
Investigating the Impact of Independent
Rule Fitnesses in a Learning Classifier

System

Michael Heider(B) , Helena Stegherr , Jonathan Wurth , Roman Sraj,
and Jörg Hähner

Universiät Augsburg, Am Technologiezentrum 8, Augsburg, Germany
{michael.heider,helena.stegherr,jonathan.wurth,

roman.sraj,jorg.hahner}@uni-a.de

Abstract. Achieving at least some level of explainability requires com-
plex analyses for many machine learning systems, such as common black-
box models. We recently proposed a new rule-based learning system,
SupRB, to construct compact, interpretable and transparent models by
utilizing separate optimizers for the model selection tasks concerning rule
discovery and rule set composition. This allows users to specifically tai-
lor their model structure to fulfil use-case specific explainability require-
ments. From an optimization perspective, this allows us to define clearer
goals and we find that—in contrast to many state of the art systems—this
allows us to keep rule fitnesses independent. In this paper we investigate
this system’s performance thoroughly on a set of regression problems
and compare it against XCSF, a prominent rule-based learning system.
We find the overall results of SupRB’s evaluation comparable to XCSF’s
while allowing easier control of model structure and showing a substan-
tially smaller sensitivity to random seeds and data splits. This increased
control can aid in subsequently providing explanations for both training
and final structure of the model.

Keywords: Rule-based learning · Learning classifier systems ·
Evolutionary machine learning · Interpretable models · Explainable AI

1 Introduction

The applicability of decision making agents utilizing machine learning methods
in real-world scenarios depends not only on the accuracy of the models, but
equally on the degree to which explanations of the decisions can be provided
to the human stakeholders. For example, in an industrial setting, experienced
machine operators often rather rely on their own knowledge instead of on—in
their eyes—unsubstantiated recommendations of the model going against that
knowledge. This problem is exacerbated as it is inevitable that the model is not
perfect in every detail, especially when the learning task is complex and the
available training data limited.

http://orcid.org/0000-0003-3140-1993
http://orcid.org/0000-0001-7871-7309
http://orcid.org/0000-0002-5799-024X
http://orcid.org/0000-0003-0107-264X

 143

To still make use of the advantages of recommendations made by digital
agents, increasing the trust of stakeholders in the predictions is essential. It
includes providing explanations of the processes involved to produce these, as
well as of the entire model. This can get to a point where easily explainable
models are preferred over better performance with higher complexity. Rule-based
learners such as Learning Classifier Systems (LCSs) are well suited in these
settings as they facilitate extensive explanations [10].

LCSs [25] are inherently transparent and interpretable rule-based learners
that make use of a finite set of if-then rules to compose their models. Each rule
contains a simpler, more comprehensible submodel, related to specific areas of
the feature space. The conditions under which rules apply are optimized during
the training process, commonly by an evolutionary algorithm. There are two
main styles of LCSs: Pittsburgh-style systems, which evolve a population of
sets of rules with combined fitnesses (one per set), and Michigan-style systems,
which adapt a single set of rules over time with individual fitnesses (one per rule).
Therefore, optimization by the evolutionary algorithm is performed differently in
the two styles, but always aimed at finding an “accurate and maximally general”
[23] set of rules. Explainability requisites are commonly not directly included as
optimization targets for the much more frequent Michigan-style systems, though
it is to some extent represented under the concept of generality. In Pittsburgh-
style systems, the evolutionary algorithm does typically include error and rule
set size as targets but it has to optimize the positioning and also the selection
of rules. Therefore, each iteration is comprised of several changes to rules in
the set which leads to common situations where beneficial changes to a rule
are not reflected in a corresponding change to the fitness of the set and might
therefore be discarded for the next generation. While the suboptimal positioning
of rules might not even decrease the system’s performance, it is, however, a
problem when explanations concerning the rule conditions or the training process
should be given. Michigan-style systems, on the other hand, often generate and
keep a large set of both good and suboptimal rules, in total, far more than
required for the given problem. Therefore, they need additional procedures after
training, especially compaction techniques, to reduce the population to the most
important rules and therefore to enhance explainability [16,20].

The first description of a new LCS algorithm, in which the optimization
of rule conditions is separated from the composition of rules to form a problem
solution, was provided in [11]. This way, rule fitnesses are kept independent from
other influences than their direct changes, increasing the locality. It also improves
the explainability of these quality parameters. Additionally, explainability is
improved through the direct control over population sizes and whether good rules
should be optimized to be more specific or more general. In this paper, we extend
the initial examinations of SupRB, as described in Sect. 3, by evaluating against
a modern version of XCSF [19,27], one of the most developed and advanced
LCSs, on a variety of different regression datasets (cf. Sect. 4). We find that, as
intended, SupRB performs competitively based on hypothesis testing on error
distributions as well as Bayesian comparison [4] across datasets, while producing
more compact models directly.

144

2 Related Work

The XCS Classifier System (XCS) is a prominent representative of LCSs. Its
many derivatives and extensions are capable of solving all three major learning
tasks [25]. In the context of this paper, the most notable extensions are those
concerned with applicability to real-valued problem domains and supervised
function approximation. In terms of real-valued problem domains, this means
replacing binary matching function with interval-based ones [26]. For supervised
function approximation, XCSF was designed [27]. It replaces the constant pre-
dicted payoff with a linear function. To further enhance the performance, more
complex variants were introduced to replace linear models and interval-based
matching functions [6,13], however, at the cost of overall model transparency.

LCSs are commonly considered as transparent or interpretable by design, as
are other rule-based learning systems, and naturally relate to human behaviour.
In contrast, other systems require extensive post-hoc methods, such as visuali-
sation or model transformation, to reach explainability. Even though LCS can
be seen as inherently transparent, there can be factors that reduce these capa-
bilities. They may arise through the encodings used, the number of rules in
general and the complexity introduced by using complex matching functions or
submodels in the individual rules [3].

Controlling these limitations in LCSs is typically done by design but can
incorporate designated post-hoc methods. Post-hoc methods, especially visual-
isation techniques for classifiers, can improve the interpretability of the model
[15,17,24]. However, they have to be devised or adapted to the specific needs
of the problem at hand and the model itself, which requires time and expertise.
Controlling transparency by design can therefore be beneficial in some cases.
While some factors, for example problem-dependent complex variables/features,
restrict interpretability and can hardly be influenced, other factors can com-
pensate for these issues. This means the design must consider understandable
matching functions and predictive submodels, without foregoing an adequate
predictive power.

Another aspect strongly related to the interpretability of LCS models is the
size of the resulting rule sets, e.g. smaller sets facilitate direct visual inspection
and require less subsequent analysis. Controlling this size is handled differently in
Pittsburgh-style and Michigan-style systems. Pittsburgh-style LCSs utilize the
fitness function of the optimization algorithm, which often incorporates different
objectives, i.e. accuracy and number of rules. A prominent example is GAssist
[2], where accuracy and minimum description length form a combined objective
and an additional penalty is given if the rule set size gets too small. Michigan-
style systems, on the other hand, do not control the rule set size by means of the
fitness function, as large populations are often beneficial for the training process.
During the training, subsumption can be performed to merge two rules where
one fully encompasses the other. Compaction is a post-hoc method to reduce the
size of the rule set after training by removing redundant rules without decreasing
the prediction accuracy [16,28]. However, most compaction methods are purely
designed for classification.

 145

3 The Supervised Rule-Based Learning System

We recently proposed [11] a new type of LCS with interchanging phases of rule
discovery and solution composition, the Supervised Rule-based Learning System
(SupRB). The first phase optimizes rule conditions independently of other rules,
discovering a diverse pool of well proportioned rules. Subsequently, in the sec-
ond phase, another optimization process selects a subset of all available rules to
compose a good (accurate yet small) solution to the learning task. In contrast
to other LCSs, we thus separate the model selection objectives of finding mul-
tiple well positioned rules (with a tradeoff between local prediction error and
matched volume) and selecting a set of these rules for our final model. That
allows us to predict arbitrary inputs with minimal error while the set of rules
is as small as possible to keep transparency and interpretability high. As it can
be difficult to determine how many rules would need to be generated before a
good solution can be composed from them, the two phases are alternated until
some termination criterion, e.g. a certain number of iterations, is reached (cf.
Algorithm 1). Note that, in contrast to Pittsburgh-style systems, rules added
to the pool remain unchanged and will not be removed throughout the training
process. An advantage of alternating phases is the ability to steer subsequent
rule discoveries towards exploring regions where no or ill-placed rules are found,
based on information from the solution composition phase.

Algorithm 1. SupRB’s main loop
1: pool ← ∅
2: elitist ← ∅
3: for i ← 1, n iter do
4: pool ← pool ∪ discover rules(elitist)
5: elitist ← compose solution(pool, elitist)
6: end for
7: return elitist

Insights into decisions are a central aspect of SupRB, therefore, its model is
kept as simple and interpretable as possible [11]:

1. Rules’ conditions use an interval based matching: A rule k applies for example
x iff xi ∈ [lk,i, uk,i] ∀i with l being the lower and u the upper bounds.

2. Rules’ submodels fk(x) are linear. They are fit using linear least squares with
a l2-norm regularization (Ridge Regression) on the subsample matched by
the respective rule.

3. When mixing multiple rules to make a prediction, a rule’s experience (the
number of examples matched during training and therefore included in fitting
the submodel) and in-sample error are used in a weighted sum.

In general, a large variety of methods can be used to discover new rules,
but for this paper, we utilize an evolution strategy (ES). The overall process

146

Algorithm 2. SupRB’s Rule Discovery
1: procedure discover rules(elitist)
2: rules ← ∅
3: for i ← 1, n rules do � (1, λ)-ES for each new rule
4: candidate, proponent ← init rule(elitist)
5: repeat
6: children ← ∅
7: for k ← 1, λ do
8: children ← children ∪mutate(proponent)
9: end for

10: proponent ← child with highest fitness
11: if candidate’s fitness < proponent’s fitness then
12: candidate ← proponent
13: j ← 0
14: else
15: j ← j + 1
16: end if
17: until j = δ
18: rules ← rules ∪ candidate
19: end for
20: return rules
21: end procedure

is displayed in Algorithm 2. While during a rule discovery phase typically mul-
tiple rules are discovered and added, this happens independently (and can be
parallelized) in multiple (1, λ)-ES runs. The initial candidate and parent rule
is placed around a roulette-wheel selected training example, assigning higher
probabilities to examples whose prediction showed a high in-sample error in the
current (intermediate) solution (or elitist). The non-adaptive mutation opera-
tor samples a halfnormal distribution twice per dimension to move the parent’s
upper and lower bounds further from the center by the respective values. This is
repeated to create λ children. From these, the fittest individual is selected based
on its in-sample error and the matched feature space volume as the new parent.
If it displays a higher fitness than the candidate it becomes the new candidate.
Specifically, the fitness is calculated as

F (o1, o2) =
(1 + α2) · o1 · o2

α2 · o1 + o2
, (1)

with
o1 = PACC = exp(−MSE · β) , (2)

and
o2 = V =

∏

i

ui − li
minx∈X xi − maxx∈X xi

. (3)

The base form (cf. Eq. (1)) was adapted from [29], where it was combining two
objectives in a feature selection context. The Pseudo-Accuracy (PACC), Eq. (2),

 147

squashes the Mean Squared Error (MSE) of a rule’s prediction into a (0, 1] range,
while the volume share V ∈ [0, 1] (cf. Eq. 3) of its bounds is used as a generality
measure. The parameter β controls the slope of the PACC and α weighs the
importance of o1 against o2. We tested multiple values for β and found β = 2 to
be a suitable default. For α, 0.05 can be used in many problems (hyperparameter
tuning for the datasets in this paper selected it in 3 out of 4 cases) but, ultimately,
the value should always depend on the model size requirements, which are task
dependent. If the candidate has not changed for δ generations, the optimization
process is stopped and this specific elitist is added to the pool. This process of
discovering a new rule and adding it to the pool of rules is repeated until the
set number of rules has been found. We want to stress that this optimizer is not
meant to find a single globally optimal rule as in typical optimization problems,
but rather find optimally placed rules so that for all inputs a prediction can be
made that is more accurate than a trivial model, i.e. simply returning the mean
of all data. Therefore, independent evolution is advantageous.

Algorithm 3. SupRB’s Solution Composition
1: procedure compose solution(pool, elitist)
2: population ← elitist
3: for i ← 1, pop size do
4: population ← population ∪ init solution()
5: end for
6: for i ← 1, generations do
7: elitists ← select elitists(population)
8: parents ← tournament selection(population)
9: children ← crossover(parents) � 90% probability n-point

10: population ← mutate(children) � probabilistic bitflip
11: population ← population ∪ elitists
12: end for
13: return best solution from population
14: end procedure

In the solution composition phase, a genetic algorithm (GA) selects a subset
of rules from the pool to form a new solution. As with the rule discovery, many
optimizers could be used and a few have already been tested in [30], finding that
the GA is a suitable choice. Solutions are represented as bit strings, signalling
whether a rule from the pool is part of the solution. The GA uses tournament
selection to select groups of two solutions and combines two parents by using
n-point crossover with a default crossover probability of 90%. Then, mutation is
applied to the children, flipping each bit with a probability determined by the
mutation rate. The children and some of the fittest parents (elitism) form the
new population. The number of elitists depends on the population size of the
GA, but in our experiments, we found 5 or 6 to work best with a population
size of 32. Solution fitness is also based on Eq. (1). Here, the solution’s in-sample
mean squared error and its complexity, i.e. the number of rules selected, are used

148

as first and second objective, respectively. Note that each individual in the GA
always corresponds to a subset of the pool. Rules that are not part of the pool
can not be part of a solution candidate and rules remain unchanged by the GA’s
operations.

SupRB is conceptualised and designed as a regressor. This is reflected in
both the description above and the evaluation in the following section. However,
we want to propose how the system could be adapted easily towards solving
classification problems: The linear submodels would need to be replaced with
an appropriate classifier, either simply a constant model, logistic regression or a
more complex model if the explainability requirements allowed that. Addition-
ally, the fitness functions would need to use accuracy (or an appropriate scoring
for imbalanced data) instead of PACC and MSE.

4 Evaluation

For our evaluation of the proposed system, we compare SupRB to a recent
XCSF1 [19,27] with hyperrectangular conditions and linear submodels (with
recursive least squares updates [14]), as they closely correspond to the conditions
and submodels used in SupRB. We acknowledge that some better performing
conditions, e.g. hyperellipsoids [7], have been proposed for XCSF, however, we
consider them less interpretable in high dimensional space for the average user.

4.1 Experiment Design

SupRB is implemented2 in Python 3.9, adhering to scikit-learn [18] conven-
tions. Input features are transformed into the range [−1, 1], while the target is
standardized. Both transformations are reversible but improve SupRB’s training
process as they help preventing rules to be placed in regions where no sample
could be matched and remove the need to tune error coefficients in fitness cal-
culations, respectively. Based on our assumptions about the number of rules
needed, 32 cycles of alternating rule discovery and solution composition are per-
formed, generating four rules in each cycle for a total of 128 rules. For the ES we
selected a λ of 20. Additionally, the GA is configured to perform 32 iterations
with a population size of 32. To tune some of the more sensitive parameters, we
performed a hyperparameter search using a Tree-structured Parzen Estimator in
the Optuna framework [1] that optimizes average solution fitness on 4-fold cross
validation. We tuned datasets independently for 256 iterations per tuning pro-
cess. For XCSF we followed the same process, selecting typical default values3

[19] and tuning the remaining parameters independently on the four datasets
using the same setup as before. The final evaluation, for which we report results
in Sect. 4.2, uses 8-split Monte Carlo cross-validation, each with 25 % of samples

1 https://github.com/rpreen/xcsf, https://doi.org/10.5281/zenodo.5806708.
2 https://github.com/heidmic/suprb, https://doi.org/10.5281/zenodo.6460701.
3 https://github.com/rpreen/xcsf/wiki/Python-Library-Usage.

https://github.com/rpreen/xcsf
https://doi.org/10.5281/zenodo.5806708
https://github.com/heidmic/suprb
https://doi.org/10.5281/zenodo.6460701
https://github.com/rpreen/xcsf/wiki/Python-Library-Usage

 149

reserved as a validation set. Each learning algorithm is evaluated with 8 different
random seeds for each 8-split cross-validation, resulting in a total of 64 runs.

We evaluate on four datasets part of the UCI Machine Learning Reposi-
tory [9]. The Combined Cycle Power Plant (CCPP) [12,22] dataset shows an
almost linear relation between features and targets and can be acceptably accu-
rately predicted using a single rule. Airfoil Self-Noise (ASN) [5] and Concrete
Strength (CS) [31] are both highly non-linear and will likely need more rules
to predict the target sufficiently. The CS dataset has more input features than
ASN but is easier to predict overall. Energy Efficiency Cooling (EEC) [21] is
another rather linear dataset, but has a much higher input features to samples
ratio compared to CCPP. It should similarly be possible to model it using only
few rules.

4.2 Results

In our experiments we find that XCSF and SupRB achieve comparable results.
Table 1 presents the dataset-specific performance in detail. All entries are cal-
culated on 64 runs per dataset (cf. Sect. 4.1). As both systems were trained for
standardized targets, we denote the results for the mean (across runs) mean
squared errors (MSE) and their standard deviation (STD) as MSEσ and STDσ,
respectively. Standardized targets allow better comparison between the datasets
as results are on a more similar scale. Additionally, as many real world datasets
are normally distributed, this should lighten the need to carefully hand tune the
balance between solution complexity and error. Note that predictions of both
models can always be retransformed into the original domain. Subsequently,
MSEorig references the mean MSE in units of the original dataset-specific tar-
get domain. Although this column is less helpful for cross dataset performance
interpretations, it allows comparison to other works on the same data. We found
that, on two datasets (CCPP and ASN), XCSF shows a better performance,
albeit only slightly for CCPP, that can be confirmed through hypothesis testing
(Wilcoxon signed-rank test using a confidence level of 5%). Contrastingly, for
the CS dataset, the hypothesis could not be rejected. Thus, although SupRB
shows a slightly lower mean MSE, this is not statistically significant. For the
EEC dataset SupRB outperforms XCSF.

We found that SupRB’s runs had a similar (to each other) performance much
more consistently than XCSF’s. This is shown by STDσ (cf. Table 1) and specif-
ically illustrated in Fig. 1, which shows the distribution of test errors across all
64 runs. For three of the four datasets, XCSF shows some strong outliers that
go against its remaining performances. Additionally, the majority of runs is also
further distributed around the mean and median values. We assume that this is
largely due to the stochastic iterative nature of training in XCSF. For the CCPP
dataset (Fig. 1a) no outliers were produced by XCSF and overall performance
is quite similar across runs. This is especially noticeable when comparing the
distribution to those on the other datasets. In fact, the runs are so similar (even
across models) that it is hard to make any analysis on this scale. Although, XCSF
slightly outperformed SupRB on average on CCPP, as confirmed by statistical

150

SupRB2 XCSF
LCS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
M
SE

(a) Distribution of runs on CCPP

SupRB2 XCSF
LCS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
SE

(b) Distribution of runs on ASN

SupRB2 XCSF
LCS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
SE

(c) Distribution of runs on CS

SupRB2 XCSF
LCS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
M
SE

(d) Distribution of runs on EEC

Fig. 1. Distribution of runs’ errors on an equal scale.

testing, we can assume that this advantage is likely not practically significant.
From a graphical perspective (cf. Fig. 1c), SupRB seems to produce more desir-
able models on CS, even if the hypothesis testing remained ambiguous. On EEC,
XCSF achieves a slightly better median MSE performance (MedianXCSF: 0.014;
MedianSupRB: 0.026), however, its mean MSE is poorer due to badly performing
runs. Regardless, the overall performance can be viewed as rather close, although
both sets of runs are clearly not following the same distribution. As SupRB’s
and XCSF’s models were trained on the same random seeds and cross-validation
splits, we can conclude that SupRB is overall more reliable even if not necessarily
better.

For SupRB we directly control the size (number of rules; complexity) of the
global solution via the corresponding fitness function used in the GA. Table 2
shows the complexities of the 64 runs per dataset. Note that the highest theo-
retical complexity is 128, as we did only add 128 rules to the pool. We find that,
although theoretically a single rule is able to predict CCPP well, the optimizer
prefers to use at least two but at most four rules, achieving slightly better errors

 151

Table 1. Overview of the experimental test data results of 64 runs per
dataset rounded to four decimals. MSEorig and MSEσ give the means of the
mean squared errors (MSE) in the dataset’s original or a standardised target space,
respectively. Similarly, STDσ displays the standard deviation of MSEs in standardised
space. Highlighted in bold are the models where a 5% significance Wilcoxon signed-
rank test rejected the null hypothesis of equivalent distributions and the mean was
better.

CCPP ASN

MSEorig MSEσ STDσ MSEorig MSEσ STDσ

XCSF 0.8745 0.0512 0.0028 0.7930 0.1150 0.1195

SupRB 1.1433 0.0669 0.0027 1.3079 0.1896 0.0199

CS EEC

MSEorig MSEσ STDσ MSEorig MSEσ STDσ

XCSF 2.8291 0.1694 0.1043 0.3660 0.0385 0.1032

SupRB 2.3779 0.1424 0.0199 0.2776 0.0292 0.0107

Table 2. Overview of the solution complexities (number of rules in the solu-
tion proposed by SupRB or the final macro-classifier count in an XCSF population,
respectively) across 64 runs per dataset.

SupRB XCSF

CCPP ASN CS EEC CCPP ASN CS EEC

Mean 2.65 26.42 22.31 12.81 2253.28 962.03 562.81 1028.78

St. dev 0.62 2.47 2.60 1.71 24.70 9.17 11.73 14.90

Median 3 27 22 13 2250 962 562 1026

Min 2 19 17 9 2202 934 530 994

Max 4 30 30 17 2301 980 593 1068

than with a singular linear model. As expected, the solutions to the two highly
non-linear datasets (ASN and CS) do feature considerably more rules. EEC
again was solved with fewer rules, speaking to its more linear nature, although
with more than CCPP, for which a linear solution exists. Standard deviations
of complexities increase as the mean increases and the median stays close to the
mean.

XCSF seems to have fallen into a cover-delete-cycle where rules did not stay
part of the population for long. Covering is a rule generation mechanism that
creates a new rule whenever there were too few matching rules. The deletion
mechanism removes rules when the population is too full, as there exists a
hyperparameter-imposed maximum population size. In our tuning, we did tune
both the number of training steps and the maximum population size (among
the many other parameters of XCSF) and find that post-training populations
are at or around the maximum population size. XCSF’s hyperparameter tuning

152

opted for much larger populations than the typical rule of thumb of using ten
times as many rules as would be expected (from domain knowledge or prior mod-
elling experience) for a good problem solution [23]. Additionally, upon deeper
inspection, we found that the rules were typically introduced late in the training
process, however, the system error did not change in a meaningful manner long
before that point. Note that we did utilize subsumption in the EA. This mecha-
nism prevents the addition of a newly produced rule to the population when it
is fully engulfed by a parent rule and instead increases the parents numerosity
parameter. A rule with numerosity n counts as n rules with numerosity 1 towards
the maximum population size limit. Subsumption thus theoretically decreases
the actual number of classifiers in our population. However, in our experiments
the cover-delete-cycle seems to have rendered this mechanism useless.

It is reasonably possible that SupRB’s performance would improve in some
cases if the pressure to evolve smaller rule sets was lower. However, as explain-
ability suffers with large rule sets, we think that the presented solutions strike
an acceptable balance. Afterall, XCSF’s solutions were substantially larger even
after applying a simple compaction technique of removing rules with an experi-
ence of 0 from the final population. This compaction method removed on average
about 10% of rules from the run’s populations. Table 2 reports the complexity
results after compaction. However, we acknowledge that a variety of compaction
techniques exists for classification problems [16] that could in some cases poten-
tially be adjusted for the use within regression tasks. Likely, SupRB and XCSF
find themselves at different points on the Pareto front between error and com-
plexity. However, in SupRB we do not need to rely on additional post-processing
but can solve this optimization problem directly and, importantly, balance the
tradeoff of prediction error and rule set complexity against user needs, whereas
compaction mechanisms are typically designed to decrease complexity only in a
way as to not increase the LCS’s system error [16].

Beyond dataset-specific performances, we would like to find a more general
answer to the question whether the newly proposed SupRB does perform simi-
larly to the well established XCSF. This would indicate that we can find a good
LCS model even without the niching mechanisms employed by XCSF’s rule fit-
ness assignment. To find an initial answer based on the performed experiments
we use a Bayesian model comparison approach [4] using a hierarchical model [8]
that jointly analyses the cross-validation results across multiple random seeds
and all four datasets. We assume a region of practical equivalence of 0.01·σdataset.

p(SupRB � XCSF) ≈ 63.4%
p(SupRB ≡ XCSF) ≈ 8.5%
p(SupRB � XCSF) ≈ 28.1%

where:

– p(SupRB � XCSF) denotes the probability that SupRB performs worse
(achieving a higher MSE on test data),

– p(SupRB ≡ XCSF) denotes the probability that both systems achieve prac-
tically equivalent results and

 153

– p(SupRB � XCSF) denotes the probability that SupRB performs better
(achieving a lower MSE on test data).

From these results we clearly can not make definitive assessments that XCSF
is stronger than SupRB. While it might outperform SupRB in less than two
thirds of cases, it also will be outperformed in almost a third of cases. [4] suggest
thresholds of 0.95, 0.9 or 0.8 for probabilities to make automated decisions. The
specific value needs to be chosen according to the given context. We did not
perform the same analysis for the rule set sizes as the results are quite clear with
SupRB being the system very likely producing much smaller rule sets. Overall,
we can conclude that no clear decision can be made and that the newly developed
(and to be improved in the future) SupRB should be considered an equal to the
well established XCSF.

Table 3. Exemplary rule generated by SupRB on CS dataset. The target is the
concrete compressive strength. The original space intervals denote the area matched by
the rule in terms of the original variable scales, while the intervals in feature spaces are
scaled into [−1, 1] and help perceiving rule generality at a glance. Coefficients denote
the weight vector used for the linear model.

Original Space Feature Space σ

Input variable Interval Interval Coefficient

Cement [kg/m3] [104.72, 516.78] [−0.99, 0.89] 2.38

Blast Furnace Slag [kg/m3] [0, 359.40] [−1.00, 1.00] 2.29

Fly Ash [kg/m3] [13.45, 200] [−0.87, 1.00] 0.68

Water [kg/m3] [122.64, 244.80] [−0.99, 0.96] −1.26

Superplasticizer [kg/m3] [6.02, 24.80] [−0.63, 0.54] −0.67

Coarse Aggregate [kg/m3] [950.16, 1145] [−0.13, 1.00] 0.71

Fine Aggregate [kg/m3] [756.14, 992.60] [−0.19, 1.00] 0.60

Age [days] [18.36, 365] [−0.90, 1.00] 2.07

interceptσ = 3.9160

In-sample MSEorig 1.5310 In-sample MSEσ 0.0917 Experience 84

Table 3 presents a rule trained for the CS dataset. It has an experience (num-
ber of matched examples during training) of 84 and matched another 31 examples
during testing. It is part of a model consisting of 23 rules with experiences of
7 to 240 with a mean experience of 54.17 ± 55.63. The rules were, thus, either
rather general or rather specific with this rule being on the more general side.
Upon closer inspection, for 5 of the 8 dimensions of CS the rule matches most
of the available inputs (being maximally general on the “Blast Furnace Slag”
input variable). For the transformed input space (feature space) that is scaled
to an interval of [−1, 1] this can easily be seen without any knowledge about
the datasets structure, although it is likely that users of the model will have
enough domain knowledge to be able to derive this directly from the intervals
in the original space. It can also be assumed that these users will generally pre-
fer to inspect the rule in that representation. High concentrations of “Water”
and “Superplasticizer” have negative effects on the compressive strength of the

154

concrete for the aforementioned value ranges, while higher concentrations of
“Cement”, “Blash Furnace Slag” and “Age” of the mixture positively influence
its compressive strength. The other three input variables have positive but less
pronounced effects. Overall, rule inspection offers some critical insights into the
decision making process and can be done fairly easily based on the rule design
and the low number of rules per solution.

5 Conclusion

In this paper, we expanded the view on the Supervised Rule-based Learning Sys-
tem (SupRB) with an optimization perspective. We highlighted the advantages
of individual rule fitnesses compared to the fitness-sharing approaches typical for
other Learning Classifier Systems (LCSs) and discussed our approach to perform
LCS model selection using two separated optimizers from that perspective.

To evaluate the system we compared it to XCSF, a well known LCS with
a long research history, on four real world regression datasets with different
dimensionalities and problem complexities. As one of the greatest advantages of
LCS compared to other learning systems is their inherent interpretability and
transparency, we limited our study to the use of hyperrectangular conditions
and linear models for both systems. After hyperparameter searches for the more
sensitive parameters (256 evaluations with 4-fold cross validation), we performed
a total of 64 (8 random seeds and 8-fold cross validation with 25% test data)
runs of each system on every dataset. We found that, in general, performance
is relatively similar. While XCSF showed a statistically better mean test error
on two datasets, it was outperformed on one and no statistically significant
decision could be made on the fourth dataset. We performed a Bayesian model
comparison approach using a hierarchical model and found that no clearly better
model can be determined on errors. Solution sizes of SupRB were better than
XCSF’s even when applying some form of compaction. Additionally, SupRB was
more consistent in its performance across runs. Thus, we conclude that, for now
and with future research pending, both systems produce similarly performing
models.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-
generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Min-
ing, KDD 2019, pp. 2623–2631. Association for Computing Machinery, New York
(2019). https://doi.org/10/gf7mzz

2. Bacardit, J.: Pittsburgh genetics-based machine learning in the data mining era:
representations, generalization, and run-time. Ph.D. thesis, PhD thesis, Ramon
Llull University, Barcelona (2004)

3. Barredo Arrieta, A., et al.: Explainable Artificial Intelligence (XAI): concepts,
taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58,
82–115 (2020). https://doi.org/10.1016/j.inffus.2019.12.012

https://doi.org/10/gf7mzz
https://doi.org/10.1016/j.inffus.2019.12.012

 155

4. Benavoli, A., Corani, G., Demšar, J., Zaffalon, M.: Time for a change: a tutorial
for comparing multiple classifiers through Bayesian analysis. J. Mach. Learn. Res.
18(1), 2653–2688 (2017)

5. Brooks, T., Pope, D., Marcolini, M.: Airfoil self-noise and prediction (1989)
6. Bull, L., O’Hara, T.: Accuracy-based neuro and neuro-fuzzy classifier systems. In:

Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computa-
tion, GECCO 2002, pp. 905–911. Morgan Kaufmann Publishers Inc., San Francisco
(2002)

7. Butz, M.V.: Kernel-based, ellipsoidal conditions in the real-valued XCS classifier
system. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary
Computation, GECCO 2005, pp. 1835–1842. Association for Computing Machin-
ery, New York (2005). https://doi.org/10.1145/1068009.1068320

8. Corani, G., Benavoli, A., Demšar, J., Mangili, F., Zaffalon, M.: Statistical compar-
ison of classifiers through Bayesian hierarchical modelling. Mach. Learn. 106(11),
1817–1837 (2017). https://doi.org/10.1007/s10994-017-5641-9

9. Dua, D., Graff, C.: UCI machine learning repository (2017). https://archive.ics.
uci.edu/ml

10. Heider, M., Nordsieck, R., Hähner, J.: Learning classifier systems for self-explaining
socio-technical-systems. In: Stein, A., Tomforde, S., Botev, J., Lewis, P. (eds.)
Proceedings of LIFELIKE 2021 Co-located with 2021 Conference on Artificial Life
(ALIFE 2021) (2021). https://ceur-ws.org/Vol-3007/

11. Heider, M., Stegherr, H., Wurth, J., Sraj, R., Hähner, J.: Separating rule discovery
and global solution composition in a learning classifier system. In: Genetic and
Evolutionary Computation Conference Companion (GECCO 2022 Companion)
(2022). https://doi.org/10.1145/3520304.3529014

12. Kaya, H., Tüfekci, P.: Local and global learning methods for predicting power of
a combined gas & steam turbine (2012)

13. Lanzi, P.L., Loiacono, D.: XCSF with neural prediction. In: 2006 IEEE Interna-
tional Conference on Evolutionary Computation, pp. 2270–2276 (2006). https://
doi.org/10.1109/CEC.2006.1688588

14. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: Prediction update algo-
rithms for XCSF: RLS, Kalman filter, and gain adaptation. In: Proceedings of the
8th Annual Conference on Genetic and Evolutionary Computation, GECCO 2006,
pp. 1505–1512. Association for Computing Machinery, New York (2006). https://
doi.org/10.1145/1143997.1144243

15. Liu, Y., Browne, W.N., Xue, B.: Absumption to complement subsumption in learn-
ing classifier systems. In: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, GECCO 2019, pp. 410–418. Association for Computing Machin-
ery, New York (2019). https://doi.org/10.1145/3321707.3321719

16. Liu, Y., Browne, W.N., Xue, B.: A comparison of learning classifier systems’ rule
compaction algorithms for knowledge visualization. ACM Trans. Evolut. Learn.
Optim. 1(3), 10:1–10:38 (2021). https://doi.org/10/gn8gjt

17. Liu, Y., Browne, W.N., Xue, B.: Visualizations for rule-based machine learning.
Nat. Comput. (11), 1–22 (2021). https://doi.org/10.1007/s11047-020-09840-0

18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

19. Preen, R.J., Pätzel, D.: XCSF (2021). https://doi.org/10.5281/zenodo.5806708.
https://github.com/rpreen/xcsf

https://doi.org/10.1145/1068009.1068320
https://doi.org/10.1007/s10994-017-5641-9
https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml
https://ceur-ws.org/Vol-3007/
https://doi.org/10.1145/3520304.3529014
https://doi.org/10.1109/CEC.2006.1688588
https://doi.org/10.1109/CEC.2006.1688588
https://doi.org/10.1145/1143997.1144243
https://doi.org/10.1145/1143997.1144243
https://doi.org/10.1145/3321707.3321719
https://doi.org/10/gn8gjt
https://doi.org/10.1007/s11047-020-09840-0
https://doi.org/10.5281/zenodo.5806708
https://github.com/rpreen/xcsf

156

20. Tan, J., Moore, J., Urbanowicz, R.: Rapid rule compaction strategies for global
knowledge discovery in a supervised learning classifier system. In: ECAL 2013: The
Twelfth European Conference on Artificial Life, pp. 110–117. MIT Press (2013).
https://doi.org/10.7551/978-0-262-31709-2-ch017

21. Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance
of residential buildings using statistical machine learning tools. Energy Build. 49,
560–567 (2012). https://doi.org/10/gg5vzx

22. Tüfekci, P.: Prediction of full load electrical power output of a base load operated
combined cycle power plant using machine learning methods. Int. J. Electri. Power
Energy Syst. 60, 126–140 (2014). https://doi.org/10/gn9s2h

23. Urbanowicz, R.J., Browne, W.N.: Applying LCSs. In: Introduction to Learning
Classifier Systems. SIS, pp. 103–123. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-55007-6 5

24. Urbanowicz, R.J., Granizo-Mackenzie, A., Moore, J.H.: An analysis pipeline with
statistical and visualization-guided knowledge discovery for Michigan-style learning
classifier systems. IEEE Comput. Intell. Mag. 7(4), 35–45 (2012). https://doi.org/
10.1109/MCI.2012.2215124

25. Urbanowicz, R.J., Moore, J.H.: Learning classifier systems: a complete introduc-
tion, review, and roadmap. J. Artif. Evolut. Appl. (2009)

26. Wilson, S.W.: Get Real! XCS with continuous-valued inputs. In: Lanzi, P.L., Stolz-
mann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 209–219.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45027-0 11

27. Wilson, S.W.: Classifiers that approximate functions. Nat. Comput. 1(2/3), 211–
234 (2002). https://doi.org/10.1023/a:1016535925043

28. Wilson, S.W.: Compact rulesets from XCSI. In: Lanzi, P.L., Stolzmann, W., Wil-
son, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 197–208. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-48104-4 12

29. Wu, Q., Ma, Z., Fan, J., Xu, G., Shen, Y.: A feature selection method based on
hybrid improved binary quantum particle swarm optimization. IEEE Access 7,
80588–80601 (2019). https://doi.org/10/gnxcfb

30. Wurth, J., Heider, M., Stegherr, H., Sraj, R., Hähner, J.: Comparing different
metaheuristics for model selection in a supervised learning classifier system. In:
Genetic and Evolutionary Computation Conference Companion (GECCO 2022
Companion) (2022). https://doi.org/10.1145/3520304.3529015

31. Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural
networks. Cem. Concr. Res. 28(12), 1797–1808 (1998). https://doi.org/10/dxm5c2

https://doi.org/10.7551/978-0-262-31709-2-ch017
https://doi.org/10/gg5vzx
https://doi.org/10/gn9s2h
https://doi.org/10.1007/978-3-662-55007-6_5
https://doi.org/10.1007/978-3-662-55007-6_5
https://doi.org/10.1109/MCI.2012.2215124
https://doi.org/10.1109/MCI.2012.2215124
https://doi.org/10.1007/3-540-45027-0_11
https://doi.org/10.1023/a:1016535925043
https://doi.org/10.1007/3-540-48104-4_12
https://doi.org/10/gnxcfb
https://doi.org/10.1145/3520304.3529015
https://doi.org/10/dxm5c2

	 Preface
	 Organization
	 Contents
	An Agent-Based Model to Investigate Different Behaviours in a Crowd Simulation
	1 Introduction
	2 The Mathematical Model
	3 NetLogo Model
	4 Experimental Results
	5 Conclusions and Future Works
	References

	Accelerating Evolutionary Neural Architecture Search for Remaining Useful Life Prediction
	1 Introduction
	2 Background
	3 Method
	3.1 Multi-objective Optimization
	3.2 Speeding up Evaluation

	4 Experimental Setup
	4.1 Computational Setup and Benchmark Dataset
	4.2 Data Preparation and Training Details

	5 Results
	6 Conclusions
	References

	ACOCaRS: Ant Colony Optimization Algorithm for Traveling Car Renter Problem
	1 Introduction
	2 Related Work
	3 Problem Description
	4 ACOCaRS Algorithm
	5 Experiment
	5.1 Testbed
	5.2 Results

	6 Discussion
	7 Conclusion and Future Work
	References

	A New Type of Anomaly Detection Problem in Dynamic Graphs: An Ant Colony Optimization Approach
	1 Introduction
	2 Anomaly Detection Problem
	3 Proposed Approach
	4 Numerical Experiments
	4.1 Benchmarks
	4.2 Parameter Setting
	4.3 Anomaly Detection in Real-World Networks

	5 Conclusion and Further Work
	References

	.28em plus .1em minus .1emCSS–A Cheap-Surrogate-Based Selection Operator for Multi-objective Optimization
	1 Introduction
	2 Background
	2.1 Spherical Search
	2.2 Cheap Surrogate Selection (CSS)

	3 Proposed Method
	3.1 General Framework of CSS-MOEA
	3.2 The Detailed Process of CSS-MOEA

	4 Experiment Results
	5 Conclusion
	References

	Empirical Similarity Measure for Metaheuristics
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Metaheuristic Algorithms
	3.2 Benchmark Functions
	3.3 Parameter Tuning

	4 Proposed Comparison Method
	4.1 Algorithm Instances
	4.2 Algorithm Profiling
	4.3 Measuring Similarity

	5 Results
	5.1 Comparing Instances of the Same Algorithm
	5.2 Comparing Instances of the Same Tuning Function
	5.3 Clustering the Algorithms' Instances Based on Similarity
	5.4 Discussion

	6 Conclusion
	References

	Evaluation of Parallel Hierarchical Differential Evolution for Min-Max Optimization Problems Using SciPy
	1 Introduction
	2 Definition of the Problem
	3 Differential Evolution for MinMax Problems
	3.1 Overview of Differential Evolution
	3.2 Hierarchical (Nested) Differential Evolution and Parallel Model

	4 Experimental Setup and Results
	4.1 Benchmark Test Functions
	4.2 Parameter Settings
	4.3 Results and Discussion

	5 Conclusion and Future Work
	References

	Explaining Differential Evolution Performance Through Problem Landscape Characteristics
	1 Introduction
	2 Related Work
	3 Experimental Setup
	3.1 Benchmark Problem Portfolio
	3.2 Landscape Data
	3.3 Algorithm Portfolio
	3.4 Performance Data
	3.5 Regression Models
	3.6 Leave-One Instance Out Validation
	3.7 SHAP Explanations

	4 Results and Discussion
	4.1 Optimization Algorithms Performance
	4.2 Performance Prediction
	4.3 Linking ELA Features to DE Performance

	5 Conclusions
	References

	Genetic Improvement of TCP Congestion Avoidance
	1 Introduction
	2 Background
	3 Related Works
	4 Method
	4.1 Code Simplification Procedure

	5 Experimental Results
	6 Conclusions and Future Work
	References

	Hybrid Acquisition Processes in Surrogate-Based Optimization. Application to Covid-19 Contact Reduction
	1 Introduction
	2 Background on Surrogate-Based Optimization
	3 COVID-19 Contact Reduction Problem
	4 Hybrid Acquisition Processes
	5 Experiments
	6 Conclusion
	References

	Investigating the Impact of Independent Rule Fitnesses in a Learning Classifier System
	1 Introduction
	2 Related Work
	3 The Supervised Rule-Based Learning System
	4 Evaluation
	4.1 Experiment Design
	4.2 Results

	5 Conclusion
	References

	Modified Football Game Algorithm for Multimodal Optimization of Test Task Scheduling Problems Using Normalized Factor Random Key Encoding Scheme
	1 Introduction
	2 Problem Description and Mathematical Modeling
	3 The Proposed Modified Football Game Algorithm (mFGA)
	3.1 Classic FGA
	3.2 Modified FGA

	4 Normalized Factor Random Key Encoding Scheme
	5 Multimodal Single-Objective Optimization of TTSP
	6 Comparison and Discussion
	7 Conclusion and Future Works
	References

	Performance Analysis of Selected Evolutionary Algorithms on Different Benchmark Functions
	1 Introduction
	2 Related Work
	3 Experiment
	3.1 CEC 2022 Single Objective Bound Constrained Numerical Optimization
	3.2 CEC 2021 Single Objective Bound Constrained Optimization
	3.3 CEC 2017 Single Objective Bound Constrained Optimization

	4 Discussion
	5 Conclusion
	References

	Refining Mutation Variants in Cartesian Genetic Programming
	1 Introduction
	2 Related Work
	3 Cartesian Genetic Programming
	3.1 Introduction to Cartesian Genetic Programming
	3.2 Mutation Algorithm

	4 Further Changes in the Mutation Algorithm
	4.1 Probabilistic Mutation
	4.2 Single and Multiple Mutation

	5 Preliminaries
	5.1 Experiment Description
	5.2 Datasets

	6 Experiments
	6.1 Impact of Different Probabilistic Mutation Strategies
	6.2 Impact of Multi-n and DMulti-n

	7 Conclusion
	References

	Slime Mould Algorithm: An Experimental Study of Nature-Inspired Optimiser
	1 Introduction
	1.1 Slime Mould Algorithm
	1.2 Previous Works

	2 Newly Proposed Variants of SMA
	2.1 Linear Reduction of the Population Size
	2.2 Eigen Transformation
	2.3 Perturbation
	2.4 Adaptation of Parameter z

	3 Methods Used in Experiments
	4 Experimental Settings
	5 Results
	6 Conclusion
	References

	SMOTE Inspired Extension for Differential Evolution
	1 Introduction
	2 Background
	2.1 Differential Evolution
	2.2 Synthetic Minority Oversampling Technique (SMOTE)
	2.3 Literature Overview

	3 Proposed Mechanism for Differential Evolution
	4 Experimental Analysis
	4.1 Setup
	4.2 Comparison Against Other Mechanisms
	4.3 Incorporation into Improved Algorithm Variants

	5 Conclusion
	References

	The Influence of Local Search on Genetic Algorithms with Balanced Representations
	1 Introduction
	2 Background
	2.1 Balanced Crossover Operators
	2.2 Boolean Functions

	3 Local Search of Boolean Functions
	4 Experiments
	4.1 Experimental Setting
	4.2 Results
	4.3 Discussion

	5 Conclusions
	References

	Trade-Off of Networks on Weighted Space Analyzed via a Method Mimicking Human Walking Track Superposition
	1 Introduction and Related Work
	2 Simulation Model of WTSN on Weighted Space
	2.1 Generation Process of WTSN on a Mixture of Different Ground Conditions
	2.2 Pareto-Optimal Path Between Two Demand Vertices
	2.3 Algorithm for WTSN on Weighted Space

	3 Analysis of Differences in Pareto Frontier by Weighted Space
	3.1 Experimental Spaces Setting
	3.2 Result of Pareto Frontier Approximation

	4 Discussion
	5 Conclusion and Further Work
	References

	Towards Interpretable Policies in Multi-agent Reinforcement Learning Tasks
	1 Introduction
	2 Related Work
	3 Method
	3.1 Creation of the Teams
	3.2 Fitness Evaluation
	3.3 Individual Encoding
	3.4 Operators

	4 Experimental Setup
	4.1 Environment
	4.2 Parameters

	5 Experimental Results
	5.1 Interpretation
	5.2 Comparison with a Non Co-Evolutionary Approach

	6 Conclusions and Future Works
	References

	Author Index

