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As more land is altered by human activity and more species become at risk of
extinction, it is essential that we understand the requirements for conserving
threatened species across human-modified landscapes. Owing to their rarity
and often sparse distributions, threatened species can be difficult to study
and efficient methods to sample them across wide temporal and spatial
scales have been lacking. Passive acoustic monitoring (PAM) is increasingly
recognized as an efficient method for collecting data on vocal species; however,
the development of automated species detectors required to analyse large
amounts of acoustic data is not keeping pace. Here, we collected 35 805 h of
acoustic data across 341 sites in a region over 1000 km2 to show that PAM,
together with a newly developed automated detector, is able to successfully
detect the endangered Geoffroy’s spider monkey (Ateles geoffroyi), allowing
us to show that Geoffroy’s spider monkey was absent below a threshold of
80% forest cover andwithin 1 kmof primary paved roads and occurred equally
in old growth and secondary forests.Wediscuss how thismethodology circum-
vents many of the existing issues in traditional sampling methods and can be
highly successful in the study of vocally rare or threatened species. Our results
provide tools and knowledge for setting targets and developing conservation
strategies for the protection of Geoffroy’s spider monkey.
1. Introduction
The number of species threatened with extinction is increasing drastically.
A recent report by the Intergovernmental Science-Policy Platform on Biodiversity
and Ecosystem Services (IPBES) found that over 1 million species are now under
threat, which impacts the ecosystems and processes they support [1]. Monitoring
and evaluating the response of rare and threatened species to anthropogenic
change is essential for effective management and improved decision making
[2–4]. Despite decades of research, we still lack the evidence to effectively
conserve the world’s primates [5].

Of the 504 species of primates, 60% are threatenedwith extinction and 75%are
declining as a result of human disturbance [6]. Primates can be difficult to study
due to their affinity for residing in the canopy [7,8], reduced population sizes,
sparse distributions and often elusive nature [9,10]. Data related to species
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ecology and conservation requirements often involve wide
spatial and temporal scales [9–11], which can be constrained
by practical and economic challenges [11,12]. For example,
the most common approach, the line transect, requires
extensive person power and establishing walking transects
through dense forests remains a challenge, hindering the abil-
ity to carry out large-scale or long-term studies, which are
considered key for understanding how to effectively conserve
primates [5,12]. Current methods also require the researcher
to be always present, potentially leading to biased behaviour
and results [13,14]. Additionally, there is a risk of missing
detections if both observers and animals do not happen to
cross paths in a given space at the precise time of the survey.
More recently camera trapping has been used to study
primates [15]. Camera trapping can be more effective at identi-
fying individuals, however, the detection space for camera
trapping (e.g. a couple of metres) is much more limited when
compared to acoustic monitors (e.g. hundreds of metres) and
setting camera traps in the canopy is logistically challenging
and expensive. The emerging field of passive acoustic monitor-
ing (PAM) can overcome these constraints for vocally active
groups such as primates. Acoustic sensors can be deployed
in the field for long periods of time from just a few days,
[11,16] to several months [17] and monitor continuously, with-
out the need for the researcher to be present. In the absence of
networked sensors, deployment time is only limited by battery
and memory card capacity. This allows for the potential to
increase the temporal extent of a study, reduce disturbance
on the individuals, and increase the chance of detecting rare
or elusive species [13,18,19]. The reduction of person-power
required in the field, wide detection spaces (albeit species
dependant due to differences in amplitude and frequency of
calls), increased feasibility in challenging terrain and the
increasing affordability of sensors also offers the ability to
study across greater spatial scales, enabling researchers to
understand the impacts of anthropogenic disturbance across
much larger areas [4,20]. PAM has already been shown to be
effective in the study of vocally rare species of birds [11,16],
mammals [14,19] and anurans [21]. PAM offers many of the
same benefits as camera trapping, however, PAM can be up
to five times more effective at detecting individuals than
camera traps [17].

While PAMdramatically reduces the burden to collect field
data, the methods for extracting information from the record-
ings poses significant challenges. Large acoustic data sets are
time consuming to analyse manually, requiring automated
detection and classification systems to extract sounds [18,19].
The development of these tools requires specialist skills and
large labelled training datasets, which are difficult to collate,
especially for rare species [18,22]. Hence the creation of auto-
mated models for detecting species is recognized as a major
bottleneck in the field, especially in the tropics, since most
models have been created for temperate regions [18]. The
lack of specific classification tools introduces additional
concerns, since using pre-trained models on different environ-
ments might introduce acoustic domain mismatch concerns
[23]. Automated analysis tools for primates have so far largely
focused on African and Asian species [19,22,24–29], with only
onemodel for aNeotropical species created based on calls from
a small group of captive marmosets, designed for use in the
medical field [30]. Classifiers for new world primates across
Latin America are needed if we are to use PAM to study
these species at large scales.
Deep learning (DL) is a machine learning (ML) discipline
that has been revolutionary in its success in modelling high-
complexity data, including in the domain of computational
bioacoustics [31], in which there has been an increase in
predictive performance compared to more traditional ML
approaches. We opted to use DL for its capability in modelling
PAM data, inspired by previous studies, such as the dis-
crimination among calls of different primates recorded in a
wildlife sanctuary [32], and the detection of Bornean [33] and
Hainan [22] gibbon calls, as well as calls by Geoffroy’s spider
monkey (Ateles geoffroyi) [34] using PAM data. Here, we use
the deep convolutional model proposed in [34] for acoustic
call detection.

Geoffroy’s spider monkey are found from south-eastern
Mexico to north-western Colombia [35]. They are classified
by the IUCN as Endangered and the population is predicted
to decline by 50% over a 45-year period [36]. This species is a
large-bodied primate with a home range of up to 4 km2, a fru-
givorous diet and requirement for large mature trees as
sleeping sites [7,8,37–40]. Due to this, they require large
areas of undisturbed mature forest and are therefore particu-
larly sensitive to forest loss and fragmentation [41,42]. There
have been several studies investigating how Geoffroy’s spider
monkey responds to anthropogenic change, revealing contra-
dictory results regarding their ability to tolerate land use
change [7,8,15,37,39,43–49]. The effects of human infrastruc-
ture have gone largely unstudied, with only one study
revealing avoidance of habitat close to roads and an effect
of canopy gap on crossing [50] and one showing human den-
sity to have no effect on occurrence [43]. A recent study used
PAM to study Geoffroy’s spider monkey in Mexico, however,
detection rates were just 32%, possibly because the authors
used cluster analysis rather than an automated classifier,
which separates data points into similar clusters [51].
Although a simpler and more rapid approach, cluster analy-
sis can suffer from issues related to the positioning of data in
relation to other points and not necessarily the data itself, and
is therefore often used when preparing the data for more
intensive analysis, not as the final approach.

The aim of this study is to assess if the application of
PAM and a recently developed automated detection and
classification system for the spider monkey call, is effective at
providing informative data on Geoffroy’s spider monkey at
341 sites across a region spanning 1093 km2 in the Osa Penin-
sula, Costa Rica. We use presence and absence to assess how
this endangered primate responds to habitat loss and human
influence across a gradient of disturbance. Specifically,
we answer the following questions: (1) is PAM effective in
studying Geoffroy’s spider monkey across large spatial
scales? (2) How does land use change, forest cover and density
of roads and human settlements affect the presence of the
spider monkey?
2. Methods
(a) Study site
Our study area covers approximately 1000 km2 in the South
Pacific coast of Costa Rica. The terrain is generally low altitude,
with a maximum elevation of 792 m. Mean annual rainfall
ranges from 3000–6500 mm and mean yearly temperature is
27°C, with high levels of humidity throughout the year. There
are two distinct seasons, wet and dry season, with the highest



palm plantation

mangrove forest

water

pasture

urban/bare ground

old growth forest

secondary forest

wetland

teak plantation

audio locations

0 5 10 20 km

Figure 1. Land use map of the Osa Peninsula. Map showing the nine land use categories in the region, created at a scale of 5 × 5 m using Landsat 5 Thematic
Mapper (TM) and Landsat 8 Operational Land Imager (OLI) [53]. White circles represent the sample sites where each audio recorder was placed.
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rainfall occurring September through December [52]. The penin-
sula contains the last remnants of tropical broadleaf evergreen
lowland rainforest on the Central American Pacific [52],
embedded within a mosaic of pasture, plantations and urban
centres (figure 1). Managed under the Area de Conservación
Osa (ACOSA), the Osa Peninsula contains three core protected
areas, Piedras Blancas and Corcovado National Parks and a
Ramsar wetland site, the Terreba-Sierpe Wetlands. There are
also nine smaller private and public wildlife refuges and the
Golfo Dulce Forest Reserve [54].

(b) Sampling design
Habitat type at each site was calculated using land use maps
provided by NASA, created at a scale of 5 × 5 m using Landsat 5
Thematic Mapper (TM) and Landsat 8 Operational Land Imager
(OLI) [53] (figure 1). The map was classified into nine land use
categories, with recordings for this study taken in old growth
and secondary forests, palm and teak plantations, mangroves
and grassland sites (figure 1). We digitized information on roads
and buildings across the study site by manually annotating all pri-
mary and secondary roads and buildings in the region using
satellite imagery within ArcGIS software.

We used a stratified sampling approach to ensure a representa-
tive number of sampling sites were chosen across each land use
category. We calculated the percentage cover of each land use cat-
egory across the region and placed a representative number of
recorders in each category (see electronic supplementary material,
S1.1, table S1). To guarantee even coverage of the study region, we
selected sampling locations in a uniform distribution across the
Osa Peninsula. Due to access issues, it was not possible to
randomly choose sampling locations in all areas, therefore, to
ensure independence among sampling locations, the first recorder
in each areawas placed bywalking 500 m in a randomdirection. A
minimum distance of 500 mwas used between sampling locations
to ensure independent sampling based on an average spider
monkey home range size of 80 ha, which translates to a radius of
500 m [51]. We tried to avoid using trails to reduce bias, however,
where this was not possible, devices were placed a minimum dis-
tance of 200 m perpendicular to a trail; as indicated by GPS. Non-
audio data were collected for each point including GPS location,
elevation and land use, to verify data from NASA land use maps
[53]. Recording devices were also placed at a minimum distance
of 200 m from habitat boundaries, to be confident that calls were
from within the classified habitat. Where hotels and houses were
present, we placed recorders at a minimum distance of 50 m
from buildings to respect the privacy of local residents and
guests and to minimize the effect of buildings on detection. Data
were collected at 341 sites for 15 h per day and for 7 days, totalling
105 h per site and a total of 35 805 h of recordings. Twenty-six
sites were not included in the analysis due to malfunctioning of
recording equipment leading to less than 7 days of recordings.
Recordings were obtained using Audio Moth devices (Open
Acoustics Devices, UK). Recorders were set up for 7 consecutive
days to increase the chances of detecting the spider monkeys if
they were present and due to limitations in the capacity of the
memory cards. The devices were set to record on a schedule of
05.00–09.30, 14.00–18.30 and 21.00–03.00, to guarantee data were
collected at key periods of spider monkey activity [55]. We chose
to record during the night as the spider monkey has been found
to be active at night [15], and given that primates have been
found to change their vocal communication in the presence of
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increased anthropogenic sound [56], it was important to
capture periods where human activity is likely to be reduced. We
recorded constantly over the recording schedule at a sample rate
of 48 000 kHz, 2.5 times higher than themaximum call of Geoffroy’s
spider monkey. Sampling was conducted within the dry season
(December–August) due to restricted access to many areas of the
study site during the wet season. We installed acoustic recorders
in six of the nine land use categories: old growth and secondary
forest, mangrove forest, grassland, palm and teak plantations.

(c) Automated system for signal classification
Animals often use several different calls for communication;
however, it was not feasible to study all 13 calls of Geoffroy’s
spider monkey [57]. During six weeks of recording in areas
where the species was known to be present, we found that
over 80% of recorded calls were the ‘whinny’ and every calling
period contained several examples of this call type. The
whinny represents general communication related to feeding
and movement [58]. This call was therefore chosen for use in
the classification algorithm [34].

(i) Residual convolutional neural network
Deep convolutional neural networks learn from large amounts of
annotated data to make the desired predictions, by having each
convolutional layer learn and perform a progressively more com-
plex nonlinear feature transformation, rather than requiring
major prior feature engineering [59]. They are designed to pro-
cess two-dimensional data, like images, or, as in our case,
spectro-temporal audio representations like the log Mel spectro-
gram [60]. The final process of classification provides a set of
confidence scores about how likely the sound is to belong to a
particular class [59].

The classifier used in this study for whinny detection was
first proposed in [34] as an improvement upon a deep, convolu-
tion-based, neural network architecture for acoustic event
detection [61]. This improvement was achieved via the addition
of attention-like mechanisms [62] that learn how to apply impor-
tance weights to the also learnt features as described in detail in
[34]. Specifically, the model uses a squeeze-and-excitation mech-
anism [62] after each convolutional layer to reweigh the outputs
of the convolutional filters, as well as a multiple-head attention
mechanism [63] for pooling the sequential audio representation
into a single, fixed vector representation.

We follow the optimization approach of [34] for training the
model, using the same dataset partitions which are site-indepen-
dent in order to make sure that the model does not depend on
learning site-dependent acoustic characteristics in the validation
process. The model was implemented using the Tensorflow
(v. 1.15) Python library [64]. The model was trained on data
obtained from 13 sites and recorders. We manually listened to
600 h of acoustic data from these sites and isolated 591 examples
of the target sound in a total of 366 sound files. Data for creating
the training dataset was taken in old growth and secondary for-
ests. We could not train the model on data from other land use
types as we did not detect the spider monkey in other land use
types during out pilot study, however some recording sites
were bordering more disturbed land use types such as palm
and teak plantations.

(ii) Model validation
Here we report recall and precision of the test partition, which
constitutes data from three sites, in an unweighted average
manner: this means we average the respective values for the
positive and negative class. Model results showed that
unweighted average recall was 75% when a confidence threshold
of 50% was set. As we were using a semi-automated approach,
we manually checked all returned positives, and then used
these results to build up a database of calls. Precision was a
little lower at 53%, indicating that the model was making some
incorrect classifications, i.e. false positives and false negatives.
The F1 score was 62%, which takes into account precision and
recall, providing an overall estimate of model accuracy. This per-
formance profile, with high recall, even at the cost of some
precision, is appropriate for our purposes since we are using a
semi-automated approach.

Whereas other DL bioacoustics studies on primates have
achieved higher unweighted average recall on their respective
datasets, we believe our seemingly comparatively lower perform-
ance is justified for two reasons. Firstly, compared to the study
performed by Pellegrini [32] on recordings from fenced areas
in a wildlife sanctuary, our data are truly collected in the wild,
meaning that there is a greater variance in both the types of
potential calls of other animals that can be present, and the
potential distance of the animals from the recording device.
This means that our dataset contains some hard positive
samples, where the call is faintly audible, as well as negative
samples in which other calls are audible, but are either from
other species, or are not specifically the whinny (see electronic
supplementary material S1.7. (figure 2) for example spectro-
grams). Secondly, compared to the gibbon-focused studies in
[33] and [22], we have fewer positive examples for training,
which impacts the performance of DL techniques [31]. That
being said, even though studies like Dufourq et al. [22] mention
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that in such cases we should typically use smaller and shallower
model architectures in order to avoid overfitting on the limited
training set, Rizos et al. [34] instead showed that it was the
deeper and more complex models that achieved the highest per-
formance (compared to models like the ones used in [22,33]),
including the one we use in this study.

In order to investigate the performance of this model in further
detail, we also report its performance on two subsets of the test
partition where we knew how many positive calls were contained
in the files, tested by one team member experienced in detecting
and classifying the calls of A. geoffroyi. This information can be
found in electronic supplementary material, S1.2. Using the best
model above, we then ran data from all 341 sites through the
model algorithm using a confidence threshold of 50%. The
model outputs all positives into .csv files and an associated
folder with clipped audio files. We listened to all returned audio
files and marked the number of true positive detections per day
per site. All analysis was carried out in Python v. 3.6 [65].

(d) Statistical analysis
(i) Explanatory variables
To correctly assess species responses to habitat changes, it is
crucial that predictors are measured at the scale at which the
species responses are strongest, known as scale of effect [66,67].
To assess the scale of effect of forest cover, primary (paved)
and secondary (unpaved) roads and buildings, we calculated
percentage forest cover (%), the density of roads (km) and the
area of buildings (km2) in a buffer around each site at intervals
between 100 and 5000m radius for forest cover and 100–1000 m
for roads and buildings (see electronic supplementary material,
S1.3. table S2). We then tested at which spatial scale the variables
had the strongest effect on the spider monkey. The range of
spatial extent chosen allowed us to investigate occurrence result-
ing from interactions at a local level (within the immediate
surroundings) and the dispersal of species, factors that are
related to habitat selection [68]. It has been demonstrated that
overlap between buffers does not increase spatial autocorrelation
in model residuals, thus not violating model assumptions [68,69].

The data showed complete separation across land use and
primary road variables, which happens when a combination of
the explanatory variables produces a perfect prediction of the
response variable [70]. This led to high standard errors, confi-
dence intervals and p-values. To account for this, a model
containing these variables was fitted separately in package
brglm2 [71] that can model complete separation. We fitted all
other models in the nlme [72] and lme4 package [73].

We included the variable month as a random effect to deter-
mine whether seasonality influenced detections. Its inclusion did
not improve model performance based on AIC and log-likelihood
results, (electronic supplementary material, S1.4. table S3), model
coefficients and results remained the same and explained variance
in presence as seasonality was low (R2 = 0.013) (electronic sup-
plementary material, S1.4. table S4). Month as an explanation of
seasonality was therefore not included in the final model.

(ii) Generalized linear models
Data for each site consisted of 7 continuous days of recordings. A
detection period constituted one 24 h period of recording, provid-
ing a 7-day detection history per site. Each day was coded as 1 or 0
for presence or absence. Site occurrencewas calculated by combin-
ing the 7-day detection histories for each site into one parameter.
Presence on 1 or more days was coded as 1 and absence on all
days was coded as 0. To determine the probability of occurrence
of the spider monkey across our study site, we used logistic
regressionwith a logit link function. Although therewas some cor-
relation between variables, it was generally low (R2 = 0.15–0.27)
with the exception of buildings and primary road variables
(R2 = 0.58) (electronic supplementary material, S1.5, figure S1),
however, these were run separately due to complete separation
in the primary road data. Primary road and land use were signifi-
cantly correlated ( p < 0.01) and hence, within package brglm2,
these variables were run separately. Bonferroni’s correction for
multiple pairwise comparisons was applied to adjust p-values
and reduce the risk of type I errors.

We ran variance partitioning analysis in package hier.part to
understand how much of the variance explained by each expla-
natory variable is individual or shared (i.e. cannot be ascribed
separately to any one variable). We used residual plots to
assess violations in model assumptions. All plots showed no
deviation from the expected distribution or heteroscedasticity
in the residuals.

(iii) Spatial autocorrelation
Due to the nested structure in the data and due to the assumption
that species distribution is expected to be limited to certain regions,
we tested for spatial autocorrelation across all generalized
linear models. We created a distanced based weight matrix using
model residuals and sampling site coordinates. Using the gstat
package [74] we then produced a variogram plot to visually deter-
mine the presence of autocorrelation. Finally, we calculated the
Moran’s I statistic in the ape package [75]. If no autocorrelation is
present, the observed autocorrelation should be close to 0 and to
the expected value.

Spatial autocorrelation was found in the residuals across all
models, violating the spatial independence assumption of
regression analysis and risking a type I error. To account for
this, we constructed a spatial auto-covariate that was included
as an additional predictor variable. For each site we calculated
a distance-weighted average of neighbouring response values,
using a minimum neighbour’s distance of 210 m, with sites
further away receiving lower weightings [76]. To test whether
the auto-covariate function reduced autocorrelation in the
residuals we used Moran’s I statistic. No autocorrelation was pre-
sent across the models when the auto-covariate function was
added (electronic supplementary material S1.6, table S5). We
also used the likelihood ratio test and AIC to determine if the
addition of an auto-covariate function improved model fit. In
cases where the auto-covariate function reduced autocorrelation
but model fit remained equal, it was still included in the model
(electronic supplementary material, S1.4, table S3)

(iv) Occupancy
We initially explored the use of occupancy analysis to control for
imperfection detection. Our null model, where we assumed that
detection probability and site occupancy were constant across
time and space and no covariates were included, showed occu-
pancy to be similar to naive estimates (0.187 versus 0.192). We
constructed a set of candidate models where occupancy was mod-
elled as a function of environmental covariates, however, models
did not converge when variables such as primary roads and
land use were included due to complete separation in the data.
Given the similarities in naive estimates and non-convergence
of some models, we only report these results in electronic sup-
plementary material, S2.0. All statistical analysis was carried out
using R [77].
3. Results
The automated detection and classification algorithm for the
spider monkey whinny returned a total of 2977 true positives
across 273 days in 64 out of 341 sites and 52 248 false positives.
To listen to this datamanually it would take 20 years, on a sche-
dule of 8 h per day, 365 days of the year. It took eight weeks to
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relates to multiple points. (c) Cover of buildings measured within a 1 km radius of the site. (d ) Density of secondary roads measured within a 200 m radius of the
site. Shaded areas represents 95% confidence intervals. R2, X2 and p-values are annotated on each plot.
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pass all 341 sites through the algorithm and to identify all true
positives using a semi-automated approach. A map detailing
in which sites Geoffroy’s spider monkey was present is
included in electronic supplementary material, S3 (figure 1).

(a) Scale of effect
The response of Geoffroy’s spider monkey to forest cover was
strongest at 200 m radius (R2 = 0.77), although the response
remained > 0.4 until a radius of 1000 m, highlighting that
forest loss is affecting the spider monkey at a local scale
and its dispersal ability. Forest cover appears to have a non-
linear relationship with response the variables, therefore a
polynomial term was added to the models. For secondary
roads, the strongest response was at 200 m radius (R2 =
0.09), however all spatial scales showed a similar response
(mean R2 = 0.07, s.d. = 0.01) and for primary roads, the
strongest response was at 1000 m radius (R2 = 0.6). For build-
ings, the strongest response was also at 1000 m radius (R2 =
0.23) (electronic supplementary material, S1.2, table S2).
Thus, from here on, all results are presented where each
explanatory variable was measured at these scales.

(b) Land use
Land use has a significant effect on the presence of the spider
monkey (figure 2), with spider monkeys only found in old
growth and secondary forests. The probability of occurrence
was significantly lower in grassland, palm and mangrove
when compared to old growth and secondary forests
(figure 2; electronic supplementary material, S3.1, table S1).
We registered no records of the spider monkey in teak planta-
tions, however, this difference was not significant due to high
standard errors and confidence intervals from model fitting.
Probability of occurrence was not significantly different
between old growth and secondary forests (figure 2 electronic
supplementary material, S3.1, table S1).

(c) Human development
Spider monkeys were strongly associated with higher levels of
forest cover, only being found above 80% cover ( p-value <
0.005, figure 3a; electronic supplementary material, S3.1, table
S2). Primary roads had a negative effect on spider monkey
occurrence (p-value < 0.05, figure 3b; electronic supplementary
material, S1.3, table S5). The spider monkey was not found at
any site with a primary road within a 1 km radius
(figure 3b). Total area of buildings had a negative non-signifi-
cant effect on spider monkey occurrence and the spider
monkey was not found where cover of houses exceeded
18 km2 within a 1 km radius of the site (p-value = 0.81,
figure 3c; electronic supplementary material, S3.1, table S2).
The effect of secondary roads on spider monkey occurrence
showed a non-significant decrease ( p-value = 0.45, figure 3d;
electronic supplementary material, S3.1, table S2). Despite
this, the spider monkey was only found where the density of
secondary roads was below 0.6 km within a 200 m radius of
the site (figure 3d).
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(d) Variance partitioning
Variance partitioning showed the influence of secondary
road density and area cover of buildings on spider monkeys
were mostly attributed to other variables, over 65% and 50%
shared variance respectively. However, forest cover (34.1%),
land use (28.4%) and primary road density (31.4%) had
large unique contributions, showing they are the main dri-
vers of changes in occurrence (electronic supplementary
material, S3.2, table S3).
journal/rspb
Proc.R.Soc.B

290:20222473
4. Discussion
In this study, we have shown that PAM combined with a semi-
automated detection and classification system for extracting
calls can be successfully used to detect and assess how a rare
and threatened vocal species, Geoffroy’s spider monkey (A.
geoffroyi), responds to changes across the landscape at a wide
spatial scale. Our analysis of 35 805 h of data across 341 sites
shows that this species does not occur below a threshold of
80% forest cover and is absent from areas within 1 km of pri-
mary paved roads. By contrast to what some studies have
suggested [8,37,39,43,44], we found equal occurrence in old
growth and secondary forests and a limited tolerance of
human development.

(a) Application of passive acoustic monitoring
The automated detector used in this study was able to analyse
over 35 805 h of data in just eight weeks, whichwould not have
been possible using manual methods. We returned a total of
2977 calls across 64 out of 341 sites. Despite a low naive site
occupancy estimate of only 18.7%, using occupancy modelling
to account for imperfect detection provided an estimate of
19.2%, suggesting that our estimate of occupied sites using
calls extracted by the automated detector are very accurate.
This is likely because there were no instances when we only
detected a single call, generally, in sites where we detected
the spider monkey, we detected dozens of calls over a few
days. Detection probability from occupancy modelling was
68% and unweighted average recall from the automated detec-
tor was 75%, which means we have potentially a percentage of
calls and therefore may be underestimating call rate, however,
we set call confidence at the inclusive value of 50% to increase
the number of calls returned and avoid missing true positives.
Because model precision was only 53%, meaning that the
model returned a significant number of false positives, we
used a semi-automated approach, where we manually con-
firmed all positives returned by the model, which was still a
very time-efficient process compared to fully manual alterna-
tive or conducting line transects to collect data. Site
occupancy would have been artificially inflated if we had not
taken this approach, with all sites showing false positives,
severely biasing the results and affecting conservation and
management recommendations.

(b) Geoffroy’s spider monkey: response to land use
change

Geoffroy’s spidermonkey occurrencewas at its highest in areas
with over 80% native forest cover. Identifying thresholds,
or ‘tipping points’ below which biodiversity may decline, is
essential in the design of conservation strategies to prevent
local extinction of species [78]. Previous research on this species
in Mexico shows that they were present in areas where forest
coverwas above 50%, being locally extinct below this threshold
[47]. It is difficult to pinpoint the exact reasons for these differ-
ences in sensitivity to changes in forest cover; however, it is
beginning to emerge that there is a large intraspecific variation
in responses to habitat changes and that macroecological fac-
tors may modulate populations’ responses [79]. Previous
work to identify thresholds of forest cover for communities in
the Amazon and Atlantic rainforests in Brazil highlighted a
30–40% forest cover threshold to preserve the integrity
of vertebrate communities [80–82]. The reason that the require-
ments are so much higher for Geoffroy’s spider monkey is
likely due to their specialized diet of mature fruits and require-
ment for mature sleeper trees [8,37,39,43,44]. In a study of
African bird species, declines in overall richness were seen
below 42% forest cover, however, for species withmore special-
ized diets, diversity started to decline once forest cover was
below 74%, suggesting specialist species require higher
thresholds of forest cover [83]. Although reported commu-
nity-based thresholds are lower, it is recognized that higher
thresholds may be needed in the tropics to protect the most
endangered species [84].

In this study, occurrence probability was similar across old
growth and secondary forests, as found previously in the same
region [7]. However, studies conducted in other regions have
found that spider monkeys generally prefer continuous tracts
of old growth forests [8,37,43,44], and occur in secondary for-
ests at significantly lower levels [44,45]. The reason for the
disparity in these results is likely due to the definition and
characteristics of secondary forests, which may vary across
studies since the term secondary forest can be used to describe
forests of varying age. Owing to the protected status of forests
in Costa Rica, secondary forests are generally 30 years+ [15],
and the land use maps used in this study defined secondary
forests as 40 years+ [53]; therefore secondary forests, as defined
here, may be considerably more mature than forests in other
studies. It is also possible that high levels of hunting in more
accessible secondary and fragmented forests in other study
regions, which reduce population densities of Geoffroy’s
spider monkey [82,85], do not exist to the same levels here
since the spider monkey is not the main target species in our
study region.

Previous studies have found use of shaded coffee (Coffea
spp.) and cacao (Theobroma cacao) plantations by Geoffroy’s
spider monkey; however, this was only where plantations
had a structure and spacing suitable for locomotion and
when shaded with native forest, providing a diversity of mid
and upper canopy structures and species for feeding, shelter,
protection and resting [48]. They have also been found to use
live fences of mature trees [40,48]; however, these studies
suggest that they are only used as steppingstones to other,
more favourable habitats. Studies of Geoffroy’s spider
monkey rarely sample non-native forests, likely due to time
and economic constraints of previous sampling methods,
therefore there is limited evidence for their use. In our study
we did not find use of non-native forest habitats, grasslands
or forestry plantations, suggesting that these habitats are not
suitable for permanent or temporary use. This is likely due to
the palm and teak plantations in the region having a much
lower floral diversity than coffee and cacao plantations, high-
lighting the importance of planting native species in forest
plantations to improve human-disturbed environments for
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wildlife. Studies of this species in mangrove ecosystems are
also rare; however, use of mangroves have previously been
found [86,87]. In our study, however, we did not find them in
this habitat.

A strong effect of paved roads has been previously found
formammal species, owing to increased gapwidth andheavier
traffic volume [88–92], alteration of roadside vegetation struc-
ture [93], secondary road development and increased human
presence [94]. Geoffroy’s spider monkey has previously been
found to cross both paved and unpaved roads to a similar
degree in the north of Costa Rica, however only where
canopy opening was small enough to facilitate locomotion
[50]. In our study they were not found at any site with primary
(paved) roads within a 1 km radius. Results from variance par-
titioning show that very little of the variance attributed to this
variable is shared, further highlighting the impact of primary
roads on this species. This is the first time such an effect has
been shown and provides further evidence as to the sensitivity
of this species to human disturbance. The use of PAM in this
study allowed us to cover a large enough area with enough
sampling locations to reveal such an effect.

Density of secondary roads and human settlements were
not found to significantly affect the probability of occurrence.
Despite these results Geoffroy’s spider monkey was only
found in areas with limited levels of unpaved roads and
buildings, suggesting that they cannot tolerate areas with
high human development. Previous research in this area
related to Ateles is lacking, with only one study on the effects
of roads, where avoidance of unpaved roads was also found
[50] and two studies related to human population size or
buildings, where no separate effects were found [43].

The vocal communication of primates has been found to
change in different habitats [56,95]. Gibbons (Hylobatidae)
were found to call less in disturbed areas and increase their
call rate at quieter times of the day [56]. It is possible that
the lack of detection in more disturbed areas is due to the
spider monkey altering the rate, frequency, amplitude or
type of call; however, we mitigate any potential effects of
this by recording at multiple times of the day, including
periods where human presence would be significantly
reduced or absent. As we did not find the spider monkey
in disturbed areas during PAM studies or while we were
working in the sites, it is not possible to test if they were pre-
sent but with altered vocal communication and future work
should focus on testing this hypothesis.

(c) Study limitations, wider context and conclusions
Our results corroborate previous research showing that Geof-
froy’s spider monkey is highly sensitive to anthropogenic
changes. We have shown a requirement for over 80% of
forest cover and avoidance of any paved roads within 1 km,
highlighting the dangers of forest loss and paving roads
through important habitat.
While we did not use other sampling approaches to
ground truth the findings of our study, our semi-automated
approach ensured that all returned positives from the
automated classifier were correctly classified. Traditional
sampling approaches, such as point counts and line transects,
are time-consuming and were found to produce lower detec-
tion rates (i.e. the rate at which an animal is detected when
they are present) when compared to PAM for this species
in a recent study in Mexico [51]. Hutschenreiter et al. rec-
ommended the use of PAM to study the spider monkey
over traditional sampling approaches, with the caveat that
that DL approaches should be used to improve on the detec-
tion rates achieved in their study of 32% [51], which is what
we have achieved in this study. Additionally, while using
multiple methodologies would have allowed for a compari-
son of different approaches, it would have led to a lower
spatial scale and coverage, which has recently been defined
as essential for the development evidence-based strategies
to effectively conserve primates [5].

Primates are under significant threat from anthropogenic
disturbance [6] and would benefit from more efficient moni-
toring methods to improve management and decision
making, yet studying primates in forested environments
can be difficult [7,8]. Here we have shown how PAM, com-
bined with a semi-automated detection and classification
system, has proven to be an effective method for studying
vocal species within this group and has identified critical tip-
ping points of human disturbance, which will prove valuable
for setting targets and developing conservation strategies.
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