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Abstract—The industry is undergoing a disruptive shift from
mass production to individually manufactured one-offs. To
achieve this transformation, the production facilities must also
be flexible and able to configure themselves according to re-
quirements. Often it is not enough to reconfigure the software,
but the hardware must also be adapted accordingly. Such
customizable hardware and software systems are called Plug
& Produce systems. For such Plug & Produce robot systems,
we have developed an automatic configuration generation for
hardware configurations based on capability/skill descriptions
of individual hardware components. The configuration creation
is done with the help of an ontology, in which information
about modular hardware components, their capabilities, and the
interrelationships of their interfaces (geometric, electrical, and
data) is stored.

I. INTRODUCTION

In the next few years, the goal of industry and research is to
develop a variety of autonomous robots that can cope with a
wide range of tasks autonomously [1]. In addition to changing
tasks, the environment or working conditions may also change.
To achieve this goal, the robots need to know about the tasks,
environment, and physical structure. Concerning Industry 4.0
or smart factories, there is always mention of Cyber-Physical
Production Systems (CPPS), a specific kind of Cyber-Physical
System (CPS) in the domain of smart manufacturing [2]. A
CPPS connects a production system’s physical and digital
dimensions into a uniform environment and enriches hard- and
software components and physical products with knowledge
and data. This knowledge and data range from simple de-
scriptions of objects to elaborate descriptions of processes or
complex interrelationships of objects. This reusable machine-
readable knowledge is decisively responsible for the fulfill-
ment of executing tasks autonomously.

In order to perform many different tasks, the production cell
must be designed as flexibly as possible, and the system must
be able to reconfigure itself. In this context, reconfiguration
means that the system needs to reconfigure itself physically
and logically to execute a specific task. Such systems are
known as industrial Plug-and-Produce systems [3], [4]. The
logical reconfiguration in such a system is often realized
through analyzing industrial standard operating procedures
and decomposing these procedures into individual reusable
skills [5]. These reusable skills offer the possibility to model a

flexible manufacturing process that can be adapted by chang-
ing the parameters or the composition of its skills [6]. Physical
reconfiguration requires knowledge of the interrelationships
among components and between components and their skills.
For example, if the task is to grip a component, in addition to
the logical composition of the gripping, a tool (e.g., a gripper)
must also be attached to the robot to be able to execute the
task physically. Semantic web technologies, like RDF, OWL,
or SPARQL, can be used to represent these relationships and
make them machine-readable [7].

In order to create logical and physical reconfigurable indus-
trial robot systems more easily in the future, we introduce
a concept of using machine-readable descriptions to auto-
matically generate hardware configurations for robot systems
depending on a given task. The following points must be taken
into account:

• A hardware configuration must be physically feasible.
Electronic, data, and fastening interfaces of the tool and
robot must match or be adapted accordingly.

• Skills that are also composed of skills of several different
components must be considered. For example, the skill
move component requires a gripper that has the ability to
grip and a robot that can move.

• Additional constraints must be taken into account, e.g., a
robot has only a certain payload.

The paper is structured as follows to illustrate the concept. 
Section II summarises the current state of the art in semantic 
descriptions of robotic and production systems and provides 
an overview of autonomously reconfigurable robot systems. 
Our approach is explained in detail in Section III. Section IV 
shows the implementation of the ontology and how is used 
for configuration genesis. Section V presents a case study to 
evaluate the approach. Conclusions are drawn in Section VI.

II. STATE OF THE ART

Numerous approaches use semantics for solving geometric 
constraints to facilitate component design or automate robot 
assembly. Ambler and Popplestone [8] were one of the first 
that used CAD data to generate assembly programs for robots. 
On the basis of this, continuous further development was 
carried out, and additional relationships were added between 
the component to be assembled, the resources (e.g. robots,
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production machines) that are needed, and the skills of the
resources [9], [10]. These approaches usually have a strict 1-
to-1 relationship between a resource and a skill. Nevertheless,
there are also approaches that assign combinations of several
components to one skill [11]. For example, a robot with
different end effectors can execute different skills. However,
there are also strong restrictions here, since in the example of
Profanter et al. only tools with a corresponding tool change
adapter can be used, and also the interfaces (data, power
supply) are identical for all tools. Romiti et al. presented
a reconfigurable cobot with different joint modules and end
effector modules [12]. Nevertheless, even in this approach,
the individual modules have a uniform interface for mounting,
data, and power supply, making it easier to create configura-
tions. There is also good preliminary work from Siltala et al.,
who has developed an ontology for the formal description
of hardware interfaces [13]. In the ontology, categories are
defined for mechanical, electrical, service and communica-
tion interfaces. However, it is not shown how these can be
configured or parameterized. In addition, the ontology has a
very abstract description of the interfaces and uses mainly
standardized interface descriptions, which is difficult for non-
standardized interfaces. By integrating another ontology, the
relationship between capabilities and the components in the
overall architecture was also taken into account [14].

For our approach, we have also focused on ontologies, as
these are easily extendable at runtime and can easily scale rules
and constraints for complex systems with many components.
Besides the classical semantic web technologies RDF and
OWL, for the matchmaking of the interfaces and the rules
on how they can be connected to each other the Semantic
Web Rule Language (SWRL) is used [15]. SWRL offers the
possibility to integrate complex rules beyond OWL rules into
the ontology. Since additional constraints for configurations
are to be considered, and these are usually not static, they
are integrated into the configuration queries. The semantic
web query language SPARQL (SPARQL Protocol And RDF
Query Language) is used for these configuration queries [16].
To the best of our knowledge, our approach is the first that
calculates hardware configurations for robot systems which
take different geometric, data, and power supply interfaces into
account, combines it with skill descriptions of the individual
components, and takes additional constraints into account.

III. CONCEPT

A. Base Architecture: RealCaPP

The base architecture is outlined in Figure 1. The Real-
time Capable Plug & Produce Architecture (RealCaPP) is a
uniform architecture with uniform interfaces so that industrial
components can be easily integrated into new or existing
systems or so that plants can adapt their skills [17]. The
architecture follows concepts of the asset administration shell
(AAS) and uses a common middleware to connect all compo-
nents. The middleware has been divided into a non-realtime
communication channel (OPC UA) for the configuration of
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Fig. 1. System architecure for a real-time capable plug & 
produce environment [17]

assets as well as the exchange of descriptions and a real-
time communication channel (OPC UA over TSN) to transmit 
control signals. Each resource (e.g., a robot or a gripper) has 
an AAS, which consists of a resource hardware driver, basic 
executable skills of the resource (e.g., the skill grip of a 
gripper or the skill move to position of a robot) and the ability 
to load additional software components, for example, 
additional or composed skills of one or more resources (e.g., 
pick and place as a combination of the resources robot and 
gripper). In addition to the executable components of a 
resource, there are descriptions of the resource itself and 
information on the respective software components and skills. 
Globally in the system, this information is summarized in 
registries to make it easier to find required skills or information 
in the system. A product register is available to integrate 
product or part descriptions into the system in order to have 
the possibility to adapt capabilities to parts or products. In 
the further course, the focus is mainly on the individual 
descriptions and how they can be used together.

B. RealCaPP Ontology

Figure 2 shows the class hierarchy of the RealCaPP ontol-
ogy. The main class is Resource which represents the actual
resource of the AAS, for example, a robot. All the information
stored in the ontology for a resource is linked to this class. The
skill descriptions of the basic skills are linked to the resource
via the property hasBasicSkill. Each resource also has various
interfaces that belong to a resource. This is represented by
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the hasInterface property. Interfaces can currently be divided 
into three different classes, but additional classes can easily be 
added. The first class is the geometric interface. This interface 
describes possible connections for the mechanical fastening 
of other resources. These interfaces vary from automatic tool 
change systems to screw connections between resources. Now 
that geometrical connections can be mapped, many resources 
still need connectors for power and data supply. The class 
ElectricalInterface represents power connections. The power 
supply also differentiates between alternating and direct cur-
rent, and different voltages. The last type of interface is 
the DataInterface. In an industrial plant, there are countless 
data interfaces from analog to digital transmissions, different 
topologies, compatibilities between data interfaces, and so on. 
Therefore the description of data transmission is one of the 
biggest challenges.

In order to establish a connection between several resources, 
it is necessary that all interfaces can be connected accordingly. 
So it is not enough to say that a gripper is physically attached 
to a robot and can perform its gripping task without power 
or data supply. Therefore, the resource must also map the 
interfaces required to execute the corresponding skills. Con-
nections between corresponding interfaces are established via 
the connectable property. In order to define w hich interfaces 
can be connected to each other, expert knowledge must be 
used. With these descriptions, the first n ecessary requirement 
can now be checked off: the hardware configuration m ust be 
physically feasible. This is the case if two or more resources 
are geometrically, electrically, and data connectable.

The second requirement that skills that are also composed 
of skills of several different components must be considered 
can be implemented by combining the connectable property, 
the information of the skill composer, and the descriptions 
of the basic resource skills. In the skill composer, expert 
knowledge is used to define rules for how complex skills are 
composed of other skills. For example, the skill pick and 
place is composed of the basic skills move to position and grip. 
If the system has to execute a task pick and place, it 
first needs to reconfigure to a system that is composed 
of one or more resources, which has the skills grip and 
move. Subsequently, it must be checked whether all 
resources of this system can be connected accordingly 
(geometrically + electrically + data connectable). If this is

Fig. 2. Excerpt of the class hierarchy of the RealCaPP 
Ontology

the case, the configuration can be used to execute the cor-
responding task. Otherwise, another configuration must be
selected, or the user must be informed accordingly that no
corresponding configuration was found and what requirements
are missing for executing the task. The configurations are not
limited to one or two resources - resource chains can also be
formed. For example, placing an adapter plate between the
robot and the gripper may be necessary because the gripper
cannot be attached directly to the robot (not geometrically
connectable). Similar constellations are also possible with
data connections or power connections through additional bus
couplers or voltage converters.

Due to the chaining of multiple resources, it is essential that
additional constraints can be checked. If there are physical
restrictions, for example, the limited payload of the robot,
this must be taken into account accordingly when creating
the configuration. The descriptions of the individual resources
(e.g., the weight of a resource) allow general statements to
be made about a configuration (e.g., the total weight of the
configuration). This composite information can be used for
corresponding constraints, which is the last requirement for
the configurations (Additional constraints must be taken into
account). Obviously, also other aggregation functions can be
used for the constraints. For example, to limit the accuracy or
response times of configurations, the maximum values of the
individual devices must be considered.

IV. IMPLEMENTATION

After the concept of self-configuring Plug & Produce robot
systems has been presented, an overview is given of how
the ontology and querying are realized. In the first step,
information is collected from the entire system (all resources)
so that all information is available in a uniform data source.
For this purpose, the individual OWL files are combined to
form an overall OWL ontology. In order to re-use the definition
of connectivity, a combination of OWL property chains and
SWRL rules have been used to define the ObjectProperty con-
nectableResource. The connectableResource property has been
split into the sub-properties dataConnectableResource, pow-
erConnectableResource and geoConnectableResource. Listing
1 shows an example for the SWRL rule to define dataCon-
nectableResource and a rule to combine the sub-properties to
the property connectableResource. For clarity, the rule has
been simplified so that all connectable sub-properties must
always apply.

...
hasDataInterface( ?re1 , ?di1 ) ˆ hasDataInterface( ?re2 , ?di2 ) ˆ

dataConnectableInterface( ?di1 , ?di2 ) −>
dataConnectableResource( ?re1 , ?re2 )

dataConnectableResource( ?re1 , ?re2 ) ˆ
powerConnectableResource( ?re1 , ?re2 ) ˆ
geoConnectableResource( ?re1 , ?re2 ) −>
connectableResource( ?re1 , ?re2 )

...

Listing 1: SWRL rules for dataConnactable and connectable
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Through the applied rules, it is evident in the ontology
that resources are connectable to each other. Based on this,
SPARQL queries can now be used to find appropriate hardware
configurations. For this purpose, SPARQL query blocks are
combined into complex queries. First, the task is broken down
into individual basic skills. For this purpose, the ontology
specifies the basic skills that make up composed skills. A
resource list for each skill can be generated via the connection
of the basic skills to the resource. All of these lists are merged
by the UNION command to one global list (see Listing 2). If
there are already known restrictions on the choice of resources,
these restrictions can be supplemented by additional filters.

#for each basic skill (basicSkillX)
{

SELECT ?resource, ?skill
WHERE {?resource realcapp:hasBasicSkill ?skill.

FILTER(?skill = basicSkillX) .
#additional filters (optional)
FILTER(...) .}

}
UNION
{

SELECT ?resource, ?skill ...
}

Listing 2: SPARQL query for resource list

Then the system tries to find a configuration that contains re-
sources with all the required basic skills. For this purpose first
all possible configurations are preselected. Listing 3 shows the
simplified structure of the query resulting in suitable hardware
configurations. In the SPARQL query shown, the assumption
was made that components can always be connected in general
(geometric + electrical + data). More complex combinations
are possible if geometry, electrical, or data connectivity is
considered individually.

SELECT (GROUP CONCAT( ?mid; SEPARATOR=”;”) AS ?
configuration) (COUNT(?mid) as ?numberOfDevices)

WHERE { ?startdevice (realcapp:connectableResource)+ ?mid.
...
?mid (realcapp:connectableResource)* ?enddevice.
FILTER(?startdevice = <startpoint>).
...

}
GROUP BY ?startdevice ?enddevice

Listing 3: SPARQL query for suitable hardware configurations

Afterward, all configurations with resources that do not
fulfill the required basic skills are sorted out. As there can
be solutions with many adaptors due to connection chains, by
default, configurations with as few elements as possible are
preferred (lowest ?numberOfDevices). As shown below, also
other constraints can be used for the selection of the correct
configuration.

With the help of aggregations, grouping, and additional
filtering in the SPARQL query, it is possible to consider addi-
tional constraints for the configurations. Because the required
data for the constraints (e.g., weight data) are needed in the
surrounding SELECT statement, the SELECT and WHERE

statements must be adjusted accordingly. Therefore, in the 
current implementation, it is necessary to adapt the respective 
SPARQL queries to specify additional constraints.

V. CASE STUDY

The concept was evaluated using a case study. Therefore, 
the ontology has been filled with instances of resources (> 50 
different resources). The resources include industrial robots, 
automatic tool changing systems with different electrical and 
data interfaces, adapter plates, various tools (e.g., gripper, 
screwer, etc.) with different electrical and data interfaces, 
and many more. Instances of basic skills (e.g., move to 
position, screw, grip) and resource interfaces were also 
created for the various resources. Also, knowledge of 
combinations of basic skills to composed skills was added 
to the ontology. In addition, expert knowledge was used to 
define w hich i nterface i nstances c an b e c onnected w ith each 
other accordingly (e.g., screwbit is connectable to screwer). 
The definition of the expert knowledge is done by SWRL rules 
by adding these to the ontology.

Based on this database, several queries for different config-
urations with varying constraints were performed. Afterward, 
the corresponding configurations w ere e xamined f or correct-
ness. The evaluation assessed whether all selected constraints 
were fulfilled and whether these configurations could actually 
be realized.

Figure 3 shows an exemplary section from the instantiated 
ontology for a configuration that has the composed skill 
screw in screw (= screw + move to position). The SWRL 
rules automatically add edges to the ontology. For 
example, from the expert knowledge that the interfaces 
ScrewerIfaceM   and   ScrewerIfaceF   can   be   connected

Fig. 3. Example of a configuration with the corresponding 
ontology data
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?resource ?skill
Screwbit Screw

Robot MoveToPosition
...

to each other (connectableInterface), it is deduced that the 
resources Screwbit and Screwer can be connected to each 
other (connectableDevice). First the SPARQL query in 
Listing 2 was executed with the two basic skills Screw 
and MoveToPosition which outputs table I. By using the 
SPARQL query Listing 3 it is possible to search and find 
resource chains on the extended graph. In the example 
shown, the result is the following resource chain 
(Robot;Screwer;Screwbit) with a length of 3.

In the evaluation, the restriction that components are gener-
ally connectable was waived (simplification for the example). 
The connectability matchmaking was thus performed for all 
connection types (geometric, electric, data). It has been shown 
that as soon as there were resources with basic skills that made 
a configuration possible, it was also found. Sometimes even 
several correct configurations were found. With appropriate 
ASK commands in SPARQL, it is also possible to find out 
in advance if there is a corresponding configuration. Due to 
the knowledge preparation by the SWRL rules, the queries for 
the resource chains can be processed in less than one second 
(average query response time 0.87 s) with knowledge graphs 
with approximately 50 resources.

VI. CONCLUSION AND FUTURE WORK

This paper introduced an approach for self-configuring Plug 
and Produce robot systems. For this purpose, a corresponding 
ontology was created, and a method to obtain possible hard-
ware configurations capable of executing a given task was 
created by querying the ontology. Based on a case study, it 
was shown that the correct configuration could be found for a 
given task, or at least the conclusion can be made that there is 
no configuration with the given hardware resources. Moreover, 
extended constraints can be added, which should apply to the 
hardware configurations. With a knowledge base of about 50 
resources, hardware configurations could be found in under a 
second.

The approach shows that it is possible to find hardware 
configurations for robots for a given task automatically. How-
ever, there are still limitations. We currently assume a chain of 
components as configuration. In industrial settings, it is also 
possible to have tree structures or other topoloties. e.g., two 
end effectors on one robot. Especially for the data connectivity, 
multiple topologies have to be considered. For example, Ether-
Cat connections do not support star topologies, which must be 
considered in the interfaces’ description. In addition, it will 
be researched whether a robot can automatically assemble the 
hardware configurations found. Concepts are needed to define 
which connections can be made automatically (e.g., an auto-

matic tool changer) or which can only be realized by a human
(e.g., a screwed connection of the end effector). For large data
sets with numerous resources (several thousand resources), we
try to perform presorting to improve our approach’s scalability.
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