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Abstract

Objective Speech recognition technology is widely used as a mature technical approach in many fields. In the study of
depression recognition, speech signals are commonly used due to their convenience and ease of acquisition. Though
speech recognition is popular in the research field of depression recognition, it has been little studied in somatisation
disorder recognition. The reason for this is the lack of a publicly accessible database of relevant speech and bench-
mark studies. To this end, we introduce our somatisation disorder speech database and give benchmark results.
Methods By collecting speech samples of somatisation disorder patients, in cooperation with the Shenzhen University
General Hospital, we introduce our somatisation disorder speech database, the Shenzhen Somatisation Speech Corpus
(SSSC). Moreover, a benchmark for SSSC using classic acoustic features and a machine learning model is proposed
in our work.
Results To obtain a more scientific benchmark, we have compared and analysed the performance of different acoustic
features, i. e., the full ComParE feature set, or only MFCCs, fundamental frequency (F0), and frequency and band-
width of the formants (F1-F3). By comparison. the best result of our benchmark is the 76.0 % unweighted average
recall achieved by a support vector machine with formants F1–F3.
Conclusion The proposal of SSSC bridges a research gap in somatisation disorder, providing researchers with a pub-
licly accessible speech database. In addition, the results of the benchmark show the scientific validity and feasibility
of computer audition for speech recognition in somatization disorders.

Keywords: Somatisation Disorder, Machine Learning, Healthcare, Computer Audition

1. Introduction1

According to the World Health Organisation (WHO)2

web report, 1 in 8 people worldwide are suffering from3

mental disorders in 2019 [1]. Since COVID-19 broke4

out in 2020, all kinds of mental disorders around the5

world have become more frequent [2–5]. In particu-6

lar, the number of major depression and anxiety patients7

worldwide has increased by more than 25 % [6]. Men-8

tal disorders have brought severe harm to patients them-9

selves, families, and the community. For the patients10

themselves, on the one hand, self-harm and attempted11

suicide are the most harmful behaviours to them, which12

directly bring physical damage and pain to the patients.13

As reported in the latest WHO statistics, about 700 00014

people worldwide die from suicide every year [7], of15

which mental disorders account for a large proportion,16

and many more have attempted suicide. On the other17

hand, people with psychosis have an increased risk of18

physical-related illnesses and a shorter life span than the19

ordinary people [8–10]. For the patients’ families, they20

have to tolerate a series of mental pressures and finan-21

cial burden brought by the patients. As a result, their life22

qualities decline fast. For the community, patients with23

psychotic episodes may cause socially endangering be-24
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haviours. They may attack people around them or even25

strangers, out of their control. What is more, neurosis26

is also characterised by a higher prevalence in children27

and adolescents [11] and in women than in men [12].28

Compared to depression and anxiety, somatisation dis-29

order (SD) is a mental disorder that is less regarded. In30

fact, it also has a higher prevalence and risk. According31

to a report, the prevalence rate of SD is 10.1 % in Gen-32

eral Hospital Psychiatric Units Tertiary Care Centres in33

India [13]. In addition, the prevalence rate in women is34

higher than that in men. In the study of Babu et al., the35

prevalence rate of SD in adult women was 40.8 % [14].36

SD is a neurosis characterised by persistent fear or be-37

lief in dominance of various somatic symptoms. Be-38

cause SD causes patients to shift from emotional and39

mental distress to the body, they often suffer from un-40

explained physical discomfort [15]. Such physical dis-41

comfort includes stomach pain, back pain, joint pain,42

and further more. This medically unexplained symptom43

is characterised by multiple occurrences, persistence,44

and recurring. Patients are often unaware that they have45

a SD. Attributing this pain to a physical illness, they re-46

peatedly seek clinical medical advice and treatment, but47

to no avail [16]. In terms of economic impact, patients48

frequently seeking medical advice in the wrong direc-49

tion greatly increase their cost of medical care. The per50

capita expenditure for health care of patients is up to51

nine times of the average amount [17]. It also places an52

indirect burden on the healthcare system [18–20]. Ac-53

cording to the report, the annual medical costs of SD in54

the United States are approximately 2 560 billion dol-55

lars [21]. Moreover, unresolved pain and confusion lead56

to lower quality of life and greater mental stress for pa-57

tients, which aggravates their condition, or even cause a58

higher suicide risk [22].59

However, the vast majority of patients could not re-60

ceive effective treatment. This is because the mental61

health system is severely under-resourced and patients62

lack of relevant mental health knowledge (especially for63

some less common mental disorders). Early diagnosis64

of mental illness is the first step in obtaining beneficial65

treatment for patients, but the approaches are scarce.66

As shown in Fig. 1, clinical scales and speech analy-67

sis are used as the two main methods for the diagnosis68

of mental disorders introduced in this paper. The scale,69

combined with the communication and observation of70

the patient’s behaviour, facial expressions, and speech,71

among others by doctors, is the common form of psy-72

chiatric diagnosis by far. But this approach relies on73

subjective interviews with patients and the clinical expe-74

rience of the doctors, which results in a partial deviation75

of the diagnosis from the reality. With the development76

of computer technology, it is encouraging to see that,77

artificial intelligence (AI) has been applied to the classi-78

fication of mental disorders, which avoids the pitfalls of79

the scale. In particular, audio signals, because of their80

‘non-invasive’ nature, combined with the rapidly devel-81

oping computer audition (CA) [23] technology are be-82

coming a popular topic of digital medicine research in83

the search for new digital phenotypes. Speech signals,84

as a subclass of audio signals, have been demonstrated85

to be reliable in the diagnosis of certain mental disor-86

ders, such as depression and anxiety [24–27]. In par-87

ticular, related studies have shown that speech features88

performed better than visual features or text in depres-89

sion prediction tasks [28, 29].90

There are a mount of AI researches on speech rep-91

resentation of mental disorders. For anxiety, Wang et92

al. [24] proposed a new Fourier parameter model us-93

ing the perceptual content of voice quality. Dan et94

al. [25] used K-nearest neighbours as classifier and fo-95

cused on the fundamental frequency for classification.96

For depression, much work has been done to detect de-97

pression through speech. Pan et al. [26] extracted 98898

speech features from speech data and established a lo-99

gistic regression model to achieve a better depression100

classification rate. Rejaibi et al. [27] proposed a deep101

learning-based method to assess depression and pre-102

dict its severity. They aimed to extract Mel Frequency103

Cepstral Coefficients (MFCCs) from speech and used104

long short-term memory networks. For insomnia, Es-105

pinoza et al. [30] studied obstructive sleep apnea among106

sleep disorders using a larger speech database contain-107

ing 426 participants. They used supervector or i-vector108

techniques to model speech spectral information and109

predicted by support vector regression. The above re-110

searches demonstrated that speech has the ability to rep-111

resent mental disorders. For SD, unfortunately, due to112

its mix-up feature of psychologically and physically, it113

is challenging for clinicians to recognise this psychiatric114

disorder masquerading as physical pain [31, 32]. Not115

only that, the actual clinical condition may also be di-116

agnosed as a SD, thereby hindering the patient’s real117

need for treatment and longer-term pain [33]. However,118

there are few reports on the application of AI technol-119

ogy in this field. In particular, we found rare work on120

speech as raw data for classification. According to our121

search, Idenfors et al. [34] analysed brain images for122

global-brain functional connectivity (GFC). The com-123

bination of GFC values and support vector machine124

(SVM) were used to distinguish patients from the con-125

trols. The results showed that the patients’ GFC was126

abnormal. Lv et al. [35] constructed an improved bac-127

terial foraging optimisation-based kernel extreme learn-128

2

                  



Clinical DoctorsClinical DoctorsClinical Doctors Raw SpeechRaw SpeechRaw Speech

The Diagnosis

0-4：Minimal
5-9：Mild
10-14：Moderate
15-19：Moderately
Severe
20-27：Severe

Score

0-4：Minimal
5-9：Mild
10-14：Moderate
15-19：Moderately
Severe
20-27：Severe

Score

Machine Learning Deep Learning

Classical FeaturesClassical Features

ClassificationClassification

Diagnosis of Mental Disorders

...

Audio Feature Extraction

Clinical Scale

Num. Project Not at all
Several 
days

More than half 
the days

Nearly every 
day

1 0 1 2 3

2 0 1 2 3

3 0 1 2 3

4 0 1 2 3

5 0 1 2 3

6 0 1 2 3

7 0 1 2 3

8 0 1 2 3

9 0 1 2 3

Little interest or pleasure in doing things?

Feeling down, depressed, or hopeless?

Trouble falling or staying asleep, or 
sleeping too much?

Feeling tired or having little energy?

Poor appetite or overeating?

Feeling bad about yourself — or that you 
are a failure or have let yourself or your 
family down?

Trouble concentrating on things, such as 
reading the newspaper or watching 
television?

Moving or speaking so slowly that other 
people could have noticed? Or so fidgety or 
restless that you have been moving a lot 
more than usual?

Thoughts that you would be better off 
dead, or thoughts of hurting yourself in 
some way?

Figure 1: Methods of diagnosing mental disorders.

ing machine (IBFO-KELM) model based on the sym-129

bol self-assessment scale (SCL-90) data for the diag-130

nosis of patients with SD. Human communication re-131

lies on language communication. From speech, we can132

feel the others’ emotional or mental state. Numerous133

studies have shown that speech-language pathologists134

can diagnose mental disorders through speech [36–38].135

Therefore, ubiquitous, inexpensive, and easily-acquired136

speech signals can be used as raw and reliable informa-137

tion for diagnosing or predicting mental disorders.138

In this paper, we demonstrate the collected data139

and publish the speech database for the classifica-140

tion of SD. The name we use is the Shenzhen So-141

matisation Speech Corpus (SSSC). Unlike the auto-142

matic speech recognition technology related to the143

UASPEECH databases [39], the related research on the144

SSSC will belong to the category of mental emotion145

recognition, although these databases are both com-146

posed of speech. A conventional and reproducible147

benchmark for this publicly accessible speech database148

is also announced. The main contributions of this work149

are: 1) We demonstrate the feasibility of using speech150

to classify SD through the benchmark. 2) We provide151

a standard speech database for the classification of SD.152

3) We compare several typical acoustic features to illus-153

trate the usability of this database.154

The remainder of this paper is organised as follows:155

At first, the materials and methods are presented in Sec-156

tion 2. Subsequently, the results of the benchmark work157

are given in Section 3. We give an experimental dis-158

cussion, current limitations, and outlooks in Section 4.159

Finally, we draw a conclusion for our work in Section 5.160

2. Methods161

In this section, we firstly introduce the proposed pub-162

licly somatisation speech database, i. e., SSSC. Next,163

openSMILE, the toolkit that was used to extract acous-164

tics features in our study is briefly introduced. Then, we165

give more detailed descriptions of our database work.166

In the final part, the machine learning method and the167

optimised strategy we adopted is given.168

2.1. SSSC database169

2.1.1. Data collection170

This study was approved by the ethic committee of171

the Shenzhen University General Hospital. All the par-172

ticipants involved were informed that their voice data173

will be used only for research purposes. Their agree-174

ments for this study were recorded as one of the five175
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following original speech phrases. The data was col-176

lected in out-patient-department in the Shenzhen Uni-177

versity General Hospital. We asked the participants to178

speak five sentences (with neutral contextual meaning).179

At the same time, two self-report questionnaires were180

answered by the participants regarding their anxiety and181

SD (physical discomfort). The questionnaire is con-182

structed by two widely used separated questionnaires.183

The two questionnaires are GAD-7 (Patient Anxiety184

Questionnaire) and PHQ-15 (Patient Health Question-185

naire 15) [40–42]. All the data were collected from 12186

November 2020 to 5 April 2021. We used a Shinco187

RV-18 recording pen with 32 GB of storage to record188

all the participants’ voices which have a sample rate of189

32 000 Hz and a bit rate of 16 bps.190

Following, we give examples of the recorded sen-191

tences which were spoken in Chinese:192

1. Today, I am in Shenzhen, Guangdong Province,193

China.194

2. I want to know if computer technology can help me195

improve my life and to what extent.196

3. She / He is my friend.197

4. Time is money, efficiency is life.198

5. I agree to use my voice for emotion recognition.199

Fig. 2 shows the spectrograms (extracted from200

dev0136.wav, dev0003.wav, dev0010.wav, and201

dev0004.wav, respectively) corresponding to the202

second sentence in Chinese.203

2.1.2. Data pre-processing204

As described in [43], we executed a series of data205

pre-processing stages before establishing the ‘standard’206

SSSC, which includes data cleansing, voice activity de-207

tection, speaker diarisation, and speech transcription.208

First, we excluded recordings with low quality (e. g., the209

level of the speech is low compared to the background210

noise). Then, we removed the non-speech parts (e. g.,211

non-subjects’ speech, breathing, and coughing) from212

each recording, which resulted in maintaining only the213

segments including voice from the recordings. The seg-214

ments containing solely the target patient and scripted215

content (e. g., excluding laughing) were kept. Finally,216

we obtained 705 audio recordings from 141 partici-217

pants. To attenuate the effects of the audio record-218

ing equipment, the background noise condition and the219

level of the recording, all files were first high-pass220

filtered to eliminate low-frequency background noise221

(cut-off frequency: 120 Hz, 10th-order Chebyshev filter)222

and then their waveforms were normalised individually223

(peak amplitude set to -3 dB).224

Table 1: Subjects information in data splits.

Average Age # Male # Female

Train 38.2 46 33
Dev 35.0 20 12
Test 36.7 18 12
∑

37.1 84 57

2.1.3. Tasks definition225

We define two tasks for the benchmark setup: First,226

the Anxiety Degree should be grouped into: Yes (la-227

belled as “1” when GAD-7 ≥ 11), No (labelled as “0”228

when GAD-7 < 11). Then, an estimation of the Physi-229

cal Discomfort Disorder Degree should be made as: Yes230

(labelled as “1” when PHQ-15 ≥ 10), No (labelled as231

“0” when PHQ-15 < 10).232

2.1.4. Data partitioning233

Totally, the database contains as mentioned audio234

samples of 705 speech events from 141 subjects who235

were checked without organic disease by experts. The236

number of males in all subjects is 84, and the number237

of females is 57. The average age of all subjects is 37.1238

± 13.2 years (range 15 to 70). The total duration of239

audio in the database is 3 039.192 s, equalling roughly240

50 minutes. The average sample duration is 4.311 ±241

2.297 s (range 0.864 to 16.920 s). In order to carry out242

the experiment, we randomly partitioned the data into243

a train, a development (dev) and a test set, which are244

subject independence. Table 1 gives more information245

about data partitions in detail. Fig. 3 shows data distri-246

bution details.247

2.2. openSMILE and acoustic features248

openSMILE [44] is an open source toolkit which is249

widely applied in the field of acoustic representation ex-250

tractions. openSMILE can provide features commonly251

used in classic acoustic signal processing methods, such252

as short-time zero-crossing rate, energy spectrum fea-253

tures, and Mel Frequency Cepstrum Coefficients. To254

get the statistical information of an audio signal sam-255

ple, openSMILE firstly extracts the low-level descrip-256

tors (LLDs) from the original frame-level audio signals,257

then performs the statistical information extraction to258

the frame-based LLDs by functionals. By this method,259

the limitations of static machine learning models such260

as SVM are unlocked from the inconsistency of sample261

duration.262

To train the baseline system, we use the ComParE263

feature set, which includes 65 LLDs (see Table 2). The264
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(a) Healthy (b) Mild SD

(c) Moderate SD (d) Severe SD

Figure 2: Audio spectrogram examples of different PHQ-15 outcomes.

configuration of the 2.3 version openSMILE is Com-265

ParE_2016. The more specific information and details266

are given in [45]. Moreover, [45] also features a de-267

tailed introduction of the used functionals (see Table 3).268

The ComParE feature set includes in total 6 373 fea-269

tures. The mechanism of functionals is to map the time270

series based LLDs to a scalar value per each applied271

functional (e. g., mean, standard deviation, maximum);272

then, a single, fixed dimension vector which is indepen-273

dent of the audio signal sample’s time duration is gen-274

erated [45].275

2.3. Database related questionnaires276

In our study, we carry out measurement work on two277

scales as mentioned (i. e., GAD-7 and PHQ-15). Based278

on the scores of these two scales, the Shenzhen Uni-279

versity General Hospital’s psychologists enrolled in the280

study classified the conditions into four classes. We give281

a separate introduction of each scale in this part. Specif-282

ically, Table 4 shows the data distribution in details.283

GAD-7 Generalised anxiety disorder (GAD) is a284

common and disabling illness that is often underdiag-285

nosed and undertreated [46]. With the influence of the286

COVID-19 in China [47], more and more people are287

suffering from symptoms of anxiety. Therefore, we288

want to get more information of the GAD for further289

research. GAD-7 is a brief clinical measure for as-290

sessing GAD, which consists of 7 items about anxiety291

self-report [48]. The score of each item is between 0-292

3 and the GAD-7’s total score is in the range of 0 to293

21. Based on the total scores, the Shenzhen University294

General Hospital’s mental health experts classified the295

5

                  



Table 2: The LLDs for ComParE feature set.
RASTA: Relative Spectral Transform; HNR: Harmonics to Noise Ratio; RMSE: Root Mean Square Energy. Details can be found in [45].

4 Energy related LLDs Group

RMSE, zero-crossing rate Prosodic
Sum of auditory spectrum (loudness) Prosodic
Sum of RASTA-filtered auditory spectrum Prosodic

6 Voicing related LLDs Group

Probability of voicing Voice Quality
F0 (SHS and Viterbi smoothing) Prosodic
log HNR, jitter (local and δ), shimmer (local) Voice Quality

55 Spectral LLDs Group

MFCCs 1–14 Cepstral
Spectral energy 250–650 Hz, 1 k–4 kHz Spectral
Spectral flux, centroid, entropy, slope Spectral
Spectral roll-off point 0.25, 0.5, 0.75, 0.9 Spectral
Spectral variance, skewness, kurtosis Spectral
Psychoacoustic sharpness, harmonicity Spectral
RASTA-filtered auditory spectral bands 1–26 (0–8 kHz) Spectral

participants into 4 types (i. e., no-anxiety for 0-4, mild296

anxiety for 5-9, moderate anxiety for 10-14, and se-297

vere anxiety for 15-21).298

PHQ-15 SD is a prevalent condition which is not299

well treated by many psychiatrists [49]. Patients usu-300

ally seek care in the medical setting convinced that they301

suffer from physical discomfort rather than a mental dis-302

order. Based on this situation, the SD patients often en-303

counter ineffective care and even harm. That somatising304

patients may represent 40 % or more of the ambulatory305

medicine patient population greatly magnifies the prob-306

lem [50]. To reduce unnecessary expenses, it is very307

significant for patients with SD to be fully recognised308

and treated. The classification of SD by the speech of309

the patients is not only feasible, but also appears effi-310

cient and convenient [51]. The PHQ-15 comprises 15311

somatic symptoms from the Patient Health Question-312

naire (PHQ), each symptom scored from 0 (“not both-313

ered at all”) to 2 (“bothered a lot”) [52]. According to314

the PHQ-15 scale’s total score ranging from 0 to 30, the315

participants are divided into 5 types (i. e., minimal for316

0-4, low for 5-9, medium for 10-14, and high for 15-317

30).318

2.4. Machine learning method and optimising strategy319

Support Vector Machine (SVM) is a stable and by320

now ‘traditional’ classifier. To make this study compa-321

rable and reproducible, we use an SVM classifier with322

linear kernel to conduct all experiments. We train an323

SVM model with the complexity parameter in the range324

of {10−8,10−7, ..., 10−1,1.0}. Then, we choose the com-325

plexity that performs best on the development set to326

classify the test set. Moreover, both the training set327

and the development set train-devel set were joined to328

predict on test data. Upsampling the training set and329

the train-devel set was used for balancing the dataset.330

At the same time, we processed the feature sets with331

feature normalisation. In order to obtain more specific332

results, we evaluate the performance of different acous-333

tic features, i. e., the full ComParE feature set, or selec-334

tively only MFCCs, fundamental frequency (F0), and335

frequency and bandwidth of the formants (F1-F3). All336

the features are extracted by the openSMILE feature ex-337

traction and audio analysis tool.338

3. Results339

Although the database includes two scales, our ex-340

periment series focuses on the PHQ-15 outcome. This341

can reflect the order of severity of the subjects with SD.342

Moreover, we conduct related experiments to analyse if343

there is any connection between GAD-7 and PHQ-15.344

Classification results are shown in Table 5 and Table 6345

with feature type and the final feature number. The best346

mean unweighted average recall (UAR) per feature on347

the development set and test set are highlighted.348

In order to obtain a better understanding of the data349

set, we make some changes for the listed labels in Ta-350

6

                  



Table 3: The functionals applied to LLDs in the ComParE feature set. Note that, the LLDs listed in Table 2 may or may not use all of the functionals
of this table, which is described in details in [45].

Functionals

Arithmetic or positive arithmetic mean
Inter-quartile ranges 1–2, 2–3, 1–3,
Linear regression slope, offset
Linear regression quadratic error
Linear Prediction gain and coefficients 1–5
Mean and std. dev. of peak to peak distances
Peak-valley-peak slopes mean and std. dev.
Peak and valley range (absolute and relative)
Peak mean value and distance to arithmetic mean
Quadratic regression coefficients
Quadratic regression quadratic error
Root-quadratic mean, flatness
Rise time, left curvature time
Relative position of max. and min. value
Range (difference between max. and min. values)
Segment length mean, min., max., std. dev.
Standard deviation, skewness, kurtosis, quartiles 1–3
Temporal centroid
Up-level time 25 %, 50 %, 75 %, 90 %
99-th and 1-st percentile, range of these

ble 4: We set a threshold on the scores. We consider351

the participants whose scores higher than the thresh-352

old as aïňĂected by the condition and the healthy when353

their scores lower than the threshold. According to354

different thresholds, we set two discrimination modes355

named “A” and “B” for PHQ-15 (i. e., threshold of each356

mode, GAD-7: 10, PHQ-15A: 5, PHQ-15B: 10). This357

modification helps us distinguish the participants with358

speciïňĄc condition from the healthy subjects. As de-359

scribed above, PQH-15 reflects the degree of physical360

discomfort. We process the labels based on the men-361

tioned threshold above, and then operate ‘AND’ or ‘OR’362

on them given their relatedness under the umbrella of363

being psychological disorders.364

According to the UAR indicators, it appears remark-365

able that the formants F1-F3 perform best on most of366

the classification models. This means, F1-F3 will pro-367

vide more information in our tasks. Except for PHQ-368

15 labelled with four types scores, the classification re-369

sults of other tasks achieve the UAR higher than 50.0 %.370

Fig. 4 and Fig. 5 show confusion matrices of the best-371

performing setup for the test set. From Fig. 4, we can372

find that the predicted labels focus on label 0 and label373

3. As could be suspected, the classifiers tend to prefer374

predictions of healthy subjects or such with severe con-375

ditions. Although the classifier performs better on this376

task, unlike humans, the machine requires more samples377

to understand the features.378

4. Discussion379

4.1. Classification performance380

Refering to Table 5 and Table 6, we can see that, al-381

though F1–F3 has the least number of dimensions, it382

performs better than the other feature sets. However,383

the performance is relatively poor when we fed all the384

features in the ComParE feature set into the model. We385

have noted that some redundant features led to decrease386

model performance. In future work, we will analysis387

the contribution of features. Overall, the formant-based388

features can represent the phenomenon of interest effi-389

ciently.390

On the other hand, we only use an SVM classifier to391

test the representational ability of the extracted features.392

Furthermore, the number of feature types selected are393

few. In the future, we expect other work on the database394

to increase the number of features and compare more395

models to improve the ability to represent this task.396
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Figure 3: Demographic statistic of the SSSC.

4.2. Features and meaning of SSSC397

SSSC is the first speech dataset available for SD clas-398

sification. Of great interest, SD could only be recog-399

nised shortly when the doctor is skilful and major phys-400

ical disorders are excluded. Moreover, some symptoms401

similar to SD should be excluded carefully. The train-402

ing set in this study had been reviewed beforehand to403

exclude severe physical disorders such as stroke or coro-404

nary artery diseases. The models in current benchmarks405

achieve over 50 % of UAR, yet more would be needed406

to expand the reliance. We provide a public database407

for the study and use of AI and CA. Recognition and408

primary estimation of the mental state or mood by CA409

could be the first step. Adjusting the response or reac-410

tion could be the next step follow up, which may gener-411

ate more importance. When different international stan-412

dards are used to classify categories, the standard we413

use generates different results. As the first database, the414

future of SSSC is undoubted. One of the key features415

of mental disorders is that they are diagnosed without416

an obvious objective criterion or examinations. There-417

fore, independent and skilful doctors with psychologi-418

cal experiences are of great importance. Unfortunately,419

it is becoming more difficult and expensive for doc-420

tors likewise to diagnose SD. AI recognition would be421

the first step for screening before searching for medi-422

cal help. Similar to AI assistance in the medical imag-423

ing or pathological field, CA could surely be of helpful424

assistance for the primary and unskillful individuals to425

recognise SD, and even reduce unnecessary anxiety.426

4.3. Current limitations and outlook427

SSSC is the first speech dataset available for SD clas-428

sification – a heretofore untapped resource for such pub-429

lic data. Most of the models in current benchmarks430

achieve over 50 % of UAR on the development set.431

However, SSSC also inevitably underlies limitations:432
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Table 4: Number of per scales and score in the data splits.

Score Label # Train # Dev # Test
∑

GAD-7 0∼4 0 130 40 45 215
5∼9 1 125 55 50 230

10∼14 2 80 25 30 135
15∼21 3 60 40 25 125∑

395 160 150 705

PHQ-15 0∼4 0 90 15 35 140
5∼9 1 135 80 65 280

10∼14 2 110 45 35 190
≥15 3 60 20 15 95∑

395 160 150 705

Table 5: Classification results of different feature types and tasks. (Part A)
#: Number of features; PHQ-15: Labels by way of four scores. PHQ-15A: Labels by way of A; PHQ-15B: Labels by way of B; GAD-7&PHQ-15A:
AND operation on GAD-7 and PHQ-15A labels; */*: The first one means the best result of unweighted average recall (UAR) on the development
set in all experiments, the last one means the test result by the model that performed best on the development set. (Unit: %.)

Feature type # PHQ-15 PHQ-15A PHQ-15B GAD-7&PHQ-15A

ComParE 6373 24.4/22.1 53.4/45.9 50.8/49.0 49.8/50.0
MFCCs(all) 1400 28.3/29.5 58.4/64.7 54.8/61.5 51.6/53.5
MFCCs(only coef) 756 26.4/35.7 58.2/62.7 57.4/68.0 50.4/47.0
MFCCs(only delta) 644 25.7/27.1 52.3/52.9 53.2/56.5 53.8/50.5
F0 24 23.9/24.7 47.2/49.1 54.8/69.5 47.8/50.5
F1-F3 14 33.1/28.3 49.3/52.0 57.6/76.0 51.0/54.5

1. Limited dataset. Due to monocentricity, it433

is difficult for us to recruit a sufficient number of434

well-represented subjects. This limited amount of data435

is not conducive to the application of deep learning436

on it. But in fact, that SSSC can be trusted enough437

to be adopted for the study of SD was demonstrated438

through our benchmark experiments. Therefore, we439

encourage researchers to give more consideration to440

the application of traditional machine learning which441

may be more suitable for the small-scale databases.442

More importantly, in future works, data augmentation443

is worth looking into and researching, which should be444

expected to reduce the model’s lack in generalisation.445

An easy way is to use some toolboxes for data enhance-446

ment. For instance, [53] published a matlab toolkit that447

provides 15 different augmentation algorithms for raw448

audio data and 8 for spectrograms.449

450

2. Overlapping symptoms. A study has shown over-451

lap between somatic symptoms, anxiety, and depres-452

sion [54]. In other words, the three are co-morbid and453

triggering each other. Thus, different mental illnesses454

may show the same features. This may be challenging455

to model, yet, on the contrary, may facilitate better re-456

sults. As an emerging trend, multi-label learning [55]457

requires more discovery and exploration in this field.458

3. Reliability of labels. The labels stem from scoring459

participants’ scale questionnaires. As mentioned above,460

a small number of labels generated by the scale score461

may be deviating from the actual situation, as these are462

greatly influenced by the subjective interviews of par-463

ticipants and the clinical experience of doctors. This464

is an inevitable mistake caused by the lack of objec-465

tive factors. In the future, one can involve more profes-466

sional doctors in the scoring, set more differential ver-467

sions to recognise SD and use multi-modality to ensure468

reliability of the label. Nevertheless, manual annota-469

tion of speech data is an expensive and time-consuming470

task. In order to overcome this difficulty, in the AI filed,471

we think that self-supervised learning [56, 57] could be472

used to reduce the reliance on labels, as well as intro-473

ducing active learning [58] on this database.474

4. Availability of samples. There are incomplete or475

redundant samples of participants’ speech content in the476

database. Therefore, those samples affect the SD audio477

analysis. We will exhaustively screen and remove these478
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Table 6: Classification results of different feature types and tasks. (Part B)
#: Number of features; GAD-7&PHQ15B: AND operation on GAD-7 and PHQ-15B labels; GAD-7|PHQ-15A: OR operation on GAD-7 and
PHQ-15A labels; GAD-7|PHQ-15B: OR operation on GAD-7 and PHQ-15B labels; */*: The first one means the best result of unweighted average
recall (UAR) on the devolpment set in all experiments, the last one means the test result by the model that performed best on the development set.
(Unit: %.)

Feature type # GAD-7&PHQ-15B GAD-7|PHQ-15A GAD-7|PHQ-15B

ComParE 6373 51.4/47.6 56.8/50.0 53.9/54.5
MFCCs(all) 1400 52.1/59.2 59.8/53.8 54.3/57.2
MFCCs(only coef) 756 51.2/60.4 61.4/56.2 54.3/56.6
MFCCs(only delta) 644 50.7/51.2 53.3/48.8 53.2/60.5
F0 24 55.9/56.8 47.9/50.0 55.3/57.4
F1-F3 14 55.0/74.8 51.0/67.5 53.5/61.9

samples to provide researchers with a more scientific479

and credible new version.480

5. Conclusion481

In this study, we firstly introduced a publicly avail-482

able speech database, namely SSSC. Then, we de-483

scribed the current techniques in somatisation speech484

classification. A benchmark experiment was given485

based on the approaches proposed in this work. More-486

over, we discussed the results and the limitations, and487

pointed out some future directions. In this work, an488

SVM model trained with features based on the first three489

formants, i. e., spectral maxima, performed best in the490

classification leading to promising results. We will con-491

sider using self-supervision plus fine tuning as strategy492

in future work.493
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