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Abstract: As soon as Artificial Intelligence (AI) projects grow from small feasibility studies to mature projects,
developers and data scientists face new challenges, such as collaboration with other developers, versioning
data, or traceability of model metrics and other resulting artifacts. This paper suggests a data-centric AI
project with an Active Learning (AL) loop from a developer perspective and presents ”Git Workflow for AL”:
A methodology proposal to guide teams on how to structure a project and solve implementation challenges.
We introduce principles for data, code, as well as automation, and present a new branching workflow. The
evaluation shows that the proposed method is an enabler for fulfilling established best practices.

1 INTRODUCTION

More and more AI projects are emerging in compa-
nies across all industries, as several surveys1 have
shown. The growing interest in AI systems stems
from the promise that, given enough data, machine
learning (ML) algorithms can learn to make decisions
that are impossible, or at least hard to code manually.
Even in critical domains, such as healthcare, new use
cases are constantly emerging, and not just because
research has shown that ML models are already able
to outperform humans at particular tasks (Rajpurkar
et al., 2022).

Besides AI projects, an ecosystem of methods,
concepts, and tools have been developed around tra-
ditional software projects. However, these solutions
cannot be directly transferred to AI projects, as AI-
and traditional software projects differ fundamentally
in one aspect: In traditional software projects, the
source code is sufficient to create the artifacts. AI
projects, whose artifacts include a trained ML model,
have two types of inputs: code and data (Sculley et al.,
2015). Since data is usually more volatile than code,
the ML artifacts have to be recreated more frequently.

The research community has identified this gap

a https://orcid.org/0009-0004-3827-9809
b https://orcid.org/0000-0002-7931-1105
1(Deloitte, 2020): State of AI in the Enterprise 3rd

Edition, (Capgemini, 2020): The AI-powered enterprise,
(McKinsey Analytics, 2021): The state of AI

and is beginning to make its way into the field of
MLOps (Lwakatare et al., 2020). In emerging con-
cepts, such as CRISP-ML(Q) (Studer et al., 2021),
the focus is on what a developer has to do next, but
there is a lack of concrete instructions for teams how
it can be implemented. However, due to the vast spec-
trum of domains for AI projects, this is understand-
able. Traditional software projects have answered the
how in terms of development models and method-
ologies. For example, modern development methods
such as DevOps build on GitFlow or trunk-based de-
velopment Git workflows (Driessen, 2010). However,
there is still a need to adapt established development
methodologies for AI projects (Haakman et al., 2021).

This is reinforced by the recent trend in the AI
community, which is facing a shift in mindset towards
increasing awareness of data dependency in imple-
menting powerful AI systems (Paleyes et al., 2022).
In this context, AL is gaining popularity. This method
addresses the problem of data labeling, which is of-
ten referred to as the most costly and time-consuming
part of building an AI system. Here, the annotation
process should be made effective by having the model
iteratively select the data in a smart way that will con-
tribute to the highest possible information gain during
training.

However, such a technique leads to a further in-
crease in the dynamics of artifacts, which is why it is
necessary to develop methodologies for implement-
ing AI projects with an AL loop. This paper aims to
present a Git workflow for Active Learning (GW4AL)
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in a way that makes it easier for a development team
to solve emerging implementation challenges. To this
end, section 2 recaps the basics of the AL lifecycle.
Section 3 outlines the relevant software engineering
(SE) concepts and presents the proposed workflow.
Finally, the methodology is discussed in Section 4.

2 ACTIVE LEARNING
LIFECYCLE

In general, AL is defined as a method in which the ML
model can select the data for training (Settles, 2009).
These data points are then labeled by an oracle and
added to the annotated data pool. Given the model’s
request for annotations, the goal is to make the data
labeling process more effective and iteratively train
an increasingly powerful algorithm through ongoing
feedback. Looking at this interaction from a software
developer’s perspective, both existing concepts, such
as DevOps, and currently emerging concepts from
MLOps and DataOps are involved in the implemen-
tation.

We use the foundations of these three concepts
to present our approach to an AL lifecycle, which
emerged during the development of a three-year data-
centric AI project and is shown in Figure 1. It is in-
tended to synchronize the established practices and
show individual phases, iterations, and their interre-
lationships in the AL loop. The core cycle gives a
system view of AL: All steps to train the ML model
are found in the ML iteration. Traditional phases of
software development have been implemented in the
development iteration. Operational tasks are adapted
to the circumstances of an AI project. The selection
and annotation of new data take place in the data iter-
ation shown in blue.

2.1 Data Iteration

Currently, various specifications of a data pipeline for
AI projects can be found in the literature. In (Fis-
cher et al., 2020), data preparation in the AI Modeling
Cycle is defined as curation, labeling, and augmenta-
tion. The terminology of data collection as a stage
of the data iteration is used in (Idowu et al., 2021;
Tamburri, 2020; Ashmore et al., 2019; Amershi et al.,
2019), while this is usually followed by a phase called
data transformation (Morisio et al., 2020), sometimes
more specifically named to the respective tasks pro-
cessing, formatting or cleaning (Idowu et al., 2021).
(Amershi et al., 2019) identify in their ML workflow
the three data-oriented phases of collection, cleaning,
and labeling, which were also used by (Studer et al.,
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Figure 1: Active Learning Lifecycle.

2021) for their ML process methodology for the mod-
ification of CRISP-DM (Wirth and Hipp, 2000). We
conclude that the core is about the three phases Ex-
tract, Transform and Load of the ETL process and
bundle the data engineering activities on them.

According to (Settles, 2009), we will merge data
extraction with differentiated AL query scenarios and
distinguish between batch-based and stream-based
scenarios: The former can be classified as pool-based
sampling, which describes a scenario in which data
points are selected from an unlabeled dataset to be an-
notated by the oracle (Lewis and Gale, 1994). These
Query-scenarios represent the link between ML and
data iteration in the AL lifecycle. The other query
scenario differs from the batch-based method and in-
volves stream-based sampling (Cohn et al., 1994).
Thereby it is evaluated for each data point individu-
ally whether the label should be queried by the ora-
cle. Based on the deployed application, we find the
Stream of new data in the AL lifecycle as the second
possible stage to enter data iteration.

As soon as new data is provided, it can be made
versioned available for the subsequent phases. For
this purpose, we follow the usual order and combine
procedures from the area of Data Transformation.
Rule-based tasks are applied to the extracted raw data.
This includes data cleaning, which occurs in most
data pipeline proposals, and primarily improves the
quality of the data (Li et al., 2021; Ilyas and Chu,
2019).

In an AL setup, one or more query strategies (QS)
exist, regardless of whether they are single batches
or a data stream. There are essentially three oppos-
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ing forces in deciding which samples are best for the
model: informativeness and representativeness (Du
et al., 2017), and the diversity of a new data point.
Some QS are based on certainty (Angluin, 1988) and
focus on the model’s predictive ability for unknown
data points. Other approaches are more decision-
theoretic in nature and combine multiple models (Se-
ung et al., 1992). Once the data has been selected
by the QS and passed to data transformation, the new
instances must be labeled by an oracle. This stage,
represented as Label, can be done by a human or the
model itself. The latter is often referred to as auto-
mated data labeling or semi-supervised learning (Zhu,
2008). Based on the initial human annotations, if the
model reaches a certain threshold in its prediction, la-
bels are continuously assigned automatically. How-
ever, the human-in-the-loop is especially necessary
for domains e.g., with medical tasks, on the one hand,
to build up a sufficiently large ground truth dataset
and, on the other hand, to catch edge cases in the qual-
ity assurance process as well as to assign the correct
label for rarely occurring cases (Karimi et al., 2020).
Therefore, combining human- and automated annota-
tion is a promising method (Desmond et al., 2021).

To complete the data iteration, the goal of Load
is to make the results of the data iteration available in
other stages of the AL lifecycle in a standardized way.
Additional aspects need to be undertaken regarding
the split into training, test, and validation datasets, as
these could be subject to dynamics as well. With this
result, we follow the AL lifecycle clockwise to the
ML iteration.

2.2 Machine Learning Iteration

As new data or labels are available, the ML model
would be continuously (re-)trained in the AL loop.
Usually, the required ML pipeline consists of different
substeps, which can differ depending on the problem
domain and application. All tasks related to the ML
model are part of the green-colored ML iteration in
figure 1. During the implementation of an AL project,
they can be executed periodically or event-based in an
automated manner, represented as Trigger, as well as
experimentally, which is the connection from the di-
rection of the develop iteration. Experimental tasks
typically fall within the scope of a data scientist, who
may want to test the performance of a new model
architecture or the configuration of new parameters
(Kreuzberger et al., 2022).

Regardless of the application-related stages of an
ML pipeline, the data required for the model are first
analyzed. This phase, identified as Exploration in
the AL lifecycle, can be executed manually manually

for the experimental case or manifested in the form
of an analysis during the automated execution of the
ML iteration. Although the tasks are data-driven, the
focus here shifts in the model-oriented direction, for
example, the recognition of attributes, statistical eval-
uations, or outlier detection.

Subsequently, further steps take place, which are
summarized in figure 1 under Process. The data pre-
processing for the ML model is also very domain- and
use-case-specific (Studer et al., 2021). Techniques
such as normalization and standardization are used,
complemented by weighting and resampling, which
are more generally summarized as feature engineer-
ing.

Training means optimizing the ML model to its
objective function, reflecting the defined problem so-
lution. In this process, the previously preprocessed
data is fed into the model to identify patterns. The re-
sult is an algorithm that is used in an AI application
as a prediction service and is successively retrained in
an AL project. The path in the AL lifecycle then sep-
arates, where the ML iteration can be preceded by an
optimization or - if a further improvement is to query
new data and labels - to return to the data iteration.
As a continuation or additional ML iteration, a model-
oriented Optimization usually includes activities that
focus on repeating the training process itself and im-
proving the model performance e.g., by adjusting hy-
perparameters.(Ashmore et al., 2019)

Once a suitable version of a trained model is
found, it is chosen via Model Selection Strategy and
made available to the next iteration or to dive into the
development process.

2.3 Develop Iteration

Different objectives could can be pursued with the ex-
ecution of the ML pipeline, resulting in requirements
for the implementation of the ML pipeline to converge
both, for fast feedback loops in the sense of agile soft-
ware development and to converge to a good model
for the problem (Amershi et al., 2019). In the area of
SE for ML systems, there is growing interest in the re-
search community. Regarding Development, (Arpteg
et al., 2018) describe SE challenges of Deep Learn-
ing applications and identify the strong data depen-
dency compared to traditional software development.
(Nascimento et al., 2020) provide a comprehensive
literature review in software development for AI.

Another characteristic of developing systems with
ML, especially with an AL loop in addition to data-
driven AI development, is the continuous feedback
from stakeholders in the form of new data and Re-
quirements, which the team of software develop-
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ers, data engineers, and data scientists respond to and
Plan changes in their system.

Figure 1 shows the yellow-colored Develop iter-
ation next the Build phase, in which the new incre-
ment is merged with the project. Developing a ML
application with continuous integration is investigated
by (Karlaš et al., 2020) in their practice-oriented re-
search, where they called this methodology a ”de-
facto standard for building industrial-strength soft-
ware”.

Like in traditional software development, a suc-
cessful build is followed by a phase in which a se-
ries of manual and automated Tests are performed. In
AL projects, these go beyond the application code and
also include data dependency and the selected model
(Rukat et al., 2020). Within the context of ML Test-
ing, (Zhang et al., 2019) published an extensive sur-
vey. (Breck et al., 2016) provide a set of actionable
tests for AI projects with their rubric-based ML Test
Score.

We enter the Operations by completing or skip-
ping the development iteration once we pass the tests
with the selected retrained model and proceed to the
release stage.

2.4 Operations

All operational tasks, colored pink in figure 1, will
typically be carried out from the release to the deploy-
ment of a ML model and will be performed continu-
ously in a production environment. Here, Feedback
may come not only in the form of direct feedback
from AL stakeholders but also through hidden feed-
back in form of measurable behavioral differences of
model consumers. A possible response would be to
reconfigure the current release. (Sculley et al., 2015)
describe in their research the importance of Configu-
ration in ML systems and establish principles, such
as the necessary ability to implement a reconfigura-
tion as a small change.

Monitor is about managing the productive model
and data. Evaluation and Validation tasks result
from the (re-)configuration and can also be character-
ized as continuous jobs of the productive AL system.
Usually, this includes techniques for concept drift de-
tection. It can identify both data and model drift and
derive possible requirements for the operations team.
To this end, (Renggli et al., 2021) give a data quality-
driven view of MLOps in their research. Drift detec-
tion is also addressed by (Klaise et al., 2020), who
also present concepts of explainability for deployed
models.

An overview of operations in the end-to-end AI
lifecycle is given by (Arnold et al., 2020), where De-

ployment is defined as ”a stage of the seamless roll-
out of ML models”. In the study by (Paleyes et al.,
2022), the deployment of ML models is divided into
several stages in more detail.

The AL loop’s inherent character of continuity ne-
cessitates the consideration of continuous training to
automate ML iterations, continuous integration as a
de facto standard of software development, and con-
tinuous deployment of the newly trained model. For
its implementation, we propose the methodology pre-
sented in the following section.

3 GIT WORKFLOW
FOR ACTIVE LEARNING

While the proliferation of DevOps principles and
best practices has spawned methods such as Git-flow
and trunk-based software development, specific ap-
proaches are just emerging in developing projects
with ML. Derived from the previously defined AL
lifecycle, we propose GW4AL, an agile development
methodology for AL projects that provides guidelines
for a team of developers and data scientists to struc-
ture their work, focusing on a data-driven develop-
ment.

A central idea is the fusion of runners for Contin-
uous Integration (CI), -Delivery (CD), and -Training
(CT). Furthermore, we present a branch-based work-
flow concept in which we introduce data- and code-
focused levels as well as new types of branches. To
realize this, we first present the necessary principles
related to data, code, and the runners.

3.1 Basic Concepts

In an AL project, a wide range of different ML
frameworks are used. We have therefore created a
development approach as generic as possible. Below,
we present concepts enabling the branching workflow
described in the following section 3.2.

3.1.1 Data Principle

From a process perspective, AL usually starts with
collecting the raw data. Similar to the code, the data
will change over the project’s lifetime - either due to
additional data or changing requirements, which in
turn lead to new data being collected. In more con-
crete terms, new raw data may be imported, or new la-
bels may be acquired through the next iteration. Thus,
the artifacts of an AL project depend not only on the
code, but essentially on the data, which means that
the data has to be versioned. Although this can be
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done manually (e.g., by naming different versions of
the dataset with timestamps), it is advisable to use a
data versioning tool.

Developing a ML pipeline with complete, often
massive, datasets renders an implementation ineffi-
cient from many points of view. Both, the data se-
lection and the long computation time slow down the
developer’s work, therefore we recommend creating
a development dataset. This is a small subset of the
original data with the goal that the entire ML pipeline
takes only a few minutes to execute. This allows
developers to use the development dataset for local
development on their machine and to provide quick
feedback to the runner about whether a recent com-
mit breaks the ML pipeline.

The development dataset described above has
to be reproducible and version-safe and, therefore,
should not be created manually. The ideal solution
is a separate code module that samples from the com-
plete original dataset and enables automatic updates
to the subset as the original dataset changes. Sup-
pose this code module enables the possibility to in-
clude specific (groups of) samples into the develop-
ment dataset. In that case, this could serve as a basis
for regression testing, where samples that previously
broke the ML pipeline are now checked from the be-
ginning of the model training.

In addition to the established requirements for
datasets in ML engineering (Hutchinson et al., 2021),
there are additional requirements for this development
dataset considering the highly dynamic nature of the
data in an AL project. It should ideally approximate
the distribution of the underlying full datasets and
contain outliers and corrupted samples in some sce-
narios. Figure 2 illustrates the concept of develop-
ment datasets. The full datasets are shown on the left,
with changes over time at three iterations. The Dev-
Dataset-Creator code module ensures that the devel-
opment dataset is generated automatically. This can

be triggered manually, or fully automated as soon as
the distribution has changed significantly between the
iterations, as shown in the figure.

3.1.2 Code Principle

Usually, a traditional ML pipeline consists of differ-
ent stages, regardless of the used ML framework or
use case. As shown in the AL lifecycle, an ML iter-
ation includes, among other tasks, the logic for pre-
processing as well as model training. At a very early
stage, for example, for prototyping, it is often com-
mon to implement all these steps in a single script or
notebook (Rule et al., 2018). These artifacts are of-
ten local to the developer’s workspace or are poor at
identifying version differences.

To enable a team of developers to collaborate
on an AI project, it has become established prac-
tice to split up the sub-steps of a pipeline (O’Leary
and Uchida, 2020). Individual code modules reflect
the stages of an ML pipeline, as shown in figure
3. Therefore, it is advisable to identify the required
stages when setting up an ML pipeline and then de-
fine the necessary dependencies between the individ-
ual stages. It is essential to ensure that data flows
through the pipeline early in the development process,
even if neither the data itself nor the resulting arti-
facts (e.g., the trained model) produce no meaningful
results. In this way, developers are able to work in
parallel on the different stages.

A sustainable implementation of the ML pipeline
code is to enable configuring the stages via feature-
flags and parameters. In this way, different implemen-
tations and settings of each stage can be systemati-
cally compared later on, while several developers col-
laborate on the same ML pipeline stage at the same
time. In this context, the configuration of the ML
pipeline must be stored in files that can be tracked
using a version control system (e.g., Git).
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To meet other requirements related to traceabil-
ity, the ”version number” of the input dataset must
also be treated as part of the configuration. Some
data versioning tools provide this by storing hashes
of the records as version numbers in the configuration
files. Other concepts use references, e.g., to a data
catalog. In addition these tools often have the capa-
bility to cache any artifact of the ML pipeline stages
(e.g., preprocessed data, trained model, evaluation re-
port) and can restore these artifacts if an execution
with identical code and data occurred in the past.

This setup creates synergies in terms of ML
pipeline runtimes across the AL Project in the lo-
cal development environment, when experimenting
on the entire dataset, or in production. For example,
if newly annotated data flows into the pipeline, the
model may be re-trained and, if necessary, optimized
and evaluated. On the other hand, the computationally
intensive preprocessing is not necessarily repeated on
the entire dataset. Skipping this step enables a fast
re-deployment of the new model.

3.1.3 Automation Principle

An increasing area of MLOps research comprises the
management of different environments and effective
scaling of hardware resources as well as the asso-
ciated concepts and tools (Ruf et al., 2021; Giray,
2021). We designed our development proposal as
agnostic as possible to the underlying technologies,
where figure 4 outlines a minimal infrastructure setup.
It shows the necessary components and depicts a triv-
ial implementation of a distributed system for AL
projects.

First, the raw data and the created dev-dataset
must be provided to the data server. Usually, this
upload does not happen directly from the developer’s
client, but is done via an import of the respective data
source in case of large datasets. The development
dataset remains on the developer’s client and should
be small enough to allow quick iterations for ongoing
work. Developers commit and pass their code to the
source control management (SCM) system at regular
intervals. An SCM application is then able to trigger
a runner, which we call CI/CD/CT-Runner. This can
be hosted on a powerful machine (e.g., with GPUs).
Here, the scheduling, management, and scaling of the
computational resources required for ML pipeline ex-
ecution are taken into account, which is necessary as
soon as the required resources exceed the capacities
of the developer’s computer, for example, training the
model on the entire dataset.

Each job is uniquely associated with a trigger-
ing commit, so it is easy to decide whether certain
long-running jobs can be aborted. Existing tools and

frameworks from traditional software projects can be
reused to manage and monitor the actual servers host-
ing the runners. The runner checks out the version
of the dataset specified in the configuration files and
executes the ML pipeline. After executing the ML
pipeline, the runners upload the artifacts to the data
server. This could occur when the developer provides
new code, when an experiment is computed on the
entire dataset, or when an automatic job is triggered,
such as a nightly scheduled re-training.

The SCM application provides access to the run-
ner’s logs, which is the simplest solution for moni-
toring the progress of the ML pipeline. This can be
extended with suitable tools such as MLfLow (Za-
haria et al., 2018), which may require new compo-
nents (Chen et al., 2020). Again, this infrastructure
concept is just the minimum and can be enhanced
in several ways: Separate runners for CI, CD, and
CT can be replaced by powerful clusters, a feature
store and/or a model registry can be added to the data
server, and much more.

Also, the implementation of the deployment, as
represented in figure 4, could be more sophisticated.
The deployment host covers the part of an AL sys-
tem dedicated for data labeling. The interface to the
oracle, in this case, could be realized in the form of
a model serving component in the stream-based sce-
nario or via the deployment of a query set for the an-
notation UI in the pool-based labeling scenario. Jobs
for execution in the runner can be re-triggered. Data,
such as acquired labels or new raw data from the
client, are uploaded to the data server.

3.2 Branching Workflow

The core idea of GW4AL is to introduce different
namespaces for the branches. Depending on which
of these levels a new branch lives in, it focuses on
the code or data dimensions. The runners behave dif-
ferently depending on which branch namespace they
were triggered to. To explore the branching workflow,
we consider an example project in figure 5, which can
begin once the setup described in Section 3.1 exists
and the code for the initial ML pipeline has been com-
mitted to the main branch.

3.2.1 Main Branch

The main branch contains, as usual for software
projects, the most complete version of the code. At
the beginning of the AL project, this may consist
only of stubs and interfaces for each ML pipeline
stage. Later on, the essential requirement for the
main branch is consistently to provide a clean, exe-
cutable and stable version of the ML pipeline. Re-
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garding to this, the runners in its namespace focus on
the quality of the code: They run the ML pipeline
on the development dataset as a form of integration
testing. Since the configuration files contain informa-
tion about the allowed values of all parameters, they
are able to check the code across the allowed combi-
nations, which could turn out to be time-consuming,
even with the development dataset. In addition, tradi-
tional unit tests and other code analysis steps should
be performed to keep the quality in the main branch
at the desired high level.

3.2.2 Feature Branches

As soon as the development team plans a new feature
or the need arises from changed requirements, a fea-
ture branch is created following the established con-
cept of traditional software projects. Using figure 5
as an example, an initial function is to be developed.
This need is documented in an issue in the SCM appli-
cation and the feature branch is created through com-
mitting A1 , where the implementation takes place.
The developer creates a new feature flag as well as
the necessary parameters and implements the func-
tion using the development dataset. After each push
commit, the runner verifies that the ML pipeline is
working as expected by referring to the development
dataset for code execution. Static code checks as well
as unit tests are executed, similar to a CI pipeline in
classic software development. However, the results
of the ML pipeline are not important, which is why
any experiment tracking service used in the project
remains disabled.

Once the developer considers the issue resolved,
they start a merge request in the SCM application.
These requests allow other team members to provide
feedback and review the code before it is merged with
the main branch and becomes version 1.0 from com-
mit A2 . At this point, it is not always necessary that
the new feature actually improves the performance
of the model. As illustrated by the example of the
initial feature branch, sometimes, feature implemen-
tation and testing suffice, since this allows for other
team members to build on the new features as quickly
as possible. In some cases a combination of different
features is required to actually enhance ML perfor-
mance. Since the project follows the code structure
described in Section 3.1, it is well feasible for multi-
ple developers to collaborate on different features in
different branches.

However, when implementing certain features in
an AL project, their execution on the entire datasets
is necessary, even before starting the merge request.
This could be the case when implementing a new
model architecture, as illustrated in our example of
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Figure 5: Branching Workflow in an AL Project.

figure 5 in the second feature branch at B1 . There,
the developer decides to start an experiment and
branches off with the respective code version into one
or more experiment branches.

3.2.3 Experiment Branches

GW4AL introduces the concept of custom branch
namespaces. These include experiment branches
where runners execute the ML pipeline on the com-
plete datasets rather than the development datasets.
To continue with the example: Subsequent to the im-
plementation of the executable code of a new model
architecture is its training and evaluation of a per-
formant model. The developer creates one or more
branches under the Experiment namespace and con-
figures the ML pipeline by modifying the configu-
ration files by enabling the feature flag and specify-
ing the parameters. While one experiment is reserved
for hyperparameter optimization, another experiment
might have enabled an extension, such as additional
data augmentation. Commit C1 contains a modi-
fied configuration of the actual feature commit B1
and triggers the runner with access to the complete
datasets. When the ML pipelines have been com-
pleted, the runner stores the artifacts on the data server
using the data versioning system, as visualized in fig-
ure 4. This ensures that for each artifact in the ML
pipeline, all circumstances such as data version, code
version, and execution environment used to create it,
are documented.

Commit C1 could be perceived as a feasibility ex-
periment that provides early feedback to the developer
on whether further pursuing the current feature is de-
sirable. It could be useful to trigger proof-of-concept
experiments, where the initial focus shifts from fine-
tuning the model to roughly evaluating ML perfor-
mance. In case of failure, the overhead of a merge
request and code reviews is omitted.

In addition, experiment branches support the re-
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configuration of the ML pipeline. Here, the develop-
ment team can directly fork a new branch D1 from
the main branch into the experiment namespace to
modify the configuration file. Runners triggered by
the commit of an experiment branch should enable an
experiment tracking service by default. This work-
flow makes the development team’s reconfiguration
decision transparent and reproducible at all times.

3.2.4 Release Branches

If the results of an experiment outperform the current
best model, it is time to open a merge request from
the main branch to the release branch. At this stage,
both the code and the artifacts can be reviewed by
other team members. In our example, a new runner
is triggered on the release branch when the merge re-
quest is accepted at version 1.1 . Using the caching
feature of a data versioning tool, this runner can re-
store the artifacts from the experiment run C1 from
the data server. If errors or undesirable conditions
occur during or after deployment, familiar counter-
measures from traditional software projects, such as
rolling back the release branch to a previous commit,
can be applied.

To address the continuous change of data and la-
bels in an AL project, we introduce the second spe-
cial branch, that lives in the data-centric level of the
project as a code-version-twin to the release branch.

3.2.5 Active Learning Branch

The AL Branch in GW4AL is defined as the mirrored
provided code version of a branch, referencing a pos-
sibly more recent version of the corresponding data
artifacts. The characteristics of the AL Branch corre-
spond to those of a deployed data branch. This con-
dition arises from the consistent use of the runners,
which are also used for continuous training, transfer-
ring the data artifacts to the data server after execution
of the ML pipeline, and committing the version refer-
ence of the hashes back to their AL Branch.

Making this description more concrete, we con-
tinue referencing figure 5 and the previously pre-
sented example for experiments D1 and D2 ,
whereas we now focus on the new blue-colored AL
Branch of our Release Branch. AL simulations or
Live-Experiments go beyond classical ML experi-
ments, e.g., they have to be performed to evaluate new
label QS. Here, it is no longer sufficient to switch
from development datasets to full datasets, but the
runner of the experiment branches must be able to
check out the updated published dataset version.

Now we leverage the synergy mentioned above of
the data versioning tool’s caching feature and artifact

reuse in the other direction. When a runner in an ex-
periment branch is triggered, it is able to pull itself
the current version of the data reference file from the
AL Branch and download any existing data artifacts
from the data server. The code of the experiments
is now executed with the current data and offers the
development team the capability to make their deci-
sion based on consistently traceable and reproducible
results. If the team decides to introduce further modi-
fications to the code, the branching workflow remains
the same: A merge request is derived from D2 , and
the newer version of the ML-configuration is propa-
gated through the merge in the Main Branch as ver-
sion 1.2 , deployed via the Release Branch in the AL
Branch.

4 EVALUATION

In order to assess the practicality of GW4AL, its eval-
uation is performed in two phases: While in sec-
tion 4.1, the comparison with existing literature pro-
vides an alignment to established concepts, we use
the results of interviews in section 4.2 to incorporate a
practice-oriented assessment with people from the in-
dustry. A detailed overview of all best practices com-
pliance is provided in table 3 in the appendix.

4.1 Best Practices

To evaluate the proposed principles and the branch-
ing workflow, we draw on the best practices collected
from present literature by (Serban et al., 2020). The
authors focus on peer-reviewed publications that pro-
pose, collect, or validate engineering best practices
for ML. Their method resulted in 29 engineering best
practices categorized into data, training, coding, de-
ployment, team, and governance. We consider which
of the available aspects are (a) entirely fulfilled by
GW4AL, (b) can enable a team to follow the best
practice, but further action is required, or (c) not vi-
able.

(a) We consider 12 of 29 Best Practices to be fully
satisfied. These include, for example, ”Use Con-
tinuous Integration”, ”Enable Parallel Training
Experiments”, and ”Use Versioning for Data,
Model, Configurations and Training Scripts”.

(b) GW4AL does not per se fulfill 17 of the 29
enumerated best practices in its implementation.
However, our proposed development methodol-
ogy can be an enabler for their implementation.
These include, for example, ”Run Automated Re-
gression Tests” (cf. 3.1.1), ”Continually Measure
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Model Quality and Performance” (cf. 3.1.3), and
”Use Static Analysis to Check Code Quality” (cf.
3.2.2).

(c) None of the 29 best practices are constrained in
their implementation by GW4AL. In other words,
teams using GW4AL are not be impeded in adher-
ing to the specific best practices, although further
methodological steps are required to achieve full
compliance.

4.2 Interviews

In addition to academia, experts from industry have
been interviewed in various studies to find answers to
practice-oriented questions, such as in the area of SE
for ML (Giray, 2021). For our evaluation, we follow
that lead and exploit knowledge of such experienced
experts to discuss GW4AL in semi-structured inter-
views. All interviewees from various industries and
different company sizes, as seen in Table 1, received
slides2 with information about GW4AL in advance.
In a 60 min face-to-face interview, the subjects were
asked about their implementation of projects and their
assessment of the applicability of GW4AL.

Maturity models are often used to categorize
projects in the traditional SE context. In order to
the interviewees professional background, we asked
them to assign their projects to a maturity model with
various aspects. Table 2 in the appendix provides a
detailed overview of their profiles, whereby the as-
sessment reflects a subjective perception and is not
based on any hard criteria. It is noticeable that the
interview partners from R&D agreed on data science-
driven processes and that technology aspects corre-
spond to a lower maturity level. The distribution of
the eight interviewees is balanced in technology- and
process-related implementations. On the other hand,
concerning people-related factors, a large proportion
attributes a higher level of project maturity to them-
selves. This investigation confirms, limited to the re-
duced group of interviewees, the thesis that method-
ological problems in the development of AL projects
currently prevail mainly in process and technology
and less in people-related working practices.

During the discussions about GW4AL and its
Technology-related tasks, [α,β,γ,ε] suggested that a
large focus should be placed on requirements for the
selection of suitable development datasets. [α] contin-
ued the discussion on the data principle further in the
interview and suggested a kind of A/B testing with
different-sized development datasets up to the full
datasets could be a compromise between fast feed-

2mediastore.rz.uni-augsburg.de/get/poze0tjOHv

Table 1: Profiles of interviewees.

No. Role/Position Industry (Employees)
α SE Team Lead Technology (> 100k)
β SE Quality Manager Technology (< 500)
γ AI Project Manager R&D (≈ 30k)
δ Data Scientist R&D (≈ 2k)
ε Head of AI Consulting (< 500)
ζ ML Engineer Consulting (< 500)
η Data Scientist Automotive (> 100k)
θ Head of AI Automotive (> 100k)

back and testing on complete datasets. Thus, the gen-
eral idea to provide minimal datasets for development
on the developer client and inside the code-related CI-
runners nevertheless appears promising.

In terms of the Process and its scalability, [α,β,η]
pointed out that it could be confusing to have a wide
range of experiment branches and possibly several
parallel-living AL branches on large projects. This
issue should be discussed on an organizational level
to develop a satisfactory solution. [β,γ,δ,ε,ζ] ex-
pressed skepticism regarding the methodology’s re-
alization for smaller projects with team sizes of less
than five members. The main issue to consider here
is the significant overhead in the early stages, as small
ML and AL projects today are often still proof of con-
cepts.

Related to People, [δ] said that, the necessary vari-
ety of technologies and implementation of automated
processes for GW4AL, result in an increase in com-
plexity for team members, for which some developers
might lack the expertise. In this regard, [ζ] suggested
that when implementing projects with GW4AL and
away from the experiment branches, a kind of labo-
ratory environment for notebooks should be provided
for data scientist-driven tasks.

Through the interviews, it became apparent that
GW4AL creates a solid basis for developers of data-
centric AI projects with AL. The mentioned require-
ments for the development dataset offer potential for
discussion. Furthermore, it should be stated that
GW4AL introduces an unavoidable overhead into a
project that may outweigh the benefits, especially in
the early exploratory phase. The team needs a mem-
ber capable of setting up the required infrastructure,
and each team member needs to be familiar with both
code and data version control systems. Developers or
data scientists not used to working with a data version
control system will face a steep learning curve and
common pitfalls, such as overly large merge requests.
Feature branches will likely require a different config-
uration than the current best model, such as a smaller
number of training epochs to facilitate the rapid feed-
back loop. These two configurations will require ad-
ditional management. Teams can still benefit from the
principles provided, and traceability improves.
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5 CONCLUSIONS

When implementing projects with an AL loop, ad-
dressing the requirements that arise with the addi-
tional dimension of data dependency is essential. To
this end, we first presented the AL lifecycle, which or-
chestrates current concepts from DataOps, DevOps,
and MLOps for these human-in-the-loop projects.
Second, we introduced GW4AL, a proposed develop-
ment methodology to help teams realize data-centric
AI projects with AL. In particular, it enables the
growth process of projects from feasibility studies to
mature projects, as realized by us in a three-year data-
centric AI project.

GW4AL provides a transparent method to collab-
orate for all stakeholders in developing data-centric
AI projects. In doing so, projects can benefit from
tools and best practices from the traditional SE do-
main. Different branching namespaces enforce a
strict separation between the ”data experiments” and
the ”feature implementation”. The AL branch imple-
ments the loop characteristic so that the currently data
version can be more upstream compared to the current
released code version. Future investigations could ad-
dress how to implement quality gateways along the
AL lifecycle. Additional suggestions from the in-
terviews on requirements, related to the development
dataset and reducing the organizational overhead for
Data Scientists provide room for future research.
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APPENDIX

Table 2: Inventory of project maturity levels and self-assessment of interviewees: Aspects, based on maturity models from
(Microsoft Corporation, 2021) and (Google Inc., 2020), were divided into three categories: Technology, Process, and Peo-
ple. The levels increase from Level 1 (= early project stage, most manual) to Level 4 (= highest mature, fully automated).
Interviewees were asked at the beginning of the interviews to use the table to rank the maturity of their projects.

Level 1 Level 2 Level 3 Level 4

Te
ch

no
lo

gy Poor SCM γ,δ Standardized SCM ε Integrated Monitoring β,η,θ Pipeline as product α,ζ

Untracked Artifacts β,δ Artifact Mgmt. Tools γ Toolset Integration ζ,η,θ Fully Automated α

No Automation δ Monitoring Tools γ,ε,ζ Analytic Tools β,η,θ Integrated Resilience α

Manual Build γ,δ,ε Standardized Builds Autom. Builds ζ Autom. Test-Envs α,β,η

Pr
oc

es
s Ad Hoc Development α,δ Requirement Mgmt. ε Agile Development β,ζ Lean Development α,η,θ

Manual Handwork γ Manual Release δ,ε,ζ Autom. Deliveries Continuous Deliveries α,β,η,ζ

Stand-alone solutions γ,δ Modularity ε Integrated Reporting β,ζ,η Predictive Pipeline
”Trail and error” Manual Testing γ,δ,ε Integrated Testing β,ζ,η -Maintenance α

Pe
op

le

Knowledge Silos Semi-Cooperative δ Knowledge Mgmt. β,γ Inter-Team Transfer α,ε,ζ,η,θ

Poor Communication Written Knowledge Fast Feedback-Loops α,ζ Consult other Teams β,γ,δ,ε

No Priority-Awareness Regular Communication Continuous Education β Ownership Mindset γ,δ,ε,ζ,η,θ

Low Innovation Innov. by Requirement β,ε Innovation Strategy δ Innovation as Vision α,ζ,η,θ

Table 3: Best practices, collected by (Serban et al., 2020) and their fulfillment ranking for GW4AL: +++ matches a
complete fulfillment of GW4AL. Scores ++ and + are intended to provide an evaluation of whether GW4AL is an enabler
for achievement. For the best practice marked with o, GW4AL is no enabler, but in our view the compliance would not be
hindered.

Nr. Title Fulfillment Reference
1 Use Sanity Checks for All External Data Sources ++ Sec. 3.1.1
2 Check that Input Data is Complete, Balanced and Well Distributed ++ Sec. 3.1.1
3 Write Reusable Scripts for Data Cleaning and Merging +++ Sec. 3.1.1
4 Ensure Data Labelling is Performed in a Strictly Controlled Process +++ Sec. 3.2.5
5 Make Data Sets Available on Shared Infrastructure (private or public) ++ Sec. 3.1.3
6 Share a Clearly Defined Training Objective within the Team +
7 Capture the Training Objective in a Metric that is Easy to Measure and Understand +
8 Test all Feature Extraction Code ++ Sec. 3.2.2
9 Assign an Owner to Each Feature and Document its Rationale +++ Sec. 3.2.2
10 Actively Remove or Archive Features That are Not Used +
11 Peer Review Training Scripts +++ Sec. 3.2.2
12 Enable Parallel Training Experiments +++ Sec. 3.2.3
13 Automate Hyper-Parameter Optimisation and Model Selection +++ Sec. 3.2.3
14 Continuously Measure Model Quality and Performance +
15 Share Status and Outcomes of Experiments Within the Team +++ Sec. 3.2.3
16 Use Versioning for Data, Model, Configurations and Training Scripts +++ Sec. 3.1.1
17 Run Automated Regression Tests ++ Sec. 3.2.2

18 Use Continuous Integration +++ Sec. 3.1.3
19 Use Static Analysis to Check Code Quality ++ Sec. 3.1.1
20 Automate Model Deployment +++ Sec. 3.2.4

21 Continuously Monitor the Behaviour of Deployed Models ++ Sec. 3.2.5
22 Enable Shadow Deployment ++ Sec. 3.2.4
23 Perform Checks to Detect Skews between Models ++ Sec. 3.2.5
24 Enable Automatic Roll Backs for Production Models +++ Sec. 3.2.4
25 Log Production Predictions with the Model’s Version and Input Data +++ Sec. 3.2.5
26 Use A Collaborative Development Platform ++ Sec. 3.1.2
27 Work Against a Shared Backlog +
28 Communicate, Align, and Collaborate With Multidisciplinary Team Members +
29 Enforce Fairness and Privacy o
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