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Abstract 

Just-in-time supply chains have become increasingly popular in past decades. However, these are particularly 

vulnerable when logistic routes are blocked, manufacturing capacities are limited or customs are under strain, 

as has been seen in the last few years. The principle of just-in-time delivery requires a coordinated production 

and material flow along the entire supply chain. Challenges in the supply chain can lead to various 

disruptions, so that certain manufacturing jobs must be changed, postponed or cancelled, which will then 

impact supply down the line up to the consumer. Nowadays, many planning and control processes in the 

event of a disturbance are based on the procedural knowledge of employees and undertaken manually by 

those. The procedures to mitigate the negative effects of disturbances are often quite complex and time-

critical, making disturbance management highly challenging. 

In this paper, we introduce a real-world use case where we automate the–currently manual–reschedule of a 

production plan containing unavailable jobs. First, we analyse existing literature regarding the classification 

of disturbances encountered in similar use cases. We show how we automate existing manual disturbance 

management and argue that employing stochastic optimization allows us to not only promote future jobs but 

to on-the-fly create entirely new plans that are optimized regarding throughput, energy consumption, 

material waste and operator productivity. Building on this routine, we propose to create a Bayesian estimator 

to determine the probabilities of delivery times whose predictions we can then reintegrate into our optimizer 

to create less fragile schedules. Overall, the goals of this approach are to increase robustness in production 

planning and control. 
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1. Introduction 

Over the last decades, companies have been faced with challenges in a competitive environment 

characterised by globalisation, increasing product variety and growing market dynamics [1]. These new 

market requirements force them to focus on their essential core competences and to outsource other 

activities. In this context, the management of logistic processes in particular has become considerably more 

important in recent years [2]. Logistic objectives such as delivery times, on-time delivery, service level, 

throughput times, inventories, capacity utilisation and delay costs are critical to the success of an enterprise 

[3]. Due to the increasing inter-company cooperations e.g. as a result of outsourcing, logistics have to deal 

more and more with cross-company delivery problems, leading to new challenges and the discipline of 

supply chain management. 
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Changing customer demands, a dynamic environment and quality problems are requiring companies to adapt 

themselves and their business and manufacturing processes faster to new boundary conditions leading to 

reschedules in supply as well as to turbulences along the entire value chain and supplier networks [4]. This 

leads to disturbances on various levels, not least due to the high complexity of such systems [2]. Disturbances 

occur both at the management level and at the level of production and assembly processes [5]. 

To counter disturbances at production level, it is necessary to optimally synchronize production planning 

and control. The main task of production planning and control is the coordination of all production and 

assembly processes to achieve the logistical targets [6]. In production planning, the current production plan 

is established for a certain planning time fence. All material and resource requirements are derived from that. 

Production control regulates the execution of the planned schedule, accounting for all unavoidable 

disturbances such as employee absences, machine disruptions, delivery delays or quality issues and 

production losses [7–9]. A detailed overview of several classification systems for production disturbances is 

presented in section 2.1. In section 3, we give an overview over various approaches in literature towards 

handling disturbances automatically. 

In this paper, we present a real-world use case of a large multinational company (cf. section 4), in which a 

production plan, which covers a fixed horizon of ten days, is devaluated by material flow disturbances. The 

disturbance makes the production of one or more jobs within the fixed planning horizon impossible, so the 

production plan has to be changed. The main causes of these disturbances are short-term delivery problems 

or failures, material discrepancies in the enterprise resource planning (ERP) system or breakdowns in the 

company's own preproduction. The potential reasons for these are manifold and less relevant for this work 

as we focus on resolving the effect rather than preventing disturbances. Nor could the disturbance be solved 

at the logistical level, since e.g. a larger warehouse is not a realistic option for modern cost-sensitive 

operations. Given the existing options, in this case disturbances can only be reacted to at the level of 

production planning and control. 

Recent studies show that, especially in production planning and control, many activities are based on the 

experience and process knowledge of the responsible employees [10]. Part of these manual steps are e.g. 

rescheduling in the event of a malfunction as well as the identification and selection of suitable strategies to 

resolve the situation [11]. In our use case, the production plan was fixed completely manually so far. 

Manual disturbance management is often quite complex, time-consuming and relies on the procedural 

knowledge of employees. In this paper, we present our own approach for automating and subsequently 

improving this process with various techniques from the wider field of artificial intelligence (cf. section 5). 

We start by replicating the existing manual processes in software, albeit substantially faster. We discuss 

that–with the help of stochastic optimisation–we are able to solve the problem more effectively by foregoing 

a mere repositioning of scheduled jobs to on-the-fly create completely new production plans for the fixed 

horizon that are optimized in terms of throughput, energy consumption, material waste, and operator 

productivity. In a next step (cf. section 6), we propose to not only react to disturbances that have already 

occurred, but also to predict or prevent them by generating new alternative solutions (e.g. finding new 

suppliers, readjusting slightly different parts or simply fulfilling different orders first). For this, we discuss 

the use of Bayesian Neural Networks. 

2. Production disturbances and robustness 

In this section, based on a detailed literature review, several classification systems of production disturbances 

are provided. We then introduce the term "robustness" both in general and in the context of production 

systems, as this is a formalisation of the properties of systems that can deal with such disturbances. 

2.1.  Production disturbances 

Production disturbances are unexpected and undesirable events that cause a production system not to 

function as planned. Equipment or software failures, media errors, waiting times for materials, subsequent 

interruptions in the production flow of stations/machines, lack of personnel, loss of speed, scrap or quality 
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problems, planning errors and adjustments are factors that are often classified as disturbances by 

manufacturing companies. The occurrence of disturbances directly affects the productivity of production 

systems, as more time and resources than planned are required to produce the same outcome. Reducing 

production disturbances contributes to stable and more reliable production systems and is critical to 

maintaining the competitiveness of manufacturing companies [12]. Literature offers a wide range of 

disturbance classifications. The main classification systems are summarised in Table 1. 

Table 1: An overview of classification systems for disturbances found in literature 

Classification 
basis 

References Categories Explanation and/or examples 

Manner of 
occurrence [13] 

Unpredictable  
Unexpected, appears suddenly during execution of production processes, abrupt 
changes in the expected and planned production specifications, e.g. urgent order, 
modification of order, machine breakdown 

Predictable 
Can be predicted during execution of production processes due to undesirable 
situations caused by deviations from expected and planned requirements or deviations 
from equipment specifications, e.g. equipment breakdown 

Origin of 
disturbances [14,15] 

Internal 
Undesirable events triggered by resources and/or operations of production systems, 
e.g. machine breakdown, unavailability of labour, quality inspection, layout re-
configuration 

External 

Undesirable events caused by the environment in which the production system is 
evolving, e.g. disturbances due to the company’s relationship with its customers or 
suppliers (e.g. delivery difficulties of raw materials in terms of time, quality and price, 
delay, cancellation, introduction of rush orders) 

Type of 
affected 
entities 

[16] 
Resources Machine breakdowns, change or lack of resources (raw materials or tools) 
Operations or work 
order Overflow and change request (increase/decrease in operating times) 

[17] 
Production 

Each class is divided into inventory, capacity, and dual/multiple suppliers’ issues Supply 
Transportation 

[18,19] 

Supply  Delays, quality problems 
Resources Machine breakdown, tool breakage, labour problems 
Production Scraps management, quality problems, production time, product reject 
Customers Rush orders, order modification, order cancelation 

Nature of 
effect caused 
to aggressed 
production 
system entities 

[20] 

Unavailability of 
aggressed 
entity/relation  

Sudden (unpredictable) event that disables an entity in production system, entity 
switches from Normal functioning mode to the Stop mode, or disturbance that has 
attacked an interentities relation causes the impossibility of interaction or 
communication between the two entities 

Degradation of 
aggressed 
entity/relation 

Corresponds to an event that causes the alteration or non-satisfaction of one or more 
properties/requirements of a production system entity, aggressed entity becomes 
unable to perform its function according to pre-set objectives 

Causes of 
disturbances [21] 

Component failures Breakdowns in sensors and mechanical limit switches 

Design 

Disturbances which would have been avoided had the design been conceived 
differently, e.g. flaws in software design, mechanical blocking due to software design, 
collisions because of poor coordination of system component functions, materials 
inadequately chosen given a robot’s loading capacity, and errors caused by assembling 
system parts 

Human error Includes those errors committed by the operators who run the system 

External Factors 
Likely to interfere with organization performance, e.g. delays in deliveries, delays in 
testing machinery and equipment, and mistakes in installation of machinery and 
equipment 

As shown in Table 1, the individual categories always depend on different characteristics of the disturbances. 

Furthermore, some classification systems map disturbances along the entire supply chain, while others only 

focus on the disturbances within a production system. 

In addition, disturbances that have occurred can be differentiated according to their temporal impact, which 

can range from hours to weeks. Short-term disturbances are abrupt, suddenly occurring and lead to strong 

deviations between planning and realisation. Examples are machine breakdowns or order modifications. 

Medium-term disturbances are consequential errors from disturbances in the short-term range or due to 

inaccurate representations of the real plant and order data. The modification of the production plan or the 

use of non-adapted control strategies usually cause long-term disturbances [22]. 

67



According to [23], disturbances can be divided into deterministic and stochastic disturbances. Deterministic 

disturbances interrupt the production process in a planned manner, such as preventive and planned 

maintenance. Stochastic disturbances cause unanticipated interruptions in production systems.  

Along with these, other disturbance categories can be found, such as primary and secondary disturbances 

[24]. In [15,21,25–31] further classification systems can be found. Some of these are along the lines of those 

shown in Table 1, some are an extension by adding new classes, some aim at specific levels of production 

or are sector-specific. Furthermore, our research has shown that there is no existing disturbance classification 

based on the impact on production planning or production control. 

2.2.  Robustness 

Different meanings of the term "robustness" exist in literature depending on the context. In general, 

robustness describes the ability of a system to maintain its functionality in reference to changes of internal 

or external variables. Robustness is reflected in the degree to which a system is insensitive to effects that 

were not explicitly considered in its design [32]. Tomforde et al. [32] distinguish between active and passive 

robustness and present a quantification method to measure robustness. The term "robust" usually refers to a 

fundamental design concept that allows the system to work correctly under a wide range of disturbances. In 

the context of production, robustness refers to manufacturing tolerances, scheduling systems or production 

processes. The robustness of a production plan describes its ability to be executable and achieve satisfactory 

results despite changing environmental conditions and disturbances typical in production systems. A 

production process is robust if it is insensitive to undesirable influencing variables, if production takes place 

on schedule and if quality is met while maintaining the planned economic effort [33,34]. 

3. Disturbance management in literature 

Production planning and control has gradually shifted from low level internal decision making to 

incorporating the entire supply chain [35]. Combined with JIT production this raises the need of supply chain 

risk management [36]. Existing research in this area can be split into two main sectors, reactive, where 

disturbances are handled after they occurred (cf. section 5), and proactive, where potential future risks are 

identified (cf. section 6). 

Li et al. [37] proposed a framework which employs machine learning techniques to identify when 

rescheduling is needed before performing optimization and tested the approach on simulated use cases. 

Starting from an existing schedule with unavailable jobs Wang et al. [38] use a branch-and-price algorithm 

to find an alternative to the original schedule while allowing to fully reject single jobs. Bierwirth and Mattfeld 

[39] employed genetic algorithms for a similar non-deterministic and dynamic job shop problem, where 

–instead of disturbances removing existing jobs–newly arriving jobs require a rescheduling. 

On the proactive side, the possibility of using higher statistics to predict possible supply risks has been 

explored by several authors, such as Wang et al. [40] or He et al. [41]. Brintrup et al. [42] performed an 

analysis of which features prove useful to predict supply disturbances while highlighting the importance of 

domain knowledge for this process. They also built a point estimate prediction system for estimating delivery 

probabilities. Baryannis et al. [43] explored the performance trade-offs necessary to use more explainable 

models like decision trees. Recently, Hosseini and Ivanov [44] employed Bayesian Neural Networks to 

model supply chain disruptions caused by a pandemic. 

4.  Case study 

In this paper, we present a real-world case study from a multinational manufacturing company. Our use case 

involves large-scale production using several parallel assembly lines. A few variants of a basic product are 

produced on one assembly line with a constant cycle time each. This is ensured by the number of employees 

per assembly line: If a product has more features, i.e. more assembly steps, more employees are used and 

vice versa. In assembly, work is done in two-shift operation. The number of employees is highest at the 
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beginning of each shift and decreases over the course of the shift. This means that at the beginning of each 

shift, the product variants with the most features are processed and the less complex variants are assembled 

at the end of the shift. This is the strictest form of flow production called continuous flow production, which 

is bound both spatially and temporally. It is characterised by a continuous transport flow on a conveyor belt 

[45]. 

For this case study, we only consider disturbances linked to material availability. The procurement of raw 

and auxiliary materials or semifinished products is synchronized with the production plan by using the just-

in-time principle (JIT). There is a fixed production plan for the next ten days, which is determined with the 

help of a scheduling optimizer. On each new day, the plan is extended by one day through another scheduling 

run (rolling horizon production planning). We consider a disturbance in material availability that results in 

a planned job that cannot be produced and lies within the fixed planning horizon. Following [14], this kind 

of disturbance can have both internal and external triggers. It can occur at short notice if, e.g. during the 

setup of one or more workstations on the assembly line, it is discovered that a material is missing for which 

there should be stock according to the ERP system (internal disturbance). The discrepancy in material 

availability can also become apparent in the medium term due to delivery problems by the supplier (external 

disturbance) or due to a breakdown in the company's own preproduction (internal disturbance). However, 

both can also occur at short notice. 

As described above, disturbance management regarding an occurred and not prevented disturbance is carried 

out completely manually by a production planner. Depending on the point of occurrence of the disturbance, 

the production plan must be adjusted in the short term or changed in the medium term. The planner executes 

the following process. 

 

Figure 1: Process of manual fixing of a production plan in case of a disturbance in material availability 

As shown in Figure 1, the rescheduling of the production plan is a step-by-step approach. Each step has 

further sub-processes in which the planner checks the availability of a sufficient number of employees, of 

critical parts of the bill of materials, of short range, design and finishing parts as well as preproduction 

capacities. If there is more than one possible solution, then the option with the earliest demand in the market 

is selected. The aim of rescheduling is to optimally close gaps in the production plan in order to maintain 

adherence to schedules and to prevent or minimise production losses. Another crucial factor is to avoid that 

workers are not busy or have to be sent home. 

5. Improving reactive disturbance handling 

The current disturbance handling process of the case study, described in section 4, is primarily carried out 

manually. Due to the time and staff required to execute certain production jobs and some strict requirements, 

as not to cause a break in production, only very few alternative viable production plans exist. These might 

not be optimal and currently primarily selected because they fulfil the constraints and do not lose out on 
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production capacity. Typically, the number of viable solutions is in the low hundreds. However, highly 

trained and experienced planners know which jobs are likely suited from their grasp at the overall picture 

and therefore do not need to evaluate too many solutions following the time-intensive process of Figure 1. 

In a first step, we thus automate important parts of the process to speed up and improve disturbance handling. 

Using data about each product, such as material requirements, the number of employees needed and current 

market demand, all of which is readily available in the existing ERP systems, we can find the best alternative 

for replacing the disturbed job in the original production plan. Additionally, instead of simply using the first 

possible solution like in the manual step-by-step process, we can perform an exhaustive search evaluating 

all viable solutions, therefore, achieving human-competitive or better results. A description of the cost 

function used to evaluate an individual solution can be found in section 5.1. The algorithm can perform all 

the previously manual work, although we allow the expert user to choose between equally good or similar 

plans in the hope, they have a better grasp at the big picture and select even more smartly from the possible 

options. However, currently the available options only allow the swap of two jobs or the expanse of one. We 

often encounter that other operations or a different order might provide a better overall plan. Section 5.2 

describes how stochastic optimization can be used to create entirely new schedules for the fixed planning 

horizon while still fulfilling the known demand and utilizing the existing and expected parts. With the 

described capabilities of automatically fixing disturbances, we can consider this scheduling/control 

mechanism to be weakly robust, returning the system into an acceptance state. 

5.1.  Comparing production plan costs 

To evaluate and compare different alternatives a sensible cost function is needed: 

!(#) = ∑ '(#!) + )(#!) + *(#!) + +(#!)"
!  (1) 

where # ∈ ℝ",$ is a production plan, !:ℝ",$ → ℝ and ',), *, +:ℝ$ → ℝ. The cost function considers 

workers ('), material ()), setup (*) and demand (+), all of which individually inflict costs on a job. We 

optimize under the constraint that jobs in a plan have a decreasing demand in the number of workers over 

the course of a shift due to the fixed cycle times discussed in section 4. If a job would require more workers 

than a previous one or less workers than the next one, we assume that it should inflict a higher cost due to 

idling some workers for the duration of this job. Similarly, a job's usage of material that would be needed 

for another, later job within the fixed horizon (as not enough material is available to perform both despite 

expected deliveries arriving on time) should be punished. Switching between jobs causes setup costs due to 

changes in the machine configurations, transporting parts to stations etc. This is typically constant for a type 

of job, however, the less setup, the more production can take place overall. Lastly, we should always account 

for the actual demand. Some products might be needed earlier or later, in larger quantities or requested by 

higher priority customers. The parameters of those functions are largely application-specific and in our 

current implementation they are guided by expert knowledge. 

Fully automated and unexplained decisions can often lead to distrust of computerized system by the 

employees using them, especially when they disagree with the final decision [46,47]. In the current setup, 

we involve the responsible stakeholders in the decision making by presenting the top solutions together with 

their itemized cost and allowing them to make their favourite pick. Together with historical information and 

expert statements about the parametrizations of those cost functions, this increases stakeholder’s trust in the 

solution quality. 

5.2.  Optimizing the production plan 

As a next step, we expand the algorithmic capabilities to not only fix the plan but create a new optimal 

schedule: Instead of simply filling the timeslot of a single job that has become impossible due to a 

disturbance, we propose to reoptimize (while accounting for schedule nervousness) the entire production 

plan within the fixed horizon, allowing the reordering of jobs, expansion of jobs, as well as the addition of 

new jobs or the removal of jobs not affected by the disturbance. In addition to these new options in the 
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assembly line, adjusting the company’s preproduction plan as well as utilizing options for short-term 

deliveries could make further jobs available. While the current approach allows for evaluating all constraint-

satisfying solutions in less than a second, optimizing the entire plan gives a vastly increased number of 

options for which an exhaustive search is no longer feasible for realistic real-world scenarios. For this reason, 

we deploy stochastic optimization methods such as the well-known genetic algorithm (GA), including 

specialised operators as in [48], utilizing the previously defined single-objective cost function. However, 

treating the costs multi-objectively or adding additional factors such as energy usage, material waste or 

operator idling is straight forward. With these powerful black-box optimizers, the production plan can not 

only be (hot-)fixed but improved. As a result, the production planning process will make another step 

towards stronger robustness and self-optimization. New solutions will likely exhibit more differences 

between the original and optimized production plan which could lead to distrust. However, with the 

explanations based on cost functions and expert information, stakeholders are deeply informed about the 

inner workings of the decision-making process. We plan to further explore explainability requirements and 

user needs in the future. Additionally, this optimizer could be expanded with additional data sources 

pertaining to uncertainties, i.e. of scheduled deliveries, in order to increase the robustness of the production 

plan by creating schedules that include jobs less likely to fail. 

6.  Estimating delivery uncertainties 

While the fast handling of a disturbance is an important aspect of production planning and control, the actual 

goal is to avoid as many of these disturbances as possible. Each disturbance and fixing of the plan necessarily 

mean that a specific product is not manufactured. This might in turn lead to customer orders not to be fulfilled 

on time, or down-the-line production seeing further disturbances. We propose that our reactive approach at 

increasing the robustness of the production should be combined with a proactive component. If the likely 

occurrence of a disturbance was known in advance there could be two possible actions to prevent it from 

disrupting the production plan. Firstly, if it is known early enough, the initial scheduling could create a plan 

that is not affected by it. A second option would be to try to counteract the disturbance, e.g. by procuring 

parts from another supplier. The increased time available to react or proactively respond would improve 

overall planning agility. 

One major source of disturbances we identified in section 2.1 is the unavailability of parts or raw materials, 

often caused by late or cancelled deliveries. In JIT production simply reacting once such a disturbance has 

already occurred leaves very little time for fixing the out-dated production plan. Even when using the system 

described in section 5 an earlier notice can help at creating more robust alternatives as the fitness landscape 

can be explored better or human intervention might make other parts in the fixed planning horizon available. 

For this reason, we propose to use statistical methods for estimating the probability distributions of delivery 

dates. With these models the probability of the delivery occurring between now and the desired date equals 

the integral under the distribution. This presents a great advantage over traditional point estimate methods 

that only tell us whether a delivery might occur at a specific time and date without any information about 

other points in time. 

If a delivery would be predicted as likely to be late some manual actions could be performed. This includes 

simply checking back with the supplier, looking for alternative suppliers that can provide the required 

components on short notice, or using different, but compatible, materials/parts among other possible actions. 

While these actions can help at stabilising or saving a schedule, our focus for this paper lies on utilizing this 

information within our scheduling process, providing both alternative schedules as well as scheduling jobs 

in an order where they are more likely to be executable, i.e. by placing them at a time where they are likely 

to be available. 

We plan to employ Bayesian Neural Networks, or other similar and potentially less complex methods 

providing useful posterior distributions, to estimate these delivery uncertainties or more specifically, their 

probabilities over time. For this we are collecting data of past deliveries, including ones that were on time, 

late or cancelled completely. As the usefulness of such data is highly dependent on the meaningfulness of 
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its features, we are currently in the process of analysing which features contain useful information. One 

avenue we pursue is to probe scheduling and purchasing experts into how they determine a likely missed 

delivery in their own day-to-day work. Additionally, we analyse all available data with statistical methods 

such as feature importance analysis and variance inflation scoring. 

7.  Conclusion 

The organisation in production networks and the increased use of JIT are forcing companies to coordinate 

their material flows along their supply chain. As shown, such complex production systems are vulnerable to 

a variety of disturbances. A key factor in dealing with production disturbances is a more robust production 

planning and control. In this paper, we have provided a comprehensive literature review on production 

disturbances and how they can be classified. We also found that there is currently no classification that 

distinguishes disturbances in terms of their impact on production planning and control. Thus, we plan on 

combining the presented classification approaches and develop a new concept to classify disturbances on 

planning and control level in future work. 

We also presented a case study where the production plan of a multinational company becomes impossible 

due to disturbance in material availability. To automate the rescheduling of such plans we developed an 

algorithmic approach with several expansion stages. In the first stage, we automated the rescheduling steps, 

which are currently carried out completely manually, by optimising a weighted cost function. For the next 

stage, we discussed the usefulness of genetic algorithms, with the help of which it is possible not only to 

close gaps in production plans by simple measures, but also to create completely new production plans for 

the fixed planning horizon that are optimized with regard to further criteria. Most importantly, this 

scheduling solution allows more degrees of freedom than the automated user approach. As we described, 

this is a form of reactive disturbance management leading to more robust production systems. In a further 

expansion stage, we want to proactively handle disturbances in material availability or, at least, better 

identify potential future risks. To this end, we proposed the use of Bayesian machine learning to estimate 

the probability distributions of a delivery over time. This knowledge, in turn, can be integrated into our 

scheduling optimizer, which would lead to resilient and less vulnerable production plans and thus to an 

increased robustness of the whole production system. 

To summarize, we found that despite a large variety of existing classification systems the case of production 

planning and control can still not be fully mapped. Furthermore, we were able to implement an artificial 

intelligence–based algorithmic automation achieving human competitive results in reactive handling of 

disturbances and proposed a proactive disturbance handling approach based on machine learned predictions. 
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