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A coherent spin–photon interface 
in silicon
X. mi1, m. Benito2, S. Putz1, D. m. Zajac1, J. m. Taylor3, Guido Burkard2 & J. r. Petta1

Solid-state electron spins and nuclear spins are quantum mechanical 
systems that can be almost completely isolated from environmental 
noise. As a result, they have coherence times as long as hours and so 
are one of the most promising types of quantum bit (qubit) for con-
structing a quantum processor1–3. On the other hand, this degree of 
isolation poses difficulties for the spin–spin interactions that are needed 
to implement two-qubit gates. So far, most approaches have focused 
on achieving spin–spin coupling through the exchange interaction 
or the much weaker dipole–dipole interaction4–6. Among existing 
classes of spin qubits, electron spins in gate-defined silicon quan-
tum dots have the advantages of scalability due to mature fabrication 
technologies and low dephasing rates due to isotopic purification7. 
Currently, silicon quantum dots are capable of supporting fault-toler-
ant control fidelities for single-qubit gates and high-fidelity two-qubit 
gates based on exchange8–12. Coupling of spins over long distances 
has been pursued through the physical displacement of electrons13–16 
and through ‘super-exchange’ via an intermediate quantum dot17. The 
recent demonstration of strong coupling between the charge state of a 
quantum-dot electron and a single photon has raised the prospect of 
strong spin–photon coupling, which could enable photon-mediated 
long-distance spin entanglement18–20. Spin–photon coupling may be 
achieved by coherently hybridizing spin qubits with photons trapped 
inside microwave cavities, in a manner similar to cavity quantum 
electrodynamics with atomic systems and circuit quantum electro-
dynamics with solid-state qubits19–25. Such an approach, however, is 
extremely challenging: the small magnetic moment of a single spin 
leads to magnetic-dipole coupling rates of 10–150 Hz, which are far too 
slow compared with electron-spin dephasing rates to enable a coherent 
spin–photon interface25–30.

Here, we resolve this outstanding challenge by using spin–charge 
hybridization to couple the electric field of a single photon to a single 
spin in silicon25,31–34. We measure spin–photon coupling rates gs/(2π ) 
of up to 11 MHz, nearly five orders of magnitude higher than typical 
magnetic-dipole coupling rates. These values of gs/(2π ) exceed both 
the photon decay rate κ/(2π ) and the spin decoherence rate γs/(2π ), 

firmly anchoring our spin–photon system in the strong-coupling 
regime26,29,30.

Our coupling scheme consists of two stages of quantum-state 
hybridization. First, a single electron is trapped within a gate- defined 
silicon double quantum dot (DQD) that has a large electric- dipole 
moment. A single photon confined within a microwave cavity 
hybridizes with the electron charge state through the electric-dipole 
interaction35,36. Second, a micrometre-scale magnet  (micromagnet) 
placed over the DQD hybridizes electron charge and spin by  producing 
an inhomogeneous magnetic field31–34. The combination of the 
electric-dipole interaction and spin–charge hybridization gives rise 
to a large effective spin–photon coupling rate. At the same time, the 
relatively low level of charge noise in the device ensures that the effec-
tive spin decoherence rate γs remains below the coherent coupling rate 
gs—a criterion that has hampered previous efforts to achieve strong 
spin–photon coupling37.

As well as demonstrating a coherent spin–photon interface, we also 
show that our device architecture is capable of single-spin control 
and readout. Single-spin rotations are electrically driven9,38 and the 
resulting spin state is detected through a dispersive phase shift in the 
cavity transmission, which reveals Rabi oscillations36.

Spin–photon interface
The device that enables strong spin–photon coupling is shown in 
Fig. 1a and contains two gate-defined DQDs fabricated using an over-
lapping aluminium gate stack (Fig. 1b). The gates are electrically biased 
to create a double-well potential that confines a single electron in the 
underlying natural-silicon quantum well (Fig. 1c). A plunger gate (P2) 
on each DQD is connected to the centre pin of a half-wavelength nio-
bium superconducting cavity with a centre frequency of fc =  5.846 GHz 
and quality factor of Qc =  4,700 (κ/(2π ) =  fc/Qc =  1.3 MHz), which 
hybridizes the electron charge state with a single cavity photon through 
the electric-dipole interaction18–20,35,36. Because the spin–photon 
coupling rate gs is directly proportional to the charge–photon coupling 
rate gc (refs 25, 31–34, 39–41), we have modified the cavity dimensions 
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(Fig. 1a, inset) to achieve a high characteristic impedance Zr and there-
fore a high gc ( ∝g Zc r ; ref. 20). To hybridize the charge state of the 
trapped electron with its spin state, a cobalt micromagnet is fabricated 
near the DQD, which generates an inhomogeneous magnetic field. For 
our device geometry, the magnetic field due to the cobalt micromagnet 
has a component along the z axis Bz

M that is approximately constant for 
the DQD and a component along the x axis that takes on an average 
value of Bx ,L

M  (Bx ,R
M ) for the left (right) dot (Fig. 1c, Extended Data 

Fig. 1). The relatively large field difference − =B B B2x x x,R
M

,L
M M leads to 

spin–charge hybridization, which, when combined with charge–photon 
coupling, gives rise to spin–photon coupling33,34.

We first characterize the strength of the charge–photon interac-
tion, because this sets the scale of the spin–photon interaction rate. 

For simplicity, only one DQD is active at a time for all of the measure-
ments presented here. The cavity is driven by a coherent microwave 
tone at frequency f =  fc and power P ≈  − 133 dBm (corresponding 
to approximately 0.6 photons in the cavity, determined on the basis 
of AC Stark shift measurements of the spin-qubit frequency in the 
dispersive regime; see Extended Data Fig. 2)42. The normalized cavity 
transmission amplitude A/A0 is displayed in Fig. 1d as a function of 
the voltages VP1 and VP2 on gates P1 and P2 of the first DQD (DQD1), 
which reveals the location of the (1, 0) ↔  (0, 1) inter-dotcharge transi-
tion (see Extended Data Fig. 3 for overall stability diagrams)18–20,35,36. 
Here (n, m) denotes a charge state, with the number of electrons in the 
left (P1) and right (P2) dot being n and m, respectively. The charge–
photon coupling rate is estimated quantitatively by measuring A/A0 as a 
function of the DQD level detuning ε (Fig. 1e). By fitting the data with 
the cavity input–output theory model using κ/(2π ) =  1.3 MHz, we find 
gc/(2π ) =  40 MHz and 2tc/h =  4.9 GHz, where tc is the inter-dot tunnel 
coupling and h is the Planck constant19,36,37. A charge decoherence rate 
of γc/(2π ) =  35 MHz is also estimated from the fit and confirmed inde-
pendently using microwave spectroscopy with 2tc/h =  5.4 GHz (refs 19, 
20, 42). Fine control of the DQD tunnel coupling, which is critical for 
achieving spin–charge hybridization33, is shown in Fig. 1f, in which 
2tc/h is  plotted as a function of the voltage VB2 on the inter-dot barrier 
gate B2. A similar characterization of the second DQD (DQD2) yields 
gc/(2π ) =  37 MHz and γc/(2π ) =  45 MHz at the (1, 0) ↔  (0, 1) inter-dot 
charge transition. Owing to the higher impedance of the resonator, the 
values of gc measured here are much larger than in previous silicon DQD 
devices19,43, which is helpful for achieving strong spin–photon  coupling. 
In general, there are device-to-device variations in γc (refs 19, 43). 
It is unlikely the slightly higher charge decoherence rate is a result of 
our cavity design, because the Purcell decay rate29 is estimated to be 
Γc/(2π ) ≈  0.02 MHz =  γc/(2π ). Excited valley states are not visible in 
the cavity response of either DQD, suggesting that they have negligible 
population44. We therefore exclude valleys from the analysis below.

Strong single spin–photon coupling
We now demonstrate strong coupling between a single electron spin 
and a single photon, as evidenced by the observation of vacuum Rabi 
splitting. Vacuum Rabi splitting occurs when the transition frequency 
of a two-level atom fa is brought into resonance with a cavity photon of 
frequency fc (refs 21, 23). Light–matter hybridization leads to two 
vacuum-Rabi-split peaks in the cavity transmission. For our single-spin 
qubit, the transition frequency between two Zeeman-split spin states 
is fa ≈  EZ/h, where EZ =  gμBBtot is the Zeeman energy and the approxi-
mate sign is due to spin–charge hybridization, which shifts the qubit 
frequency slightly. Here g is the g-factor of the electron, μB is the Bohr 
magneton and = + / + +B B B B B[( ) 2] ( )x x z ztot ,L

M
,R

M 2 M ext 2  is the total 
magnetic field. To bring fa into resonance with fc, we vary the external 
magnetic field Bz

ext along the z axis while measuring the cavity trans-
mission spectrum A/A0 as a function of the drive frequency f (Fig. 2a). 
Vacuum Rabi splittings are clearly observed at = − .B 91 2 mTz

ext  and 
= .B 92 2 mTz

ext , indicating that EZ/h =  fc at these field values and that 
the single spin is coherently hybridized with a single cavity photon. 
These measurements are performed on DQD1, with 2tc/h =  7.4 GHz 
and ε =  0. The dependence of gs on ε and tc is investigated below41. 
Assuming g =  2 for silicon, we estimate that an intrinsic field of about 
120 mT is added by the micromagnet, comparable to values found in a 
previous experiment using a similar cobalt micromagnet design9.

To further verify the strong spin–photon coupling, we plot the cavity 
transmission spectrum at = .B 92 2 mTz

ext  (Fig. 2b). The two 
normal-mode peaks are separated by the vacuum Rabi frequency 
2gs/(2π ) =  11.0 MHz, giving an effective spin–photon coupling rate of 
gs/(2π ) =  5.5 MHz. The photon decay rate at finite magnetic field is 
extracted from the line width of A/A0 at = .B 90 3 mTz

ext , at which EZ/h 
is largely detuned from fc, yielding κ/(2π ) =  1.8 MHz. A spin decoher-
ence rate of γs/(2π ) =  2.4 MHz, with contributions from both charge 
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Figure 1 | Spin–photon interface. a, Optical image of the superconducting 
microwave cavity. The inset shows an optical image of the centre pin 
(0.6 μ m) and vacuum gap (20 μ m) of the cavity. b, False-colour scanning 
electron micrograph (SEM) of a DQD. Gate electrodes are labelled as G1, 
G2, S, D, B1, P1, B2, P2 and B3, where G1 and G2 are screening gates, 
S and D are used for accumulating electrons in the source and drain 
reservoirs, and B1 and B3 control the tunnel barrier of each dot to its 
adjacent reservoir. The locations of the cobalt micromagnets are indicated by 
the orange dashed lines. c, Schematic cross-sectional view of the DQD 
device. The blue line indicates the electrostatic confinement potential which 
delocalizes a single electron between the two dots (indicated as half-filled 
circles). The quantization axis of the electron spin (red arrow) changes 
between the dots. d, Cavity transmission amplitude A/A0 at f =  fc, where fc is 
the centre frequency of the cavity, near the (1, 0) ↔  (0, 1) inter-dot transition 
for DQD1, plotted as a function of the voltages on gates P1 and P2, VP1 and 
VP2, with =B 0z

ext  and VB2 =  710 mV. The dashed arrow denotes the DQD 
detuning parameter ε, which is equal to the difference in the chemical 
potentials of the two dots and points along the vertical direction because in 
this work VP1 is changed to vary ε. VB2 denotes the voltage on gate B2, which 
controls the inter-dot tunnel coupling tc. e, A/A0 as a function of ε with 
VB2 =  710 mV (red line) and a fit to cavity input–output theory (black 
dashed line), with gc/(2π ) =  40 MHz. f, 2tc/h as a function of VB2 for DQD1, 
obtained by measuring A(ε)/A0 at different values of VB2.
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decoherence and magnetic noise from the 29Si nuclei, is extracted from 
microwave spectroscopy in the dispersive regime with 2tc/h =  7.4 GHz 
and ε =  0 (Extended Data Fig. 4), confirming that the strong-coupling 
regime gs >  γs, κ has been reached. The spin–photon coupling rate 
obtained here is more than four orders of magnitude larger than rates 
currently achievable using direct magnetic-dipole coupling to 
lumped-element superconducting resonators30,45.

The local magnetic field that is generated using cobalt micromagnets 
is very reproducible, as evidenced by examining the other DQD in the 
cavity. Measurements on DQD2 show vacuum Rabi splittings at 

= ± .B 92 6 mTz
ext  (Fig. 2a, insets). The spin–photon coupling rate and 

spin decoherence rate are determined to be gs/(2π ) =  5.3 MHz and 
γs/(2π ) =  2.4 MHz, respectively (Fig. 2c). These results are highly 
consistent with DQD1, and so we henceforth focus on DQD1.

Electrical control of spin–photon coupling
For quantum information applications it is desirable to turn qubit–
cavity coupling rapidly on for quantum-state transfer and rapidly off 
for qubit-state preparation. Rapid control of the coupling rate is often 
accomplished by quickly modifying the qubit–cavity detuning fa −  fc. 
Practically, such tuning can be achieved by varying the qubit transi-
tion frequency fa with voltage or flux pulses46,47 or by using a tunable 
cavity20. These approaches are not directly applicable for control of 
the spin–photon coupling rate because fa depends primarily on mag-
netic fields that are difficult to vary on nanosecond timescales. In this 
section, we show that control of the spin–photon coupling rate can be 
achieved electrically by tuning ε and tc (refs 32, 40).

We first investigate the ε dependence of gs. In Fig. 3a we show meas-
urements of A/A0 as a function of Bz

ext and f for ε =  0, ε =  20 μ eV and 
ε =  40 μ eV. At ε =  20 μ eV (about 4.8 GHz), vacuum Rabi splitting 
is observed at = .B 92 1 mTz

ext  with a spin–photon coupling rate of 
gs/(2π ) =  1.0 MHz that is substantially lower than the value of 
gs/(2π ) =  5.5 MHz obtained at ε =  0. At ε =  40 μ eV (about 9.7 GHz), 
only a small dispersive shift is observed in the cavity transmission 

spectrum at = .B 91 8 mTz
ext , suggesting a further decrease in gs. These 

observations are qualitatively understood by considering that at ε =  0 
the electron is delocalized across the DQD and forms molecular 
bonding (| − 〉 ) or anti-bonding (| + 〉 ) charge states (Fig. 3c). In this 
regime, the cavity electric field leads to a displacement of the electron 
wavefunction of the order of 1 nm (Methods)33. Consequently, the 
electron spin experiences a large oscillating magnetic field, resulting in 
a substantial spin–photon coupling rate. By contrast, with ε � tc the 
electron is localized within one dot and it is natural to work with a basis 
of localized electronic wavefunctions | L〉  and | R〉 , where L and R 
correspond to the electron being in the left and right dot, respectively 
(Fig. 3c). In this effectively single-dot regime, the displacement of the 
electron wavefunction by the cavity electric field is estimated to be 
about 3 pm for a single-dot orbital energy of Eorb =  2.5 meV (ref. 48), 
greatly suppressing the spin–photon coupling mechanism33. The large 
difference in the effective displacement lengths between the single-dot 
and double-dot regimes also implies an improvement in the spin– 
photon coupling rate at ε =  0 of approximately two orders of magnitude 
compared to ε � tc . Alternatively, the reduction of gs may be 
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spin decoherence rate γs/(2π ) (bottom) as functions of 2tc/h, with ε =  0 
(data). The dashed lines show theoretical predictions. A potential 
uncertainty of 0.01–0.1 MHz exists for each value of gs/(2π ) and γs/(2π ) 
owing to uncertainties in the locations of the transmission peaks used to 
determine gs/(2π ) (Extended Data Fig. 5) and the widths of the Lorentzian 
fits used to determine γs/(2π ) (Extended Data Fig. 4). c, DQD energy levels 
as a function of ε, calculated with + =B B 209 mTz z

ext M , =B 15 mTx
M  and 

2tc/h =  7.4 GHz. Here Bz
M denotes the magnetic field produced by the 

cobalt micomagnet parallel to Bz
ext, and Bx

M is related to the strength of the 
inhomogeneous magnetic field perpendicular to Bz

ext. The symbols ↑  (↓ ), 
L (R) and −  (+ ) denote the quantum states of the electron that correspond 
to up (down) spin states, left-dot (right-dot) orbital states and molecular 
bonding (anti-bonding) states, respectively. The schematics at the top 
illustrate the distribution of the wavefunction of the electron in different 
regimes of ε. For ε� tc and ε− � tc, the electron is localized within one 
dot and tunnelling between the dots is largely forbidden, resulting in a 
small gs due to a small effective oscillating magnetic field. For ε � tc, the 
electron may tunnel between the two dots and experience a large 
oscillating magnetic field due to the spatial field gradient, resulting in a 
large gs.
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interpreted as a result of suppressed hybridization between the | − , ↑ 〉 
and | + , ↓ 〉  states due to their growing energy difference at larger | ε|, as 
evident from Fig. 3c (see discussion below). Here ↑  (↓ ) denotes an elec-
tron spin that is aligned (anti-aligned) with Bz

ext. These measurements 
highlight the important role of charge hybridization in the DQD.

Additional electric control of gs is enabled by voltage tuning tc (Fig. 1f). 
In Fig. 3b we show gs/(2π ) and γs/(2π ) as functions of 2tc/h at ε =  0, as 
extracted from vacuum Rabi splitting measurements and microwave 
spectroscopy of the electron spin resonance (ESR) transition line width 
(Figs 2b, 4b, Extended Data Figs 4, 5). Both rates increase rapidly as 2tc/h 
approaches the Larmor precession frequency EZ/h ≈  5.8 GHz, and a 
spin–photon coupling rate as high as gs/(2π ) =  11.0 MHz is found at 
2tc/h =  5.2 GHz. These trends are consistent with the DQD energy-level 
spectrum shown in Fig. 3c33,34,41. With / /�t h E h2 c Z  and ε =  0, the two 
lowest energy levels are | − , ↓ 〉  and | − , ↑ 〉  and the electric-dipole 
coupling to the cavity field is small. As 2tc is reduced and made compa-
rable to EZ, the ground state remains | − , ↓ 〉  but the excited state becomes 
an admixture of | − , ↑ 〉  and | + , ↓ 〉  owing to the magnetic-field gradient 

− =B B B2x x x,R
M

,L
M M and the small energy difference between the states. 

The quantum transition that is close to resonance with EZ is now par-
tially composed of a change in charge state from −  to + , which responds 
strongly to the cavity electric field and gives rise to larger values of gs. 
For 2tc/h <  EZ/h, a decrease in tc increases the energy difference between 
| − , ↑ 〉  and | + , ↓ 〉 , which reduces their hybridization and results in a 
smaller gs. We note that hybridization with charge states increases the 

susceptibility of the spin to charge noise and relaxation, resulting in an 
effective spin decoherence rate γs that is also strongly dependent on tc 
(Fig. 3b)33,34,41. Theoretical predictions of gs and γs as functions of 2tc/h, 
based on measured values of gc and γc (Fig. 1e) are in good agreement 
with the data (Fig. 3b)41. The discrepancy in the fit of γs is discussed in 
Methods. The electric control of spin–photon coupling demonstrated 
here allows the spin qubit to switch quickly between regimes with strong 
coupling to the cavity and idle regimes in which the spin–photon 
coupling rate and susceptibility to charge decoherence are small.

Dispersive readout of a single spin
The preceding measurements demonstrate the ability to couple a single 
electron spin to a single photon coherently, potentially enabling long-
range spin–spin couplings46,47. For the device to serve as a building 
block for a quantum processor, it is also necessary to prepare, control 
and read out the spin state of the trapped electron deterministically. We 
first induce spin transitions by driving gate P1 with a continuous micro-
wave tone of frequency fs and power Ps =  − 106 dBm. When fs ≈  EZ/h, 
the excited-state population of the spin qubit P↑ increases and the 
ground state-population P↓ decreases. In the dispersive regime, in 
which the qubit–cavity detuning Δ/(2π) ≈  EZ/h − fc satisfies 
∆ π/ / π� g(2 ) (2 )s , the cavity transmission experiences a phase 
response φ κ∆Δ ≈ /− gtan [2 ( )]1

s
2  for a fully saturated (P↑ =  0.5) 

qubit19,42. It is therefore possible to measure the spin state of a single 
electron by probing the cavity transmission. As a demonstration, we 
spectroscopically probe the ESR transition by measuring Δ φ as a func-
tion of fs and Bz

ext (Fig. 4a). These data are acquired with 2tc/h =  9.5 GHz 
and ε =  0. The ESR transition is clearly visible as a narrow feature with 
Δ φ ≠  0 that shifts to higher fs with increasing Bz

ext. Δ φ also changes 
sign as Bz

ext increases, consistent with the sign change of the qubit– cavity 
detuning Δ when the Larmor precession frequency EZ/h exceeds fc. 
The nonlinear response in the small region around =B 92 mTz

ext  is due 
to the breakdown of the dispersive condition ∆/ π / π� g(2 ) (2 )s .

Finally, we demonstrate coherent single-spin control and dispersive 
spin-state readout. For these measurements, we choose ε =  0 and 
2tc/h =  11.1 GHz to minimize the spin decoherence rate γs (Fig. 3b). 
Here the spin–photon coupling rate gs/(2π ) =  1.4 MHz (Fig. 3b). The 
external field is fixed at = .B 92 18 mTz

ext , which ensures that the system 
is in the dispersive regime with ∆/ π = / π� g(2 ) 14 MHz (2 )s  . A meas-
urement of Δ φ(fs) in the low-power limit (Fig. 4b) yields a Lorentzian 
line shape with a full-width at half-maximum of 0.81 MHz, which 
corresponds to a low spin decoherence rate of γs/(2π ) =  0.41 MHz 
(refs 19, 42). Qubit control and measurement are achieved using the 
pulse sequence illustrated in Fig. 4c. Starting with a spin-down state 
| ↓ 〉  at ε =  0, the DQD is pulsed to a large detuning ε′  =  70 μ eV (about 
17 GHz), which decouples the spin from the cavity. A microwave burst 
with frequency fs =  5.874 GHz, power Ps =  − 76 dBm and duration τB 
is subsequently applied to P1 to drive a spin rotation9,36,38. The DQD 
is then pulsed adiabatically back to ε =  0 for a fixed measurement time 
TM for dispersive readout. To reinitialize the qubit, we choose 

ε= μ =�T T20 s ( 0)M 1 , where T1(ε =  0) =  3.2 μ s is the spin relaxation 
time measured at ε =  0 (Extended Data Fig. 6). Figure 4d displays the 
time-averaged Δ φ as a function of τB, obtained with an integration time 
of 100 ms for each data point. We observe coherent single-spin Rabi 
oscillations with a Rabi frequency of fR =  6 MHz. In contrast to readout 
approaches that rely on spin-dependent tunneling9,38,49, our dispersive 
cavity-based readout corresponds in principle to quantum non- 
demolition readout24. The readout scheme is also distinct from  previous 
work that used a cavity-coupled InAs DQD, which detects the spin state 
through Pauli blockade rather than spin–photon  coupling36. In addition 
to enabling single spin–photon coupling, our device is capable of 
preparing, controlling and dispersively reading out single spins.

Conclusion
We have realized a coherent spin–photon interface at which a single 
spin in a silicon DQD is strongly coupled to a microwave-frequency 
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Figure 4 | Quantum control and dispersive readout of a single spin. 
a, Cavity phase response Δ φ at f =  fc when gate P1 is driven continuously 
at a variable frequency fs and power Ps =  − 106 dBm, with 2tc/h =  9.5 GHz 
and ε =  0. A background phase response, obtained by measuring φΔ B( )z

ext  
in the absence of a microwave drive on P1, is subtracted from each column 
of the data to correct for slow drifts in the microwave phase. b, Electron 
spin resonance (ESR) line as measured in Δ φ(fs) at 2tc/h =  11.1 GHz, ε =  0, 

= .B 92 18 mTz
ext  and Ps =  − 123 dBm (data). The dashed line shows a fit to 

a Lorentzian with a full-width at half-maximum of γs/π  =  0.81 ±  0.04 MHz 
(indicated by the arrows). c, Schematic showing the experimental sequence 
for coherent spin control and measurement. Spin control is performed 
using a high-power microwave burst when the electron is largely localized 
within one dot ( ε � tc) and spin–photon coupling is turned off. Spin-
state readout is achieved using the dispersive response of a cavity photon 
at ε =  0 and when spin–photon coupling is turned on. d, Δ φ as a function 
of τB, with 2tc/h =  11.1 GHz and ε′  =  70 μ eV, showing single-spin Rabi 
oscillations. The excited-state population of the spin qubit P↑ is indicated 
on the right y axis (see Methods).
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photon through the combined effects of the electric-dipole interac-
tion and spin–charge hybridization (see Methods for a discussion of 
the prospects of applying the spin–photon interface to realize cavity- 
mediated spin–spin coupling). Spin–photon coupling rates of up 
to 11 MHz are measured in the device, exceeding magnetic-dipole 
coupling rates by nearly five orders of magnitude. The spin decoher-
ence rate is strongly dependent on the inter-dot tunnel coupling tc and 
ranges from 0.4 MHz to 6 MHz, possibly limited by a combination of 
charge noise, charge relaxation and remnant nuclear field fluctuations. 
All-electric control of spin–photon coupling and coherent manipula-
tion of the spin state are demonstrated, along with dispersive readout of 
the single spin, which lays the foundation for quantum non-demolition 
readout of spin qubits. These results could enable the construction of 
an ultra-coherent spin quantum computer with photonic interconnects 
and readout channels, with the capacity for surface codes, ‘all-to-all’ 
connectivity and easy integration with other solid-state quantum 
systems such as superconducting qubits24,46,47,50–52.

We note that two related preprints appeared after the submission 
of this Article: ref. 53 presents some of the results discussed here, and 
ref. 54 explores a different approach to spin–photon coupling 
and demonstrates coherent coupling of a triple quantum dot to 
microwave-frequency photons.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MethOdS
Device fabrication and measurement. The Si/SiGe heterostructure consists of a 
4-nm-thick Si cap, a 50-nm-thick Si0.7Ge0.3 spacer layer, a 8-nm-thick  natural-Si 
quantum well and a 225-nm-thick Si0.7Ge0.3 layer on top of a linearly graded 
Si1−xGex relaxed buffer substrate. Design and fabrication details for the super-
conducting cavity and DQDs are described elsewhere43. The approximately 
200-nm-thick Co micromagnet is defined using electron beam lithography and lift 
off. In contrast to earlier devices, the gate filter for P1 was changed to an L1–C–L2 
filter, with L1 =  4 nH, C =  1 pF and L2=  12 nH (ref. 43). This three-segment filter 
allows microwave signals below 2.5 GHz to pass with less than 3 dB of attenuation.

All data are acquired in a dilution refrigerator with a base temperature of 10 mK 
and electron temperature of Te =  60 mK. The measurements of the transmission 
amplitude and phase response of the cavity (Figs 1, 4) are performed using a homo-
dyne detection scheme23. The measurements of the transmission spectra of the 
cavity (Figs 2, 3) are performed using a network analyser. The microwave drive 
applied to P1 (Fig. 4) is provided by a vector microwave source and the detuning 
pulses are generated by an arbitrary waveform generator, which also controls the 
timing of the microwave burst (Fig. 4d).

To maximize the magnetization of the Co micromagnet and minimize 
hysteresis, data at positive (negative) external applied magnetic fields (Fig. 2a) are 
collected after Bz

ext is first ramped to a large value of + 300 mT (− 300 mT). A small 
degree of hysteresis still remains for the micromagnet of DQD1, as can be seen by 
the different magnitudes of Bz

ext at which positive- and negative-field vacuum Rabi 
splittings are observed (Fig. 2a). In Fig. 4a, the slope of the ESR transition is 

/ / = −E h Bd( ) d 44 MHz mTzZ
ext 1, which is higher than the value (28 MHz mT−1) 

expected for a fully saturated micromagnet. The slope of the transition suggests 
that the micromagnet is not fully magnetized and has a magnetic susceptibility of 

/ ≈ .B Bd d 0 6z z
M ext  around =B 92 mTz

ext .
Estimate of displacement length. The displacement length of the electron wave-
function by the cavity electric field may be estimated by considering the spin– 
photon coupling strength. For gs/(2π ) =  10 MHz, the effective AC magnetic field 
Bac

ESR that drives ESR is µ= / π / ≈ .B g h g[ (2 )][ ( )] 0 4 mTac
ESR

s B . The field gradient 
for our DQD is / ≈ . −B l2 0 3 mT nmx

M 1, where l =  100 nm is the inter-dot distance. 
Therefore, the effective displacement of the electron wavefunction is estimated to 
be about 1 nm in the DQD regime. For a single dot, the spin–photon coupling 
strength is expected to be µ/ π ≈ / / π ≈g g B E g(2 ) ( )( 2 ) 30 kHzxs B

M
orb c  (refs 31, 33) 

for an orbital energy of Eorb =  2.5 meV (ref. 48). The equivalent AC magnetic field 
that is induced by the cavity is therefore ≈ μB 1 Tac

ESR , corresponding to a displace-
ment length of only about 3 pm.
Conversion of cavity phase response to spin population. For the dispersive read-
out of the Rabi oscillations (Fig. 4d), the theoretically expected cavity phase 
response is φ κ∆= / = . °↑

− gtan [2 ( )] 9 61
s
2  when the spin qubit is in the excited 

state, and φ κ∆=− / =− . °↓
− gtan [2 ( )] 9 61

s
2 when the spin qubit is in the ground 

state42,55. Because our measurement is averaged over �T TM 1, spin relaxation dur-
ing readout will reduce the phase contrast observed in the experiment. To enable 
a conversion between the phase response of the cavity Δ φ and the excited-state 
population of the spin qubit P↑, we measure the spin relaxation time T1 by fixing 
the microwave burst time at τB =  80 ns, which corresponds to a π  pulse on the spin 
qubit. The phase response of the cavity Δ φ is then measured as a function of TM 
for TM >  5 μ s >  T1 (Extended Data Fig. 6). The result is fitted to a function of the 
form Δ φ =  φ0 +  φ1(T1/TM)[1 − exp(− TM/T1)] to extract T1 =  3.2 μ s, where φ0 and 
φ1 are additional fitting parameters36. We have ignored the effects of the cavity 
ringdown time 1/κ ≈  90 ns and the π -pulse time of 80 ns in the fit, because both of 
these times are much shorter than the measurement time TM. The phase contrast 
that results from the fit, φ1 ≈  17.7°, is close to the maximum contrast expected at 
this spin–photon detuning, φ↑ −  φ↓ =  19.2°. On the basis of this value of T1, we 
convert the measured phase response into the excited-state population via 
P↑ =  (1 +  Δ φ/φ↑,r)/2, where φ↑,r =  φ↑(T1/TM)[1 − exp(− TM/T1)] =  1.5° is the 
reduced phase response due to spin relaxation during the readout time TM =  20 μ s. 
The converted spin population P↑ shown in Fig. 4d has a visibility of about 70%, 
which could be improved by performing single-shot measurements55.
Input–output theory for cavity transmission. Here we briefly summarize the 
theoretical methods used to calculate the cavity transmission A/A0 shown in 
Fig. 1e and Extended Data Fig. 7; see ref. 41 for a detailed description of the theory. 
We start from the Hamiltonian that describes the DQD

ετ τ σ σ τ= + + +H t B B1
2

( 2 ) (1)z x z z x x z0 c
M

where τx and τz are Pauli operators that act on the orbital charge states of the DQD 
electron, σx and σz are Pauli operators that act on the spin states of the electron, 

= +B B Bz z z
ext M  denotes the total magnetic field along the z axis and 

= − /B B B( ) 2x x x
M

,R
M

,L
M  is half the magnetic field difference of the DQD in the 

x direction. In the theoretical model, we have assumed that the average magnetic 

field in the x direction satisfies + / =B B( ) 2 0x x,R
M

,L
M , which is a good approximation 

given the geometry of the micromagnet and its alignment with the DQD. We add 
the electric-dipole coupling to the cavity with the Hamiltonian

τ= +H g a a( ) zI c
†

where a and a† are the photon operators for the cavity. The electric-dipole operator 
can be expressed in the eigenbasis {| n〉 } of H0 as

∑τ = | 〉〈 |
=

d n mz
n m

nm
, 0

3

We then write the quantum Langevin equations for the operators a and 
σnm =  | n〉 〈 m| :

∑

∑

∆ κ κ κ σ

σ σ γ σ γ

= − + + −

= − − − +

− +

ω

ω ω

=

′ ′
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c
†

R

R R

where Δ0 =  ωR −  ωc is the detuning of the driving field frequency (ωR =  2π f) 
relative to the cavity frequency (ωc =  2π fc) and pnm =  pn −  pm is the population 
difference between levels n and m (pn can, for example, be assumed to be a 
Boltzmann distribution in thermal equilibrium). This description is equivalent to 
a more general  master-equation approach in the weak-driving regime in which 
population changes in the DQD can be neglected. Furthermore, κ1 and κ2 are the 
photon decay rates at ports 1 and 2 of the cavity and ain,1 is the input field of the 
cavity, which we assume to couple through port 1 only (ain,2 =  0). The quantum 
noise of the DQD F is neglected in what follows. The super-operator γ with matrix 
elements γnm,n′m′ represents decoherence processes, including charge relaxation 
and dephasing due to charge noise (these processes also imply some degree of spin 
relaxation and dephasing due to spin–charge hybridization via Bx

M). Our goal is to 
relate the incoming parts ain,i of the external field at the ports to the outgoing fields 

κ= −a a ai i iout, in, . The transmission = /A a aout,2 in,1  (where the overbars 
denote time-averaged expectation values) through the microwave cavity is then 
computed using a rotating-wave approximation to eliminate the explicit time 
dependence in equation (2), by solving the equations for the expected value of these 
operators in the stationary limit (a and σn m, ):

κ κ
∆ κ χ

=
−

− − / + ∑ ∑= =
−

+ +
A i

i g d2 n j
n

n n j n n j

1 2

0 c 0
2

1
3

, ,

where χ σ= /+ + an n j n n j, ,  are the single-electron partial susceptibilities and dij are 
the dipole-transition matrix elements between DQD states.
Theoretical models for spin–photon coupling and spin decoherence. Here we 
present a brief derivation of the analytical expressions for the spin–photon coupling 
rate gs and the spin decoherence rate γs. A more extensive discussion of spin–photon 
coupling and spin decoherence specific to our device architecture is presented in 
ref. 41. We focus on the ε =  0 regime used in Fig. 3b. Accounting for spin–charge 
hybridization due to the field gradient Bx

M, the relevant eigenstates of the DQD 
Hamiltonian in equation (1) are | 0〉  ≈  | − , ↓ 〉 , | 1〉  =  cos(Φ/2)| − , ↑ 〉  +  sin(Φ/2)| + , ↓ 〉 , 
| 2〉  =  sin(Φ/2)| − , ↑ 〉  −  cos(Φ/2)| + , ↓ 〉  and | 3〉  ≈  | + , ↑ 〉 . Here we have introduced 
a mixing angle Φ µ µ= / −− g B t g Btan [ (2 )]x z

1
B

M
c B . The dipole-transition matrix 

element for the primarily spin-like transition between | 0〉  and | 1〉  is d01 ≈  − sin(Φ/2) 
and the dipole-transition matrix element for the primarily charge-like transition 
between | 0〉  and | 2〉  is d02 ≈  cos(Φ/2). The transition between | 0〉  and | 3〉  is too high 
in energy (off-resonance) and is therefore excluded from our model. The spin–
photon coupling rate is gs =  gc| d01|  =  gc| sin(Φ/2)| , in agreement with previous 
theoretical results33,34.

To calculate the effective spin decoherence rate γs
(c) that arises from charge 

decoherence, we first construct the operators σ01 =  | 0〉 〈 1|  ≈  cos(Φ/2)σs +  sin(Φ/2)σr 
and σ02 =  | 0〉 〈 2|  ≈  sin(Φ/2)σs −  cos(Φ/2)σr . Here σs =  | − , ↓ 〉 〈 − , ↑ |  and σr =  | − , ↓ 〉 
〈 + , ↓ |  are lowering operators for the electron spin and charge, respectively. 
Assuming that the electron charge states have a constant decoherence rate 
γc =  γ1/2 +  γφ, where γ1 is the charge relaxation rate and γφ is a dephasing rate due 
to charge noise56, the equations of motion for these operators are
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Combined with charge–photon coupling, the overall equations of motion 
(equation (2)) in a rotating frame with a drive frequency f ≈  fc assume the form

∆ κ κ σ σ

σ δ σ γ Φ σ γ Φ σ

σ δ σ γ Φ σ γ Φ σ

= − + − +

= − −






 + −

= − −






 + −

�

�

�

a i a a a ig d d

i ig ad

i ig ad

2
( )

sin
2

sin( )
2

cos
2
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2

0 1 in,1 c 01 01 02 02

01 1 01 c
2

01 c 02 c 10

02 2 02 c
2

02 c 01 c 20

The δ1 and δ2 terms are defined as δ1/(2π ) =  (E1 −  E0)/h −  f and δ2/(2π ) 
=  (E2 −  E0)/h −  f, where E0,1,2 correspond to the energy of the | 0〉 , | 1〉  and | 2〉 
state, respectively. Steady-state solutions to the above equations give the 
electric susceptibility of the spin qubit transition χ σ δ γ= / = / −a g i( )0,1 01 s 1 s

(c) , 
where we have identified a charge-induced spin decoherence rate 
γ γ δ Φ δ Φ δ= / + / /[ sin ( 2) cos ( 2)]s

(c)
c 2

2
1

2
2 . To account for spin dephasing due to 

fluctuations of the 29Si nuclear spin bath, we express the total spin decoherence 
rate assuming a Voigt profile:
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where ⁎ ≈ μT 1 s2,nuclear  is the electron-spin dephasing time due to nuclear field 
fluctuations11,38.

When fitting the data in Fig. 3b, we use the experimentally determined values 
of gc/(2π ) =  40 MHz and γc/(2π ) =  35 MHz, along with the best-fitting field 
gradient =B 15 mTx

M . For every tc, the fitted value for Bz is adjusted so that the 
spin-qubit frequency (E1 −  E0)/h matches the cavity frequency fc exactly. The slight 
discrepancy between theory and experiment for γs could be due to the frequency 
dependence of γc, changes in γc with Bz

ext or other decoherence mechanisms that 
are not captured by this simple model. To resolve such a discrepancy, a complete 
measurement of γc as a function of 2tc/h and the external field Bz

ext is needed.
The complete theory41 also allows gs/(2π ) to be calculated for non-zero values 

of ε. Using 2tc/h =  7.4 GHz, we estimate gs/h =  2.3 MHz at ε =  20 μ eV (about 
4.8 GHz), close to the value of gs/h =  1.0 MHz measured at this DQD detuning 
(Fig. 3a).

In this theoretical model, we have ignored Purcell decay of the spin qubit 
through the cavity29. This is justified because γs at every value of tc is measured 
with a large spin–cavity detuning Δ ≈  10gs. The expected Purcell decay rate 
of the spin qubit is Γ κ κ ∆/ π = / / + / π ≈ .g(2 ) [ ( 4 )] (2 ) 0 02 MHzP s

2 2 2  , well below 
the measured values of γs/(2π ). We also note that, at least in the �t E2 c Z  limit, 
spin decoherence at ε =  0 is dominated by noise-induced dephasing rather than 
by energy relaxation. This is because at 2tc/h =  11.1 GHz the spin decoherence rate 
γs/(2π ) =  0.41 MHz corresponds to a coherence time of  = . μ = . μ�T T0 4 s 2 6 4 s2 1 .
Line shapes of vacuum Rabi splittings. In contrast to charge–photon 
systems19,20,23, the two resonance modes in the vacuum Rabi splittings (Fig. 2b, c) 
show slightly unequal widths. This effect can be seen by comparing the observed 
spectrum of DQD1 with the expected behaviour of an equivalent two-level charge 
qubit that is coupled strongly to a cavity, calculated using a master-equation simu-
lation with thermal photon number nth =  0.02 (black dashed line in Extended Data 
Fig. 7). The unequal widths are unlikely to be a result of a large thermal photon 
number in the cavity, because the transmission spectrum calculated with nth =  0.5 
(orange dashed line) clearly does not fit the experimental data57.

Instead, the observed asymmetry probably arises from the dispersive interaction 
between the cavity and the primarily charge-like transition between | 0〉  and | 2〉 , 
which results in three-level dynamics that is more complicated than the two-level 
dynamics that characterizes charge–photon systems. A more complete treatment 
of this effect is given in ref. 41. Here we compare the experimental observation 
with theory by calculating A(f)/A0 using gc/(2π ) =  40 MHz (DQD1) or gc/(2π ) 
=  37 MHz (DQD2), γc/(2π ) =  105 MHz (DQD1) or γc/(2π ) =  130 MHz (DQD2), 
κ/(2π) =  1.8 MHz, tunnel couplings 2tc/h =  7.4 GHz, =B 15 mTx

M  and 
Bz =  209.6 mT. The results are shown as black solid lines alongside experimental 
data in Extended Data Fig. 7. The agreement between experiment and theory is 
very good for both devices. In particular, the asymmetry between the vacuum Rabi 
modes is also seen in the theoretical calculations. The larger values of γc used in 

the theoretical calculations may again be due to the frequency dependence of γc 
or to changes in γc with Bz

ext . Further experiments are needed to resolve this 
difference.
Prospects for long-range spin–spin coupling. The coherent spin–photon inter-
face may be readily applied to enable spin–spin coupling across the cavity bus. Here 
we evaluate two possible schemes for implementing such a coupling, both of which 
have been demonstrated with superconducting qubits46,47. The first approach uses 
direct photon exchange to perform quantum-state transfer between two qubits47. 
The transfer protocol starts by tuning qubit 1 into resonance with the unpopulated 
cavity for a time 1/(4gs), at the end of which the state of qubit 1 is transferred com-
pletely to the cavity. Qubit 1 is then detuned rapidly from the cavity and qubit 2 is 
brought into resonance with the cavity for a time 1/(4gs), at the end of which the 
state of qubit 1 is transferred completely to qubit 2. Therefore, the time required 
for quantum-state transfer across the cavity is 1/(2gs). Because the decay of vacuum 
Rabi oscillations occurs at a rate κ/2 +  γs, the threshold for coherent-state transfer 
between two spin qubits is 2gs/(κ/2 +  γs) >  1. The ratio 2gs/(κ/2 +  γs) is plotted as 
a function of 2tc/h in Extended Data Fig. 8a. It can be seen that 2gs/(κ/2 +  γs) >  1 
for all values of 2tc/h, indicating that spin–spin coupling via real photon exchange 
is achievable and may be implemented at any value of tc. For our device  parameters, 
the regime 2tc/h ≈  6 GHz, in which spin–charge hybridization is large and the 
ratio 2gs/(κ/2 +  γs) reaches a maximum of 3.5, seems most advantageous for such 
a coupling scheme.

The second approach to spin–spin coupling uses virtual photon exchange46. In 
this scheme, both spin qubits would operate in the dispersive regime, with an 
effective coupling rate of ∆ ∆= / + / /J g (1 1 ) 2s

2
1 2 , where Δ1 and Δ2 are the qubit–

cavity detunings for qubits 1 and 2, respectively. Assuming that both qubits  operate 
with an equal detuning Δ1,2 =  10gs to minimize Purcell decay, J =  gs/10. For 
coherent spin–spin interaction, J >  γs needs to be satisfied, leading to the condition 
gs/γs >  10. In Extended Data Fig. 8b, we plot the ratio gs/γs as a function of 2tc/h, 
observing a maximum of gs/γs ≈  4 at 2tc/h ≈  10 GHz. Because the dominant spin 
mechanism is probably hyperfine-induced dephasing by the 29Si nuclei in this 
regime (the decoherence rate γs/(2π ) ≈  0.4 MHz is close to the decoherence rates 
commonly found with single-spin qubits in natural Si; ref. 38), transitioning to 
isotopically purified 28Si host materials is likely to lead to an order-of-magnitude 
reduction in γs/(2π ), as demonstrated recently58. Such an improvement will allow 
virtual-photon-mediated spin–spin coupling to be implemented in our device 
architecture as well.

Last, we note that both coupling approaches will benefit substantially from 
larger values of the charge–photon coupling rate gc, which is achievable through 
the development of higher-impedance cavities20,59. The superconducting cavity 
used here is estimated to have an impedance between 200 Ω  and 300 Ω . Increasing 
this value to about 2 kΩ , which is possible by using NbTiN as the superconducting 
material, will lead to another factor-of-three increase in gc and therefore gs. This 
could enable the gs/γs >  100 regime to be accessed, where high-fidelity two-qubit 
gates can be implemented between distant spins. Improvements in the fidelity of 
cavity-mediated two-qubit gates, particularly in the case of real photon exchange, 
can also be sought by improving the quality factor of the cavity (and thereby 
reducing κ). This is achievable by implementing stronger gate line filters43 and 
removing lossy dielectrics such as the atomic-layer-deposited Al2O3 underneath 
the cavity.
Data availability. The data that support the findings of this study are available 
from the corresponding author on reasonable request. Source Data for Figs 1–4 
and Extended Data Figs 2–8 are available with the online version of the paper.
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Extended Data Figure 1 | Micromagnet design. To-scale drawing of the 
micromagnet design, superimposed on top of the SEM image of the DQD. 
The coordinate axes and the direction of the externally applied magnetic 
field Bz

ext are indicated at the bottom. In this geometry, the DQD electron 
experiences a homogeneous z field ≈ +B B Bz z z

ext M. The total x field Bx that 

is experienced by the electron is spatially dependent, being approximately 
Bx ,L

M  (Bx ,R
M ) when the electron is in the L (R) dot ( ε � tc) and 

+ /B B( ) 2x x,L
M

,R
M  when the electron is delocalized between the DQDs (ε =  0). 

The y field By for the DQD electron is expected to be small compared to 
the other field components for this magnet design.

                                                                                  



               

Extended Data Figure 2 | Photon number calibration. The ESR 
resonance frequency fESR, measured using the phase response of the 
cavity Δ φ in the dispersive regime (Fig. 4b), is plotted as a function 
of the estimated power at the input port of the cavity P (data). The 
device is configured with gs/(2π ) =  2.4 MHz and spin–photon 
detuning Δ/(2π ) ≈  − 18 MHz. The dashed line shows a fit to 

∆= = + / / πf f P n g( 0) (2 ) (2 )ESR ESR ph s
2 , where nph is the average number 

of photons in the cavity, plotted as the top x axis. The experiments are 
conducted with P ≈  − 133 dBm (0.05 fW), which corresponds to nph ≈  0.6. 
The error bars indicate the uncertainties in the centre frequency of the 
ESR transition.

                                                                                  



               

Extended Data Figure 3 | DQD stability diagrams. The cavity 
transmission amplitude A/A0 (a, c) and phase response Δ φ (b, d) are 
plotted as functions of VP1 and VP2 for DQD1 (a, b) and DQD2 (c, d), 
obtained with f =  fc. The (1, 0) ↔  (0, 1) transitions are clearly identified 

on the basis of these measurements and subsequently tuned close to 
resonance with the cavity for the experiments described in the main text. 
The red circles indicate the locations of the (1, 0) ↔  (0, 1) transitions of 
the two DQDs.

                                                                                  



               

Extended Data Figure 4 | Spin decoherence rates at different DQD 
tunnel couplings. ESR line, as measured in the cavity phase response 
Δ φ(fs), is shown for different values of 2tc/h in the low-power limit (data). 
ε =  0 for every dataset. Dashed lines are fits with Lorentzian functions 

and γs/(2π ) is determined as the half-width at half-maximum of each 
Lorentzian. The spin–photon detuning | Δ| ≈10 gs for each dataset, to 
ensure that the system is in the dispersive regime.

                                                                                  



               

Extended Data Figure 5 | Spin–photon coupling strengths at different 
DQD tunnel couplings. a, b, Vacuum Rabi splittings for 2tc/h <  fc (a) 
and 2tc/h >  fc (b), obtained by varying Bz

ext until a pair of resonance peaks 
with approximately equal heights emerges in the cavity transmission 

spectrum A/A0. gs/(2π ) is then estimated as half the frequency difference 
between the two peaks. ε =  0 for every dataset. gs is difficult to measure for 
5.2 GHz <  2tc/h < 6.7 GHz owing to the small values of A/A0 that arise 
from the large spin decoherence rates γs in this regime.

                                                                                  



               

Extended Data Figure 6 | Spin relaxation at ε = 0. The time-averaged 
phase response of the cavity Δ φ is shown as a function of wait time TM 
(data), measured using the pulse sequence illustrated in Fig. 4c. The 
microwave burst time is fixed at τB =  80 ns. The dashed line shows a fit 

using the function φ0 +  φ1(T1/TM)[1 − exp(− TM/T1)], which yields a spin 
relaxation time of T1 ≈  3.2 μ s. The experimental conditions are the same as 
for Fig. 4d.

                                                                                  



               

Extended Data Figure 7 | Theoretical fits to vacuum Rabi splittings. 
The calculated cavity transmission spectra (black solid lines) are 
superimposed on the experimentally measured vacuum Rabi 
splittings shown in Fig. 2b, c (data). The calculations are produced 
with gc/(2π ) =  40 MHz (gc/(2π ) =  37 MHz), κ/(2π ) =  1.8 MHz, 
γc/(2π ) =  105 MHz (γc/(2π ) =  120 MHz), = + =B B B 209 mTz z z

ext M , 

= − / =B B B( ) 2 15 mTx x x
M

,R
M

,L
M  and 2tc/h =  7.4 GHz for DQD1 (DQD2). 

For comparison, A(f)/A0, simulated for a two-level charge qubit with 
a decoherence rate of γc/(2π ) =  2.4 MHz coupled to a cavity with 
κ/(2π ) =  1.8 MHz at a rate gc/(2π ) =  5.5 MHz, is shown in a for 
thermal photon numbers of nth =  0.02 (black dashed line) and 
nth =  0.5 (red dashed line).

                                                                                  



               

Extended Data Figure 8 | Prospect for long-range spin–spin coupling. a, The ratio 2gs/(κ/2 +  γs) as a function of 2tc/h, calculated using the data in 
Fig. 3b and κ/(2π ) =  1.8 MHz. b, The ratio gs/γs as a function of 2tc/h, also calculated using the data in Fig. 3b.
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