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—— Abstract

This paper describes the application of annotation engineering techniques for the construction of a
corpus for Role and Reference Grammar (RRG).

RRG is a semantics-oriented formalism for natural language syntax popular in comparative
linguistics and linguistic typology, and predominantly applied for the description of non-European
languages which are less-resourced in terms of natural language processing. Because of its cross-
linguistic applicability and its conjoint treatment of syntax and semantics, RRG also represents a
promising framework for research challenges within natural language processing. At the moment,
however, these have not been explored as no RRG corpus data is publicly available. While RRG
annotations cannot be easily derived from any single treebank in existence, we suggest that they can
be reliably inferred from the intersection of syntactic and semantic annotations as represented by,
for example, the Universal Dependencies (UD) and PropBank (PB), and we demonstrate this for
the English Web Treebank, a 250,000 token corpus of various genres of English internet text. The
resulting corpus is a gold corpus for future experiments in natural language processing in the sense
that it is built on existing annotations which have been created manually.

A technical challenge in this context is to align UD and PB annotations, to integrate them in
a coherent manner, and to distribute and to combine their information on RRG constituent and
operator projections. For this purpose, we describe a framework for flexible and scalable annotation
engineering based on flexible, unconstrained graph transformations of sentence graphs by means of
SPARQL Update.
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1 Introduction

Annotation engineering can be defined as the task to transform linguistic annotations from
one or several specific source representations into representations of a different type or quality
in an automated or semi-automated fashion.

The goal of annotation engineering is to produce high-quality annotations (gold data) for
training state of the art tools in natural language processing. It is thus an essential aspect
for the growth of the discipline beyond earlier annotation efforts, as it allows legacy resources
created with great manual effort to be re-used as test and training data for a novel theoretical
framework. The goal of annotation engineering is not to replace annotation tools, but rather
to provide training data for them. As it posits particularly high standards of annotation
quality, annotation engineering is to be done in a transparent, rule-based fashion rather than
by machine learning. The outcome of annotation engineering is a resource, i.e., an annotated
corpus or information extracted from it, so that transformation efficiency plays a considerably
less important role than conversion quality. Typical examples for annotation engineering
include, for example, transformations of annotations between different theoretical frameworks,
e.g., and this will be illustrated here for the case of Role and Reference Grammar.

Annotation engineering differs from plain conversion in the sense that its output is
typically qualitatively different or richer than the source annotations. This can be achieved,
for example, by including additional knowledge sources, e.g., lexical resources, or additional
sources of annotation. To a large extent, such resources are already available from the web
of data, where specifications for the publication of (open) language resources are developed
in the context of the Linguistic Linked Open Data (LLOD) cloud and associated W3C
community and business groups.! In the last decade, a large number of language resources
have been published in this context, in accordance with W3C standards and as Linked Data,
and with their formal metadata registered at portals such as LingHub,? thus facilitating their
usability and interoperability. The Linguistic Linked Open Data Cloud comprises corpora,
dictionaries, resource metadata and terminology repositories and knowledge bases which are
made interoperable through the use of shared vocabularies and ontologies such as GOLD,
ISOcat, OLiA, lexvo and lexinfo. As of January 2019, over 100,000 resources covering more
than 1,000 languages are listed on LingHub, a curated subset of open resources of these is
the basis for the LLOD cloud diagram.

In order to facilitate the integration of such resources in annotation engineering workflows,
with CoNLL-RDF [5], we developed an approach based on LOD standards, most notably RDF
for representing annotations, and SPARQL Update[2] for their transformation. In conceptual
terms, these allow to render, manipulate and create arbitrary linguistic annotations in the
form of labeled directed multi-graphs — and, as established already by Bird and Liberman
[1] —, they are thus capable of encoding every kind of linguistic annotation.

In this paper, we illustrate the application of our annotation engineering approach on the
creation of a Role and Reference Grammar treebank. Aside from the conceptual challenge to
derive a gold corpus from existing manual annotations, a technical challenge in this context
is that RRG syntax cannot be derived from any common treebank formalism, but instead,
it requires to create and to process the intersection of independent annotations for syntax
and semantics.

! http://linguistic-lod.org/llod-cloud
2 http://linghub.org/
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2 Role and Reference Grammar

Role and Reference Grammar [8, RRG] is a theory of grammar developed by Robert D. Van
Valin, Jr. and William A. Foley during their research of Austro-Asiatic and native American
languages. Encountering various problems in applying established theories of grammar,
they aimed to overcome the European bias in language description by devising a descriptive
grammar formalism that integrates structural analyses with semantics and pragmatics.
RRG features several projections, i.e., interdependent levels of analyses all grounded in
the surface expression of a particular sentence. The RRG constituent projection is a phrase
structure representation of content elements (excluding operators), complemented by the
operator projection that formalizes scope and attachment of function words, and the focus
projection that identifies speech acts and information structures. Semantics has a different

status, as (the constituent projection in) RRG syntax is designed to reflect frame semantics.

In fact, argument linking has been a priority in the design of RRG: RRG formalizes a
linking algorithm that connects semantic (macro) roles (ACTOR and UNDERGOER) in an
underlying lexical inventory with the surface grammar and vice versa: The CORE of an
utterance contains the semantic predicate and its core arguments, the PERIPHERY contains
its (semantic) modifiers. Every CORE thus corresponds exactly to an instance of a verbal
frame in the sense of FrameNet.? In this paper, we focus on constituent projection and
operator projections in RRG as illustrated in Fig. 2.4

For reasons of space, we cannot explain the specifics of RRG here in detail. Yet, one aspect
that is worth mentioning is that RRG postulates a direct relationship between functional
operators and the nodes they modify, e.g., aspect applies to the semantic nucleus (NUC)
of a clause, modality applies to its CORE, and tense to the CLAUSE itself. This has
implications for juncture and nexus: If two verbs are connected by a paratactic relation in
surface syntax, the scope of shared operators (and shared arguments) define whether this
is a co(sub)ordination at the level of NUC, CORE, CLAUSE or SENTENCE. As a result,
RRG constituent projections cannot be derived from any other syntax formalism but need to
be adjusted to account for theory-specific constraints arising from the occurrence of function
words and/or overlap in semantic arguments. While this raises problems for bootstrapping
RRG syntax from existing annotations, it is an advantage in terms of expressivity, as RRG
structure is designed to provide an appropriate representation of both frame semantics and
operator scope.

Because of its semantics-based approach to syntax, RRG poses a promising framework for
developing innovative applications in natural language understanding processing and natural
language understanding. Furthermore, RRG ties in with the current trend towards intensified
research of less-resource languages, as indeed, RRG is a popular theoretical framework for
language documentation and linguistic typology. If RRG can be operationalized for one
language, say, English, this paves the way for improved NLP support for languages to which
RRG has been previously applied, e.g., languages from the Americas (Yaqui, Zoque, Lakota,
etc.), the Pacific (Amele, Kankanaey, Amis, etc.), Asia (Zaza, Farsi, Tibetan, etc.), and to

See http://framenet.icsi.berkeley.edu/. As for the relation between CORE and higher elements of
syntactic analysis such as recursive COREs, CLAUSE, SENTENCE and TEXT, these are created for
the purpose of juncture, nexus and extraposition, but all require a non-recursive CORE as their basis.
This visualization has been created with TIGER Search [10] and follows its graphical design: Primary
edges (black) represent the constituent projection, secondary edges (green) represent the operator
projection, the target nodes of secondary edges would be shared in both projections.
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Figure 1 Annotation Engineering Workflow.

some extent Africa (Hausa, Gikuyu).

A fundamental problem in the practical application of state-of-the-art NLP techniques to
RRG is, however, that no annotated data is currently available in order to assess potential
challenges and benefits RRG may pose to state-of-the-art NLP techniques based on Machine
Learning. Here, we address this deficit by creating an English RRG Treebank from manual
annotations of syntax and frame semantics by means of annotation engineering.

3 Graph-based Annotation Engineering

The goal of annotation engineering is to produce high-quality annotations (gold data) for
training and evaluating NLP tools. In our case, we ground RRG clausal syntax in existing
manual annotations for semantic frames (PropBank, [15, PB]), and derive remaining aspects
of constituent and operator projection from independent manual annotations for dependency
syntax and morphosyntax provided as part of the Universal Dependencies [14, UD] corpora.
PropBank and UD overlap in the English Web Treebank (EWT), a corpus of 250,000 words
representing various genres of English internet text, and we adopt the English Web Treebank
[17, EWT] as the basis for bootstrapping an RRG Treebank for English.

However, these formats bear structural limits which have to be worked around. This
applies especially for back-reference in natural language resulting in separated phrases sharing
the same head, thus violating the purely hierarchical tree structure. While this can be avoided
by restructuring the tree or inserting NULL tokens (as in PTB) it produces challenges in
data modeling which could easily be avoided by implementing a purely graph-based format
which is able to host and integrate all data structures at the same time using labeled edges.
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3.1 Annotation engineering with the ACoLi CoNLL libraries

The AColi CoNLL libraries [7] provide native support for the CoNLL-U format as provided by
UD, and they support specific vocabulary extensions for semantic frames (SRL annotations)
in CoNLL TSV formats, they are thus adopted here as the technical basis for annotation
engineering. Building on that, we provide a generic, customizable workflow (Fig. 1) for the
integration of heterogeneously annotated corpora into a common data structure and the
induction of novel data structures. We employ SPARQL Update rules to perform advanced
graph transformations, and the CoNLL-RDF API® supports both their aggregation and
organization in files, as well as their sequential iteration.

CoNLL-RDF supports various output formats, most importantly tabular data in TSV or
CoNLL, RDF in different serializations, a “canonical” Turtle representation that emulates
the appearance of CoNLL-TSV formats, human-readable representations, and Dot/GraphViz
plots. As exchange format for the RRG corpus, we provide its data (without diagnostic
information) as TIGER/XML [11] using a specialized export functionality [6].

3.2 Integration of concurrent annotations

Resource integration can be performed on multiple levels. A particularly challenging aspect of
annotation engineering is the combination of concurrent, independently performed annotations
of the same text, by different groups using different tools and formats. Using converters
bundled with the ACoLi CoNLL libraries or available from third parties, most annotation
formats can be converted to a CoNLL format or a corresponding TSV representation. CoNLL-
RDF supports the flexible handling of differences with respect to the order and naming of
columns. Conflicting tokenizations (i.e., differences in the definition of rows) are handled by
CoNLL Merge.® We merged UD files with the corresponding PropBank files via their shared
part-of-speech columns (the PB skel files do not include the text), successfully merging 99.99%
of the EWT tokens (254,564 of 254,593) in default mode. The remaining 29 mis-aligned
tokens were manually corrected.” Merging resulted in a single TSV file holding all information
from UD and PB, ideally suited for subsequent conjoint processing.

3.3 Graph creation

CoNLL-RDF allows us to render tabular data structures from CoNLL or related one-word-
per-line TSV formats as an RDF graph. The CoNLLStreamExtractor retains the order of
tokens, columns and sentences within a corpus but adds minimal additional overhead to make
it RDF-compliant. The idea of the converter is to identify words by URIs, to define them
as nif :Words and as being connected by nif:nextWord, and to use user-provided labels
(say, WORD) to map every column to a property of the same name in the conll: namespace.
Listing 1 is an example fragment for the analysis of the sentence Where can I get morcillas
in Tampa Bay (EWT, dev/answers/20070404104007AAY1Chs_ ans).

5 https://github.com/acoli-repo/conll-rdf

5 https://github.com/acoli-repo/conll

7 CoNLL Merge also provides a force mode that enforces the tokenization of one file. Because of the
minimal number of misalignments, however, this was not necessary here.
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Listing 1 CoNLL-RDF canonical format.

:s1_1 a nif:Word; conll:WORD "where"; conll:HEAD :s1_4; ... ; nif:nextWord s1_2 .
:s1_4 a nif:Word; conll:WORD "get"; conll:HEAD :s1_0; ... ; nif:nextWord s1_5 .
:s1_6 a nif:Word; conll:WORD "in"; conll:HEAD :s1_4; ... ; nif:nextWord s1_7 .
:81_7 a nif:Word; conll:WORD "tampa"; conll:HEAD :s1_8; ... ; nif:nextWord s1_8 .

:s1_8 a nif:Word; conll:WORD "bay"; conll:HEAD :s1_6;

3.4 Graph transformation

The CoNLLRDFUpdater is designed for the stream processing of large corpora that cannot
be held in memory: It reads a single sentence, creates an RDF graph for it, optionally
adds context information (e.g., from preceding context or from a background knowledge
graph loaded at initialization), applies SPARQL update transformations and spells out the
results. Sentence-by-sentence processing minimizes memory usage and search space for the
transformations, and in addition, the process is parallelized to improve run-time performance.

When processing corpora, we read the input from stdin, apply the CoNLLStreamExtractor
to produce RDF graphs and the CoNLLRDFUpdater for graph transformation. Graph trans-
formations are implemented with SPARQL Update rules, in that a sequence of SPARQL
files can be provided as arguments for the CoNLLRDFUpdater. Each file contains a number
of SPARQL update operations which are executed in their sequential order. In addition,
numerical flags allow each file to be executed multiple times or until no further changes occur.
The results are flushed through stdout while next sentence is read. Lookahead and lookback
parameters allow cross-sentence analyses (e.g. of text coherence) while parallelization speeds
up the process. Furthermore, native LOD and RDF resources can be easily integrated by
either federated queries or preloading RDF dumps into separate named graphs making them
available within the update scripts.

In annotation engineering and rule-based parsing continuous revision and reorganization of
rules is a crucial aspect. By separating transformation operations (SPARQL) from the actual
code (CoNLL-RDF classes, JAVA), the transformations become easily portable between the
CoNLL-RDF environment and off-the-shelf triple stores as well as between different workflows
that require the same functionality. SPARQL statements can thus be run independently, e.g.,
on a database snapshot and easily optimized on that basis. Additionally, this architecture
improves reusability of modular scripts and encourages contribution in community projects.

4 Use Case: Building an RRG Treebank

Using our annotation engineering workflow, we implemented a rule-based conversion routine
for transforming the UD and PropBank representation of the EWT corpora into an RRG
representation.

In addition to EWT data, we also digitized and converted the complete body of Eng-
lish examples (429 examples, 3,766 tokens) drawn from [18, 19], using UD v.1-compliant
annotations produced by the Stanford parser [3, manually corrected].® As these are lacking

8 With respect to RRG annotations, we primarily follow the notational conventions of [18], in that we use
the labels ARG and NP. This is upward-compatible, though: In more recent editions, the ARG would be
just omitted (as it can be inferred from the underlying lexical inventory — which does not exist in our
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semantic role annotations, heuristic rules have been devised to identify verbal predicates and
their semantic arguments from the syntactic annotation alone. This extrapolation does not
replace full-fledged PropBank annotations, so, where it failed, we provide explicit patterns
for specific verbs and their grammatical roles as part of the transformation workflow in order
to reproduce textbook examples (cf. Fig. 2.)

For representing RRG data structures, we define an RDF vocabulary for representing
constituency projection and operator projection:? All RRG node types from the constituency
projection are defined by concepts such as rrg:NUC, rrg:CORE, etc. The relations between
them are formalized by two navigational properties, rrg:has (pointing from parent node to
children), and rrg:next (connecting RRG nodes with the next following siblings).

The operator projection is represented by RDF properties such as rrg:TNS (tense) or
rrg: IF (illocutionary force) which point from the words or phrases that evoke a particular
operator to the RRG node that they are associated with (e.g., a rrg:CLAUSE). Listing 2 shows

a (slightly simplified) example rule that creates a rrg:NUC from existing SRL annotations'’

Listing 2 Graph transformation with SPARQL.

INSERT { _nuc a rrg:NUC; rrg:has 7pred. }
WHERE { “7pred conll:SRL []. };

This rule reads the SRL column of the PropBank skel files that holds the disambiguated
identifier of the semantic predicate (normally preceding the argument columns) and creates
a syntactic nucleus if one is encountered.

4.1 Transformation steps

The transformation workflow consists of the following steps, each corresponding to a SPARQL
Update file. The actual implementation of this workflow in CoNLL-RDF merely requires to
provide this list of SPARQL Update files to the CoNLLRDFUpdater after —update:

constituents. Identify noun phrases, prepositional phrases, modifier (adverb, adjective)
phrases.

clausal structure. For every (verbal) PB predicate, create clausal NUC, CORE, CLAUSE,
SENTENCE together with arguments, periphery, PrCS and dislocation positions. Note
that the resulting data structure is not a tree: Multiple COREs can share their arguments,
etc.

operators. For every word, identify all NUC- (CORE-, CLAUSE-) level operators and to
the NUC (CORE, CLAUSE) that comprises the UD head of the word. It is important
here that this builds on the operator hierarchy specified by RRG as it guides constituent
pruning during juncture assessment.

juncture and nexus. This is the most challenging and RRG-specific part of the conversion
process:
1. Counstituent pruning: Eliminate all SENTENCE (CLAUSE, CORE) nodes that feature

neither a operator nor an argument.

case), and NP would be renamed to RP. Furthermore, we adopt a simplified handling of ADJ and ADV
phrases for which a novel MP node has been introduced at a later point in time.

9 PREFIX rrg: <http://www.acsu.buffalo.edu/~rrgpage/rrg.html#syn_>

10 For identifying the newly created NUC element, this listing uses a blank node. In the actual implement-
ation, we provide full URIs.

9:7

LDK 2019


http://www.acsu.buffalo.edu/~rrgpage/rrg.html#syn_

9:8

Graph-Based Annotation Engineering

2. Co(sub)ordination: If a UD conj (similar for ccomp, xcomp, parataxis, etc.) holds
between two unconnected NUCs (COREs, CLAUSES), create NUC (etc.) coordination
under the same CORE (CLAUSE, SENTENCE) parent. If two coordinated COREs
(CLAUSES) share an argument in the same semantic role and use the same (or no)
CORE- (CLAUSE-) level operators, transform the coordination into CORE (CLAUSE)
cosubordination by inserting a CORE (CLAUSE) node that contains both COREs
(CLAUSES).

3. Establish tree structures by eliminating shared arguments.

4. Subordination: If an UD acl (similar for advcl, etc.) holds between two unconnected
tree fragments, attach the tree containing the dependent to the smallest suitable
constituent that contains the UD head.

5. Sentence completion: For every tree fragment that does not contain a SENTENCE, cre-
ate its RRG parent nodes up to the level of SENTENCE. Connect multiple SENTENCE
nodes within an utterance by a TEXT node.

4.2 Evaluation

Beyond the textbook examples mentioned above, we are not aware of any source for RRG
gold annotations for English, so that we currently have no basis for a quantitative extrinsic
evaluation. Instead, we performed an intrinsic evaluation by means of two optional validation
steps, provided in two SPARQL files:

Structural validation. Establishes tree structures. If a node has more than two parents, it
will be disconnected and assigned a new MPARENT node as parent. If an utterance contains
more than one partial tree, these will be joined under a new FRAG node. This includes any
unattached word, but exceptions apply (e.g., RRG does not account for punctuation).

Pattern validation. The original RRG parsing algorithm defines parsing templates. As
these have not been used for creating the parses, we adopt them for validating parses.
Here, we implement each of these templates as WHERE conditions in SPARQL INSERT
statements, with diagnostic information (e.g., provenance of this particular pattern in
the textbook) inserted as an rdfs:isDefinedBy reference. The number of templates is
relatively high, so that pattern validation is slow (and optional).

The RRG generation workflow was exclusively modeled on RRG text book examples and the
EWT development set from the answers domain. We focused on answers as this portion is
particularly challenging in that it often contains grammatical errors. This may include, for
example, omissions of function words, insertion of incorrect function words when written by
non-natives or in a careless fashion. Like most linguistic phenomena, errors, and annotation
gaps follow a distribution with a long tail, we thus do not guarantee convertability for the
entire EWT data, but we aimed for an RRG-compliant conversion of 90% of the corpus to
provide a suitable starting point for developing NLP tools. For the remaining (up to) 10%,
subsequent efforts for manual correction of this data are necessary.

Ultimately we were able to convert 98.4% (418/425) of dev/answers sentences into
structurally valid RRG representations, resp. 92.6% (1828/1974) sentences from the EWT
development set in general, and 91.2% (1880/2061) from the EWT test set.

We also performed pattern validation, with 74.9% (1479/1974) and 73.9% (1524/2061)
structurally and pattern-valid sentences on development set and test set, respectively. It
should be noted, however, that we only validated against patterns as explicitly found in the
text books or necessary for text book examples, so that low number for pattern validation
may less reflect invalid RRG parses than they reflect gaps in the pattern inventory.



C. Chiarcos and C. Fath

Along with this publication, we prepare the release of the corpus under https://github.
com/acoli-repo/RRG, with the aim to reach out to the RRG community to elicit feedback
and bug reports as a source of extrinsic (qualitative) evaluation and further improvement.

5 Discussion

Graph-based or graph-assisted parsing has had a long history in natural language processing.
In the late 1980s [16] proposed the usage of graphs instead of trees for representing syntactic
structures. Over the past decades, new approaches emerged resulting in growing performance
improvements.[9] showed how statistical parsers could be augmented by graph transformation.
[13] gained similar improvements with post processing the results of data-driven dependency
parsers. In semantics, knowledge bases are mostly represented as graphs leading to numerous
parsing approaches, e.g. using staged query graph generation [20]. Since history on this
field is very diverse, it is impossible to list all relevant publications. For further reading we
recommend the overview provided by [12].

Neither of these graph-based approaches, however, does address the specific task pursued
here, i.e., the combination of existing annotated corpora and their transformation into a
completely new representation formalism in order to alleviate the generation of gold data.
Instead, they try to improve existing annotations mostly by training neural networks to
efficiently stack mathematical algorithms and general transformation rules. The goal of
annotation engineering, however, is not to replace (nor to improve) annotation tools, but
rather to provide training data for them. As it posits particularly high standards of annotation
quality, annotation engineering is to be done in a transparent, rule-based fashion rather than
by machine learning.

In both regards, high demand for quality and the need of human supervision, annotation
engineering is comparable to traditional grammar engineering (i.e., rule-based parsing). On
the one hand, it is a simpler task in the sense that it transforms existing annotations rather to
create them from scratch, and in particular, it does not depend on the conjoint development
of lexical resources along with the rules. In particular, annotation engineering differs from
grammar engineering as it is concerned with the analysis of a finite set of symbols rather
than with the analysis of an infinite set of symbols from a finite set of categories.

On the other hand, the data structures encountered in annotation engineering can be much
more diverse than those encountered in grammar engineering: In symbolic parsing, input
data is a plain sequence of tokens, whereas internal and output structures are implementation-
specific. In annotation engineering, input data can carry any kind of annotation originating
from multiple sources. In comparison to grammar engineering, unrestricted annotation
engineering is thus less challenging in terms of coverage, but more challenging in terms of
diversity.

This paper showed that graph-based annotation engineering does have a place in NLP
and that existing technologies developed in the context of the Linked Open Data community
can be applied for the purpose. It does not replace machine learning, but rather serves as a
technique for generating gold data for underresourced languages or annotation schemes.

Upon copyright clearance for the contained text, we will provide the corpus in three
editions: Development edition (using the internal RDF vocabulary), an OWL release version
in RDF, using the POWLA [4] vocabulary for generic linguistic annotations, and an release
version in TIGER/XML [11] for further processing in conventional corpus tools.
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A RRG Example
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Figure 2 RRG Textbook Example(left, [18, p. 50]) compared to Synpathy rendering (right).
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