
Towards Self-Configuring Plug & Produce Robot
Systems Based on Ontologies

Christian Eymüller, Julian Hanke, Alexander Poeppel, and Wolfgang Reif
Institute for Software and Systems Engineering

University of Augsburg
Augsburg, Germany

{eymueller, hanke, poeppel, reif}@isse.de

Abstract—The industry is undergoing a disruptive shift from
mass production to individually manufactured one-offs. To
achieve this transformation, the production facilities must also
be flexible and able to configure themselves according to re-
quirements. Often it is not enough to reconfigure the software,
but the hardware must also be adapted accordingly. Such
customizable hardware and software systems are called Plug
& Produce systems. For such Plug & Produce robot systems,
we have developed an automatic configuration generation for
hardware configurations based on capability/skill descriptions
of individual hardware components. The configuration creation
is done with the help of an ontology, in which information
about modular hardware components, their capabilities, and the
interrelationships of their interfaces (geometric, electrical, and
data) is stored.

I. INTRODUCTION

In the next few years, the goal of industry and research is to
develop a variety of autonomous robots that can cope with a
wide range of tasks autonomously [1]. In addition to changing
tasks, the environment or working conditions may also change.
To achieve this goal, the robots need to know about the tasks,
environment, and physical structure. Concerning Industry 4.0
or smart factories, there is always mention of Cyber-Physical
Production Systems (CPPS), a specific kind of Cyber-Physical
System (CPS) in the domain of smart manufacturing [2]. A
CPPS connects a production system’s physical and digital
dimensions into a uniform environment and enriches hard- and
software components and physical products with knowledge
and data. This knowledge and data range from simple de-
scriptions of objects to elaborate descriptions of processes or
complex interrelationships of objects. This reusable machine-
readable knowledge is decisively responsible for the fulfill-
ment of executing tasks autonomously.

In order to perform many different tasks, the production cell
must be designed as flexibly as possible, and the system must
be able to reconfigure itself. In this context, reconfiguration
means that the system needs to reconfigure itself physically
and logically to execute a specific task. Such systems are
known as industrial Plug-and-Produce systems [3], [4]. The
logical reconfiguration in such a system is often realized
through analyzing industrial standard operating procedures
and decomposing these procedures into individual reusable
skills [5]. These reusable skills offer the possibility to model a

flexible manufacturing process that can be adapted by chang-
ing the parameters or the composition of its skills [6]. Physical
reconfiguration requires knowledge of the interrelationships
among components and between components and their skills.
For example, if the task is to grip a component, in addition to
the logical composition of the gripping, a tool (e.g., a gripper)
must also be attached to the robot to be able to execute the
task physically. Semantic web technologies, like RDF, OWL,
or SPARQL, can be used to represent these relationships and
make them machine-readable [7].

In order to create logical and physical reconfigurable indus-
trial robot systems more easily in the future, we introduce
a concept of using machine-readable descriptions to auto-
matically generate hardware configurations for robot systems
depending on a given task. The following points must be taken
into account:

• A hardware configuration must be physically feasible.
Electronic, data, and fastening interfaces of the tool and
robot must match or be adapted accordingly.

• Skills that are also composed of skills of several different
components must be considered. For example, the skill
move component requires a gripper that has the ability to
grip and a robot that can move.

• Additional constraints must be taken into account, e.g., a
robot has only a certain payload.

The paper is structured as follows to illustrate the concept.
Section II summarises the current state of the art in semantic
descriptions of robotic and production systems and provides
an overview of autonomously reconfigurable robot systems.
Our approach is explained in detail in Section III. Section IV
shows the implementation of the ontology and how is used
for configuration genesis. Section V presents a case study to
evaluate the approach. Conclusions are drawn in Section VI.

II. STATE OF THE ART

Numerous approaches use semantics for solving geometric
constraints to facilitate component design or automate robot
assembly. Ambler and Popplestone [8] were one of the first
that used CAD data to generate assembly programs for robots.
On the basis of this, continuous further development was
carried out, and additional relationships were added between
the component to be assembled, the resources (e.g. robots,

23

Index Terms—Plug & Produce, Ontologies, Self-Configuring
Robots, Skills, CPPS

production machines) that are needed, and the skills of the
resources [9], [10]. These approaches usually have a strict 1-
to-1 relationship between a resource and a skill. Nevertheless,
there are also approaches that assign combinations of several
components to one skill [11]. For example, a robot with
different end effectors can execute different skills. However,
there are also strong restrictions here, since in the example of
Profanter et al. only tools with a corresponding tool change
adapter can be used, and also the interfaces (data, power
supply) are identical for all tools. Romiti et al. presented
a reconfigurable cobot with different joint modules and end
effector modules [12]. Nevertheless, even in this approach,
the individual modules have a uniform interface for mounting,
data, and power supply, making it easier to create configura-
tions. There is also good preliminary work from Siltala et al.,
who has developed an ontology for the formal description
of hardware interfaces [13]. In the ontology, categories are
defined for mechanical, electrical, service and communica-
tion interfaces. However, it is not shown how these can be
configured or parameterized. In addition, the ontology has a
very abstract description of the interfaces and uses mainly
standardized interface descriptions, which is difficult for non-
standardized interfaces. By integrating another ontology, the
relationship between capabilities and the components in the
overall architecture was also taken into account [14].

For our approach, we have also focused on ontologies, as
these are easily extendable at runtime and can easily scale rules
and constraints for complex systems with many components.
Besides the classical semantic web technologies RDF and
OWL, for the matchmaking of the interfaces and the rules
on how they can be connected to each other the Semantic
Web Rule Language (SWRL) is used [15]. SWRL offers the
possibility to integrate complex rules beyond OWL rules into
the ontology. Since additional constraints for configurations
are to be considered, and these are usually not static, they
are integrated into the configuration queries. The semantic
web query language SPARQL (SPARQL Protocol And RDF
Query Language) is used for these configuration queries [16].
To the best of our knowledge, our approach is the first that
calculates hardware configurations for robot systems which
take different geometric, data, and power supply interfaces into
account, combines it with skill descriptions of the individual
components, and takes additional constraints into account.

III. CONCEPT

A. Base Architecture: RealCaPP

The base architecture is outlined in Figure 1. The Real-
time Capable Plug & Produce Architecture (RealCaPP) is a
uniform architecture with uniform interfaces so that industrial
components can be easily integrated into new or existing
systems or so that plants can adapt their skills [17]. The
architecture follows concepts of the asset administration shell
(AAS) and uses a common middleware to connect all compo-
nents. The middleware has been divided into a non-realtime
communication channel (OPC UA) for the configuration of

Ethernet

S
k

il
l

R
e

g
is

tr
y

Skill Descriptions
Software Component

Descriptions

S
k

il
l

C
o

m
p

o
se

r

Composed Skill

Spezifications

Software Component

Spezifications
< / >

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

r c
e

Additional Software

Components /

Composed Skills

< / >

< / >

Robot Gripper

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

r c
e

Additional Software

Components /

Composed Skills

< / >

P
ro

d
u

c
t

R
e

g
is

tr
y

Product / Part Description

Fig. 1. System architecure for a real-time capable plug &
produce environment [17]

assets as well as the exchange of descriptions and a real-
time communication channel (OPC UA over TSN) to transmit
control signals. Each resource (e.g., a robot or a gripper) has
an AAS, which consists of a resource hardware driver, basic
executable skills of the resource (e.g., the skill grip of a
gripper or the skill move to position of a robot) and the ability
to load additional software components, for example,
additional or composed skills of one or more resources (e.g.,
pick and place as a combination of the resources robot and
gripper). In addition to the executable components of a
resource, there are descriptions of the resource itself and
information on the respective software components and skills.
Globally in the system, this information is summarized in
registries to make it easier to find required skills or information
in the system. A product register is available to integrate
product or part descriptions into the system in order to have
the possibility to adapt capabilities to parts or products. In
the further course, the focus is mainly on the individual
descriptions and how they can be used together.

B. RealCaPP Ontology

Figure 2 shows the class hierarchy of the RealCaPP ontol-
ogy. The main class is Resource which represents the actual
resource of the AAS, for example, a robot. All the information
stored in the ontology for a resource is linked to this class. The
skill descriptions of the basic skills are linked to the resource
via the property hasBasicSkill. Each resource also has various
interfaces that belong to a resource. This is represented by

24

the hasInterface property. Interfaces can currently be divided
into three different classes, but additional classes can easily be
added. The first class is the geometric interface. This interface
describes possible connections for the mechanical fastening
of other resources. These interfaces vary from automatic tool
change systems to screw connections between resources. Now
that geometrical connections can be mapped, many resources
still need connectors for power and data supply. The class
ElectricalInterface represents power connections. The power
supply also differentiates between alternating and direct cur-
rent, and different voltages. The last type of interface is
the DataInterface. In an industrial plant, there are countless
data interfaces from analog to digital transmissions, different
topologies, compatibilities between data interfaces, and so on.
Therefore the description of data transmission is one of the
biggest challenges.

In order to establish a connection between several resources,
it is necessary that all interfaces can be connected accordingly.
So it is not enough to say that a gripper is physically attached
to a robot and can perform its gripping task without power
or data supply. Therefore, the resource must also map the
interfaces required to execute the corresponding skills. Con-
nections between corresponding interfaces are established via
the connectable property. In order to define w hich interfaces
can be connected to each other, expert knowledge must be
used. With these descriptions, the first n ecessary requirement
can now be checked off: the hardware configuration m ust be
physically feasible. This is the case if two or more resources
are geometrically, electrically, and data connectable.

The second requirement that skills that are also composed
of skills of several different components must be considered
can be implemented by combining the connectable property,
the information of the skill composer, and the descriptions
of the basic resource skills. In the skill composer, expert
knowledge is used to define rules for how complex skills are
composed of other skills. For example, the skill pick and
place is composed of the basic skills move to position and grip.
If the system has to execute a task pick and place, it
first needs to reconfigure to a system that is composed
of one or more resources, which has the skills grip and
move. Subsequently, it must be checked whether all
resources of this system can be connected accordingly
(geometrically + electrically + data connectable). If this is

Fig. 2. Excerpt of the class hierarchy of the RealCaPP
Ontology

the case, the configuration can be used to execute the cor-
responding task. Otherwise, another configuration must be
selected, or the user must be informed accordingly that no
corresponding configuration was found and what requirements
are missing for executing the task. The configurations are not
limited to one or two resources - resource chains can also be
formed. For example, placing an adapter plate between the
robot and the gripper may be necessary because the gripper
cannot be attached directly to the robot (not geometrically
connectable). Similar constellations are also possible with
data connections or power connections through additional bus
couplers or voltage converters.

Due to the chaining of multiple resources, it is essential that
additional constraints can be checked. If there are physical
restrictions, for example, the limited payload of the robot,
this must be taken into account accordingly when creating
the configuration. The descriptions of the individual resources
(e.g., the weight of a resource) allow general statements to
be made about a configuration (e.g., the total weight of the
configuration). This composite information can be used for
corresponding constraints, which is the last requirement for
the configurations (Additional constraints must be taken into
account). Obviously, also other aggregation functions can be
used for the constraints. For example, to limit the accuracy or
response times of configurations, the maximum values of the
individual devices must be considered.

IV. IMPLEMENTATION

After the concept of self-configuring Plug & Produce robot
systems has been presented, an overview is given of how
the ontology and querying are realized. In the first step,
information is collected from the entire system (all resources)
so that all information is available in a uniform data source.
For this purpose, the individual OWL files are combined to
form an overall OWL ontology. In order to re-use the definition
of connectivity, a combination of OWL property chains and
SWRL rules have been used to define the ObjectProperty con-
nectableResource. The connectableResource property has been
split into the sub-properties dataConnectableResource, pow-
erConnectableResource and geoConnectableResource. Listing
1 shows an example for the SWRL rule to define dataCon-
nectableResource and a rule to combine the sub-properties to
the property connectableResource. For clarity, the rule has
been simplified so that all connectable sub-properties must
always apply.

...
hasDataInterface(?re1 , ?di1) ˆ hasDataInterface(?re2 , ?di2) ˆ

dataConnectableInterface(?di1 , ?di2) −>
dataConnectableResource(?re1 , ?re2)

dataConnectableResource(?re1 , ?re2) ˆ
powerConnectableResource(?re1 , ?re2) ˆ
geoConnectableResource(?re1 , ?re2) −>
connectableResource(?re1 , ?re2)

...

Listing 1: SWRL rules for dataConnactable and connectable

25

Through the applied rules, it is evident in the ontology
that resources are connectable to each other. Based on this,
SPARQL queries can now be used to find appropriate hardware
configurations. For this purpose, SPARQL query blocks are
combined into complex queries. First, the task is broken down
into individual basic skills. For this purpose, the ontology
specifies the basic skills that make up composed skills. A
resource list for each skill can be generated via the connection
of the basic skills to the resource. All of these lists are merged
by the UNION command to one global list (see Listing 2). If
there are already known restrictions on the choice of resources,
these restrictions can be supplemented by additional filters.

#for each basic skill (basicSkillX)
{

SELECT ?resource, ?skill
WHERE {?resource realcapp:hasBasicSkill ?skill.

FILTER(?skill = basicSkillX) .
#additional filters (optional)
FILTER(...) .}

}
UNION
{

SELECT ?resource, ?skill ...
}

Listing 2: SPARQL query for resource list

Then the system tries to find a configuration that contains re-
sources with all the required basic skills. For this purpose first
all possible configurations are preselected. Listing 3 shows the
simplified structure of the query resulting in suitable hardware
configurations. In the SPARQL query shown, the assumption
was made that components can always be connected in general
(geometric + electrical + data). More complex combinations
are possible if geometry, electrical, or data connectivity is
considered individually.

SELECT (GROUP CONCAT(?mid; SEPARATOR=”;”) AS ?
configuration) (COUNT(?mid) as ?numberOfDevices)

WHERE { ?startdevice (realcapp:connectableResource)+ ?mid.
...
?mid (realcapp:connectableResource)* ?enddevice.
FILTER(?startdevice = <startpoint>).
...

}
GROUP BY ?startdevice ?enddevice

Listing 3: SPARQL query for suitable hardware configurations

Afterward, all configurations with resources that do not
fulfill the required basic skills are sorted out. As there can
be solutions with many adaptors due to connection chains, by
default, configurations with as few elements as possible are
preferred (lowest ?numberOfDevices). As shown below, also
other constraints can be used for the selection of the correct
configuration.

With the help of aggregations, grouping, and additional
filtering in the SPARQL query, it is possible to consider addi-
tional constraints for the configurations. Because the required
data for the constraints (e.g., weight data) are needed in the
surrounding SELECT statement, the SELECT and WHERE

statements must be adjusted accordingly. Therefore, in the
current implementation, it is necessary to adapt the respective
SPARQL queries to specify additional constraints.

V. CASE STUDY

The concept was evaluated using a case study. Therefore,
the ontology has been filled with instances of resources (> 50
different resources). The resources include industrial robots,
automatic tool changing systems with different electrical and
data interfaces, adapter plates, various tools (e.g., gripper,
screwer, etc.) with different electrical and data interfaces,
and many more. Instances of basic skills (e.g., move to
position, screw, grip) and resource interfaces were also
created for the various resources. Also, knowledge of
combinations of basic skills to composed skills was added
to the ontology. In addition, expert knowledge was used to
define w hich i nterface i nstances c an b e c onnected w ith each
other accordingly (e.g., screwbit is connectable to screwer).
The definition of the expert knowledge is done by SWRL rules
by adding these to the ontology.

Based on this database, several queries for different config-
urations with varying constraints were performed. Afterward,
the corresponding configurations w ere e xamined f or correct-
ness. The evaluation assessed whether all selected constraints
were fulfilled and whether these configurations could actually
be realized.

Figure 3 shows an exemplary section from the instantiated
ontology for a configuration that has the composed skill
screw in screw (= screw + move to position). The SWRL
rules automatically add edges to the ontology. For
example, from the expert knowledge that the interfaces
ScrewerIfaceM and ScrewerIfaceF can be connected

Fig. 3. Example of a configuration with the corresponding
ontology data

26

?resource ?skill
Screwbit Screw

Robot MoveToPosition
...

to each other (connectableInterface), it is deduced that the
resources Screwbit and Screwer can be connected to each
other (connectableDevice). First the SPARQL query in
Listing 2 was executed with the two basic skills Screw
and MoveToPosition which outputs table I. By using the
SPARQL query Listing 3 it is possible to search and find
resource chains on the extended graph. In the example
shown, the result is the following resource chain
(Robot;Screwer;Screwbit) with a length of 3.

In the evaluation, the restriction that components are gener-
ally connectable was waived (simplification for the example).
The connectability matchmaking was thus performed for all
connection types (geometric, electric, data). It has been shown
that as soon as there were resources with basic skills that made
a configuration possible, it was also found. Sometimes even
several correct configurations were found. With appropriate
ASK commands in SPARQL, it is also possible to find out
in advance if there is a corresponding configuration. Due to
the knowledge preparation by the SWRL rules, the queries for
the resource chains can be processed in less than one second
(average query response time 0.87 s) with knowledge graphs
with approximately 50 resources.

VI. CONCLUSION AND FUTURE WORK

This paper introduced an approach for self-configuring Plug
and Produce robot systems. For this purpose, a corresponding
ontology was created, and a method to obtain possible hard-
ware configurations capable of executing a given task was
created by querying the ontology. Based on a case study, it
was shown that the correct configuration could be found for a
given task, or at least the conclusion can be made that there is
no configuration with the given hardware resources. Moreover,
extended constraints can be added, which should apply to the
hardware configurations. With a knowledge base of about 50
resources, hardware configurations could be found in under a
second.

The approach shows that it is possible to find hardware
configurations for robots for a given task automatically. How-
ever, there are still limitations. We currently assume a chain of
components as configuration. In industrial settings, it is also
possible to have tree structures or other topoloties. e.g., two
end effectors on one robot. Especially for the data connectivity,
multiple topologies have to be considered. For example, Ether-
Cat connections do not support star topologies, which must be
considered in the interfaces’ description. In addition, it will
be researched whether a robot can automatically assemble the
hardware configurations found. Concepts are needed to define
which connections can be made automatically (e.g., an auto-

matic tool changer) or which can only be realized by a human
(e.g., a screwed connection of the end effector). For large data
sets with numerous resources (several thousand resources), we
try to perform presorting to improve our approach’s scalability.

REFERENCES

[1] J. Michniewicz and G. Reinhart, “Cyber-physical robotics–automated
analysis, programming and configuration of robot cells based on cyber-
physical-systems,” Procedia Technology, vol. 15, pp. 566–575, 2014.

[2] L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara,
G. Reinhart, O. Sauer, G. Schuh, W. Sihn, and K. Ueda, “Cyber-
physical systems in manufacturing,” CIRP Annals, vol. 65, no. 2,
pp. 621–641, 2016. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0007850616301974

[3] M. Onori, N. Lohse, J. Barata, and C. Hanisch, “The IDEAS project:
plug & produce at shop-floor level,” Assembly automation, 2012.

[4] J. Pfrommer, D. Stogl, K. Aleksandrov, S. E. Navarro, B. Hein,
and J. Beyerer, “Plug & produce by modelling skills and service-
oriented orchestration of reconfigurable manufacturing systems,” at-
Automatisierungstechnik, vol. 63, no. 10, pp. 790–800, 2015.

[5] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh,
V. Krüger, and O. Madsen, “Robot skills for manufacturing: From
concept to industrial deployment,” Robotics and Computer-Integrated
Manufacturing, vol. 37, pp. 282–291, 2016.

[6] A. Björkelund, J. Malec, K. Nilsson, and P. Nugues, “Knowledge
and skill representations for robotized production,” IFAC Proceedings
Volumes, vol. 44, no. 1, pp. 8999 – 9004, 2011.

[7] T. Moser and S. Biffl, “Semantic Integration of Software and Systems
Engineering Environments,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 42, no. 1, pp. 38–
50, 2012.

[8] A. Ambler and R. Popplestone, “Inferring the positions of bodies from
specified spatial relationships,” Artificial Intelligence, vol. 6, no. 2, pp.
157–174, 1975.

[9] A. Perzylo, N. Somani, M. Rickert, and A. Knoll, “An ontology for
CAD data and geometric constraints as a link between product models
and semantic robot task descriptions,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015, pp. 4197–
4203.

[10] Y. Pane, M. H. Arbo, E. Aertbeliën, and W. Decré, “A System Archi-
tecture for CAD-Based Robotic Assembly With Sensor-Based Skills,”
IEEE Transactions on Automation Science and Engineering, vol. 17,
no. 3, pp. 1237–1249, 2020.

[11] S. Profanter, A. Perzylo, M. Rickert, and A. Knoll, “A Generic Plug &
Produce System Composed of Semantic OPC UA Skills,” IEEE Open
Journal of the Industrial Electronics Society, vol. 2, pp. 128–141, 2021.

[12] E. Romiti, J. Malzahn, N. Kashiri, F. Iacobelli, M. Ruzzon, A. Laurenzi,
E. M. Hoffman, L. Muratore, A. Margan, L. Baccelliere, S. Cordasco,
and N. Tsagarakis, “Toward a Plug-and-Work Reconfigurable Cobot,”
IEEE/ASME Transactions on Mechatronics, pp. 1–13, 2021.

[13] N. Siltala, E. Järvenpää, and M. Lanz, “Creating resource combinations
based on formally described hardware interfaces,” in Precision Assembly
in the Digital Age, S. Ratchev, Ed. Cham: Springer International
Publishing, 2019, pp. 29–39.

[14] ——, “A method to evaluate interface compatibility during production
system design and reconfiguration,” Procedia CIRP, vol. 81, pp. 282–
287, 2019, 52nd CIRP Conference on Manufacturing Systems (CMS),
Ljubljana, Slovenia, June 12-14, 2019.

[15] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosofand,
and M. Dean, “SWRL: A semantic web rule language combining OWL
and RuleML,” W3C Member Submission, W3C, 2004, last access on
Nov 2022. [Online]. Available: http://www.w3.org/Submission/SWRL/

[16] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Language
for RDF,” W3C Recommendation, 2008, last access on Nov 2022.
[Online]. Available: http://www.w3.org/TR/rdf-sparql-query/

[17] C. Eymüller, J. Hanke, A. Hoffmann, A. Poeppel, C. Wanninger, and
W. Reif, “Towards a Real-Time Capable Plug & Produce Environment
for Adaptable Factories,” in 2021 26th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA). IEEE,
2021, pp. 1–4.

Table I. Resource list output of Listing 2 for the the basic
skills Screw and MoveToPosition

27

