
RealCaPP: Real-time capable Plug & Produce
communication platform with OPC UA over TSN

for distributed industrial robot control

Christian Eymüller∗, Julian Hanke∗, Alwin Hoffmann∗, Wolfgang Reif∗, Markus Kugelmann†, and Florian Grätz†,
∗Institute for Software and Systems Engineering

University of Augsburg
Augsburg, Germany

†KUKA Deutschland GmbH
Augsburg, Germany

∗{eymueller, hanke, hoffmann, reif}@isse.de, †{markus.kugelmann2,florian.graetz}@kuka.de

Abstract—The industry of tomorrow is changing from central
hierarchical industrial and robot controls to distributed controls
on the industrial shop floor. These fundamental changes in
network structure make it possible to implement technologies
such as Plug & Produce. In other words, to integrate, change
and remove devices without much effort at runtime. In order to
achieve this goal, a uniform architecture with defined interfaces
is necessary to establish real-time communication between the
varying devices. Therefore, we propose an approach to use the
combination of OPC UA and TSN to automatically configure
real-time capable communication paths between robots and other
cyber-physical components and execute real-time critical tasks in
the distributed control system.

I. INTRODUCTION

With Industry 4.0, manufacturing faces disruptive changes.
Development and innovation cycles are becoming increasingly
shorter while the products need to be individualised to the
customers’ requests. Hence, production processes need to be
more flexible and, at the same time, need to be set up and
adapted quickly. This has lead to great research efforts in
intelligent manufacturing [1] to cope with these challenges.
When considering robotics, especially multi-functional multi-
robot cells [2] are promising because manipulators with ex-
changeable end-effectors can form dynamic production teams
based on the needs (e. g., in aerospace production [3] or
assembly [4]).

In order to set up such multi-functional robot cells in a fast
and reliable way, Plug & Produce concepts [5], [6] such as
skills or service-oriented architectures can be applied. Here,
OPC UA [7] can be considered the de-facto standard for com-
munication. However, because industrial control and robotics
have real-time requirements [8], OPC UA over TSN was
introduced [9] which allows time-deterministic communication
using the Time-Sensitive Networking (TSN) standards. While

This work partly presents results of the project WiR Augsburg which is
funded by the German Federal Ministry of Education and Research (BMBF)
and the Bavarian Government.

in TSN networks the communication partners are known at
setup and the communication channels are defined statically,
Plug & Produce scenarios are highly dynamic: Devices such
as robots or end-effectors can be added or removed at any
time, and the communication partners can often change due
to new tasks or teams.

This discrepancy must be addressed to realise industrial
grade Plug & Produce systems. Hence, it must be possible to
reconfigure the real-time production system at runtime [10].
In terms of TSN, new devices and their network interfaces
must be configured properly and real-time communication
channels must be added or removed appropriately. To address
these challenges and enable real-time capable Plug & Produce
scenarios, we propose an approach which entirely builds
up on the OPC UA communication models and TSN. The
contributions of this paper are as follows:

1) We facilitate real-time capable Plug & Produce scenarios
by using an OPC UA Discovery Server to register and
find TSN capable robotic end devices.

2) We introduce a special TSN Controller to manage real-
time communication channels over OPC UA between
TSN End Devices.

3) With varying robotics tasks and end devices, these real-
time communication channels can be newly established,
reconfigured, or terminated during runtime.

Hence, we developed an integrated Plug & Produce communi-
cation platform with OPC UA (over TSN) which respects the
dynamic nature of Plug & Produce scenarios and fulfils the
timing requirements of distributed industrial robot control [8].

The OPC UA communication models, their current use and
the OPC UA over TSN extensions are explained in Section II.
Our approach for the dynamic discovery of TSN end devices
as well as the configuration and establishment of real-time
communication channels is described in Section III in detail.
While Section IV introduces our reference implementation

 585

based on open62451 [9], Section V presents a case study to
evaluate the approach. Conclusions are drawn in Section VI.

II. STATE OF THE ART

As mentioned before, Plug & Produce solutions are only
made possible with a uniform and vendor-independent com-
munication standard, such as OPC UA [7]. OPC UA is a
service-oriented architecture standard which ensures platform
independence, security and information modelling in order
to enable interoperability between machines, components and
systems [11]. To cover new fields of applications with the
basic client-server-model (one-to-many communication) the
OPC Foundation extended the OPC UA Specification with Part
14. This adds the possibility of many-to-many communication
based on the publish/subscribe (PubSub) mechanism without
the requirement of a direct and dedicated communication
channel between publisher and subscriber [12]. Data Topics
define the published data, which are published and subscribed
to cyclically [12].

To cover the use case of time-deterministic applications
the OPC UA PubSub over TSN approach was introduced by
Pfrommer et al. [9]. This approach combines the OPC UA
PubSub mechanism with timing guarantees for time sensi-
tive applications provided by the Time-Sensitive Networking
(TSN) standard [9]. For the use of this concept there is already
an open source implementation in C available in form of the
open62451 library [9].

In addition to the previously mentioned challenge of a real-
time capable communication channel like PubSub, a real-time
capable Plug & Produce control of distributed industrial robots
needs further some form of discovery mechanism and registra-
tion of newly added devices. The PubSub specification aims to
solve this problem by introducing the concept of directories.
With these, subscribers can inquire about currently available
data. All publishers must register in the directory, whereupon
the subscribers can inquire which data are published and which
publisher is providing it. This concept is mentioned but not
implemented yet. [12] There are also concepts that adress the
automatic configuration of TSN networks for the use of OPC
UA at runtime [13]. However, in this paper the focus was
placed on the description of data topics and the creation of a
directory using the OPC UA infrastructure [12].

The specification of OPC UA Discovery Services defines
the means by which to discover new OPC UA Servers, their
supported protocols and additional capabilities [14]. Three
types of discovery are defined in this part of the specification.
The first type is the Local Discovery Server (LDS). The LDS
organises all information from the applications that have regis-
tered directly with the LDS. The second type is an extension of
the LDS and is called Local Discovery Server with Multicast
Extension (LDS-ME). The last type of discovery is the Global
Discovery Server (GDS). The GDS allows applications to
search for participants within the administration domain and
thus also to find participants outside of their current subnet.
[14]

Aside from the discovery and integration of new devices in
order to enable a uniform real-time capable Plug & Produce
communication platform, the exchange of process information
in real-time for running continuous and distributed processes
across multiple components is one of the main goals. In
[15], we solved this challenge by combining OPC UA Pro-
grams [16] and the communication with OPC UA PubSub
over TSN [15].

III. CONCEPT

In the context of a real-time capable Plug & Produce com-
munication platform for distributed industrial robot control,
the following five technical challenges must be addressed:

1) Discovery of new communication end devices
2) Configuration of the communication channel of end

devices and bridges
3) Establishment of the real-time communication channels

between multiple devices
4) Real-time transmission of (control) information with

OPC UA over TSN
5) Reconfiguration of the system and its communication

channels with varying devices

This paper proposes a novel approach to combine the de-
fault non-real-time OPC UA communication channels (client-
server-communication) with the real-time capable communi-
cation channels of OPC UA over TSN (publish-subscribe-
communication) to achieve the desired infrastructure.

Because OPC UA PubSub over TSN is the basis for this
work, the following terms will be used in the further course
of this paper: Network switches which are TSN capable are
called bridges or TSN bridges. Data published by a publisher
is called a data topic. These data topics are published and
subscribed to. One data topic may be subscribed to by multiple
subscribers. Additionally, a distinction between the two types
of members in the system is made. There are TSN End
Devices, which can be for example a sensor, an actuator, a
controller or a TSN bridge of a distributed industrial robot
control system. The other type of member is the global TSN
Controller, which is responsible for the registration of new
devices and manages the establishment and configuration of
real-time communication channels. The TSN Controller serves
as an intermediary (broker) for the real-time communication
between the TSN End Devices. The default non-real-time OPC
UA client-server-communication is used for the configuration
of the real-time communication between the TSN End Devices
and the TSN Controller.

For example, the task is to synchronise the movement of
an industrial robot with another industrial component such as
a linear axis. In this case we have a Robot TSN End Device
and a Linear Axis TSN End Device which know nothing of
each other initially. The aim of the TSN Controller is to bring
these components together so that they can perform out the
collective task.

586

A. Discovery & registration of new communication devices

To discover new communication end devices, a customised
OPC UA Discovery Server is used. Due to the restriction
of TSN to merely one subnet, only the Local Discovery
Server (LDS) or the Local Discovery Server with Multicast
Extension (LDS-ME) of the OPC UA standard are considered.
When a new device wants to join the system, it first has
to register with the Local Discovery Server. Therefore two
new applicationtypes where added (TSN_END_DEVICE and
TSN_CONTROLLER). The following information is provided
during registration: a unique name, a unique address in form of
a uniform resource identifier (URI) and the applicationtype of
the added device. After the registration of a device, it can query
information about other devices from the Local Discovery
Server. This makes it possible for a TSN End Device to get
information about the TSN Controller and vice versa. Once,
the participants of the system are known and information about
other devices can be exchanged, the configuration of the TSN
communication channels can be initiated.

B. Setup & configuration of TSN communication channels

Basic configuration of newly added devices is necessary
in order to establish a TSN communication between the
devices. As a precondition of the TSN communication, a time-
synchronisation using the precision time protocol (PTP) [17]
has to be set up on each device. Each TSN End Device requests
a basic TSN configuration from the TSN Controller. This basic
TSN configuration contains information about the the global
TSN cycle-time and a unique IP as well as multicast address
for communication. These unique addresses are assigned by
the TSN Controller of the system within the range of a
predefined subnet. Once this information has been exchanged,
almost all the prerequisites for communication are met. The
only thing missing is the allocation of a transmission time slot.

For the transmission of process data in real-time, OPC UA
PubSub over TSN is used which is based on the Time Aware
Shaper (TAS) [18] of TSN to guarantee minimal transmission
latencies. To be able to use the TAS each data topic must
receive a fixed time slot for cyclic transmission. The assign-
ment of these time slots for each TSN End Device is the
sole prerogative of the TSN Controller. Two operations end
in reservations of time slots: adding topics for publishing and
subscribing to data. When adding a data topic, only a time slot
of the publishing TSN End Device has to be added. Otherwise,
by subscribing to a data topic a time slot must be added to the
subscribing TSN End Device and to every further TSN End
Device that is on the direct communication route between the
publisher and subscriber. If the TSN End Devices time slots
are already occupied by other data topics the TSN Controller
tries to reorder all time slots of all TSN End Devices to find a
suitable solution. Even more complex scheduling methods are
conceivable here, as described by Raagaar et al. [19]. In case,
all time slots have been successfully assigned, the reserved
time slots are used for the deterministic transmission of the
process data in real-time.

C. Setting up a data topic directory

After the concept for the discovery and registration of new
communication devices as well as the setup and configuration
of the TSN communication channels has been presented, a
concept for a data topic directory is presented. As already
mentioned in the OPC UA Specification Part 14 for PubSub
[12], a directory for published data is necessary in order to
enable other TSN End Devices to find the published data topics
and subscribe to them. The directory stores the information
about the publisher of a data topic and with which frequency
the data is transmitted. The directory is stored centrally at
the TSN Controller. If a member needs information on a
published data topic it can query the global directory of the
TSN Controller. If it needs more detailed information on a
data topic it can send a request directly to its publisher. The
directory is structured similar to the Discovery Service of OPC
UA, so that there is not only one central directory but also
distinctions between local directories for devices in the same
subnet and global directories for the communication beyond
the subnet boundaries. The concept of the directory allows
TSN End Devices to search for publishers of data topics which
they wish to subscribe to. If the publishers and subscribers are
registered with the TSN Controller and the TSN Controller has
reserved the required time slots in the defined time cycle, the
corresponding data can be transmitted.

D. Transmission of data topics with OPC UA over TSN

Two types of real-time capable transmission of Plug &
Produce data topics are provided. The first option is trans-
mission via the default publish-subscribe mechanism. This
transmission type can be used for a recurring exchange of
information. For example, the provision of a sensor value for
the system. The second transmission type is the transmission
of data topics by distributed OPC UA Programs [15]. This type
of transmission enables the synchronised starting, halting and
ending of distributed processes while exchanging process data
across multiple participating devices. This type can be used if
the synchronisation between multiple devices is necessary. For
example, synchronising the movement of two manipulators.

E. Reconfiguration of the system and its communication chan-
nels with varying devices

It must be possible to exchange devices or remove them
entirely from the system. For example, in robot systems with
the possibility of changing end effectors, the robot shall be
capable of communicating with newly attached end effectors.
In the simplest case, the device only subscribes to data topics,
which means it can easily be removed or replaced. If a
participating device that publishes data leaves the system all
TSN End Devices subscribing to this data topic must be
informed that the publisher has left the system. For this reason,
the TSN Controller saves all data topic requests so that all
subscribers are known for a published data topic. The more
complex case is that a leaving device was participating in a
distributed OPC UA Program. In this case, there are three
possible options:

587

1) Halt all affected distributed OPC UA Programs (cancel
a process)

2) Suspend all affected distributed OPC UA Programs, until
a new TSN End Device with a similar configuration is
added (pause a process until the process is operational
again)

3) Keep the distributed OPC UA Programs running, in
case the participant is not system-critical to operation
(continue process)

Due to these three possibilities, a termination condition for
each distributed OPC UA Program must be specified so that
it is clearly defined what happens when a TSN End Device
leaves the system.

The presented approach defines the discovery of new de-
vices, the reconfiguration of the system, the configuration of
real-time communication channels as well as the real-time
transmission for industrial control with OPC UA over TSN.
Consequently, all initially defined goals for our approach have
been achieved.

IV. IMPLEMENTATION

After the concept of a real-time capable plug & produce
communication platform has been presented, an introduction is
given to how this approach was implemented. We implemented
as much as possible with default OPC UA technologies like
OPC UA Methods, OPC UA Events, OPC UA Client-Server-
Communication or OPC UA Discovery Servers. The only non-
standardised extensions are the concept of distributed OPC
UA Programs and communication via OPC UA PubSub over
TSN. As basic OPC UA implementation, we used the open
source OPC UA library open625411. This also includes the
communication via PubSub over TSN. For the integration of
distributed OPC UA Programs the standard open62541 library
was forked and expanded as shown in [15].

A. Basic architecture of the TSN Controller and the TSN End
Devices

First, the implementation of the two main components is
presented. Figure 1 shows the activity diagram of the main
processes of the TSN End Devices and the TSN Controller
and interactions between both system members. First and
foremost every member of the system starts an OPC UA
Server and registers with the local OPC UA Discovery Server.
After the registration, it becomes possible to inquire about
devices and set up a non-real-time communication path to
these components. Later on, this communication will be used
to configure the real-time network. Once, a TSN Controller has
registered successfully with the OPC UA Discovery Server, it
has two parallel tasks. The first task is to receive incoming
registrations of new TSN End Devices, add and reserve time
slot arrays for the new devices and send them a basic TSN
Configuration. The second task is to cope with removed TSN
End Devices. In this regard, the time slot array of the removed
TSN End Device is deleted and all TSN End Devices that

1www.open62541.org

have subscribed to a data topic of the removed device are
notified via an OPC UA Event. The same applies to distributed
OPC UA Programs in wich the removed TSN End Device
participated. After the receipt of such a notification, the TSN
End Device has to proceed according to one of the three
defined distributed OPC UA Program termination criteria.

After the basic implementation of the TSN Controller has
been described, the implementation of the TSN End Devices
is presented. The TSN End Device searches for a running
TSN Controller after successful registration at the OPC UA
Discovery. In case a TSN Controller is found, a basic TSN
configuration is requested. This basic TSN configuration con-
tains information on whether a PTP master has to be started,
the basic cycle time of the TSN communication, a unique IP
address for the TSN capable network device of the TSN End
Device and a multicast address for the OPC UA PubSub com-
munication over TSN. Subsequently, a PTP Master or Slave is
started on the TSN End Device and a basic configuration of the
TSN communication channels is executed. In this process, the
TSN capable network interface is prepared for the transmission
of real-time messages by adding appropriate schedulers like
the Earliest Tx-time First (ETF) scheduler to the transmission
queues (Tx-queue) of the network interface and constructing
different virtual networks (VLANs) for the transmission of the
real-time data. This ensures that differently classified messages
can be sent with different real-time priorities. At the end of
the basic configuration of the communication channels, the
publishers and subscribers are added by the TSN End Device
to the TSN Controller via an OPC UA Method call. The OPC
UA Method RegisterPublisher of the TSN Controller
has the name, the data type and the cycle time of the data topic
as input parameter and returns an offset of the reserved time
slot in the time slot array of the TSN End Device. The OPC
UA Method RegisterSubscriber takes the data topic
name as input and returns the offset of the reserved time slot
for the subscription of the data topic. The call to the method
RegisterSubscriber can result in the reservation of time
slots on multiple devices depending on the number of hops
between the subscriber and the publisher. Accordingly, all
relevant hops are notified and a corresponding forwarding of
the data topic is set up on all affected devices.

B. Implementation of the time slot arrays

The example shown in Figure 2 illustrates how the time slot
arrays are implemented. As a first step, the global TSN cycle
time is divided into simultaneous time slots. A power of two is
used as a divisor of the global cycle time (divisor = 2m). In
the example, the global TSN cycle time is divided into 16 time
slots (m = 4). It is specified that the cycle time of a publisher
corresponds at most to the global TSN cycle time and the
global TSN cycle time must be divided into power of two time
intervals for the publisher cycle time (cycletimepublisher =
cycletimeglobal

2n with ∀n ∈ [0,m]N). These restrictions make it
easier to fully allocate the time slots. With new reservations
of time slots, the first free time slot in the time slot array is
used. As shown in the example Publisher 1 uses the first time

588

Figure 1: Activity diagram of the management of TSN End Devices by the TSN Controller. It shows how the startup routine
of the TSN End Device is combined with the main sequence of the TSN Controller

slot and fills in the other required time slots. Publisher 2 now
gets the second time slot and accordingly fills in the time slots
needed. In case an overlap with other reservations occurs, an
attempt is made to redistribute the entire array. Through the
defined division of the time slot array, it does not have to be
altered for all subsequent cycles.

V. CASE STUDY

The movement synchronisation between a linear axis and
an industrial-6-axis-manipulator was carried out as a case
study. Figure 3 shows the experimental setup with a spindle
linear axis DGE from FESTO and a KR16 6-axis-manipulator
from KUKA. Since there are few or no devices with an
explicit TSN interface the two devices are controlled by an
upstream control unit in form of an industrial PC (IPC) with a
TSN network interface. These upstream control units represent
the TSN End Devices. The linear axis is controlled by the

Figure 2: Example of a time slot array

upstream controller via CAN Open. The 6-axis-manipulator
is controlled via the KUKA Device Connector (KDC), an
OPC UA interface for KUKA robots. Both IPCs are equipped
with an Intel i210 network card and operate with a real-
time capable Preempt-RT Linux Kernel (4.19.37-rt20) with
ETF-drivers. The two IPCs are connected via a 1 Gbps
link for the TSN communication directly with each other.
In addition, the two devices are connected to a non-real-time
network for exchanging configurations. Another IPC is used as
TSN Controller which is only connected to the non-real-time
network.

The aim of the two devices is to configure themselves
without any pre-configuration, establish a TSN real-time com-
munication and then synchronise their movements. As data
basis for the movement synchronisation, only the current
position of the linear axis is available as a data topic. This
data topic is published with a cycle time of 5 milliseconds.
Since the calculation of the robot trajectory relies solely on
the current actual position of the linear axis, hard real-time
requirements must be satisfied.

After the system has configured itself and has automatically
set up a real-time connection between the two upstream
controllers, the robot subscribes to the position of the linear
axis and starts synchronising the position of its tool centre
point to the movement of the linear axis. After successful
position synchronisation, no deviation in the movements can
be seen at first glance. However, the comparison of the

589

FESTO DGE

Spindle Linear Axis

KD
C

O
P

C
 U

A
 / T

S
N

OPC UA

O
P

C
 U

A

O
PC U

A

CANOpen
TSN End Device

TSN Controller

TSN End Device

KUKA KR16

6-Axis-Manipulator

Figure 3: Hardware setup of the prototype implementation

measurements of the current positions of the two devices
shows small deviations. These minimal deviations can be
explained by possible delays in the communication between
the upstream control unit and the controller of the robot via
the KDC interface. The measurements of the transmission
time between the two upstream control units and between
the upstream controller and the linear axis controller show
no delay anomalies.

In addition to the evaluation of the synchronisation, the
configuration time was measured. Measurements with different
settings were executed as shown in Table I. The results showed
that the maximum configuration time for the establishment of
a TSN communication channel is approximately 24 seconds.
While the system is running and the clocks of the devices
are already synchronised, publishers and subscribers can be
added in less than 7 seconds. It can be seen that the time
synchronisation via PTP has a non-negligible influence on the
configuration time.

Situation Min [s] Avg [s] Max [s]
Add Publisher, time sync needed 20.1 21.5 23.3
Add Publisher, time synced 6.4 6.7 7.0
Add Subscriber, time sync needed 19.7 20.8 22.4
Add Subscriber, time synced 4.0 4.0 4.0

Table I: Configuration time for different situations in seconds

VI. CONCLUSION

In this paper we have presented the main components for
a real-time capable Plug & Produce communication platform
with OPC UA over TSN. This approach shows how the
OPC UA infrastructure can be used to achieve the discovery
of devices, the establishment and configuration of real-time
communication channels and subsequently use these com-
munication channels for a distributed industrial system. The
prototypical implementation of the approach has shown that
the concepts also work and meets the the technical challenges
a functioning distributed real-time system could be set up.

In future experiments, we plan to combine the concept
of the general automated TSN configuration as shown by
Pop et al. [13] with the concepts of our approach to further

combine the advantages of the technologies OPC UA and TSN.
In addition, the reconfiguration of systems and the explicit
replacement of devices without losing real-time guarantees
will be examined.

REFERENCES

[1] R. Y. Zhong, X. Xu, E. Klotz, and S. T. Newman, “Intelligent manu-
facturing in the context of industry 4.0: a review,” Engineering, vol. 3,
no. 5, pp. 616–630, 2017.

[2] A. Angerer, M. Vistein, A. Hoffmann, W. Reif, F. Krebs, and
M. Schönheits, “Towards multi-functional robot-based automation sys-
tems,” in Intl. Conf. on Inform. in Control, Autom. & Robot., 2015.

[3] R. Glück, A. Hoffmann, L. Nägele, A. Schierl, W. Reif, and H. Voggen-
reiter, “Towards a tool-based methodology for developing software for
dynamic robot teams,” in Intl. Conf. on Inform. in Control, Autom. &
Robot., 2018.

[4] L. Nägele, A. Schierl, A. Hoffmann, and W. Reif, “Multi-robot coopera-
tion for assembly: Automated planning and optimization,” in Informatics
in Control, Automation and Robotics, 2019 Revised Selected Papers, ser.
LNEE. Springer, 2021.

[5] M. Onori, N. Lohse, J. Barata, and C. Hanisch, “The IDEAS project:
plug & produce at shop-floor level,” Assembly automation, 2012.

[6] J. Pfrommer, D. Stogl, K. Aleksandrov, S. E. Navarro, B. Hein,
and J. Beyerer, “Plug & produce by modelling skills and service-
oriented orchestration of reconfigurable manufacturing systems,” at-
Automatisierungstechnik, vol. 63, no. 10, pp. 790–800, 2015.

[7] T. Burke, “OPC Unified Architecture: Interoperability for Industrie 4.0
and the Internet of Things,” Opc Foundation, vol. 1, pp. 01–44, 2017.

[8] A. Hoffmann, A. Angerer, F. Ortmeier, M. Vistein, and W. Reif, “Hiding
real-time: A new approach for the software development of industrial
robots,” in IEEE/RSJ Intl. Conf. on Intell. Robots and Systems, 2009,
pp. 2108–2113.

[9] J. Pfrommer, A. Ebner, S. Ravikumar, and B. Karunakaran, “Open
source OPC UA PubSub over TSN for realtime industrial communica-
tion,” in 23rd IEEE Intl. Conf. on Emerging Technologies and Factory
Automation (ETFA), Sep. 2018, pp. 1087–1090.

[10] M. Vistein, A. Hoffmann, A. Angerer, A. Schierl, and W. Reif, “Towards
re-orchestration of real-time component systems in robotics,” in IEEE
Intl. Conf. on Robotic Computing (IRC). IEEE, 2017, pp. 60–68.

[11] “OPC Unified Architecture Part 1: Overview and Concepts
(OPC 10000-1),” OPC Foundation, v 1.04, Nov. 2017,
https://opcfoundation.org/developer-tools/specifications-unified-
architecture/part-1-overview-and-concepts/.

[12] “OPC Unified Architecture Part 14: PubSub (OPC 10000-14),” OPC
Foundation, v 1.04, Feb. 2018, https://opcfoundation.org/developer-
tools/specifications-unified-architecture/part-14-pubsub.

[13] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner, “Enabling fog
computing for industrial automation through time-sensitive networking
(TSN),” IEEE Communications Standards Magazine, vol. 2, no. 2, pp.
55–61, 2018.

[14] “OPC Unified Architecture Part 12: Discovery and Global
Services (OPC 10000-12),” OPC Foundation, v 1.04, Feb. 2018,
https://opcfoundation.org/developer-tools/specifications-unified-
architecture/part-12-discovery-and-global-services/.

[15] C. Eymüller, J. Hanke, A. Hoffmann, M. Kugelmann, and W. Reif,
“Real-time capable OPC-UA Programs over TSN for distributed indus-
trial control,” in 25th IEEE Intl. Conf. on Emerging Technologies and
Factory Automation (ETFA), vol. 1. IEEE, 2020, pp. 278–285.

[16] “OPC Unified Architecture Part 10: Programs (OPC 10000-10),” OPC
Foundation, v 1.04, Nov. 2017, https://opcfoundation.org/developer-
tools/specifications-unified-architecture/part-10-programs/.

[17] S. Schriegel and J. Jasperneite, “Investigation of industrial environmental
influences on clock sources and their effect on the synchronization accu-
racy of ieee 1588,” in 2007 IEEE International Symposium on Precision
Clock Synchronization for Measurement, Control and Communication.
IEEE, 2007, pp. 50–55.

[18] IEEE Standards Association et al., “IEEE Standard for Lo-
cal and Metropolitan Area Networks—Bridges and Bridged Net-
works—Amendment 25: Enhancements for Scheduled Traffic,” Amend-
ment to IEEE Std, vol. 802, pp. 1–57, 2016.

[19] M. L. Raagaard, P. Pop, M. Gutiérrez, and W. Steiner, “Runtime
reconfiguration of time-sensitive networking (TSN) schedules for fog
computing,” in 2017 IEEE Fog World Congress (FWC), 2017, pp. 1–6.

590

