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Random-walk topological transition revealed via electron counting

G. Engelhardt,1,2 M. Benito,3,4 G. Platero,3 G. Schaller,1 and T. Brandes1

1Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
2Beijing Computational Science Research Center, Beijing 100193, People’s Republic of China

3Instituto de Ciencia de Material de Madrid, CSIC, 28049 Madrid, Spain
4Department of Physics, University of Konstanz, D-78457 Konstanz, Germany

(Received 20 July 2017; revised manuscript received 6 October 2017; published 8 December 2017)

The appearance of topological effects in systems exhibiting a nontrivial topological band structure strongly
relies on the coherent wave nature of the equations of motion. Here, we reveal topological dynamics in a classical
stochastic random walk version of the Su-Schrieffer-Heeger model with no relation to coherent wave dynamics.
We explain that the commonly used topological invariant in the momentum space translates into an invariant in a
counting-field space. This invariant gives rise to clear signatures of the topological phase in an associated escape
time distribution.
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Introduction. Starting from topological insulators and su-
perconductors [1–3], the manifestation of topological band
structures has been investigated in various contexts. Relying
on the wave nature of the dynamics, topological band structure
effects also appear in bosonic and classical systems [4–11].
Furthermore, topological effects are manifested in quantum
walk problems [12–19]. Thereby, a quantum mechanical
particle moves randomly on a lattice, where the movement
is determined by a quantum mechanical equation of motion.
For this reason, the dynamics of the quantum walk inherits the
wave nature of quantum mechanics which consequently can
give rise to topological band structure effects.

In this Rapid Communication, we abandon the requirement
of a wavelike motion and consider a purely stochastic random
walk in a classical fashion. As we explain in the following,
a properly designed system still exhibits clear features of a
topological coupling geometry. We choose a random walk
version of the celebrated Su-Schrieffer-Heeger (SSH) model
to explain this effect. A sketch of the system is depicted
in Fig. 1(a). The SSH model consists of a linear chain of
nodes with staggered coupling strength and is presumably the
simplest model exhibiting topological effects [20–22]. In our
investigation, the state of the system can hop randomly along
the SSH chain.

Due to the underlying topological coupling geometry, one
can define a topological invariant (TI) based on the generalized
density matrix, where the counting field takes the role of
momentum in common topological band structures. We show
that a properly defined escape time statistics will reveal the
topology. Thereby, the SSH model with an open boundary
condition is associated to the escape time from a finite region
of the SSH random walk as depicted in Fig. 1(d).

Our approach requires a detailed counting statistics with
a large number of experimental runs. In order to obtain the
required amount of data, we suggest to implement the random
walk using a single-electron transistor (SET), which in the
full-counting space is described by a SSH random walk.

Understanding the relaxation dynamics of mesoscopic
devices is of fundamental interest in the development of
mesoscopic electronic devices [23,24] as single-electron
emitters [25,26], quantum pumps [27–29], or solid state
qubits [30]. A detailed counting statistics can provide informa-

tion about the underlying processes and correlations arising in
mesoscopic devices, as universal oscillations investigated in
Refs. [31,32]. A basic theoretical knowledge is required to
develop schemes to control the counting statistics [33,34].
In this regard, our findings contribute to the fundamental
understanding of processes being active in such systems. The
possibility of including feedback operations allows us to study
even more sophisticated models [35].

The system. We consider a classical random walk on a one-
dimensional lattice [Fig. 1(a)]. The sites are labeled by n =
0, ± 1, ± 2, . . . . The random walk of the state |n〉t from time
t to time t + dt is determined by the transition probabilities
p+,p−,ps which are defined by

|n〉t →
⎧⎨
⎩

|n + 1〉t+dt with p+ = (γ − (−1)nα)dt

|n − 1〉t+dt with p− = (γ + (−1)nα)dt

|n〉t+dt with ps = 1 − p+ − p−,

(1)

where 2γ dt is the probability that the system escapes from
site n within an infinitesimal time step dt . We impose a
coupling geometry with an alternating hopping probability.
The parameter α determines a jump bias so that for α �= 0
a jump to either |n + 1〉 or |n − 1〉 is preferred. The coupling
geometry is thus analog to the SSH model [20,21]. Equation (1)
appears in the transport dynamics of a SET, i.e., a quantum
dot connected to two electronic leads, when the chemical
potentials match the on-site energy of the quantum dot. In
this case, the effective coupling parameters are �L/R = γ ± α

(see Fig. 1(b) [35,36]).
For the following analysis, we introduce the parametriza-

tion n = 2m − d with m ∈ Z and d ∈ {0,1}. The probability
distribution corresponding to Eq. (1) follows the equation

d

dt
ρ

m
= L0ρm

+ L+ρ
m−1

+ L−ρ
m+1

, (2)

where ρ
m

= (pm,1,pm,0)T contains the probabilities pm,d =
pn=2m−d that the system is in state |n = 2m − d〉 and

L0 =
(−2γ �L

�L −2γ

)
, L+ =

(
0 �R

0 0

)
, L− = (L+)T.

Regarding the SET [Fig. 1(b)], L+ describes a jump of
an electron from the right reservoir into the dot, while the
nondiagonal entries of L0 describe the jumps related to the left
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FIG. 1. (a) Stochastic random walk on a lattice with SSH coupling
geometry. The state of the system |n〉 changes randomly as a function
of time with alternating hopping probabilities according to Eq. (1).
(b) This random walk describes the dynamics of a SET connected
to two Markovian leads with properly adjusted chemical potentials,
which are coupled to the dot with strengths �R and �L. By counting the
number of particles tunneled into the right reservoir m and monitoring
the dot occupation d ∈ {0,1}, one can infer the state n = 2m − d . (c)
Illustration of the TI in the SSH model, which is equivalent to a
winding of the curve [lx(χ ),ly(χ )] (depending on �R/L) around the
origin. (d) Stochastic trajectory of |n〉t as a function of time in units of
2γ = �R + �L. At time te the state escapes from the region {1,...,N},
resembling the quantum SSH model with an open boundary condition.

reservoir. Additionally, the diagonal terms −2γ = −�L − �R

are responsible for the correct normalization of the probability
distribution

∑
n pn = 1. The index m can thus be interpreted

as the number of particles having jumped out of the right
reservoir. For instance, if the initial state is pn(0) = δn,1, then
we have one particle m = 1 tunneled out of the right reservoir
and a dot occupation of d = 1.

Relation to the Schrödinger equation and topology. By
replacing d/dt → id/dt , Eq. (2) becomes equivalent to the
Schrödinger equation of a particle in the quantum mechanical
SSH model, when interpreting ρ

m
as the corresponding

wave function. We emphasize that the introduction of the
complex unit i is more than a reparametrization, but renders
one real-valued equation into a complex-valued (thus, two
real-valued) equation(s). As a consequence, we obtain the
wavelike Schrödinger equation, so that we can expect different
kinds of physical dynamics.

Yet, the formal analogy to the quantum SSH Hamiltonian
gives rise to topological effects in a stochastic random walk.
To see this, we apply the concepts known from the quantum
model to introduce a TI.

By applying a Fourier transformation Eq. (2) becomes

ρ̇(t,χ ) = Lχ ρ(t,χ ), Lχ = −2γ 1 + l(χ ) · σ , (3)

where l(χ ) = [lx(χ ),ly(χ )] with lx(χ ) = �L + �R cos(χ ),
ly(χ ) = �R sin(χ ) and σ = [σ x,σ y] with σ x,y,z denote the
usual Pauli matrices. Importantly, (1,1) · ρ(t,χ ) represents the
moment generating function, whose derivatives with respect
to χ are the moments of the probability distribution pm(t) that
the system is in either the state n = 2m or n = 2m − 1.

The matrix Lχ is equivalent to the matrix representation of
the SSH Hamiltonian in momentum space when identifying
the counting field χ with the momentum. In particular,
we can define two topological phases for α > 0 (trivial)
and α < 0 (nontrivial) which are characterized by a TI:
2πW = ∫ π

−π
dχ d

dχ
arg [ly(χ )/lx(χ )], which is W = 0 (trivial)

or W = 1 (nontrivial). This invariant is equal to the winding
of the curve l(χ ) around the origin as illustrated in Fig. 1(c).
We note that W is also directly linked to the geometrical Berry
(or Zak) phase φBerry = W/2 [37]. Importantly, the definition
of an invariant requires that there is no term proportional to
σ z appearing in Eq. (3). This is guaranteed by the existence of
a chiral symmetry in the equations of motion [3,21]. For our
system Eq. (1) this means that the probability to escape from
the even and odd sites n is equal [38].

The strict quantization of W in an infinite-size system
has a strict consequence for the finite-size (quantum) SSH
Hamiltonian defined on the sites n ∈ {1, . . . ,N} with an open
boundary condition [21], i.e., with zero coupling between
n = 0, n = 1 and n = N , n = N + 1. The corresponding
spectrum exhibits topologically protected midgap modes if
the system is in the nontrivial phase. We depict such spectra
in Fig. 2 with orange solid lines for different chain lengths
N . The symmetry around E = −2γ of the spectrum is a
consequence of the chiral symmetry. In Figs. 2(a) and 2(b)
we depict the spectrum for an even number of sites N . We
find a pair of energies for α > 0 at the inner boundaries of
the bands which merge for decreasing α and become degen-
erate for α � 0. This is a typical signature in the nontrivial
phase of the SSH model. Due to the inversion symmetry in the
SSH chain for N even, the wave function of these two midgap
states at E = −2γ are symmetric and antisymmetric upon
inversion, respectively [21]. For N odd the chain also exhibits
a generalized inversion symmetry [35]. The corresponding
spectrum is depicted in Fig. 2(c). We observe for all α a midgap
state, whose wave function is localized close to n = 1 (n = N )
for α < 0 (α > 0).

Escape time distribution. The TI described by W is a
theoretical classification of the topological phase which can be
hardly determined in experiment. However, the close analogy
to the SSH model and the localized midgap modes allow for a
different detection scheme.

To this end, we use the existence or absence of midgap
modes in a finite-size system. We construct an associated
escape time distribution (ETD), which resembles an open
boundary condition of the quantum SSH model: We divide
the originally infinite chain in Fig. 1(a) in three parts. The
middle section consisting of sites n ∈ {1, . . . ,N} constitutes
the random walk analog of the SSH model with an open
boundary condition: Defining the probability vector ρ =
(pn=1, . . . ,pn=N ) containing the probabilities of the middle
section, we can represent Eq. (2) as

ρ̇ = LSSHρ + J 1p0 + JNpN+1, (4)
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FIG. 2. Comparison of the spectrum of LSSH in Eq. (4) with open boundary conditions and the exponent spectrum βi of the integrated ETD
according to Eq. (6). In (a), (b), and (c) we depict the results for the chain lengths N = 10, N = 18, and N = 17, respectively. The orange
(solid) lines depict the spectrum of the matrix LSSH. The top panels depict the exact results obtained by a diagonalization. The dotted exponent
spectrum depicts the levels with nonvanishing coefficients Aj [see Eq. (6)]. The coefficients Aj are represented by the blue regions, whose
width is proportional to Aj . The bottom panels depict the exponent spectrum obtained by a simulation of random trajectories. To construct the
integrated ETD we used imax = 105 random trajectories, which have been fitted with K = 3.

where the entries of the jump vectors read (J 1)
k

= �Rδ1,k and
(JN )

k
= [γ − (−1)Nα]δN,k . Importantly, LSSH is equivalent

to the quantum SSH Hamiltonian with an open boundary
condition. We investigate the time te at which the state escapes
from the finite-size SSH section when initiated at a SSH site
at t0 = 0. This means that the experimentalist creates the open
boundary condition by stopping the experimental run when
the state leaves the finite-size SSH section which is feasible
with current experimental technologies [33].

The probability that the system escapes from the SSH chain
at time te reads [35,39]

Pe(te) = J T eLSSHteρ(0) =
K∑

j=1

aje
−βj te > 0, (5)

where J T is the transpose of J = J 1 + JN . For the sec-
ond equality we have used the eigenvalues Ej = −βj

and eigenstates vj of LSSH. The coefficients read aj =
(J T · vj )(vT

j · ρ(0)) and K = N . The time dependence of the
ETD is thus determined by the eigenstates and eigenvalues of
the finite-size SSH model, and consequently, of the underlying
topology. The integrated ETD

Pint(t) =
∫ t

0
Pe(t ′)dt ′ = 1 −

j=K∑
j=1

Aje
−βj t (6)

fulfills Pint(∞) = 1. From Eq. (6) we find that
∑

j Aj = 1 and
Aj = −aj/βj .

In the following, we choose a symmetric initial state
pn(t = 0) = δn,1/2 + δn,N/2. An example of the resulting
ETD is depicted in Fig. 3(a) with a solid line, which shows
its decaying character. Even though there is an underlying
but complex relation between the exponent spectrum and the

cumulants [40], the moments μm = ∫ ∞
0 tmPe(t)dt and the

associated cumulants κm [41] depicted in Fig. 3(b) do not
provide direct information about the topology.

For this reason, we continue to investigate the exponents βj

and coefficients Aj determining the integrated ETD. These are
depicted in the top row of Fig. 2. The βj for nonvanishing Aj

are depicted with black (dotted) lines and their coefficients
Aj are represented by the blue regions, whose width is
proportional to Aj . Importantly, in Fig. 2 we can only find
every second βj . This is related to the (generalized) inversion
symmetry of the system. For N even, the eigenstates vj ex-
hibit either even (vj,n = vj,N+1−n) or odd (vj,n = −vj,N+1−n)
parity. Therefore, the coefficients aj and Aj for the odd
eigenstates vanish as J has even parity, (J )n = (J )N+1−n. A
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FIG. 3. (a) depicts the reconstructed escape time distribution
(ETD) Pe(t) (dots), the reconstructed integrated ETD Pe,int(t)
(crosses), and the corresponding fitted curves with solid and dashed
lines for α = −0.5γ . (b) Cumulants κm of the ETD for m = 1 (solid),
m = 2 (dashed), and m = 3 (dotted) as a function of α. The depicted
and higher cumulants do not reveal any signature of topology as, e.g.,
a nonanalyticity at α = 0.
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similar reasoning applies for N odd [35]. Remarkably, the
coefficients of the midgap modes for N = 10 and N = 18 are
very similar. This is a consequence of the fact that the midgap
eigenvectors only slightly depend on the system size. Due to
the symmetric initial condition ρ(0), we find also symmetric
coefficients Aj with respect to α → −α for N = 17.

Detection of the topological phase. After investigating the
dynamics on the probability level, we now return to the random
walk according to Eq. (1). We can reconstruct the ETD by
initializing the system on a site n and measuring the escape
time te [Fig. 1(d)]. By repeatedly conducting this experiment
and determining the escape times te,i , with i = 1, . . . ,imax

we can construct the ETD and the integrated ETD [35]. To
resemble the initial state pn(t = 0) = δn,1/2 + δn,N/2, we start
half of the random trajectories on site n = 1 and the other
half on site n = N . In Fig. 3(a), we depict the reconstructed
distributions for α = −0.5γ by using imax = 105 random
trajectories.

Fitting the reconstructed ETD with the ansatz Eq. (5)
provides information about the eigenvalues of LSSH. We use
the integrated ETD and Eq. (6) instead of the ETD as this
provides a higher degree of reliance for the fit parameters,
in particular for small βj . We find that in Eq. (6) K = 3 is
sufficient to resemble the reconstructed integrated ETD with a
high accuracy. The case K > 3 is discussed in Ref. [35]. In the
bottom row of Fig. 2, we depict the exponent spectrum {βj }
obtained with this procedure.

For a short chain length N = 10, the exponent spectrum
agrees well with the spectrum of LSSH for βj � 2γ . In
particular, the midgap state with βj = 1 is clearly visible in the
nontrivial phase for α < 0. The eigenstates with βj > 2γ are
not resembled by this procedure. This is a consequence of the
corresponding small Aj in the expansion Eq. (6) and the fast
transition dynamics related to the relative large βj . Remark-
ably, the fitting procedure resembles every second eigenvalue
for βj < 2γ . Thus, we observe the eigenvalues with even
parity according to our previous explanation and according
to the top panel in Fig. 2(a). Moreover, corresponding to the
theoretical prediction the fitted Aj are considerably larger for
the midgap state as for the other βj . For α > 0 we find some
βj which do not fit to the spectrum of LSSH. However, the
corresponding Aj are small so that they do not significantly
influence the fit quality.

For a longer chain with N = 18 we observe similar features.
In particular, we also recognize the midgap state. For N = 17,
the exponent spectrum of the reconstructed integrated ETD
resembles the main features of the LSSH spectrum. Due to the
chosen initial condition, the coefficients Aj are equal for α and
−α. This results in the symmetry observed in Fig. 2(c), where
the midgap exponents are located at βj ≈ 2γ for all α values.

Conclusions. We showed that a classical random walk on
a lattice with SSH coupling geometry exhibits a TI signaling

the topological phase. This TI is defined by the generalized
density matrix as a function of the counting field χ , which
constitutes the analog description of the system in momentum
space known from the quantum SSH model. This relation is
reminiscent but distinct from the investigations Refs. [42–47]
establishing also a link between counting statistics and
topology. We showed that the topological phase is revealed in
the spectrum of fitted exponents of a properly designed ETD.
Although the fitting procedure applied to the random data is
sensitive to numerical details, we found that boundary modes
are strongly pronounced in the exponent spectrum. This feature
remains independent of the chain length, which confirms the
underlying topological character in the stochastic dynamics.
Even for moderately time-fluctuating rates, which keep the
chiral symmetry �L(t) + �R(t) = γ , the presence or absence
of the midgap mode should not be changed. Moreover, even
for a next-nearest neighbor hopping (e.g., caused by missing
a jump due to a finite detector time resolution), a topological
classification is possible if there is still a chiral symmetry.
These exponents provide thus a characterization of the ETD
different from the cumulants, which do not exhibit direct
information about the topology.

The required experimental data can be generated using
quantum dots with an adjacent quantum point contact [31].
This amount of data is in the order of magnitude needed to de-
tect the topological dynamics. In order to enable a bidirectional
particle counting required for our proposal, one could harness
an experimental setup as in Refs. [48,49]. There the direction
of a particle jump (into the reservoirs or out from the reservoir)
can be detected by a spatial bipartition of the quantum dot and
an asymmetrically coupled quantum point contact.

To resemble the SSH dynamics and topological issues,
we considered here specially chosen chemical potentials.
However, even for a general temperature and voltage bias,
the generalized master equation can exhibit fascinating (topo-
logical) effects such as exceptional points [50]. A similar
escape time experiment could in this case reveal the underlying
physical processes. Moreover, the suggested setup can be
harnessed to create more complex random walks by means
of feedback control as we discuss in Ref. [35].

The discovered topology in random walks is not restricted
to nanoelectronic devices as the SET but can appear in
other kinds of random walk setups. In this respect it will be
interesting to consider extensions to two or higher dimensional
random walk lattices.
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Brandes, and R. J. Haug, Proc. Natl. Acad. Sci. USA 106, 10116
(2009).
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