolutionary information, 
solvent accessible surface area, secondary 
structure, helix probability, steric parameter, 
polarizability, hydrophobicity, isoelectric point, 
volume, sheet probability 

50 protein 
carbohydrate 
complexes 

Sensitivity of 22 % 
and specificity of 98 
% 

Taherzadeh 
et al. (2016) 

StackCBPred for prediction of 
carbohydrate binding 
proteins 

100 carbohydrate 
binding proteins 

Accessible surface area, secondary structure, 
polarizability, hydrophobicity, helix probability, 
volume, isoelectric point, sheet probability, 
molecular recognition features 

49 protein 
carbohydrate 
complexes 

Accuracy of 80 % and 
sensitivity of 70 % 

Gattani et al. 
(2019) 

Cutoff scanning matrix (CSM)- 
Carbohydrate algorithm 

370 carbohydrate 
binding proteins 

protein-carbohydrate interatomic interactions, 
graph-based signatures, molecular surface area of 
the interaction 

43 protein 
carbohydrate 
complexes 

— Nguyen et al. 
(2022) 

— missing data. 

                



                                    

10

in drug designing, it has to overcome five major challenges, namely, 
appropriate datasets, generating new hypothesis, optimize in multi- 
objective way, reduce the timelines involved and research culture. 
However, with the potential of generating high throughput structural 
and functional data and considering the advancements made in ML al-
gorithms, it can be deduced that ML would play a key role in improving 
peptide functionality, especially in peptide-based therapeutic programs. 
Hence, modern ML and AI methods are useful tools in designing targeted 
and precision medicines. 

7. Conclusion 

This review highlights the various applications of ML which have 
propelled the progress of biology and biotechnology. Not only has it 
facilitated faster molecular docking, it has been employed to repurpose 
drugs against SARS-CoV-2 virus amidst the deadly pandemic. Re-
searchers have also used ML to understand the molecular interactions 
for purposes such as studying protein-target binding, designing mate-
rials with desired characteristics for adsorption or to prepare biocom-
patible nanomaterials as therapeutics. Hence, applications are myriad 
but scientific development would be better if ML go hand-in-hand with 
wet-laboratory experiments. 
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