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A B S T R A C T   

Global warming and advancing urbanization lead to an increased heat exposure for city dwellers. 
Especially during summertime heatwaves, extreme daytime as well as high nighttime tempera
tures expose vulnerable people to potentially deadly heat risk. This applies specifically to indoor 
air temperatures, since people spend a lot of their time indoors. Against this background, this 
study relates outdoor and indoor air temperature measurements to area-wide geospatial data 
regarding summertime urban heat in the city of Augsburg, Germany. Air temperature data is 
collected from formalized as well as citizen science measurements, while remote sensing data 
with very-high spatial resolution (VHR) is utilized for assessment of their drivers and influencing 
factors. A land use regression approach is developed for city-wide modeling of outdoor and indoor 
air temperatures at the level of individual residential buildings. Daytime outdoor temperatures 
could be largely explained by vegetation parameters and imperviousness, whereas nighttime 
temperatures were more related to the building stock and radiation properties. For indoor tem
peratures, building density as well as building height and volume are additionally relevant. 
Outdoor air temperatures could be modeled with higher accuracies (mean absolute error (MAE) 
< 0.5 ◦C) compared to indoor temperatures (MAE < 1.5 ◦C), whereas outdoor and indoor 
modeling results are consistent with well-known patterns across different local climate zones 
(LCZ).   

1. Introduction 

Heat and summer heatwaves pose a significant threat for public health (Kovats and Kristie, 2006). It is estimated that to date, 
around 30% of the global population is exposed to potentially deadly heatwaves for at least 20 days per year, while this share is 
expected to increase to at least 50% until the end of this century (Mora et al., 2017). For example, Robine et al. (2008) estimate that 
>70,000 fatalities were caused by the 2003 heatwave in Europe. With ongoing global warming and advancing urbanization, urban 
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residents are particularly exposed to increased heat stress due to amplification by the urban heat island (UHI) (Chapman et al., 2017). 
The emergence and presence of the UHI effect has been documented by numerous studies in cities worldwide (Stewart, 2011), and 

the assessment of its drivers and implications for human health is an active and ongoing research topic (Kovats and Hajat, 2008; Ward 
et al., 2016). For the health of urban dwellers, the UHI according to air temperatures is most relevant, for example compared to surface 
temperatures (Barnett et al., 2010; Macintyre et al., 2018). Besides measurement and modeling of outdoor air temperatures and their 
spatial distribution, the indoor thermal situation is an additional important factor for public health, since people spend most of their 
time indoors, especially during heatwaves (Van der Hoeven and Wandl, 2018; Walikewitz et al., 2018). Regarding human heat stress, 
the distinction between high nighttime and extremely high daytime temperatures is particularly relevant, as nighttime recovery is 
inhibited by high temperatures exacerbating the daytime heat impact through sleep deprivation (Fischer and Schär, 2010). In addition 
to outdoor as well as indoor temperatures, socio-demographic and -economic characteristics of the population have high impact on 
heat-related health and mortality risk (Gronlund et al., 2015). Since the physical exposure to urban heat as well as the vulnerability of 
the urban population vary strongly within urban areas, the assessment of hotspots of urban heat at detailed spatial scale is crucial for 
understanding the spatial health risk distribution (Ellena et al., 2020; Ho et al., 2015). 

In the context of urban heat, remote sensing data and derived information have proven their utility in several regards and have been 
used in a variety of studies (Deilami et al., 2018). By far the most frequently, remote sensing serves as an area-wide source of land 
surface temperature (LST) measurements at medium to high spatial resolution by means of sensors such as Landsat, ASTER (Advanced 
Spaceborne Thermal Emission and Reflection Radiometer), MODIS (Moderate-resolution Imaging Spectroradiometer), or Sentinel-3 
for assessment of the UHI regarding surface temperature (Wu et al., 2021). In addition, remote sensing data is employed for deri
vation of land cover information and its subsequent relation with LST (i.e. surface UHI) (Alavipanah et al., 2018; Heldens et al., 2013; 
Logan et al., 2020), as well as, less frequently, air temperature (i.e. canopy UHI) (Van der Hoeven and Wandl, 2018; Venter et al., 2020) 
for identification of relevant drivers and influencing factors. However, remote sensing data with very-high spatial resolution (VHR, i.e. 
with spatial resolution up to one meter) was rarely used despite its potential for detailed assessment of spatially heterogeneous and 
highly dynamic urban environments (Deilami et al., 2018). While remote sensing imagery and corresponding data products are widely 
available at different spatial resolution from various sensors, air temperature measurements generally remain scarce. In many cases, 
the majority of official ground-based measurement stations from the national meteorological service or similar organizations is located 
in suburban and rural areas and thus, not suitable for the thermal characterization of urban environments (Brozovsky et al., 2021). 
Except for local initiatives establishing a suitable urban meteorological network in individual cities (Muller et al., 2013), another data 
source for air temperature measurements, albeit with lower measurement accuracy and reliability, is citizen science (Venter et al., 
2021). This measurement approach can be used for recording both outdoor and indoor temperatures and gained in importance and 
interest in research (Muller et al., 2015). 

For the analysis of drivers and influencing factors of urban heat, correlation and/or regression analyses are by far the most common 
methods (Deilami et al., 2018). Such techniques were frequently used to relate explanatory variables to urban heat in terms of LST 
(Alavipanah et al., 2018; Logan et al., 2020), outdoor (Chen et al., 2019; Potgieter et al., 2021; Shi et al., 2019) as well as indoor air 
temperature (Loughnan et al., 2015; Van der Hoeven and Wandl, 2018) during day- as well as nighttime. Relevant explanatory 
variables and predictors were extracted from different sources of data, mainly comprising geospatial data bases (Burger et al., 2021; 
Shi et al., 2019) as well as remote sensing acquisitions with different spatial resolution (Nikoloudakis et al., 2020; Van der Hoeven and 
Wandl, 2018; Venter et al., 2020). 

Aiming at an area-wide estimation of urban heat in terms of air temperature, spatial interpolation of station measurements is 
insufficient due to the high variation of the urban microclimate (Voogt and Oke, 2003). As a solution, spatial modeling techniques can 
be employed based on point observations and suitable spatial predictors, for example from remote sensing with sufficient spatial detail. 
In this context, land use regression (LUR) models are frequently applied for area-wide estimation of air pollution (Hoek et al., 2008), 
whereas such modeling approaches also gained attention in studies regarding urban heat (Mirzaei, 2015). Different regression methods 
have been successfully applied in LUR for area-wide modeling of outdoor air temperatures, such as multiple linear regression (Burger 
et al., 2021; Chen et al., 2019; Shi et al., 2019; Straub et al., 2019), machine learning regression algorithms like random forest (Ho 
et al., 2014; Shi et al., 2021; Venter et al., 2020; Zumwald et al., 2021), or regression techniques based on neural networks (Vulova 
et al., 2020). Spatial predictors related to outdoor urban heat comprise land cover (e.g., impervious surfaces, vegetation), urban 
morphology (e.g., building density), building properties (e.g., building height), vegetation characteristics (e.g., green volume, vege
tation health), and parameters related to radiation exposure (e.g., albedo, sky view factor), among others (Deilami et al., 2018; Heldens 
et al., 2013; Nikoloudakis et al., 2020; Venter et al., 2020; Voogt and Oke, 2003). Besides physical building and energy simulation 
models (Michalak, 2022; Nahlik et al., 2017; Taylor et al., 2018), which require detailed information and assumptions on thermal 
building properties, statistical regression methods were also employed for modeling indoor air temperatures based on outdoor air 
temperatures (Lee and Lee, 2015; Loughnan et al., 2015; Quinn et al., 2014; Rupp et al., 2021) in combination with building-related 
(Walikewitz et al., 2018), morphologic (Franck et al., 2013; Mirzaei et al., 2012), and socio-economic predictors (Tamerius et al., 
2013). However, due to the high spatial variation of the urban microclimate and in particular due to the heterogeneity of the building 
stock, related studies in literature are often restricted to few buildings and indoor air temperatures have not yet been modeled city- 
wide (i.e. in an area-wide manner at the city scale) at the building level. 

Against this background, we investigate outdoor as well as indoor air temperature measurements based on data from regular 
measurement stations as well as citizen science, and through a variety of geospatial parameters based on remotely sensed data. We aim 
at the assessment of drivers and influencing factors of urban heat at the very high spatial intra-urban level. In addition, we consider 
day- as well as nighttime situations, and we highlight outdoor as well as indoor air temperature modeling capabilities based on VHR 
remote sensing-based predictors. The approach at intra-urban level is applied for a city-wide assessment of urban heat exposure. The 
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specific objectives of this study are (i) the assessment of the spatiotemporal relation of outdoor and indoor air temperature mea
surements, (ii) the statistical analysis of explanatory variables and identification of drivers and influencing factors on summertime 
urban heat based on VHR remote sensing data, and (iii) the city-wide modeling and heat exposure estimation of outdoor as well as 
indoor air temperatures at day- and nighttime based on predictors from VHR remote sensing. 

2. Study area and data 

2.1. City of Augsburg, Germany 

The study area covers the city of Augsburg in Southern Germany (Fig. 1). The administrative area of Augsburg comprises 146.9 km2 

and is home to 298,255 inhabitants (Stadt Augsburg, 2020). The climate of Augsburg can be characterized as a humid continental 

Fig. 1. Map of the city of Augsburg: a) WorldView-3 satellite image acquired on 19.07.2018 together with locations of 39 outdoor air temperature 
measurements; b) building footprints together with locations of 536 indoor air temperature recordings. Mean outdoor and indoor air temperatures 
refer to 01.07. to 31.08.2018. 
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climate with four distinct seasons and warm to hot summers (Beck et al., 2018a). Air temperatures of Augsburg were recorded with an 
annual mean temperature of 8.2 ◦C at the official weather station of Germany’s National Meteorological Service (Deutscher Wetter
dienst, DWD) at Augsburg-Mühlhausen during 1961–1990, and highest monthly mean temperatures of 17.6 and 16.9 ◦C in July and 
August, respectively (Stadt Augsburg, 2020). 

Augsburg is among the oldest cities of Germany with historic and dense built-up structure in its center and mid- to low-rise urban 
structures towards its surroundings. Natural land of the city is dominated by grassland and parks as well as extensive forest cover along 
the rivers Lech and Wertach and especially in the municipal forest (“Augsburger Stadtwald”) southeast of the city. Beck et al. (2018b) 
conducted a classification of Augsburg applying the concept of local climate zones (LCZ) based on Stewart and Oke (2012). It refers to 
100 × 100 m2 raster cells with four built-up classes defining the study area: compact mid-rise (LCZ 2, ca. 1% of the total city area), open 
mid-rise (LCZ 5, ca. 11%), open low-rise (LCZ 6, ca. 19%), and large low-rise (LCZ 8, ca. 7%). Natural LCZ classes comprise dense as 
well as scattered trees (LCZ A and B, together ca. 20%), low plants (LCZ D, ca. 41%), and bare soil or sand as well as water (LCZ F and G, 
together ca. 1%). 

2.2. Meteorological and citizen science data 

Due to the rural location of the official weather station of DWD at Augsburg-Mühlhausen (i.e. Northeast of the map extent in Fig. 1), 
its temperature recordings hardly represent the thermal situation within the urban area of Augsburg (Fig. 2a). For this reason, 
additional outdoor air temperature measurements have been conducted continuously within the city since 2012 in a cooperative effort 
of the German Research Center for Environmental Health in Munich (Helmholtz Zentrum München) and the University of Augsburg 
(Fig. 1a, Fig. 2a). For this study, air temperature data is available at 39 sites (Fig. 1a) which was collected using ONSET HOBO U23 Pro 
v2 loggers in 4-min time intervals with a measurement accuracy of ±0.21 ◦C (Onset Co, 2010). The loggers are provided with solar 
radiation shields but are not actively ventilated. All loggers are mounted between approximately 1.5 m and 2.3 m above ground and 
can be assigned to a distinct LCZ. The local measuring site settings aim to replicate LCZ class properties, for example regarding building 
density or imperviousness. Further characteristics of the outdoor air temperature logger network are documented in Beck et al. 
(2018b). 

In addition to outdoor air temperature recordings, a citizen science measuring campaign was conducted during summer 2019 in the 
city of Augsburg (Fig. 1b, Fig. 2b). In total, 536 useable (e.g., without large measurement gaps, properly placed, with valid location) 
records of indoor air temperature were acquired using low-cost temperature loggers (Elitech RC-5) with a measurement accuracy of 
±0.5 ◦C (Elitech Co. Ltd, 2017). The loggers were placed in participants’ bedrooms and recorded ambient temperature automatically in 
15-min time intervals (Beckmann et al., 2021a). Exposition of the loggers to direct sunlight or artificial heat sources/sinks was avoided 
and the measurement sites were not equipped with air conditioning (Beckmann et al., 2021a). Due to fluctuating start and end dates of 
the individual recording periods, the temporal scale of analysis was fixed to July and August 2019 (i.e. from 01.07. to 31.08.) in a 
consistent manner for outdoor as well as indoor temperature measurements (Fig. 2). 

The raw temperature measurements of outdoor and indoor data (Fig. 2) were first temporally aggregated to hourly averages to 
establish a common temporal domain. Second, quality control of hourly air temperature measurements is conducted according to a 
limitation to a fixed range of values (i.e. from −30 ◦C to 45 ◦C), removal of temporal as well as spatial outliers, a persistence test (i.e. 
identification of suspiciously constant values), and a step test (i.e. targeting unrealistic high temperature changes). Details on the 

Fig. 2. Air temperature data during July and August 2019 in Augsburg. a) Outdoor air temperature data from 39 measurement sites including DWD 
data from the rural station at Augsburg-Mühlhausen b) 536 indoor air temperature recordings from citizen science including the mean outdoor 
temperature (dashed line). The solid black line represents the mean value of outdoor and indoor air temperautures. 
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quality control procedure can be found in Beck et al. (2018b). Finally, few remaining anomalies were removed through visual in
spection of the data, i.e. potential errors were flagged and removed via investigation of temporal and spatial plots of the data. In total, 
0.4% of the raw outdoor air temperature measurements were removed, while around 2% of original indoor air temperature recordings 
were excluded. 

2.3. Remote sensing and auxiliary data 

VHR remote sensing imagery is available from a WorldView-3 scene covering the entire study area acquired on 19.07.2018 
(Fig. 1a). This data was recorded with eight spectral bands at 31 cm spatial resolution. In order to supplement WorldView-3 imagery in 
the thermal domain of the electromagnetic spectrum, a cloud-free Landsat-8 acquisition recorded on 18.08.2019 was used. In addition 
to VHR optical imagery, a VHR normalized digital surface model (nDSM) with spatial resolution of 40 cm is provided by the envi
ronmental office of the city of Augsburg, which was acquired in 2018 by light detection and ranging (Lidar) with a point density of 6.25 
points/m2. 

A cadastral building model (Fig. 1b) as well as land use information from the digital landscape model of Germany were provided by 
the Federal Agency for Cartography and Geodesy (BKG). In total, there are 77,296 residential buildings in the study area. The building 
data was supplemented by building heights from the VHR nDSM. All data was spatially aligned to the cadastral building data. For 
spatial analysis and modeling, we rely on a geographic grid according to the INSPIRE (Infrastructure for Spatial Information in the 
European Community) tiling system with a grid cell resolution of 100, 250, and 500 m, respectively. For exposure quantification, we 
use extrapolated census counts referring to 2018 provided by the Federal Statistical Office of Germany as well as the Federal Institute 
for Population Research at 100 m grid cells. 

3. Methodology 

According to the general workflow in Fig. 3, the analyses of summertime urban heat are based on outdoor and indoor air tem
peratures. The spatiotemporal assessment (objective (i), Sections 3.1 and 4.1) relies on the joint analysis of outdoor and indoor air 
temperature measurements, while the statistical analysis (objective (ii), Sections 3.3 and 4.2), as well as the city-wide modeling 
(objective (iii), Sections 3.4 and 4.3) additionally incorporate remote sensing parameters and consider outdoor and indoor air tem
perature data separately. The estimation of urban heat exposure (Sections 3.6 and 4.5) is enabled by the intersection of outdoor and 
indoor city-wide modeling results with census counts. 

In general, all analyses refer to climatological as well as statistical measures of air temperature recordings. Climatological terms 
quantify the number of days regarding temperature thresholds during the measurement period (i.e. 62-days from 01.07. to 
31.08.2019) and capture general temperature characteristics during day- and nighttime. In accordance with Brasseur et al. (2016), we 
define summer and hot days as days whose daily maximum temperature exceed 25 ◦C and 30 ◦C, respectively, as well as tropical nights 
if the minimum temperature does not fall below 20 ◦C during the night (i.e. from 08 p.m. until 06 a.m.). Regarding indoor air 

Fig. 3. General workflow of this study.  
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temperatures, the threshold for tropical nights was adjusted and increased to 25 ◦C according to the literature review in Beckmann 
et al. (2021a). Statistical extreme values (i.e. maximum and minimum value) represent highest daytime temperatures during heat
waves and cooling capabilities at night. The mean value during the measurement period is considered as a generalized measure of the 
average summertime temperature situation. These three statistical measures are among the most frequently utilized temperature 
indicators for the definition of summertime heat and heatwaves (Xu et al., 2016). 

3.1. Spatiotemporal temperature data analysis 

Outdoor air temperatures are opposed to their indoor counterparts for identification of temporal patterns regarding daytime 
maxima as well as nighttime minima of temperature measurements. For quantification of the relationship and dependency of outdoor 
and indoor temperatures, we employ sample cross correlation as proposed by Venables and Ripley (2002). Its scope is the systematic 
analysis of the cross correlation of a time series data set against lagged (i.e. temporally shifted) versions of another time series data set. 
For an initial evaluation, the sample cross correlation is calculated based on the mean value of all outdoor against all indoor tem
perature measurements in order to describe the general temporal dependency of indoor from outdoor air temperature. However, the 
strong local variation of the urban climate and the corresponding spatial representativity of the measured outdoor air temperatures in 
the local surroundings must be considered. For this reason and in line with other studies (Ha et al., 2020; Venter et al., 2020), locations 
of indoor measurements are assigned to and evaluated according to spatially related outdoor measurement sites within a radius of 500 
m. Furthermore, the analysis is restricted to similar urban structure by considering pairs of measurements within the same LCZ only. 

Spatial patterns and dependencies in the data are reflected by spatial autocorrelation. A commonly used statistic of spatial auto
correlation is the Moran’s I, which describes the relationship between a value of some variable at one location in space and nearby 
values of the same variable (Griffith, 1987). Values of Moran’s I range from −1 (i.e. dispersed spatial pattern) to 0 (i.e. random spatial 
pattern) to +1 (i.e. clustered pattern). A crucial aspect in this analysis is the definition of neighborhood distances, which represents a 
trade-off between spatial representativity of temperature measurements and the connectivity within the neighborhood. Against this 
background and in accordance with other studies (Mirzaei et al., 2012; Shi et al., 2019), a neighborhood of 500 m was chosen for 
indoor, and 1000 m for outdoor air temperature measurements, respectively. 

3.2. VHR remote sensing parameters 

Remote sensing data with very high spatial resolution serves as the basis for collection and assessment of explanatory variables and 
identification of drivers and influencing factors on summertime urban heat (Sections 3.3 and 4.2). Furthermore, the derived pa
rameters are used for city-wide modeling of outdoor as well as indoor air temperatures (Sections 3.4 and 4.3). 

3.2.1. Preparation of remote sensing data 
Land cover is classified in an object-oriented approach based on Taubenböck et al. (2010) and Wurm et al. (2011) using the 

WorldView-3 imagery, the VHR nDSM, and the building model. Target classes include buildings, impervious surfaces, roads and 
railways, bare soil, vegetation, and water. Due to its particular importance to the urban climate, the class vegetation was further 
refined according to size, shape and height of vegetation patches for detailed analysis (Voogt and Oke, 2003). According to Monteiro 
et al. (2016) and Ren et al. (2013), the size and shape of urban greenspaces determines the spatial influence of their cooling capability, 
with a decrease in cooling distance and intensity the more complex the shape and the greater the edge length to area ratio. In addition, 

Table 1 
Remote sensing-based parameters.  

Building parameters Areal parameters [100/250/500 m] 

Geometric parameters of buildings Building parameters  
- Area [m2]  - Density []  
- Height [m]  - Volume []  
- Volume [m3]  - Floor Area Ratio (FAR) []  
- Floor area [m2] Shares of land cover 
Spatial context [Euclidean distance to …]  - Vegetation [%]  
- Building [m]  - Impervious surface [%]  
- Vegetation [m]  - Water [%]  
- Water [m] Vegetation characteristics 
Radiation properties  - NDVI []  
- Albedo []  - Green volume [m3]  
- Exposition [RAD]  - Treed vegetation [%]  
- Normalized Difference Vegetation  - Cooling vegetation [%]  
- Index (NDVI) [] Radiation properties   

- Albedo []   
- Land Surface Temperature (LST) [◦C]   
- Shadow [m2]   
- Sky view factor (SVF) []  

T. Leichtle et al.                                                                                                                                                                                                        



Urban Climate 49 (2023) 101522

7

very small patches (<0.5 ha) can only provide air temperature cooling locally (Monteiro et al., 2016). For this reason, vegetation 
patches were subdivided according to an area threshold of 0.5 ha as well as visual compact shape in order to estimate local or sur
rounding cooling capabilities of vegetated areas. Another subdivision was implemented according to the height of vegetation patches 
since treed greenspaces provide greater cooling capacity during the day and in the beginning of the night while grassland exhibits a 
cooling effect mainly at night (Monteiro et al., 2016; Spronken-Smith and Oke, 1999). On this basis, a height threshold of 2 m was 
applied based on the VHR nDSM in order to subdivide vegetation areas into treed and grassland patches. 

3.2.2. Delineation of remote-sensing based parameters 
Table 1 presents the remote-sensing based parameters describing the morphological configuration of the urban area for the relation 

of outdoor and indoor air temperature measurements and their temporal as well as spatial patterns. For an extensive analysis of 
explanatory variables of urban heat based on VHR remote sensing, a variety of parameters is derived for the detailed characterization 
of individual buildings as well as their areal surroundings. Furthermore, these parameters are employed for city-wide statistical 
modeling of day- and nighttime outdoor as well as indoor air temperatures. 

Regarding individual buildings, geometric parameters, parameters describing the spatial context, and radiation properties of 
buildings are delineated (Table 1). Geometric parameters of buildings are derived based on the median building height from the nDSM 
and a block building model corresponding to Level of Detail (LoD) 1. The floor area is calculated based on building height in com
bination with generalized, standard floor heights from related studies for Germany (Wurm et al., 2019; Wurm et al., 2011). Parameters 
describing the spatial context are delineated based on the Euclidean distance of buildings to the respective land cover class. Albedo is 
estimated based on bands blue, red, NIR, SWIR1 and SWIR2 of the Landsat data according to Liang (2001). The exposition of buildings 
is described by the main angle of the building footprint polygon, considering only solar illuminated building surfaces (e.g., in case of 
terraced houses or perimeter block development). The mean Normalized Difference Vegetation Index (NDVI) is calculated based on 
bands red and NIR1 of the WorldView-3 image. 

The areal parameters comprise spatial statistics on the building stock, relative shares of land cover, specific parameters on vege
tation, and other radiation properties (Table 1). Building density, volume and Floor Area Ratio (FAR) are delineated based on the 
respective building parameters per 100/250/500 m grid cell. The areal shares of land cover rely on the WorldView-3 land cover 
classification. NDVI is calculated based on the mean value per grid cell, while the shares of treed and cooling vegetation refer to the 
total vegetated area per grid cell. Radiation properties of albedo and land surface temperature (LST) are delineated from the Landsat 
data according to Liang (2001) as well as based on band 10 (10.6–11.19 μm) of Landsat-8 using the single channel algorithm proposed 
by Artis and Carnahan (1982). The VHR nDSM serves as the basis for derivation of shadows (i.e. shaded areas from buildings and trees) 
and the sky view factor (SVF) (Dirksen et al., 2019). Shadows are calculated based on the solar culmination in the middle of the 
measurement period (i.e. August 1st). 

In accordance with recent studies (Ha et al., 2020; Nikoloudakis et al., 2020; Venter et al., 2020), the spatial extent of these areal 
parameters are derived according to INSPIRE compliant grid cells with a spatial resolution of 100, 250, and 500 m, respectively. 
Dependent on the purpose of the areal parameters, the cells are centered around the outdoor and indoor measurement sites as 
explanatory variables of urban heat and for calibration of the city-wide model, or calculated within an area-wide grid for application of 
the statistical modeling over the entire study area. 

3.3. Statistical analysis of explanatory remote sensing variables 

For identification of drivers and influencing factors on summertime urban heat, explanatory variables from VHR remote sensing are 
opposed to climatological as well as statistical measures of air temperature recordings through pairwise linear regression. Specifically, 
areal parameters (Table 1) are related to climatological and statistical measures of outdoor air temperatures, while building as well as 
areal parameters (Table 1) are considered in relation to indoor air temperatures. Pairwise linear regression is the most common method 
for evaluating spatiotemporal factors related to urban heat (Deilami et al., 2018) and thus, employed in this work. To evaluate the 
pairwise relation between air temperature and VHR remote sensing variables, the p-value as well as the coefficient of determination 
(R2) of ordinary least squares (OLS) regression is employed. Within the framework of the statistical analysis, the number of summer 
and hot days, as well as the maximum value characterize daytime temperature, whereas the number of tropical nights as well as the 
minimum value refer to nighttime temperature. In addition, the mean temperature during the measurement period is considered as a 
generalized description of temperature characteristics. 

3.4. City-wide modeling of air temperature 

For city-wide modeling of outdoor as well as indoor air temperatures at day- and nighttime, a statistical modeling approach is 
implemented. Based on the relationship of reference air temperature measurements and the VHR remote sensing parameters, the city- 
wide spatial distribution of air temperatures is modeled in a LUR approach using partial least squares (PLS) regression. In contrast to 
various other regression methods, PLS regression aims to capture the covariance between predictor and target variables (Mevik and 
Wehrens, 2007). It is particularly suitable in case of a high number of predictors which are highly correlated or close to collinearity due 
to the embedded principal component transformation (Tobias, 1997). Modeling of indoor air temperature is further restricted to 
residential buildings since citizen science measurements were conducted in participants’ bedrooms and there is no information on 
indoor air temperature regarding buildings on non-residential land use. In particular, outdoor air temperature is modeled based on 
areal parameters, and the indoor model is based on both building and areal parameters, whereas areal parameters are supposed to 
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serve as proxies for the outdoor thermal forcing in the indoor model (Fig. 3). Finally, a plausibility check is applied for each grid cell 
and each building in order to ensure that the number of hot days does not exceed summer days, and that the minimum value is smaller 
than the mean and again less than the maximum value. Finally, and in addition to the results at different neighborhood sizes, the 
average of climatological and statistical measures from the models based on the 100 × 100, 250 × 250, and 500 × 500 m2 areal 
parameters are calculated for outdoor as well as indoor air temperatures. 

3.5. Accuracy assessment 

Leave-one-out cross-validation (LOOCV) is conducted for accuracy assessment of outdoor model results based on air temperature 
measurements due to the small number of measurement sites and high reliability of the data (Beck et al., 2018b). In contrast, 10-fold 
cross-validation (10-fold CV) is performed for model results of indoor air temperatures due to the higher number of measurements and 
under the assumption of a relatively higher degree of uncertainty and variation in citizen science measurements (Fig. 2). For quan
tification of outdoor as well as indoor model performance, the coefficient of determination (R2), the mean absolute error (MAE) and the 
relative MAE (i.e. MAE related to the mean value of air temperature measurements) are evaluated (Willmott and Matsuura, 2005). 
Besides quantitative accuracy assessment through LOOCV and 10-fold CV, model results are related to the 100 × 100 m2 LCZ clas
sification of Augsburg by Beck et al. (2018b). 

3.6. Estimation of exposed population 

The results of the city-wide modeling of outdoor and indoor air temperatures are related to census counts in order to quantify the 
exposed population. Outdoor model results are directly linked to census counts based on consistent spatial units of 100 × 100 m2 grid 
cells. For their relation with modeled indoor air temperatures, census counts are disaggregated to residential buildings. The disag
gregation approach relies on the linear distribution of population numbers to the stock of residential buildings through floor area 
(Leichtle et al., 2019; Wurm et al., 2021). 

Fig. 4. Maximum temperatures during day- (left column) and minimum temperatures during nighttime (right column) of outdoor (top row) and 
indoor (bottom row) temperature measurements. 
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4. Results 

4.1. Spatiotemporal analysis of outdoor and indoor air temperature measurements 

Fig. 4 illustrates outdoor as well as indoor air temperatures for both day- and nighttime during July and August 2019 in Augsburg 
and gives an impression of the temporal characteristics of urban heat in the study area. Due to data transfer failures, seven outdoor 
measurement stations have data gaps of up to one week at the beginning of the observation period shown in grey in Fig. 4a and b. In 
general, several intervals with daily maximum outdoor air temperatures above 30 ◦C (i.e. hot days) were recorded during the mea
surement period (Fig. 4a), while only during two of these intervals nighttime minimum air temperatures did not fall below 20 ◦C (i.e. 
tropical nights) due to insufficient nocturnal cooling (Fig. 4b). A significant heatwave occurred in the last third of July with around five 
consecutive days of outdoor air temperatures above 30 ◦C at almost all sites (Fig. 4a). The highest daytime maximum outdoor air 

Fig. 5. Sample cross correlation function of indoor against outdoor temperatures using the mean values of daytime (a) and nighttime (c) mea
surements as well as up to five nearest outdoor measurement stations within 500 m around indoor locations for the daytime (b) and nighttime (d) 
situation. The box lengths show the interquartile range from 1st to 3rd quartile, whiskers span 1.5 interquartile range. The blue dashed lines indicate 
the confidence interval (α = 0.05). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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temperature of 39.5 ◦C was measured on 25.07.2019, and the highest nighttime minimum air temperature of 23.3 ◦C on 24.07.2019 at 
a different site. Regarding indoor air temperatures from citizen science measurements (Fig. 4c and d), the temporal pattern is similar to 
outdoor air temperatures with the highest daytime maximum value of 34.6 ◦C recorded on 25.07.2019, and the highest nighttime 
minimum value of 32.8 ◦C registered on 24.07.2019. Especially nighttime minima of indoor air temperatures are generally higher 
compared to their outdoor counterparts, which indicates less nocturnal cooling based on thermal building properties. A clear temporal 
lag of indoor compared to outdoor air temperatures can be observed particularly for daytime measurements (Fig. 4a and c). 

For quantification of the temporal lag, Fig. 5 presents the sample cross correlation analysis of outdoor compared to indoor air 
temperature measurements. In an initial evaluation, the time series of outdoor and indoor air temperatures were averaged across the 
study area and the cross correlation was calculated based on daytime maxima and nighttime minima of the two time series data sets 
shifted against each other on a daily basis. According to Fig. 5a, the highest cross correlation of 0.77 between the two time series data 
sets of daytime temperatures occurred at a time lag of −1 day, followed by cross correlation of 0.72 at a time lag of −2 days, and third- 
highest cross correlation of 0.67 without time lag, i.e. without temporal shift of the data. In other words, indoor air temperatures follow 
the temporal pattern of outdoor air temperatures with a temporal lag of around one day for the daytime situation. At nighttime 
(Fig. 5c), minimum temperatures show cross correlations of 0.80 without time lag, 0.73 at a time lag of −1 day, and 0.62 at a time lag 
of −2 days, which indicates a more direct response of relatively cool outdoor air temperatures compared to indoor measurements. The 
values of cross correlation are well above the confidence interval (α = 0.05) (Fig. 5). 

Under additional consideration of spatially related outdoor measurement sites to their indoor counterparts, 289 of 536 indoor air 
temperature recordings were located within 500 m distance from outdoor measurement sites while 150 loggers have more than one 
station within this radius. The detailed pair-wise analysis also indicates a time lag of about one day for maximum daytime air tem
peratures (Fig. 5b) and confirms the initial analysis. In case of nighttime minimum air temperatures (Fig. 5d), almost identical median 
values can be observed comparing the cross correlation without time lag (0.7388) and the cross correlation at a time lag of −1 day 
(0.7386). 

Fig. 6 depicts spatial autocorrelation in terms of the Moran’s I for daytime maxima as well as nighttime minima of outdoor and 
indoor air temperature measurements. The analysis reveals that outdoor air temperatures generally show higher values of the Moran’s 
I and thus, a much more clustered spatial pattern compared to their indoor counterparts. The outdoor temperature distribution is 
particularly uniform at nighttime, indicated by highest values of the Moran’s I around 0.8 (Fig. 6). The measured indoor air tem
peratures exhibit very low values of Moran’s I slightly above 0, which indicates a close to random spatial pattern within the 500 m 
neighborhood. 

4.2. Statistical analysis of explanatory variables of urban heat based on remote sensing data 

Accuracy assessment was performed for the VHR remotely sensed land cover classification based on visual inspection and com
parison of 2000 random points and shows very high overall accuracy of 90.5% and Cohen’s kappa statistic of 0.84. The land cover data 
was combined with the VHR nDSM and the building model for calculation of building as well as areal parameters according to Table 1, 
except for albedo and LST, which were derived from the Landsat acquisition. Areal parameters were related to outdoor air temper
atures, while building and areal parameters were associated with climatological and statistical measures of indoor air temperatures by 
means of OLS regression. The p-value and the coefficient of determination (R2) from pairwise linear regression are presented in Fig. 7 
for outdoor as well as in Fig. 8 and Fig. 9 for indoor air temperatures, respectively. However, all parameters related to water areas (i.e. 
distance of building to water, share of water) cannot be interpreted reliably because this land cover rarely occurs in the study area. 

The highest significance (i.e. p-value <0.001) and thus, high explanatory power was found for the mean outdoor air temperature 
during the measurement period (except water and SVF). For daytime outdoor air temperatures (i.e. summer days, hot days, maximum 
temperature), low significance levels (i.e. p-value >0.001) were identified for building parameters, while shares of vegetation and 

Fig. 6. Statistics of daily Moran’s I of outdoor and indoor maximum temperatures during day- and minimum temperatures during nighttime, 
respectively. The box lengths show the interquartile range from 1st to 3rd quartile, whiskers span 1.5 interquartile range. 
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Fig. 7. p-values and coefficient of determination (R2) from pairwise linear regression of areal parameters against climatological and statistical 
measures of outdoor air temperatures. 
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Fig. 8. p-values and coefficient of determination (R2) from pairwise linear regression of building parameters against climatological and statistical 
measures of indoor air temperatures. 

Fig. 9. p-values and coefficient of determination (R2) from pairwise linear regression of areal parameters against climatological and statistical 
measures of indoor air temperatures. 
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impervious surface and particularly detailed vegetation characteristics expose relatively high significance levels at all neighborhood 
sizes (Fig. 7). In the case of nighttime outdoor air temperatures (i.e. tropical nights, minimum temperature), all parameters (except for 
water and SVF) show high significance at all scales, with slightly lower p-values for albedo and green volume at the 100 m neigh
borhood (Fig. 7). 

Regarding indoor air temperatures, lower significance according to p-values was observed for building parameters compared to 
areal parameters (Fig. 8, Fig. 9). However, there is an accumulation of high significance (i.e. p-value <0.001) in the case of geometric 
properties of buildings in relation to mean temperature and particularly nighttime air temperatures (i.e. tropical nights and minimum 
temperature). Areal parameters show high significance regarding indoor air temperatures, except for minimum temperature (Fig. 9). 
For nighttime air temperatures (i.e. tropical nights, minimum temperature), increasing significance was observed with increasing size 
of the neighborhood. In the case of daytime air temperatures (i.e. summer days, hot days, and maximum temperature), all neigh
borhood sizes show similar significance levels with the exceptions of vegetated areas with surrounding cooling capabilities as well as 
the SVF, whose significance levels increase with neighborhood size. 

Fig. 10. Model results of outdoor air temperatures in Augsburg. a) Summer days, b) Hot days, c) Maximum temperature, d) Tropical nights, e) 
Minimum temperature, f) Mean temperature. The spatial extent corresponds to Fig. 1. 
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Fig. 11. Model results of indoor air temperatures in Augsburg. a) Summer days, b) Hot days, c) Maximum temperature, d) Tropical nights, e) 
Minimum temperature, f) Mean temperature. The spatial extent corresponds to Fig. 1. 
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4.3. City-wide modeling of outdoor and indoor air temperature during day- and nighttime 

Model results of outdoor as well as indoor air temperatures are displayed in Fig. 10 and Fig. 11, respectively. The modeling of 
outdoor air temperatures is based on 14 areal parameters (Fig. 7), while the modeling of indoor air temperatures relies on 10 building 
(Fig. 8) as well as 14 areal parameters (Fig. 9). Due to the principal component transformation included in PLS regression, feature 
selection is not necessary. Based on the locations of reference air temperature measurements, all predictor variables (i.e. building and 
areal parameters) are represented adequately for calibration of the outdoor as well as the indoor model. In both cases, modeling results 
are presented as average based on the 100 × 100, 250 × 250, and 500 × 500 m2 areal parameters (Fig. 10, Fig. 11). The spatial extent 
of outdoor as well as indoor model results is limited to the administrative city area due to the availability of the VHR nDSM. Outdoor 
air temperatures were predicted for 13,728 ha of the administrative city area of Augsburg, while indoor air temperatures were modeled 
for 77,296 buildings on residential land use according to the digital landscape model of Germany. 

In general, the spatial distribution of modeled outdoor air temperatures shows highest values in the city center as well as in areas of 
high building and built-up density and decreasing temperatures towards the city outskirts (Fig. 10). In addition, the lowest temperatures 
can be observed over close-to-nature and natural areas, especially in the extended forest areas (“Augsburger Stadtwald”) southeast of the 
city. Regarding daytime outdoor air temperature (i.e., summer days, hot days, maximum temperature, Fig. 10a-c), highest values were 
modeled in areas of high degrees of imperviousness as well as over bare agricultural areas without vegetation in the south of the study area. 
Particularly visible in Fig. 10c, the city center exhibits about 1 to 2 ◦C lower maximum temperatures on average compared to highest 
modeled maximum outdoor air temperature during the day, especially in the Northeast and Southwest of the city center. The predictions of 
nighttime outdoor air temperatures (i.e., tropical nights, minimum temperature, Fig. 10d and e) reveal the lack of cooling capacity in built- 
up areas and in particular in the city center. Increased nighttime cooling is modeled over vegetated areas with mostly zero tropical nights 
and minimum temperatures 5 to 7 ◦C lower compared to highest values over built-up areas, especially in the city center. Furthermore, the 
lowest absolute minimum outdoor air temperatures below 10 ◦C (Fig. 10e) are derived in riverine forests and in the grassland patch in the 
extended forest southeast of the city of Augsburg. The modeled mean outdoor air temperature (Fig. 10f) provides a good generalized 
measure of the temperature characteristics of all climatological and statistical measures. 

Based on Fig. 11, similar spatial patterns can be identified across all climatological and statistical measures of modeled indoor air 
temperatures compared to the model results of outdoor air temperatures (Fig. 10). Indoor model results of 77,296 residential buildings 
in the study area show high temperatures in the city center as well as in areas of high building and built-up density and lower values in 
areas of low density as well as in close proximity to vegetation or water bodies. However, additional variation is included due to 
individual building characteristics and the specific morphological neighborhood. Specifically, the climatological measures of indoor 
daytime air temperature (i.e., summer days, hot days, Fig. 11a and b) show a distinct accumulation in the city center (30 compared to 
24 summer days on average) with at least 15 summer days in the central city districts. In contrast, maximum air temperatures 
(Fig. 11c) are concentrated in (sub-)centers with high building and built-up density as well as in areas with low shares of vegetation 
and water bodies. In addition to the morphological characteristics in the neighborhood of buildings, slight dependencies on building 
area and volume can be observed particularly in case of maximum air temperatures (Fig. 11c). For nighttime indoor air temperatures 
(i.e., tropical nights, minimum temperature, Fig. 11d and e), results in Fig. 11d show a concentration in the city center with 13 
compared to 10 tropical nights on average in the central and all other city districts, respectively. Furthermore, the dependencies on 
geometric parameters of buildings become more apparent, which is especially evident in a higher number of tropical nights for larger 
buildings (Fig. 11d). For minimum indoor air temperature (Fig. 11e), the most favorable (i.e. lowest) values around 19 ◦C are modeled 
for single-family homes and generally for buildings in low-density suburban environments. Analogous to outdoor air temperatures, 
model results of mean indoor air temperature (Fig. 11f) provide a good synopsis of the temperature characteristics of all climatological 
and statistical measures. 

4.4. Model validation and relation to LCZ 

Modeled air temperatures were validated using LOOCV for outdoor and 10-fold CV for indoor air temperatures, respectively. The 
obtained values of R2, MAE as well as relative MAE are summarized in Table 2 and Table 3 for model results based on the 100 × 100, 

Table 2 
Coefficient of determination (R2), Mean Absolute Error (MAE), and relative MAE for outdoor model results based on LOOCV. Best results are 
highlighted in bold.  

Outdoor model Summer days Hot days Maximum  
temperature 

Tropical nights Minimum  
temperature 

Mean  
temperature 

R2 
100 m 0.46 0.27 0.21 0.77 0.59 0.74 
250 m 0.41 0.23 0.22 0.79 0.65 0.68 
500 m 0.40 0.20 0.19 0.83 0.69 0.74 

MAE [days / ◦C] 
100 m 3.79 1.88 1.19 0.83 0.35 0.32 
250 m 4.01 1.90 1.17 0.74 0.46 0.31 
500 m 3.98 1.97 1.17 0.72 0.43 0.29 

Relative MAE [%] 
100 m 12.21 20.84 3.38 41.55 2.84 1.64 
250 m 12.92 21.17 3.33 37.09 3.79 1.58 
500 m 12.85 21.84 3.33 36.18 3.49 1.45  
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250 × 250, and 500 × 500 m2 areal parameters. In consistency with previous analyses in this study, the model results of indoor air 
temperatures exhibit higher uncertainties compared to outdoor air temperatures at all neighborhood sizes, whereas the size of the 
neighborhood has little effect on model accuracies (Table 2, Table 3). 

Modeled outdoor air temperatures show considerably higher accuracies compared to indoor results (Table 2, Table 3). LOOCV of 
the outdoor models (Table 2) revealed coefficients of determination up to 0.83, with even significantly higher lowest values of 0.27 for 
hot days compared to the indoor model (Table 3). Regarding different neighborhood sizes of outdoor air temperature models, 
decreasing values of R2 are observed with increasing neighborhood size for the daytime air temperatures, whereas the mean as well as 
the nighttime air temperatures show increasing R2 with increasing neighborhood size. Higher relative MAEs can be seen for clima
tological (i.e. summer days, hot days, tropical nights) compared to statistical measures, with the highest relative MAE of 36 to 41% in 
case of tropical nights (Table 2). With respect to statistical measures, maximum and minimum outdoor air temperatures were modeled 
with MAE of 1.2 and 0.4 ◦C, respectively, as well as relative MAE around 3% (Table 2). Best results were achieved for the model of 
mean outdoor air temperature with MAE of 0.3 ◦C and relative MAE of around 1.5%. 

In case of modeled indoor air temperatures (Table 3), relatively low values of R2 below 0.1 indicate a high variation of the model 
results compared to reference data of all climatological and statistical measures. Regarding MAE, high uncertainty is revealed for 
summer days as well as tropical nights (Table 3). In addition, the number of hot days shows highest uncertainty with relative MAE of 
around 135% due to the small range of values in the input data. According to the relative MAE, the number of tropical nights (67 to 
68%) as well as summer days (42 to 43%) also possess notable uncertainties (Table 3). In general, statistical measures have higher 
model accuracies with MAEs around 1 ◦C and relative MAEs in the order of 5%. The most precise model results of indoor air tem
perature can be found for mean air temperatures with MAE of 0.8 ◦C and relative MAE of around 3%. 

Comparing the model results of this study with the LCZ classification of Augsburg provided by Beck et al. (2018b), Fig. 12 and 
Fig. 13 show similar patterns for outdoor as well as indoor air temperatures. Decreasing statistical values of temperatures and a 
decreasing number of climatological terms were found from LCZ 2 (compact mid-rise) via LCZ 5 (open mid-rise) to LCZ 6 (open low- 
rise), with subsequent increase towards LCZ 8 (large low-rise). For land cover related LCZ classes, increasing statistical values as well as 
increasing numbers of climatological measures were observed from LCZ A (dense trees) to LCZ B (scattered trees) as well as LCZ D (low 
plants) to LCZ F (bare soil or sand), with subsequent decrease towards LCZ F (water). In general, outdoor model results feature larger 
interquartile ranges compared to the indoor situation, which indicates a less clustered distribution in case of modeled outdoor air 
temperatures. However, for indoor results (Fig. 13), built-up LCZ classes (i.e. LCZ 2, 5, 6, 8) cover the majority of the data (Σ nmodel =

72,410) and only few buildings (Σ nmodel = 4886) are located in natural LCZs (i.e. LCZ A, B, D, F, G). In general, the distributions of the 
number of reference and modeled values are similar, considering that the transitions of LCZ classes, especially from LCZ 5 to LCZ 6 in 
this study, are continuous (Stewart and Oke, 2012). 

Fig. 14 compares the measured to the modeled values of climatological and statistical measures of outdoor and indoor air tem
peratures. In general, and in accordance with Table 2 and Table 3, good agreement can be observed for the outdoor model. Specifically, 
the median differences of climatological measures are up to one day, statistical measures were modeled with median deviations below 
1 ◦C. In contrast, the median values of the indoor model show similarly small deviations, however, the full range of variation of the 
reference measurements cannot be modeled properly. 

4.5. Estimation of population exposed to urban heat 

Fig. 15 presents the population of the city of Augsburg exposed to urban heat based on the model results of outdoor and indoor air 
temperatures. For outdoor air temperatures (Fig. 15a and b), the estimation of exposed population is based on the census counts within 
the 100 × 100 m2 grid, while the analysis in case of indoor air temperatures (Fig. 15c and d) refers to disaggregated population 
numbers per residential building. As shown by sharply decreasing quantities in Fig. 15a and b, large parts of the population of 
Augsburg are exposed to similar outdoor heat during the day and particularly at nighttime, which underlines the clustered spatial 
pattern at night (also see Fig. 6). Accordingly, almost the entire population of Augsburg is exposed to 30 summer days and one tropical 
night of outdoor urban heat. In case of indoor heat exposure (Fig. 15c and d), we observe a significantly higher bandwidth of 
climatological measures affecting population, which suggests a higher bandwidth of heat impact depending on individual building 

Table 3 
Coefficient of determination (R2), Mean Absolute Error (MAE), and relative MAE for indoor model results based on 10-fold CV. Best results are 
highlighted in bold.  

Indoor model Summer days Hot days Maximum  
temperature 

Tropical nights Minimum  
temperature 

Mean  
temperature 

R2 
100 m 0.09 0.03 0.08 0.08 0.05 0.05 
250 m 0.08 0.03 0.07 0.06 0.06 0.04 
500 m 0.09 0.04 0.07 0.08 0.05 0.07 

MAE [days / ◦C] 
100 m 12.56 1.37 1.45 8.92 1.13 0.80 
250 m 12.69 1.36 1.47 8.93 1.14 0.80 
500 m 12.42 1.35 1.44 8.77 1.12 0.78 

Relative MAE [%] 
100 m 43.32 136.67 5.01 68.64 5.35 3.29 
250 m 43.75 136.47 5.08 68.65 5.41 3.29 
500 m 42.84 134.90 4.97 67.48 5.31 3.23  

T. Leichtle et al.                                                                                                                                                                                                        



Urban Climate 49 (2023) 101522

18

characteristics. Thus, during the two exemplarily modeled summer months of 2019, large parts of the population of Augsburg face 
around 20 to 35 summer days as well as 10 to 20 tropical nights in their homes. 

5. Discussion 

This study investigates the spatiotemporal relation of outdoor and indoor air temperature and identifies drivers and influencing 
factors on summertime urban heat through statistical analysis based on VHR remote sensing. In addition, city-wide modeling capa
bilities of air temperatures using predictors from VHR remote sensing could be demonstrated using a LUR approach with moderate to 
high prediction accuracies, which enables the city-wide estimation of population exposed to outdoor and indoor urban heat during 
day- and nighttime. 

5.1. Outdoor and indoor air temperature measurements and their spatiotemporal relation 

The temporal relation of outdoor and indoor air temperatures from this work confirmed high cross correlation levels around r = 0.7 
reported in recent literature (Rupp et al., 2021). In agreement with Vant-Hull et al. (2018), the current study proved the temporal offset 
between outdoor and indoor air temperatures of about one day. In addition, this relationship could be examined in more detail by 
distinguishing between daytime maximum air temperatures and nighttime minimum air temperatures, with a smaller temporal lag 
observed at night. Moreover, in accordance with Van der Hoeven and Wandl (2018), a stronger spatial coherence of outdoor compared 
to indoor air temperatures could be shown. Beyond existing literature, the current study enriches these findings revealing a 

Fig. 12. Model results of outdoor air temperature related to the LCZ classification of Augsburg. a) Summer days, b) Hot days, c) Maximum tem
perature, d) Tropical nights, e) Minimum temperature, f) Mean temperature. 
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considerably stronger spatial autocorrelation of nighttime outdoor temperatures compared to daytime measurements, whereas the 
situation is slightly reversed in case of indoor air temperatures. 

However, the spatial analysis of indoor temperatures follows the assumption of similar urban structure and thus, similar inter- 
building temperature characteristics within a neighborhood of 500 m in this study. Furthermore, the selection of a 500 m radius 
for the assignment of indoor to outdoor air temperature measurement locations based on related studies (Ha et al., 2020; Venter et al., 
2020) significantly depends on the morphology of the local site (i.e. areal parameters like building density, shares of land cover, 
vegetation characteristics, or other radiation properties). In addition, intra-building variations (e.g., based on floor number or 
exposition of the measurement location) are neglected in this study, as usually only one measurement was taken per building. Such 
distribution of measurements implies to a certain degree the statistical representativeness of the indoor measurements for each 
building. Since the number and distribution of temperature measurement stations is crucial for investigation of urban heat (Mirzaei 
and Haghighat, 2010), such limitations cannot be fully compensated for in the present as well as other studies. Nevertheless, this work 
presents a viable solution through citizen science data of indoor air temperature measurements. 

5.2. VHR remote sensing parameters for explanation of urban heat 

Numerous studies investigated drivers and influencing factors of the urban climate based on different geospatial data sources, 
whereas the vast majority of analyses rely on remote sensing data with medium to high spatial resolution (e.g., Landsat or MODIS) 
while VHR remote sensing data have rarely been used to date (Deilami et al., 2018). This study demonstrates the high potential of VHR 
data for detailed assessment of spatially heterogeneous and highly dynamic urban environments in the context of urban heat. The high 

Fig. 13. Model results of indoor air temperature related to the LCZ classification of Augsburg. a) Summer days, b) Hot days, c) Maximum tem
perature, d) Tropical nights, e) Minimum temperature, f) Mean temperature. 
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spatial detail particularly allows analyses incorporating information at the building level and enables the assessment of outdoor 
temperatures using building density, volume, and FAR as well as indoor temperatures based on detailed and area-wide available 
building characteristics. 

Regarding outdoor temperatures, areal parameters like the proportion of vegetation and man-made structures are among the most 
frequently identified in existing literature (Deilami et al., 2018). In general, results of this study confirm that daytime outdoor 

Fig. 14. Comparison of measured against modeled values for climatological and statistical measures of outdoor (top row) and indoor (bottom row) 
air temperatures. 

Fig. 15. Exposed population of Augsburg facing outdoor and indoor heat during day- as well as nighttime. a) Summer days outdoor, b) Tropical 
nights outdoor, c) Summer days indoor, d) Tropical nights indoor. 
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temperatures are largely explained by vegetation parameters and the share of impervious surface (Chen et al., 2019), while nighttime 
outdoor temperatures are more related to the building stock and radiation properties like LST and shadows (Cao et al., 2021). 
Consequently and in accordance with the findings from Ha et al. (2020), areal parameters like building density, volume, and FAR were 
identified as less relevant for daytime outdoor temperatures, but showed high significance according to p-values for nighttime tem
peratures. With respect to the use of different neighborhood sizes, the utilized buffers in the order of 100 to 500 m around mea
surement sites were also found suitable for studies on urban heat in previous work (Ha et al., 2020; Nikoloudakis et al., 2020; Venter 
et al., 2020). Owing to the more homogeneous temperature distribution at night, this study revealed slightly higher explanatory power 
of larger neighborhood sizes for nighttime outdoor temperatures, while the closer neighborhood tended to be more relevant for 
daytime temperatures. 

For indoor temperatures, parameters at the level of individual buildings, such as geometric parameters and radiation properties 
could be incorporated additionally to outdoor temperatures and areal parameters which were previously used in literature (Mirzaei 
et al., 2012; Van der Hoeven and Wandl, 2018). The high level of spatial detail of VHR remote sensing data as well as the relatively high 
number of measurement locations in this study enabled the analysis of indoor air temperatures in detail for the entire city. Compared to 
previous studies on indoor temperatures which focused on intra building variations within few buildings (Lee and Lee, 2015; Wali
kewitz et al., 2018) or thermal characteristics based on few temperature loggers in total (Loughnan et al., 2015; Nguyen et al., 2014; 
Santos Nouri et al., 2022; Vant-Hull et al., 2018), this study relies on a city-wide distribution of indoor air temperature measurements 
with a satisfactory quantity of loggers. Building upon this, we identified a weak but significant relationship of indoor temperatures 
against building and areal parameters. In general, our analyses returned highest significance levels related to indoor air temperatures 
in case of 3-dimensional geometric parameters of buildings, as well as areal parameters of building density and volume, the share of 
vegetation and impervious surface as well as NDVI. In addition to existing work (Mirzaei et al., 2012; Van der Hoeven and Wandl, 
2018), we found higher significance levels for geometric properties of buildings in relation to nighttime indoor temperatures, while 
daytime temperatures show similar relevance of all parameters. Previous studies frequently include outdoor air temperature as an 
important driver for indoor climate (Ashtiani et al., 2014; Mirzaei et al., 2012; Walikewitz et al., 2018), however in this work, the 
outdoor climate is included indirectly via areal parameters that provide a proper description of the outdoor thermal situation. 
Consequently, and in agreement with the results for outdoor temperatures, larger neighborhood sizes are of greater importance for 
nighttime indoor temperatures according to the analysis of areal parameters. Equivalently, daytime temperatures also show similar 
relevance of all parameters at all neighborhood sizes, with few exceptions (e.g., vegetated areas with surrounding cooling capabilities 
or SVF). In accordance with previous studies (Deilami et al., 2018), linear regression was employed in this study, nevertheless, 
nonlinear relationships should be investigated in future studies. 

5.3. Modeling urban heat based on predictors from VHR remote sensing 

Modeling approaches targeting urban climate based on LUR recently gained great attention in research (Mirzaei, 2015). Compared 
to existing techniques in literature, PLS regression is particularly suitable for prediction based on a high number of highly correlated or 
close to collinear predictors (Tobias, 1997) as in case of this study. Although this study conducted a detailed assessment of the drivers 
and influencing factors, PLS regression does not require a priori feature selection for modeling (Mevik and Wehrens, 2007). In this 
work, we describe the urban climatic situation using climatological and statistical measures during day- and nighttime based on a 
reference time period in July and August, which also included a noticeable heatwave (Fig. 4). Related work utilizes similar statistical 
and, less frequently, climatological measures during day- and nighttime, whereas the reference time period varies between few days 
during a heatwave (Burger et al., 2021) up to one year (Venter et al., 2020). The results of this study are validated using LOOCV and 10- 
fold CV, which are common and well-suited techniques for evaluation of outdoor as well as indoor temperature modeling approaches. 
In general, the validation in this study revealed superior model results of outdoor compared to indoor temperatures and higher ac
curacies for statistical compared to climatological measures, whereas best results were achieved in case of mean temperature for 
outdoor as well as indoor models. 

More specific with regard to the model of outdoor temperatures, we found maximum daytime temperatures were mostly dependent 
on the degree of imperviousness and the lack of vegetation, whereas, in agreement with Ha et al. (2020), highest maximum air 
temperatures were not modeled in the city center, but on industrial land. In general, the lack of cooling capacities regarding outdoor 
temperature follows the built-up structure. Furthermore, our model results confirm that treed greenspaces provide greater cooling 
capacity during the day while grassland exhibits a cooling effect mainly at night (Spronken-Smith and Oke, 1999). This study also 
confirms previous research that the nighttime temperature pattern is easier to predict than the daytime distribution (Coseo and Larsen, 
2014), with consequently higher uncertainty at daytime situation (i.e. summer days, hot days, maximum temperature) compared to 
nighttime temperatures (i.e. tropical nights, minimum temperature) due to heterogeneity of its spatial pattern (Zumwald et al., 2021). 
This is also reflected in the LOOCV validation of outdoor air temperature models, where superior results were achieved for the 
nighttime situation compared to daytime temperatures. Comparing absolute accuracies to reported values from literature, highest R2 

in the order of 0.7 to 0.8, MAE as low as 0.5 ◦C, and relative MAE below 2% in the best case of mean temperature are well in line with 
previous results (Shi et al., 2021; Shi et al., 2019; Straub et al., 2019; Venter et al., 2020; Vulova et al., 2020), however, comparability 
is limited due to individual data settings (e.g., number of measurement stations, utilized predictors, neighborhood sizes). 

To the best of our knowledge, this work is the first study to address city-wide modeling of indoor air temperatures and summertime 
heat at the level of individual residential buildings in an area-wide manner. In total, indoor air temperature characteristics are derived 
for 77,296 residential buildings in the study area. Unlike similar other studies at the individual building level (Lee and Lee, 2015; 
Loughnan et al., 2015; Quinn et al., 2014; Santos Nouri et al., 2022), the presented approach does not require corresponding outdoor 
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temperatures for modeling, since this information is incorporated through areal parameters in the building neighborhood. Also other 
detailed information on thermal building properties, like building material or thermal transmittance values, which are usually 
required for physical building modeling (Michalak, 2022; Nahlik et al., 2017; Taylor et al., 2018), is not needed in the presented 
statistical approach. Furthermore, such information is hardly available over large areas and therefore not suitable for city-wide an
alyses as conducted in this study. Existing studies show that the representation of a more detailed intra-building temperature distri
bution, for example dependent on floor number or exposition of rooms, is only possible with a sufficient number of measurements in 
multiple rooms of the building (Ashtiani et al., 2014; Walikewitz et al., 2018). Further important parameters for adequate description 
and improved modeling of detailed indoor temperature variation, like thermal mass and thermal quality of the building envelope, 
availability of air conditioning, etc. (Nahlik et al., 2017; Taylor et al., 2018; Vant-Hull et al., 2018) are also not available in our study. It 
must be noted that the vast majority of residential buildings in German cities in general and also in the city of Augsburg are not 
equipped with air conditioning (Kenkmann et al., 2019), however, in case of transferring the approach to other cities, this aspect must 
be reconsidered. Although occupant behavior (e.g., ventilation, shading) plays a crucial role for indoor thermal conditions and su
perimposes the physical building and neighborhood conditions (Beckmann et al., 2021b; Quinn et al., 2014; Walikewitz et al., 2018), 
this information was also not available for this work. Consequently, reported accuracies from literature vary strongly dependent on the 
amount of additional information as well as the number of measurement sites available for modeling. Quantitative accuracy assess
ment of the indoor model in this study revealed relatively low values of R2 below 0.1, but MAE below 1.5 ◦C as well as relative MAE of 
<5% in case of statistical measures indicate feasible modeling capabilities on average, while the variations of indoor air temperatures 
cannot be properly captured. Considering this limitation along with the heterogeneous building stock of the city of Augsburg, the 
presented approach yielded plausible city-wide estimations of indoor thermal conditions at the individual building level (Fig. 11). In 
addition, the relation of indoor modeling results to the LCZ classification (Fig. 13) revealed a reasonable indoor temperature distri
bution as well as similar patterns compared to the outdoor situation across different LCZ. Furthermore, the statistical distribution of 
modeling results is consistent with reported temperature patterns from literature (Beck et al., 2018b). Finally, and in contrast to other 
work, our statistical LUR approach is based on cost effective input data from citizen science and VHR remote sensing which is basically 
available for any city. 

5.4. Limitations of this work 

From the perspective of input data, the presented approach relies on VHR remote sensing data, which is generally available 
worldwide in an area-wide manner. However, this source of data still remains limited for large areas like nations, continents, or even 
the globe, due to data costs and persistent limited availability. In addition, a sufficiently high number of air temperature measurements 
is required for model calibration and validation, which is largely dependent on the availability of suitable measuring networks. 
Although citizen science provides a viable solution in terms of data availability, these recordings are subject to greater uncertainties 
compared to other more formalized and structured measurement networks (Venter et al., 2020; Vulova et al., 2020; Zumwald et al., 
2021). 

Since the analyses in this work rely on parameters from VHR remote sensing, specific meteorological conditions (e.g., wind speed, 
cloud cover) that are frequently considered related to urban heat and its spatial patterns, are not included in this work. Since outdoor 
air temperature is an important driver for the indoor climate (Ashtiani et al., 2014; Mirzaei et al., 2012; Walikewitz et al., 2018), it is 
included indirectly via areal parameters that provide a proper description of the outdoor thermal situation. Regarding indoor tem
peratures, the analysis is restricted to residential buildings due to the distribution of reference measurements of indoor air temper
ature. Climatic conditions within buildings are considered to be uniform (i.e. indoor air temperature measurements are assumed 
representative of the entire building). As shown by the model results and their validation, city-wide modeling of indoor air temper
atures provides a meaningful estimation on average, while the full variability of indoor air temperatures cannot be modeled properly. 
In this context, the heterogeneity and the complexity of the building stock of the city of Augsburg must also be considered. Based on a 
sufficient number of measurements in multiple rooms of the building, intra-building temperature patterns could be captured and 
modeled accordingly. However, more details on physical building conditions (e.g., thermal mass and thermal quality of the building 
envelope, availability of air conditioning) or occupant behavior (e.g., ventilation, shading) would be needed in future studies. 
Moreover, an extended parameter basis could increase their explanatory power regarding the variability of indoor air temperatures 
and improve relatively low values of R2 in the quantitative accuracy assessment of the city-wide indoor model. 

6. Conclusion 

This study demonstrated the potential of VHR remote sensing and citizen science data for the assessment, explanation, and city- 
wide modeling as well as estimation of exposed population of outdoor as well as indoor urban climate and summertime heat. With 
respect to the objectives, the major findings of this work are as follows: (i) The analyses of temperature measurements reveal a high 
temporal cross correlation of outdoor against indoor air temperatures with an observed lag of around one day. The spatial relation of 
outdoor temperatures exhibited a clear dependency in terms of spatial autocorrelation, particularly at night. In contrast, the spatial 
pattern of indoor air temperatures was close to random due to the heterogeneity of the building stock and thus, unique temperature 
characteristics at the building level. (ii) Regarding drivers and influencing factors, daytime outdoor temperatures could be largely 
explained by vegetation parameters and the share of impervious surfaces, while nighttime outdoor temperatures were found more 
related to the building stock and radiation properties. For indoor temperatures, 3-dimensional geometric parameters of buildings, as 
well as building density in the neighborhood were identified as the most significant additional explanatory factors. (iii) Finally, this 
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work highlighted the capabilities of VHR remote sensing-based parameters for city-wide modeling of outdoor as well as indoor urban 
temperatures. While approaches targeting the outdoor situation were previously proposed in literature, to the best of our knowledge, 
this study presents the first LUR modeling approach of city-wide indoor air temperatures at the level of individual residential buildings 
with reasonable precision on average. Although absolute accuracies, particularly regarding the variability of indoor air temperatures 
as well as detailed intra-building variations (e.g., based on floor number or exposition of the measurement location) remain subject to 
future research, our results contribute to the advancement of city-wide assessment of indoor exposure to summertime heat in cities. 

With ongoing climate warming, citizens are increasingly exposed to summertime heatwaves. For example, the climate of the city of 
Augsburg in Southern Germany is projected to become a humid subtropical climate with hot and humid summers, which also applies to 
many other cities in Central Europe. (Beck et al., 2018a). In general, heatwaves are projected to increase significantly in both frequency 
and amplitude across Europe (Fischer and Schär, 2010) as well as worldwide (Mora et al., 2017). Increasing exposure to heat and 
heatwaves will lead to negative consequences for public health and potentially deadly risks for vulnerable groups of the population. 
Therefore, it is of central and increasing importance to derive detailed information on the drivers and influencing factors and quantify 
the exposure to urban heat with high spatial detail in an area-wide manner in cities. This enables planners and policy makers to take 
appropriate and targeted mitigation measures and effectively protect the health of citizens. 
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Taubenböck, H., Esch, T., Wurm, M., Roth, A., Dech, S., 2010. Object-based feature extraction using high spatial resolution satellite data of urban areas. Null 55, 
117–132. https://doi.org/10.1080/14498596.2010.487854. 

Taylor, J., Wilkinson, P., Picetti, R., Symonds, P., Heaviside, C., Macintyre, H.L., Davies, M., Mavrogianni, A., Hutchinson, E., 2018. Comparison of built environment 
adaptations to heat exposure and mortality during hot weather, west midlands region, UK. Environ. Int. 111, 287–294. https://doi.org/10.1016/j. 
envint.2017.11.005. 

Tobias, R.D., 1997. An Introduction to Partial Least Squares Regression. SAS Institute, Cary, NC.  
Van der Hoeven, F., Wandl, A., 2018. Hotterdam: mapping the social, morphological, and land-use dimensions of the Rotterdam urban heat island. Urbani Izziv 29, 

58–72. 
Vant-Hull, B., Ramamurthy, P., Havlik, B., Jusino, C., Corbin-Mark, C., Schuerman, M., Keefe, J., Drapkin, J.K., Glenn, A.A., 2018. The harlem heat project: a unique 

media–community collaboration to study indoor heat waves. Bull. Amer. Meteor. Soc. 99, 2491–2506. https://doi.org/10.1175/BAMS-D-16-0280.1. 
Venables, W.N., Ripley, B.D., 2002. Modern Applied Statistics with S. Springer, New York.  
Venter, Z.S., Brousse, O., Esau, I., Meier, F., 2020. Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data. Remote Sens. 

Environ. 242, 111791 https://doi.org/10.1016/j.rse.2020.111791. 
Venter, Z.S., Chakraborty, T., Lee, X., 2021. Crowdsourced air temperatures contrast satellite measures of the urban heat island and its mechanisms. Sci. Adv. 7, 

eabb9569. https://doi.org/10.1126/sciadv.abb9569. 
Voogt, J.A., Oke, T.R., 2003. Thermal remote sensing of urban climates. Remote Sens. Environ. 86, 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8. 
Vulova, S., Meier, F., Fenner, D., Nouri, H., Kleinschmit, B., 2020. Summer nights in Berlin, Germany: modeling air temperature spatially with remote sensing, 

crowdsourced weather data, and machine learning. IEEE J. Select. Top. Appl. Earth Observ. Rem. Sens. 13, 5074–5087. https://doi.org/10.1109/ 
JSTARS.2020.3019696. 

Walikewitz, N., Jänicke, B., Langner, M., Endlicher, W., 2018. Assessment of indoor heat stress variability in summer and during heat warnings: a case study using the 
UTCI in Berlin, Germany. Int. J. Biometeorol. 62, 29–42. https://doi.org/10.1007/s00484-015-1066-y. 

Ward, K., Lauf, S., Kleinschmit, B., Endlicher, W., 2016. Heat waves and urban heat islands in Europe: a review of relevant drivers. Sci. Total Environ. 569–570, 
527–539. https://doi.org/10.1016/j.scitotenv.2016.06.119. 

Willmott, C.J., Matsuura, K., 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. 
Clim. Res. 30, 79–82. 
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