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AMetaheuristic Perspective on Learning
Classifier Systems
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Abstract Within this book chapter we summarize Learning Classifier Systems
(LCSs), a family of rule-based learning systems with a more than forty-year-
long research history, and differentiate LCSs from related approaches like Genetic
Programming, Decision Trees, Mixture of Experts as well as Bagging and Boosting.
LCS training constructs a finite collection of if-then rules. While the conclusion (the
then-part) of each rule is based on a problem-dependent local submodel (e. g.linear
regression), the individual conditions and, by extension, the global model structure,
are optimized using a—typically evolutionary—metaheuristic. This makes the
employed metaheuristic a central part of learning and indispensable for successful
training. While most traditional LCSs solely rely on Genetic Algorithms, in
this chapter, we also explore systems that employ different metaheuristics while
still being similar to LCSs. Furthermore, we discuss the different problems that
metaheuristics are solving when applied in this context, for example, discrete or
real valued input domains, optimization of individual rule conditions or entire sets
of rule conditions, and fitness functions that support nicheing or control bloating.
We ascertain that, despite the optimizer being essential, it has been investigated less
directly than the learning components so far. Thus, overall, we provide an analysis
of LCSs with a focus on the used metaheuristics and present existing solutions as
well as current challenges to other practioners in the fields of metaheuristic ML and
rule-based learning.

3.1 Motivation and Structure

In a book about metaheuristics and machine learning (ML), Learning Classifier
Systems (LCSs) have to be mentioned as they were among the first metaheuristics-
based ML approaches.
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Originally, LCSs stem from approaches to utilize genetic algorithms (GAs) for
interactive tasks [39, 82]. While they were developed somewhat independently of
reinforcement learning (RL) methods in the beginning, the two fields merged later.
LCSs build sets of if-then rules and there are variants for all of the major ML
tasks. Although some researchers refer to LCSs as evolutionary rule-based machine
learning (RBML) methods, we would like to stress that—from our perspective—
evolutionary optimization is not required but actually any metaheuristic may be
employed.

In this chapter, we provide an in-depth view at LCSs from the metaheuristics side.
To our knowledge, this has not been done yet, despite the employed metaheuristic
playing a central role in these methods. Indeed, neither the metaheuristics used in
LCSs nor their operators have received a notable amount of research attention so far.
With this chapter, we want to raise awareness of this fact and, by organizing existing
research, provide inspiration for new developments in both areas, metaheuristics and
LCSs, and thus lay the ground work that researchers can then build upon to more
easily remedy this deficiency.

To this end, we start with a short introduction to the field of LCSs, explaining
the overall approach and discussing the learning and optimization tasks that these
systems try to solve (Sect. 3.2). We then describe the relation of LCSs to other
similar ML approaches to highlight similarities and differences and thus deepen the
reader’s understanding (Sect. 3.3). Next, we elaborate on the role of metaheuristics
in LCSs, the types of systems that different design choices result in (in the process
proposing a new classification instead of the known Michigan/Pittsburgh one), and
approaches to solution representation, metaheuristic operators and fitness functions
(Sect. 3.4). Finally, we look at recent ML approaches that employ metaheuristics
and that were developed somewhat independently of LCSs but that rather closely
resemble what we would call an LCS (Sect. 3.5); some of the techniques from these
fields may be relevant for LCS as well.

3.2 What Are Learning Classifier Systems?

While there is no official definition of what constitutes an LCS, the consensus [26,
76] seems to be that an LCS is an ML algorithm that creates an ensemble model
consisting of a set of simpler submodels, each of which models a certain part of the
problem space. At that, the problem space is not necessarily split into disjoint sets—
submodel responsibilities may overlap. This is achieved by pairing each submodel
with a matching function that, for each possible input, states whether that input
is modelled by the submodel. Although overlapping responsibilities introduce some
additional complexity, they are considered a feature (e. g. the resulting overall model
can be expected to be more smooth than one based on disjoint splits). In areas of
overlap, the predictions of the submodels that model the input are mixed, usually
by employing a weighted average. The combination of a matching function and
a submodel can be seen as an if-then rule (or just rule, in short) which is also
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the technical term in the general field of RBML. Out of historic reasons, in LCS
literature, a rule together with its corresponding mixing weight (and possibly further
bookkeeping parameters) is called a classifier—hence the name Learning Classifier
Systems. In this chapter, we try to avoid the slightly overloaded term classifier and
rely more on the term rule which we use to denote a tuple consisting of a matching
function, a submodel as well as a mixing weight and bookkeeping parameters such
as how often the rule was correct. Just like existing LCS literature, we further use
the term condition to refer to the genotypic representation of a matching function
(i. e. a certain matching function is the phenotype of a certain condition).

Most of the LCSs currently popular in the field were developed in an ad-hoc
manner [26]. This means that the systems’ mechanisms were not derived from a set
of central, formally specified, assumptions about the learning task (e. g. the available
data); instead, in particular in very early LCSs and presumably due to their role as
proof of concept for the ideas regarding artificial evolution and genetics, methods
that were to be used were selected first and then combined so certain kinds of inputs
could be dealt with [39]. Later LCSs then built on those early systems: For example,
XCS [82] is a simplification (and improvement) of ZCS, which on the other hand is
a simplification of Holland’s original framework [81].

3.2.1 Learning Tasks

LCSs are a family of ML methods. At the time of this writing and aside from pre-
and postprocessing, task primitives found in ML can be very roughly divided into
supervised learning (SL), unsupervised learning and reinforcement learning (which
is sometimes also called sequential decision making) [12]. While there are LCSs that
perform unsupervised learning [see e. g. 90], these play a rather minor role in recent
years. Most currently researched LCSs are meant for supervised learning (SL) or
RL [59, 60].

The very first LCSs focused solely on RL tasks [39, 81, 82], even though that
term was not being used in the beginning (RL and early LCS frameworks were
developed somewhat independently). However, over the years it has been seen
that those LCSs, while performing competitively on SL tasks such as regression
and classification (discussed in the next paragraph), do not on non-trivial RL
tasks [9, 69]. In hindsight it can be said that this was probably the cause of more
and more researchers falling back to analyzing what are called in LCS literature
single-step problems, which are RL tasks with an episode length of one. Since, in
many of the considered tasks, there is a finite set of reward levels, these kinds of
studies often actually investigate classification tasks. Besides, many of the tasks
considered are deterministic which means that the corresponding classification
tasks are additionally noise-free. Nevertheless, several existing LCSs are capable
of solving more or less difficult RL tasks; for example, anticipatory classifier
systems [19, 55] whose rules also model the environment’s behaviour.
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The larger part of LCS research is concerned with SL and, in particular,
classification and regression tasks. At the time of this writing, the probably most
commonly used (and certainly most investigated) LCSs for these kinds of tasks
are almost exclusively XCS derivatives [59, 60, 76] with a notable exception being
BioHEL [see e. g. 7, 29]. XCS [82] is one of those aforementioned early systems
that originally were meant for RL but that, over the years, have been used more and
more exclusively for classification [59, 60]. In spite of that, XCS still has several RL-
specific mechanisms that are not directly useful or even detrimental for performing
classification; this gave rise to the UCS derivative [11, 78] which explicitely focuses
on supervised classification tasks.

In 2002, Wilson developed XCSF [84], an XCS derivative for function approxi-
mation. XCSF has been further improved up to quite recently, resulting in compet-
itiveness, at least for input spaces with low dimensionality [68, 70]. Besides XCSF,
there are other lesser known LCS-based regressors as welldrugowitsch2008b. Note
that one application of regression is approximating action-value functions in RL
problems [72]—which circles back to the early goals of LCS research.

Overall, it can be said that LCSs are a versatile framework that can be used for
all different kinds of learning problems.

3.2.2 LCS Models

Most models built by LCSs are of a form similar to

K∑

k=1

mk(x)γkf̂k(θk, x) (3.1)

where

• x is the input for which a prediction is to be made,
• K is the overall number of rules in the model,
• mk(x) is the output of the matching function of rule k for input x; typically,

mk(x) = 1 iff rule k is responsible for input x (i. e. if its submodel models that
input), and mk(x) = 0 otherwise,

• γk is the mixing weight of rule k; mixing weights usually fulfill
∑K

k=1 mk(x)γk =
1 and 0 � γk � 1 (this can easily be achieved using normalization, which is
standard for almost all LCSs),

• f̂k(θk, x) is the output of the submodel of rule k (with parameters θk) for input x.

Note that although the sum goes over all rules, by multiplying with mk(x) only the
rules that match the considered input x contribute to the result (for non-matching
rules, the respective summand is 0). Further, instead of binary matching, that is,
mk(x) being a function with codomain {0, 1}, matching by degree can be an option:
mk(x) then has codomain [0, 1] and may correspondingly take on any value between
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0 and 1. However, since all of the more prominent LCSs use binary matching,
we assume the same for the remainder of this chapter—unless we explicitly write
otherwise.

3.2.3 Overall Algorithmic Structure of an LCS

In order to build such an ensemble model, an LCS performs two main tasks, each of
which can be seen as having two subtasks:

Model selection consists of

(I) choosing an appropriate number of rules K for the task at
hand and

(II) assigning each rule a part of the input space (i. e. choosing
matching functions {mk(·)}Kk=1).

It is important to note once more, that, in LCSs, the input space
is not split into disjoint partitions but that instead an input
may be modelled by several submodels. The set of matching
functions is also called the model’s model structure.

Model fitting is concerned with selecting the best-performing submodels and
combining them optimally, given a fixed model structure. It
usually consists of

(III) fitting each submodel f̂k(θk, ·) to the data its rule is
responsible for by adjusting its parameters θk. It is often
beneficial to do this such that each submodel is trained
independently of the others, since, that way, upon getting
new training examples or changing the model structure
(model selection is typically done iteratively and alter-
natingly with model fitting), only partial retraining is
necessary [26].

(IV) fitting the mixing weights {γk}Kk=1 (see the introduction
to Sect. 3.2) such that areas where the responsibilities of
several rules overlap are dealt with optimally.

We now shortly discuss the four subtasks with a focus on whether it is common that
metaheuristics come into play.

The number of rules K is the main indicator for the overall model’s complexity
and with that, its expressiveness. A larger number of rules increases the expressive-
ness at the cost of an increased training effort and a decrease in interpretability. Also,
if the number of rules is too large, then overfitting can be expected (extreme case:
more submodels than there are data points in the training data) resulting in worse
generalization capabilities. On the other hand, if the number of rules is too small,
the overall model may not be able to sufficiently capture the patterns in the available
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data. Choosing an appropriate number of rules (subtask (I)) is thus an optimization
problem.

Based on the chosen number of rules, the next open task is to decide which
submodel is responsible for modelling which parts of the problem space (subtask
(II)). This is the task that all existing LCSs use metaheuristics for. Since the quality
of a solution candidate to this subtask highly depends on the number of rules (for
example, if there are fewer rules, then, in order to properly cover the problem space,
at least one of them has to be responsible for a larger part of it than if there were
more rules), subtasks (I) and (II) are often solved together or using a combination
of a metaheuristic for (II) and a simple heuristic for (I). For instance, the latter
approach has been taken for XCS [82] and its main derivatives, where the set of
matching functions is optimized using GAs [11, 82].

How exactly the individual submodels are fit to the data that their respective
rule’s matching function matches (subtask (III)) highly depends on the type of
submodel. For example, for linear submodels, methods such as least squares
may be employed [26]. Several well-known LCSs (most prominently, most XCS
derivatives) perform online learning which means that training data is seen instance-
by-instance and that predictions can be performed during learning. This demands
that the submodels support this kind of learning as well; for instance, in the original
XCS, the submodels’ parameters are updated incrementally using a gradient-based
update [82]. Overall, fitting a submodel is also an optimization problem (e. g.
minimization of expected risk on the data matched by the corresponding rule) that
is typically not approached with metaheuristics.

Given fixed sets of matching functions and (fitted) submodels, the final open
question (subtask (IV)) is how submodel predictions should be combined into a
single prediction. As mentioned before, an LCS’s submodels are allowed to overlap,
and for areas where that is the case, predictions of several submodels have to be
combined sensibly. A straightforward approach which is used by several popular
LCSs is to compute a quality metric for each rule (e. g. an accuracy score on the
training data that the rule matches) and use a weight proportional to that metric’s
output in a weighted average. This is, for example, how XCS does it [82]. While
there has been some research regarding this task [26], the larger part of LCS research
more or less neglected it and never really explored different methods [26]. In
general, computing mixing weights given fixed matching functions and submodels
is another optimization problem; just like for each individual submodel in subtask
(III), here, for the whole model, the expected risk is to be minimized. While there
are cases where provably optimal solutions can be found, their computation is often
rather expensive and cheap heuristics based on rule properties or metrics (such as
the one of XCS) can be a better choice [26]. To our knowledge, there have not yet
been any approaches of using metaheuristics for subtask (IV).

This concludes this first, rather high-level discussion of the four subtasks.
Section 3.4 discusses in more detail how subtasks (I) and (II) are approached
metaheuristically by existing LCSs as well as the challenges encountered in doing
so.
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3.2.4 LCSs in Metaheuristics Literature

After introducing LCSs from the ML perspective, we now shortly discuss their
presentation in existing metaheuristics literature. Overall, it can be said, that, if
mentioned at all, they are only discussed from a rather limited viewpoint with a
focus on older systems. In addition, recent work often does not include LCSs at all.
In the following, we summarize the main aspects we found—note how this contrasts
the more general description of these systems we give in this chapter.

LCSs are considered as a special kind of production system [34, 80] or as
methods for genetics-based machine learning (GBML) [62], evolutionary rein-
forcement learning (ERL) or evolutionary algorithms for reinforcement learnings
(EARLs) [80], or policy optimization [48]. It is typically assumed that LCSs utilize
a GA and build a set of if-then rules. Fitness is calculated based on individual rule
statistics such as accuracy or strength [8, 62]. While it is unclear whether evolution-
ary algorithms (EAs) are the only approach qualified to be used in an LCS [62, 80],
the importance of the solution representation and the applied metaheuristic operators
are quite clear. In particular, the operators for the generational replacement and the
mutation need to be adapted for usage in LCSs [34]. Still, GAs in LCSs are said to
be similar to the ones applied to search and optimization problems [34].

3.3 ML Systems Similar to LCSs

LCS models, as presented in the previous section, have some similarities with other
well-known ML frameworks. We now shortly review them informally1 and the
differences to LCSs in order to better highlight the LCS approach—especially in
light of the rather loose definition of what constitutes an LCS and the many existing
variants. To this end, we now differentiate LCSs from decision trees (DTs), mixture
of experts (MoE) systems, genetic programming (GP) as well as the ensemble
learning techniques bagging and boosting.

3.3.1 Decision Trees

Decision trees are amongst the most widely known rule-based systems. They are
often applied to both regression and classification tasks and can be either induced
from data automatedly or manually constructed by domain experts. A typical
DT divides the input space into a set of disjoint regions; these are created by
repeatedly splitting the input space axis-parallelly. The resulting hierarchy defines

1 At the time of this writing, a more formal treatment of the differences is under active investigation.
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a tree structure of which each path from the root to a leaf node corresponds to one
region. For each such region, a submodel is fitted (and, by convention, stored in the
corresponding leaf); for example, DTs for classification often simply use a constant
function corresponding to the majority class of the training data lying in that region.
Where to split the input space (i. e. in which dimension and at what value and at
what level of the tree) poses an optimization problem that can be solved in many
ways. Famous (and widely used) traditional algorithms to construct DTs include
CART [15] and C4.5 [61]. Besides these and other related methods, metaheuristics
for tree building have been investigated over the years as well: For example, [87] use
ant colony optimization (ACO) to construct trees similarly to CART, [86] propose
an EA-based hyperheuristic to design heuristics that then construct DTs and [89]
introduce a GA that optimizes a population of DTs based on both their accuracy and
size.

There is a direct correspondence between LCSs and DTs: Just like a path from
the DT root to a leaf, a rule in an LCS specifies a region and a submodel. The
only conceptual difference is that in LCSs, regions are allowed to overlap whereas
they are not in classical DT. A DT can thus be transformed into an LCS model
straightforwardly without losing information. The other direction can be done as
well by extending an LCS model by a new region for each overlap of regions and
then splitting regions further such that a proper hierachy among them is achieved.
Since regions in LCS models may be placed arbitrarily, it can be expected that a
rather large number of regions (and correspondingly, tree nodes) has to be added in
order to get a proper DT out of an LCS model. Finally, note, that there are fuzzy DT
approaches [10, 42] whose predictive models are very close if not the same as LCS
models that use matching by degree—although the way that the model is fitted is
fundamentally different.

3.3.2 Mixture of Experts

Mixture of experts is a research direction that developed independently of LCSs [41,
44, 85]. Nevertheless, the resulting models share a lot of similarity: The only
differences are that, in MoE, usually,

1. a probabilistic view is taken which provides prediction distributions instead of
the point estimates that LCSs models return,

2. submodels are not trained independently,
3. submodels are not localized using matching functions,
4. mixing weights are not constant but depend on the input.
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This means that an MoE is more expressive than an LCS2 since in the latter, local-
ization (matching) essentially decides whether the submodel’s output is multiplied
by 0 or by a constant mixing weight whereas in MoE more than these two values can
occur when mixing. On the other hand, LCSs are inherently more interpretable since
binary decisions as the one mentioned before are much more comprehensible than
decisions on somewhat arbitrary values. Note that MoE-like models whose mixing
weights do not depend at all on the input are typically called unconditional mixture
models [12]. Therefore, typical LCSs can be seen as in-between unconditional
mixtures and MoE models in terms of both interpretability and expressiveness.
Finally, independent submodel training inherently results in a slightly worse model
performance in areas of submodel overlap [26]; thus an MoE can be expected to
outperform an equivalent LCS. However, independent submodel training has two
major advantages that may actually lead to an improved performance given the
same amount of compute: Model structure search is much more efficient (e. g. when
changing a single matching function, only the corresponding rule and no others have
to be refitted) and, for some forms of submodels, no local optima during submodel
fitting arise [26].

There are currently two MoE-inspired formulations of LCSs, one by Dru-
gowitsch [26] and one by [88]. Drugowitsch [26] creates an LCS for regression
and classification by adding matching to the standard MoE model. The resulting
fully Bayesian probabilistic model is fitted using variational Bayesian inference
and agnostic of the employed model structure search (Drugowitsch explores GAs
as well as markov chain monte carlo (MCMC) methods). Other than in typical
MoEs, the submodels are trained independently (like in an LCS), resulting in
the dis-/advantages discussed in the previous paragraph. The resulting model is
probabilistic, that is, it provides for any possible input a probability distribution
over all possible outputs; to our knowledge, no other LCS is currently able to do
this.

[88] take a less general approach and closely model UCS, an LCS for classi-
fication, using an MoE. They are able to provide a simpler training routine than
Drugowitsch since their system is only capable of dealing with binary inputs
(just like the original UCS) and they always model all possible rules. The latter
makes training infeasible in high-dimensional space which is why, in a follow-up
paper [27], they extend their system with a GA for performing model selection.
They also add iterative learning to their model [27] which is not supported by
Drugowitsch’s system as of yet.

2 At least as long as the LCS uses the typical binary matching functions. A matching-by-degree
LCS can actually be more expressive than a comparable MoE.
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3.3.3 Bagging and Boosting

The two most well-known ensemble learning techniques are bagging [14] and
boosting [32].

Bagging [14] means generating several bootstrap data sets from the training data
and then training on each of them one (weak) learner. In order to perform a pre-
diction for a certain input, the predictions of all the available weak learners for that
input are averaged (regression) or combined using majority voting (classification).
This procedure has been shown to decrease prediction error if the weak learners
have instabilities; for example, this is the case for DTs, neural networks (NNs) and
RBML [24]. On first glance, the set of weak learners is somewhat akin to the set
of submodels in LCSs. However, there are several major differences: Other than in
bagging, in LCSs,

• no bootstrapping is performed to assign data points to the submodels; instead a
good split of the data set is learned by performing model selection.

• the learned splits do not only influence training but also prediction.
• submodel predictions are mixed based on some quality measure and not using an

unweighted average.

Boosting (e. g. the prominent AdaBoost algorithm [32]) trains a set of weak
learners (submodels) sequentially and changes the error function used in training
after each trained submodel based on the performance of the previous submodels.
To perform predictions, the submodels are combined using weighted averaging
(regression) or weighted majority voting (classification). LCSs differ from boosting
by

• submodels being localized, they do not model all inputs.3

• submodels being trained independently of each other.
• directly optimizing the function that combines submodels. While Boosting’s

repeatedly changed error function is somewhat reminiscent to the interaction
of matching and mixing in LCSs, matching and mixing are optimized more
explicitly.

3.3.4 Genetic Programming

Another well-known symbolic method applicable to many different ML tasks is
genetic programming [45], the evolution of syntax trees that represent functions or
programs. When compared to LCSs, GP approaches typically have more degrees of

3 If matching by degree is used (which is not the case for any of the promiment LCSs), they are
softly localized. This means that inputs are somewhat weighted—which goes more in the same
direction as boosting.
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Fig. 3.1 Direct transformation of an LCS model (cf. Eq. (3.1)) to a GP tree. We summarized the
nested summation of the submodel outputs as a single large sum. Input nodes are circular

freedom: While an LCS model can be transformed directly into a GP syntax tree
(e. g. see Fig. 3.1), the other direction is not that straightforward since GP trees in
general do not need to adhere to the general form of an LCS model. Other than in
LCSs, there is no explicit generation of submodels in GP.

There are several approaches that use GP techniques in LCSs. For example, [40]
use small GP trees (so-called code fragments) as conditions to more efficiently
explore model structure space by reusing building blocks from previous training
on subproblems.

3.4 The Role of Metaheuristics in LCSs

This section discusses the role of metaheuristics in LCS learning more in depth.
Section 3.2 already established that metaheuristics are almost always used to solve
the task of model selection, that is, subtasks (II) (choosing matching functions)
and (I) (choosing an appropriate number of rules), where subtask (I) is sometimes
approached heuristically. We now first introduce the options for the general
structure of the metaheuristic process and then continue with analysing the used
representations, operators and fitness functions.

3.4.1 Four Types of LCSs

In the early years of GBML, there emerged two “schools” with which many of
the investigated systems have later been associated: the Michigan and Pittsburgh
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approaches [22]. The classical definitions of these two terms are [22, 30]:

Pittsburgh-style systems are methods using a population-based metaheuristic
(e. g. a GA) at the level of complete solutions to the learning tasks. They thus
hold a population of rule sets whose conditions they diversify and intensify; the
operators of the metaheuristic operate at the level of entire sets of conditions.

Michigan-style systems on the other hand consider a single solution (a single
rule set) as a population on whose conditions a metaheuristic operates. The
operators of the employed metaheuristic operate on individual conditions.

We deem this differentiation as slightly problematic. For one, there are many
systems that cannot quite be sorted into one of the two classes (see, for example,
the systems marked as “hybrid” in the list in [77]). Secondly, the two terms focus
on population-based approaches. However, what about an approach that uses a
metaheuristic such as simulated annealing (SA) for model structure search and
gradient-based local optimization for model fitting? Since that metaheuristic works
at the level of complete solutions to the problem, this may be seen as a Pittsburgh-
style system. On the other hand, only a single solution is considered at any time
and individual rules of that solution are changed by the metaheuristic—therefore it
could also be called a Michigan-style system.

We thus propose a different distinction based on two major design decisions that
greatly influence how exactly a certain LCS, or, more general, an RBML algorithm
works:

Training data processing Online algorithms update their model after each data
point whereas batch algorithms process the entire available data at once [12, p.
143].

Model structure search LCSs differ greatly if a single model structure is consid-
ered at a time or more than one. We thus introduce the differentiation between
single-model and multi-model LCSs.

These two dimensions define four base types of RBML algorithms (online
single-model, online multi-model, batch single-model and batch multi-model
systems). The proposed terms also allow for gradual classification (e. g. mini-batch
approaches lie somewhere between batch and online methods) and thus resolve the
issue of having a category of “hybrid” systems that hold everything that does not
fall into one of the categories. Finally, the terms also have a meaning outside of the
RBML community which increases transparency and eases entry to the field.

Table 3.1 gives a quick overview of several well-known LCSs and how they relate
to the two design decisions. Note that according to our definitions, most systems
that were said to be Michigan-style belong to the class of online single-solution
systems whereas most systems that were said to be Pittsburgh-style belong to the
class of batch multi-solution systems. XCS and its derivatives [11, 82, 84] are online
learners using a typical Michigan-style metaheuristic; they therefore fall into the
category of online single-model methods. BioHEL [7] on the other hand performs
batch learning but does only ever consider a single set of rules. GAssist [6, 29] is
a classical Pittsburgh-style system that considers more than one set of rules at any
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Table 3.1 Examples for the
different types of LCS
algorithms

Online Batch

Single-model XCS(F) [82, 84], UCS [11] BioHEL [7]

Multi-model GAssist [6]

time and performs batch learning. Note that there currently is, to our knowledge, no
well-known online multi-model LCSs.

Each of the classes has some unique advantages and disadvantages. Dividing
model selection and model fitting is easier to achieve for batch algorithms; this
makes these systems often simpler and more straightforward to analyse formally
than online systems [26]. Particularly, existing population-based single-model
systems (e. g. XCS, where the GA operates on individual rules) are often hard to
analyse formally due to the rules both competing for a place in the population but
also cooperating to form a good global model.

It can be argued that the overall training structure of batch multi-solution systems
has a comparably high computational cost since for each model structure consid-
ered, the submodels are fitted until convergence—whereas online single-solution
systems can get away with fitting the submodels iteratively until convergence only
once. However, online single-solution systems perform fitting steps alternatingly
with model selection steps which makes the comparison slightly unfair as this can
be expected to amount to significantly more fitting steps required until convergence
than if the model structure were held fixed. Indeed, given the enormous amount
of training examples provided regularly to many state-of-the-art Michigan-style
LCSs [47, 53, 68], the comparison may actually not be as unfavourable as it looks at
first glance. However, this hypothesis has to our knowledge not yet been investigated
in depth.

3.4.2 Metaheuristic Solution Representation

Metaheuristics optimize the set of matching functions and, at that, operate on the set
of conditions (useful representations of matching functions, cf. Sect. 3.2).

Early LCSs were designed mostly for binary input domains and these systems are
still among the most-used and researched ones [77]. Matching functions for these
domains are typically represented by ternary strings, that is, binary strings extended
by an additional symbol #, the so-called wild card, that represents any of the other
two options and thus enables generalization. An example for the representation of a
matching function m : {0, 1}5 → {0, 1} is

(1, 1, 0, 1, #). (3.2)

It assigns 1 to (matches) the inputs (1, 1, 0, 1, 0) and (1, 1, 0, 1, 1) and 0 to any
other inputs [76, 82].
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For real-valued or mixed integer problem domains, many different represen-
tations have been proposed. Among the simplest that are commonly applied are
hypercuboid [83] and hyperellipsoid [18] conditions. An example for a hypercuboid
condition for a matching function m : R3 → {0, 1} is the 3-dimensional interval
[l, u) (with l, u ∈ R3) which can be seen as a tuple

(l1, u1, l2, u2, l3, u3). (3.3)

It matches all x = (x1, x2, x3) ∈ R3 that fulfill4 l � x < u:

m(x) =
{

1, l � x < u

0, otherwise
(3.4)

Aside from the mentioned ones, several more complex function families have been
proposed, e. g. neural networks [17] and GP-like code fragment graphs [40] (also
referred to in Sect. 3.3.4).

In general, any representation is possible including composites or combinations
of other representations as long as appropriate operators can be defined. It has to
be kept in mind, however, that more complex representations often lead to more
complex operators being required as well as that both the size and the topology of
the search space is directly influenced by the representation (e. g. there are functions
[0, 1]5 → {0, 1} that cannot be represented by above-introduced representation of
ternary strings of length 5). Furthermore, too simplified or restricted encodings
of the feature space can result in parts of the matching functions space being
inacessible. Variable length representations may alleviate some of these problems
but can render the operator design more difficult [76].

3.4.3 Metaheuristic Operators

Metaheuristic operators need to not only be compatible with the chosen form of
conditions but also perform well in optimizing the corresponding sets of matching
functions. This can be a challenging task for ML practitioners without a strong
metaheuristic background, in turn causing the same operators to be used repeatedly,
regardless of whether they may actually be suboptimal.

An important aspect in LCSs is when the metaheuristic is invoked and whether it
operates on the entire set of conditions or on a subset. For instance, in XCS [82], for
each input provided to the system, the GA applies its operators only to the conditions
of a subset of rules; namely to the ones that matched the input seen last and of those
only the ones that also proposed the action taken. Due to the dependence on the

4 This is equivalent to (l1 � x1 < u1) ∧ (l2 � x2 < u2) ∧ (l3 � x3 < u3).
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input introduced by only considering matching and used rules, the GA may operate
on a different subset in the very next iteration.

The initial set of conditions is usually created at random, possibly slightly
directed by requiring the corresponding matching functions to match certain inputs
(matching functions that do not match any of the training data may not be that useful
since their merit cannot be estimated properly) [76, 82].

For the generation of new individuals from existing ones, existing LCSs use
both recombination as well as mutation operators [76, 77]. Recombination operators
in single-solution systems may exchange condition attributes (e. g. hypercuboid
boundaries) whereas, in multi-solution systems, they probably should also include
an option to recombine sets of conditions in a meaningful way (e. g. exchanging
entire conditions between sets of condition).

Optimizing matching functions poses a difficult problem if the training data is
sparse, or, more generally, if there are sparsely sampled parts of the input space: On
the one hand, changing a condition only leads to a detectable difference in accuracy-
based fitness if that change alters the subset of the training data that is matched
by the corresponding matching function. On the other hand, these differences, if
occurring, can be very large (e. g. if a rule now matches three training examples
while, before, it only had matched two). This means that, depending on the training
data and initialization, the operators may have a low locality if fitness computation
only takes into account accuracy statistics on the training data. As a result, areas
between training data points may not be covered by solution candidates because
there is no fitness signal when exploring having some rules match them. Choosing
a combination of suitable operators and a fitness measure that present a consistent
answer to this issue is an open problem; the common workaround is to simply rely
on comparably large amounts of training data.

While multi-solution systems can explore different solution sizes rather naturally,
single-solution systems require explicit mechanisms to control and optimize con-
dition/rule set size. A popular option for population-based single-solutions (used,
e. g., in XCS [82]) is a simple heuristic: There is a maximum number of rules (a
hyperparameter) that, when violated by rule generation mechanisms, gets enforced
by deleting rules based on roulette wheel or tournament selection. Aside from that,
the numerosity mechanism is typically employed (also used, e. g., in XCS [82]): If
there is a well-performing rule r1 that is responsible for more inputs than another
rule r2 but the inputs matched by r2 are already covered by r1, then r2 may be
replaced by a copy of r1 (typically, no real copies are used but instead a count
associated with each rule in the set). The set of conditions thus contains one less
unique condition.

In existing online single-solution systems, metaheuristic operators gradually
change parts of conditions of the rule set in a steady-state fashion. At that, the central
challenges are maintaining a healthy diversity and identifying the required niches—
and keeping them in the rule set [76]. Selection is usually based on either roulette
wheel or tournament selection from either the whole set of rules (esp. in earlier
LCSs [77]) or subsets (e. g. in XCS [82]), the latter promoting niching. Niching
is also promoted when performing rule discovery for examples that are not yet
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matched by any rule in the set. The mutation operator modifies a single condition;
how this occurs primarily depends on the specific representation but is typically
stochastic while balancing generalization and specialization pressures. Commonly
used operators include bitflip [82] and Gaussian mutation [26]. Recombination also
works at the condition level and is usually a single-point, two-point or uniform
crossover with encoding-dependent crossover points. The replacement of rules
usually employs elitism operators. [76]

Batch multi-solution systems are more similar to other well known optimization
approaches [76]. Most existing systems of this category are generational rather than
steady-state. Unlike in existing online single-solution systems, parents are condition
sets and not individual conditions and are selected from a population of condition
sets, typically using roulette wheel or (primarily in later systems) tournament
selection. The mutation operator mutates at two levels: at the level of condition sets
by adding and removing rules, as well as at the level of individual conditions using
a method appropriate for the rule representation, for example, Gaussian mutations
of all bounds when using an interval-based condition. The recombination operator
mostly exchanges rules between rule sets but can also be extended to additionally
exchange parts of individual conditions [6].

3.4.4 Typical Fitness Functions

As already noted in Sect. 3.2.3, the problem that an LCS’s metaheuristic tries to
solve is model structure selection, that is, choosing the size of the rule set (subtask
(I)) and proper matching functions (subtask (II)). The goal of this optimization task
is to enable the model to be optimal after it has been fitted. At that, optimality
of the model, and with it, optimality of the model selection, is typically defined
slightly handwavy based on the fitness measure used for model selection. That
fitness measure commonly weighs a high accuracy of overall system predictions
against a low model structure complexity (i. e. number of rules) [6, 82]. However,
there are also lesser-known, but more principled approaches to what an LCS is
meant to learn that we cannot expand on here for the sake of brevity; for example,
the one by Drugowitsch [26] based on Bayesian model selection.

The need for high accuracy and a low number of rules induces a multi-objective
optimization problem with conflicting goals (the highest accuracy can consistently
be achieved with a very high number of rules, e. g., one rule per training example).
However, the utilized fitness functions are not always modelled explicitly multi-
objectively but often use a (weighted) sum of the objectives—or even focus on only
one of them. The exact fitness computation within the system strongly influences the
metaheuristic to be used; therefore, we will shortly describe the different options and
their implications.

Online single-model systems usually incorporate niching and thus require mech-
anisms for fitness sharing. In earlier LCSs for RL there was an explicit fitness
sharing mechanism that split the reward among all rules in the same, activated
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niche [39, 81]. The more generally applicable technique is implicit fitness sharing
which is based on computing the fitness relative to the rules in the same niche and
applying metaheuristic operators only within that niche [82]. The fitness functions
are usually to be maximized and are often based on either rule strength [81] or
rule accuracy [82]. Strength-based fitness is often used in earlier LCSs built for RL
settings; it builds on the sum of RL rewards after applying the rule. Accuracy-based
fitness, on the other hand, is based on the frequency of the rule’s correct predictions;
and, due to its increased stability much more common as of now.

In batch multi-model systems, purely accuracy-based fitness functions can result
in bloating [26], that is, a significant amount of additional rules being included in the
rule set that do not improve the model. To resolve this issue, multi-objective fitness
functions with the second objective being the reduction of rule set size are used.
They are often modelled as weighted sums of the individual objectives and thus
still remaining a single-objective problem. One example for this is the utilization
of the minimum description length (MDL) principle for the fitness function in
BioHEL [7] and GAssist [6]. MDL is also a common strategy in optimization for
feature selection problems.

3.5 Other Metaheuristics-Centric Rule-Based Machine
Learning Systems

We next discuss the similarity of LCSs to other metaheuristics-focussed RBML
systems, that is, other systems utilizing GAs, ACO, other metaheuristics or hybrids,
and artificial immune systems (AISs). These were developed independently of LCSs
but are often based on the same ideas (e. g. [39]) or on the work of [30] which
summarizes genetic approaches for data mining. Furthermore, they are used to
construct if-then rules, mostly applied to classification tasks, and often divided
into Michigan and Pittsburgh approaches [30]. The main difference between these
metaheuristics-focussed RBML systems and LCSs is that most of them do not utilize
any additional bookkeeping parameters.

The list of learning systems in this section is not exhaustive, but aims at providing
a broader view with some short examples. It is important to note that we restrict
ourselves to systems

• that are more or less close to the definition of an LCS given in Sect. 3.2 but whose
authors do not relate them to existing LCS research (or do not explicitly call them
LCSs)

• that somewhat lie at the very border of the field of LCS research and may thus
not be known well.

While LCSs are commonly associated with evolutionary (or more specifically
genetic) algorithms, any metaheuristic can be used [62, 76]. This makes the
comparison of these other metaheuristics-focussed RBML systems even more
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relevant, as algorithms from both fields can profit from the respective other field’s
research.

3.5.1 Approaches Based on Evolutionary Algorithms

The degree of resemblance to LCSs is most obvious for approaches which also
utilize EAs and of which a non-exhaustive overview is given in this section. Most of
these approaches, for example the general description of GAs for data mining and
rule discovery by [30], have been proposed with—if at all—only little differentiation
or comparison to LCSs.

Approaches utilizing GAs for the discovery and optimization of classification
rules are for example described in [1, 21, 50, 51, 79]. These are mostly subsumed
under the definition of Michigan-style systems, though many of them are actually
batch single-model systems. They differ from LCSs in terms of the operators
used in the GA, the fitness computation, or the use of additional strategies. For
example, [50] extended their RBML system to perform multi-label classification,
while [21] utilize a parallel GA in their approach. A classification rule mining
system using a multi-objective GA (MOGA) is presented by [35]. There are also
approaches using evolutionary techniques such as co-evolution, which is applied to
sets of examples, the rules being induced at the end [43]. This presents an inverse
order of the process compared to the traditional LCS approach. Furthermore, other
EAs can be used for rule discovery, for example a quantum-inspired differential
evolution algorithm [71].

While there often is no direct relation provided between other evolutionary
RBML systems and LCSs, at least some summaries describe a few of the different
approaches [31] or provide experimental comparisons [74]. An exception is the
combination of DTs and a GA by [64], which includes two rule inducing phases (a
decision tree produces rules, the GA refines these rules) and which is simultaneously
described as a Michigan-style LCS with three phases.

3.5.2 Approaches Based on the Ant System

Another branch of approaches for (classification) rule discovery is based on the
ant system, or Ant Colony Optimization (ACO), with the Ant-Miner as the most
prominent representative. Their similarity to LCSs is strongly dependent on the
variant of LCS and on how much the utilized metaheuristic is seen as a defining
component. For example, the Ant-Miner [58] is a batch single-solution system with
an overall concept similar to BioHEL [7]. Its pheromone table is similar to the
attribute tracking concept in ExSTraCS [76]. Furthermore, it uses the same rule
representation strategies as LCSs in general, with the exception that continuous
variables are more often discretized in the Ant-Miner. Nevertheless, the ACO
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algorithm [25] is quite dissimilar from GAs and the resulting RBML systems can
exhibit further differences.

The Ant-Miner develops if-then rules whose condition consists of a concate-
nation of terms (i. e. attribute, operator, and value). Rules are constructed by
probabilistically adding terms to an empty rule under utilization of a problem-
dependent heuristic function and the ACO-typical pheromone table. Afterwards, the
rule is pruned and the pheromone table is updated and the next rule is constructed.
This process is repeated until the maximum population size (number of ants) is
reached or the same rule has been constructed more than once. Then, the best rule
is selected and the data points it matches and correctly classifies are removed from
the training set. The overall algorithm is repeated until enough cases in the training
set are covered by the aggregated rule set [58].

There are several extensions and variants for the Ant-Miner [3, 13], for example,
different pheromone update functions or heuristic functions and adaptations to cope
with continuous data [46, 56]. Furthermore, there also exists a regression rule miner
based on Ant-Miner [16] and a batch multi-solution Ant-Miner variant [57]. Also,
other ACO-based classifier systems have been developed simultaneously to Ant-
Miner [65].

3.5.3 Approaches Based on Other Metaheuristics or Hybrids

Next to GAs and ACO, there are many more metaheuristics and hybrid algorithms
that can be utilized in RBML, especially for classification rule mining [23]. They
share roughly the same basic view on rules as well as a classification into Michigan-
and Pittsburgh-style approaches, although the term Michigan-style often subsumes
both online and batch single-model systems. Again, their similarity to LCSs depends
strongly on the respective variants and the underlying definitions but a direct
integration into existing LCS research is often not provided. While this section
can not present these approaches exhaustively, it showcases further insights on how
metaheuristics can be applied to RBML.

Particle swarm optimizations (PSOs), for example, has been used for clas-
sification rule discovery [66, 67] as well as for a regression rule miner [49].
Furthermore, the artificial chemical reaction optimization algorithm (ACROA) was
used to optimize classification rules as well [2]. While these approaches all use
population-based metaheuristics, it is not impossible (or infeasible) to use single-
solution based optimizers, as was demonstrated in [52] where SA determines fuzzy
rules for classification. This SA variant was also extensively compared to the LCSs
GAssist and XCSTS.

Hybrid approaches, that is, algorithms combining two different metaheuristics
to combine their benefits, are common to classification rule discovery as well.
They are, again, often presented as Michigan-style systems; however, many of them
perform batch single-model learning. There exist, for example, hybrids of PSO and
ACO [37, 38], SA and tabu search (TS) [20], and ACO and SA [63]. Some of these
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hybrids explicitly divide their rule discovery process into two phases; this is the case,
for example, for the HColonies algorithm, a combination of AntMiner+ and artificial
bee colony (ABC) optimization [4]. Additionally, batch multi-model hybrids are
possible, as presented by an Ant-Miner-SA combination [54].

Another type of hybrid systems for classification rule mining combines not only
two metaheuristics, but utilizes them in what the authors call a Michigan-style phase
and a subsequent Pittsburgh-style phase. In our new classification system, these
would simply fall into the batch multi-model category. For example, [73] use a
combination of a GA and GP, depending on the types of attributes, in the Michigan
phase to generate a pool of rules and then perform a Pittsburgh-style optimization
with a GA in the second phase to evolve the best rule set from the pool. Similarly, [5]
use a hybrid of ACO and a GA. AntMiner+ is used in the first phase to construct
several models based on different subsets of the training data, while the GA uses
these models as an initial population for optimization. This approach utilizes the
smart crossover developed for Pittsburgh-style LCSs, which is an indication for at
least some overlap between the two research communities.

3.5.4 Artificial Immune Systems

Artificial immune systems (AISs) are another class of algorithms inspired by biolog-
ical processes and suitable for ML and optimization tasks. AISs are differentiated by
the general strategies they employ, that is, clonal selection theory, immune network
theory, negative selection and danger theory. [36, 62, 75]

First of all, the similarity of AIS algorithms and LCSs depends strongly
on the strategy. Clonal selection– and negative selection–based AISs are more
similar to evolutionary RBML systems than immune network or danger theory
AISs. Furthermore, both AISs and LCSs entail many variants, depending on the
learning task and implementation choices. At that, for example, solution encoding
and operator choice further increases or decreases the similarity between these
approaches. Finally, note that AISs research often acknowledges the similarities and
differences to LCSs [28, 33].

3.6 Future Work

As demonstrated in the previous sections, LCS research has mostly focussed on
the ML side and neglected its metaheuristics to some extent. Nevertheless, there
still are shortcomings in terms of the learning aspect: For instance, LCSs continue
to show inferior performance to many other systems when it comes to non-trivial
RL, although they were originally designed for exactly this kind of task [26, 69].
Their learning performance often depends on a large number of semantically very
different and non-trivially interacting system parameters [26]; this complicates
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utilization of these systems and often necessitates parameter tuning. Furthermore,
there are close to no formal guarantees for most of the popular LCSs, mainly due to
the ad-hoc approach taken for their development [26]. As a result, the assumptions
these algorithms make about the data are slighly obscure, as are the algorithms’
objectives resulting in uncertainty about which learning tasks LCSs are suited for
best.

To remedy these shortcomings is one important direction for future research
on LCSs. However, questions relating to the metaheuristics side should not be
neglected any longer either. This includes starting to utilize state-of-the-art meta-
heuristic knowledge and techniques for optimization, but also and probably even
more understanding the relationship between the problems of LCS model fitting
and LCS model selection. An open question is, for example, how the nature of the
model fitting problem in LCSs relates to the nature of the corresponding model
selection problem and therefore what metaheuristic to use. This begins at picking
representations and operators that perform well, and translates to the usage of
matching functions and submodels.

3.7 Conclusion

We presented Learning Classifier Systems (LCSs), a family of rule-based machine
learning systems. They construct models of overlapping if-then rules from data.
Construction of an LCS’s model involves two main optimization tasks that each
consist of two subtasks. To perform model selection LCSs employ metaheuristics
to optimize the resulting model’s rules’ conditions (i. e. when a certain rule applies)
and often also to determine an appropriate number of rules to be used. The task of
model fitting entails optimizing each of the rules’ submodels so it fits the data that
fulfills the rule’s condition; this is typically done non-metaheuristically. In situations
where multiple rules’ conditions match a certain input a mixing strategy is used to
determine the model’s prediction based on each rule’s prediction.

Furthermore, we discussed the similarities and differences of LCSs and the
related machine learning techniques of Genetic Programming, Decision Trees,
Mixtures of Experts, Bagging and Boosting. We found that these techniques are in
fact unique but can often be combined with LCSs or transformed into LCS models
by making or dropping assumptions. However, bidirectional transformation is non-
trivial.

We introduced a new nomenclature to differentiate LCSs into four distinct types
that supersedes the earlier classification into Michigan-style and Pittsburgh-style
systems. We categorize them based on their training data processing scheme into
online and batch learning and based on whether model structure search involves a
single-model or a multi-model approach.

We then focussed on how metaheuristics for model selection are commonly
designed: Firstly, discussing various rule condition representations in relation to
input domains and operators. Secondly, giving an overview about how and when
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operators are usually applied, stressing issues such as locality and niching, and
which operators are typically used in existing literature, especially with regards to
the distinct types of LCSs. Lastly, detailing fitness function requirements and typical
representatives.

Additionally, we summarized other metaheuristics-centric rule-based machine
learning systems. Although these systems are not referred to by their authors as
LCSs, according to the definitions presented in this chapter, they may actually
qualify as such. The most well-known of these systems is probably Ant-Miner which
optimizes rule sets using Ant Colony Optimization and whose research community
even uses some of the terminology typical to the field of LCS such as distinguishing
between Michigan-style and Pittsburgh-style systems.

Overall, we find that both the general metaheuristics community, as well as the
LCS community do overlap and are researching similar issues but do not interact
enough. Metaheuristics researchers rarely consider the optimization task found in an
LCS as an application of their algorithms and LCS researchers often stick to more
basic metaheuristics and—especially in the case of those systems that are referred to
by their authors as LCSs—solely consider the application of genetic or evolutionary
algorithms. Contrastingly, we are certain that interaction and cooperation can only
benefit the advancement of both fields and that many exciting research questions
remain to be answered.
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