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The relationship of topological insulators and superconductors and the field of nonlinear dynamics is
widely unexplored. To address this subject, we adopt the linear coupling geometry of the Su-Schrieffer-
Heeger model, a paradigmatic example for a topological insulator, and render it nonlinearly in the context
of superconducting circuits. As a consequence, the system exhibits topologically enforced bifurcations as
a function of the topological control parameter, which finally gives rise to chaotic dynamics, separating
phases that exhibit clear topological features.
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Introduction.—Topological insulators and superconduc-
tors have attracted much recent attention. Prominent exam-
ples are the integer quantum-Hall effect, chiral edge bands,
or topologically protected Majorana fermions [1–3]. These
effects are thereby a consequence of a linear, but nontrivial,
band structure of noninteracting particles, so that they can
also appear in bosonic and even classical systems [4–12].
However, in actual physical systems nonlinearities are

omnipresent, whether or not they are desired. They give rise
to outstanding and various effects as bifurcations, synchro-
nization, and chaos appearing in different kinds of fields
reaching from cold atoms, biology, and chemistry to
superconducting circuits [13–16]. For this reason it is
interesting to explore the relationship of nonlinear dynam-
ics and linear topological effects.
One of the simplest models exhibiting topological effects

is the celebrated Su-Schrieffer-Heeger (SSH) model
[17,18], which features topologically protected boundary
excitation due to its coupling geometry, as sketched in
Fig. 1(a). Thereby, the topological effects can be explained
using linear algebra.
In this Letter, we demonstrate that the nonlinearly

rendered SSH model proposed in a superconducting circuit
[Fig. 1(b)] exhibits topologically enforced bifurcations that
lead to chaotic dynamics. This effect is robust and does not
depend on system details. Our analysis is based on an
effective coupling potential and refers to the number of
fixed points of two specific topologically distinct limiting
cases, which are depicted in Figs. 1(e) and 1(f). Although
referring here to a very specific model, our findings are
relevant for all kind of lattice models with possible
topological coupling geometry, where nonlinearities are
so strong that bifurcations can occur, as in cold-atomic
systems [19–21], optomechanics [22], or optics with non-
linear materials [23–25].
In the literature, the effects of nonlinearities due to

interactions are mostly considered in the context of ground-
state properties of topological systems [26]. Another well-
known subject is fractional excitations close to the ground

state [27–30]. Very recently, topological phase transitions
induced by a combination of driving and nonlinearities
have been investigated [31]. Here, we follow a different
approach by investigating the complex nonlinear dynamics,
for which, in principal, the total phase space is relevant.
System.—We consider a one-dimensional system of N

nonlinearly coupled nodes, as sketched in Figs. 1(a)
and 1(b). The equations of motion (EOM) determining
the dynamics read

ϕ̈n ¼ tn−1;nfδðϕn−1 − ϕnÞ þ tn;nþ1fδðϕnþ1 − ϕnÞ
−R _ϕn þ Iac cosðΩtÞ; ð1Þ

(b)

(c)

(d)

(e) (f)

(a)

FIG. 1. (a) Sketch of the system. The coupling geometry
resembles the one of the SSH model with alternating coupling
strength. The system is subjected to external driving and
dissipation (nonsketched). (b) Superconducting circuit giving
rise to Eq. (1). (c) Nonlinear coupling potential of the
nodes. (d) Effective coupling potential appearing due to a
Fourier analysis of Eq. (1). (e) Topologically trivial limiting
case α ¼ t0, where the system consists of uncoupled dimers.
(f) Topologically nontrivial limiting case α ¼ −t0, where two
uncoupled nodes at the boundary exist.
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where the nonlinearity enters via the function

fδðxÞ ¼ ð1 − δÞxþ δ sinðxÞ: ð2Þ
These EOM can be modeled by a system of superconduct-
ing islands coupled by inductively shunted Josephson
junctions, as sketched in Fig. 1(b) [32–37]. Thereby, the
variables ϕn describing the dynamics of the superconduct-
ing islands are the node fluxes [32,38], which here are
the time-integrated voltages with respect to the ground
ϕnðtÞ ¼ ðℏ=2eÞ R t

−∞ dtVnðtÞ. Superconducting circuits
allow for a large variety of realizations and a broad
range of possible parameters [33–36]. We assume large
CℏIc;n=e2 ≫ 1 and h=4e2R ≫ 1, where C, Ic;n, and R
denote capacitance, critical Josephson current, and resis-
tance, as depicted in Fig. 1(b). This parameter regime
justifies treating ϕnðtÞ as classical variables [34]. The
strength of the nonlinearity can be adjusted by δ [33].
Additionally, the dynamics is subjected to a monochro-
matic driving with amplitude Iac and frequency Ω. It is
straightforward to derive the EOM Eq. (1) using
Kirchhoff’s first law and find the relation of the physical
parameters R;C; Ic;n, and Ln and the parameters appearing
in Eq. (1) [32,38].
The position-dependent couplings possess an alternating

structure and read

tn;nþ1 ¼ t0 − αð−1Þn; ð3Þ
where 2α is the difference of two subsequent couplings.
Thus, the system exhibits the same coupling geometry as
the SSH model [17].
The EOM are designed in such a way that, in the linear

case δ ¼ 0, the spectrum of the modes reproduces the
properties of the standard SSH model, which exhibits a
topological phase transition at α ¼ 0 [39]. Thereby, the
system has topologically protected boundary modes with
frequency ωb ¼

ffiffiffiffiffiffi
2t0

p
in the topologically nontrivial phase

for α < 0, which are absent in the topologically trivial
phase for α > 0. As we see later, features of the linear
SSH model still persist in the chaotic dynamics of the
nonlinear model.
Time evolution.—In Figs. 2(a) and 2(b) we depict the time

evolution of node n ¼ 1 for δ ¼ 0 and δ ¼ 0.95, respec-
tively. Throughout the Letter, we choose to drive with a
frequency Ω ¼ ωb corresponding to the topologically pro-
tected boundary mode appearing for δ ¼ 0 and α < 0 to
elucidate the topological effects. Instead of depicting the
node fluxes ϕnðtÞ, we consider

InðtÞ ¼ _ϕnðtÞ: ð4Þ
This quantity is proportional to the current flowing fromnode
n through the resistance R to the ground and is therefore
experimentally accessible [34]. Additionally, we find that In
instead of ϕn is more appropriate for our investigation, as
slow contributions in ϕn have a smaller weight.
We always choose ϕnðt ¼ 0Þ ¼ _ϕnðt ¼ 0Þ ¼ 0 as the

initial state. In Figs. 2(a) and 2(b) we show the time

evolution after an initial transient phase in order to
make sure that we have approached the corresponding
attractor. To obtain a clearer understanding, we depict the
difference ΔInðtÞ ¼ InðtÞ − IbulkðtÞ, where IbulkðtÞ denotes
the bulk current. This is the time-periodic current under
a periodic boundary condition ϕNþ1 ¼ ϕn and reads
IbulkðtÞ ¼ Im½ϕ0ΩeiΩt�, with ϕ0 ¼ Iac=ΩðiR −ΩÞ [32].
For the parameters in Fig. 2(a), the time evolution exhibits

a harmonic oscillation. Because of the subtraction of the
bulk current, the oscillation at node n ¼ 1 for α ¼ 0.2
(trivial phase) vanishes nearly completely, while the oscil-
lation amplitude is extremely large for α ¼ −0.4 (nontrivial
phase). To further analyze this dynamic, we consider the
position-dependent power spectral density [16]:

PnðωÞ ¼ j~InðωÞj2;

with ~InðωÞ ¼ lim
τ→∞

2

τ

Z
tminþτ

tmin

dt½InðtÞ − IbulkðtÞ�eiωt: ð5Þ

For long times, the dynamics of the linear system displays
harmonic oscillations with frequency Ω of the external
driving. For this reason, we depict PnðΩÞ in Fig. 2(c). Here
we observe an alternating pattern of finite and almost zero
power as a function of n. Thereby, the power is finite on odd
(even) nodes in the nontrivial (trivial) phase. This is a typical
topological feature of the linear model [18,32] and a
consequence of the chiral symmetry of the SSH model.
In Eq. (1) for δ ¼ 0 and small R this means that the steady
state ϕnðtÞ becomes ϕnð−1Þn or ϕnð−1Þnþ1 when changing
the driving frequency as Ω →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t0 −Ω2

p
. As the steady

(d)(c)

(b)(a)

FIG. 2. (a) Current ΔI1 ¼ I1ðtÞ − IbulkðtÞ in units of t0=R
flowing from node n ¼ 1 through the resistance R to the ground
in the linear system δ ¼ 0. Parameters are α ¼ −0.4t0 (nontrivial,
solid line) and α ¼ 0.2t0 (trivial, dashed line), R ¼ 0.02t0Ω,
Iac ¼ 4t0, andN ¼ 200. Tdrive ¼ 2π=Ω denotes the driving period,
where Ω ¼ ffiffiffiffiffiffi

2t0
p

. (b) As in (a) but for δ ¼ 0.95. In this case, the
system exhibits chaos. (c) PnðΩÞ in units of ðt0=RÞ2 in Eq. (5) for
the time evolutions in (a) and (b). Throughout this Letter, we take
tmin ¼ 500Tdrive and τ ¼ 100Tdrive to evaluate Eq. (5). (d) Depend-
ence of P1ðΩÞ and P1;tot in Eq. (6) as a function of δ.
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state for Ω ¼ ffiffiffiffiffiffi
2t0

p
is unique, the oscillations vanish on

either the even or odd nodes.
For a finite δ, the system can exhibit a chaotic time

evolution, as depicted in Fig. 2(b). Surprisingly, despite the
chaotic dynamics, the power spectral density still exhibits
an alternating structure. Note that the overall power is
considerably smaller than in the linear case. This is a
consequence of the nonlinearity, which we investigate in
Fig. 2(d), where we depict P1ðΩÞ and the position-resolved
total power,

Pn;tot ≡
Z

∞

0

dωPnðωÞ; ð6Þ

for n ¼ 1 as a function of δ. We observe that, starting from
δ ¼ 0, the power rapidly decreases. This happens as the
driving frequency Ω is no longer in resonance with the
boundary mode of the linear system, which is modified due
to the nonlinearity δ. For δ ¼ 0, Pn;tot and PnðΩÞ coincide,
as the time evolution is harmonic with frequency Ω. This
situation can be observed for a broad range of δ values. In a
region around δ ≈ 1, both quantities strongly deviate and
we find chaos. We are interested in this region, so we
concentrate on δ ¼ 0.95 in the remainder of this Letter.
Order parameter.—A useful quantity that gives insight

into the dynamics of the system is given by

χ ¼ P1ðΩÞ þ P2ðΩÞ
P1;tot þ P2;tot

; ð7Þ

which we introduce as an order parameter for the phase
diagram in Fig. 3(a). There we depict χ as a function of α
and Iac, where we observe several regions among which we
find periodic and chaotic dynamics. If the system synchro-
nizes with the external driving, then Pn;tot ≈ PnðΩÞ and
χ ¼ 1. On the contrary, for chaotic dynamics, the power
distributes over many modes, so that χ ≈ 0, as can be seen
in Fig. 2(d) for δ ≈ 1. Instead of defining P1ðΩÞ=P1;tot as an
order parameter, we choose to incorporate the power of
n ¼ 2 in Eq. (7). In doing so, we avoid a division by very
small P1;tot appearing, e.g., for α ≫ 0. The regions marked
by A exhibit periodic dynamics, while in B1 we observe
quasiperiodic dynamics. In the regions labeled by B2 and C
we find chaotic time evolutions. We also calculated the
power spectrum and the Lyapunov exponent (not shown) to
verify that the dynamics is indeed chaotic.
Topological character.—The chaotic dynamics in

regions B2 and C is qualitatively different. To see this,
we consider the following quantity:

Δ ¼ P1ðΩÞ − P2ðΩÞ
P1ðΩÞ þ P2ðΩÞ

: ð8Þ

In the linear system, Δ ¼ 1 and Δ ¼ −1 in the nontrivial
and trivial phase, respectively [compare with Fig. 2(c)],
which is a consequence of the chiral symmetry. In Fig. 3(b),
we investigate how this quantity is modified in the non-
linear system δ ¼ 0.95 for increasing driving amplitude Iac.
For small driving Iac, the time evolutions corresponds to the

one of the linear model δ ¼ 0. In this case, we observe a
fast crossover from Δ ¼ 1 to Δ ¼ −1 at α ≈ 0.
It is very surprising to see that there is a clear topological

character Δ in wide parts of the phase diagram. Even more
appealing is the observation that region C can be clearly
recognized in Fig. 3(b), while region B2 cannot. More
precisely, the underlying topology in B2 is more strongly
pronounced than in C. Even for chaotic dynamics the
oscillations tend to synchronize for nodes within the bulk.
As ϕn − ϕnþ1 is small, linearization restores chiral sym-
metry there explaining the alternating power in Fig. 2(c).
Remarkably, even for n ¼ 1, 2 this alternation is apparent
although the chiral symmetry is only fulfilled in the linear
order of ϕ1 − ϕ2. As we show below, there is also a
different mechanism behind the appearance of chaos in
regions C and B2 [Fig. 3(a)].
Time-independent effective equations.—To gain more

insight, we derive time-independent nonlinear equations that
capture the underlying processes. We observe that the time
evolution of ϕn in the regular regimes χ ≈ 1 is essentially
given by a harmonic oscillation up to a small correction
ΔnðtÞ. Accordingly, we split the time evolution as [40]

ϕnðtÞ ¼ an cosðΩtÞ þ ΔnðtÞ: ð9Þ

(a)

(b)

(c)

FIG. 3. (a) Phase diagram for the order parameter χ defined in
Eq. (7). Parameters are as in Fig. 2. Black lines depict the phase
boundary obtained by the generalized force functionals Eq. (10).
(b) Phase diagram of the topological order parameter Δ. (c) Level
sets G1 ¼ 0 (solid line) and G2 ¼ 0 (dashed line) of Eq. (10) for
fixed, but optimized a3 for Iac ¼ 4t0. The corresponding param-
eters are marked in (a) by colored dots. The vanishing of the
stable attractor at α ≈ 0.25t0 triggers the chaotic dynamics
observed in the central region of the phase diagram.
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The dynamics in zeroth order ofΔn is thus determined by the
amplitudes an. After inserting ansatz Eq. (9) into the EOM
Eq. (1), we perform a Fourier analysis. In doing so, we obtain
a set of nonlinear equations [32],

0 ¼ tn−1;nFδðan−1 − anÞ þ tn;nþ1Fδðanþ1 − anÞ
þ Iac þ Ω2an ≡Gn½fang�; ð10Þ

with

FδðxÞ ¼ ð1 − δÞxþ 2δJ 1ðxÞ≡ d
dx

VeffðxÞ; ð11Þ
which determine the amplitudes an. Here,J 1ðxÞ denotes the
first-order Bessel function. The Gn can be considered as
generalized force functionals in Fourier space and VeffðxÞ
as an effective coupling potential. The latter is depicted in
Fig. 1(d). In the derivation, we have neglected the dissipative
term, asR is small. A linear stability analysis for Δn reveals
the stability of the amplitudes an. In order to distinguish
phases B2 and C, we numerically minimize

G ¼
X

n

G2
n;

instead of finding a root ofGn ¼ 0 and check whether or not
the minimum of G is a root of Eq. (10). As G exhibits a large
number of minima, it is important to find the one corre-
sponding to the actual steady-state dynamics. In the numeri-
cal minimization, we choose a starting point that resembles
the amplitudes an of the steady state of the linear system, up
to a normalization [32].We find that our approach reproduces
the actual dynamics with high accuracy where χ ≈ 1.
Fixed-point analysis.—The outcome of the fixed-point

analysis of Eq. (10) is included in Fig. 3(a), shown by
black lines. Thereby, we distinguish three cases. First, the
minimum of G discovered by the numerics is a root of
Eq. (10) and is stable in the linear stability analysis
(region A). Second, we discover a root, but it is linearly
unstable (region B). Third, the minimum of G is not a root
of Eq. (10) (region C). The most interesting case is the latter
as, according to the following fixed-point analysis, it has a
topological origin. To understand this, we first investigate
the limiting cases α ¼ �t0 in more detail.
For α ¼ t0, the system consists of N=2 decoupled

dimers, as sketched in Fig. 1(e). We depict the level sets
ofG1 ¼ 0 andG2 ¼ 0 in Fig. 3(c). We observe a symmetric
pair of lines which intersect three times; thus, there are
three distinct fixed points, where only the middle one is a
stable attractor. Altogether, the chain thus exhibits 3N=2

fixed points for α ¼ t0.
In the case α ¼ −t0, we have N=2 − 1 decoupled dimers

and two isolated nodes at the ends of the chain, as sketched in
Fig. 1(f). The functionG1 does not depend ona2. In this case,
G1 has only one root (this is also true for GN). Altogether,
the chain has 3N=2−1 fixed points. Thus, there is a different
number of fixed points in the limiting cases α ¼ �t0.
Consequently, when varying α from one limiting case to
the other one, there are topologically enforced bifurcations.

In particular, as the stable fixed points of the limiting cases
α¼�t0 are structurally different, there is noway to smoothly
transform one into the other without bifurcation.
To illustrate this, we included in Fig. 3(c) illustrations for

α ¼ 0.2t0 and α ¼ 0.3t0. Thereby, we insert a3 found by
the numerical minimization of G into the equation for G2

as a fix parameter. These two panels depict the situation
shortly before and after the bifurcation. This bifurcation is a
so-called saddle-node bifurcation, where two fixed points
annihilate each other by varying α [15].
The middle fixed point corresponds to a stable attractor

of the system. When we lower α, the stable attractor
vanishes in a bifurcation, and the unstable fixed point
remains (α ¼ 0.2t0). Consequently, there is no stable
periodic attractor, so that the dynamics gets chaotic. By
further decreasing α, the remaining root can either become
stable so we enter again in a periodic regime or it stays
unstable, which finally results in the chaotic phase B2. The
appearance of chaotic dynamics usually depends on many
parameters, e.g., the minute ratio of driving frequency and
driving amplitude. We emphasize that here the chaos is a
consequence of the unavoidable topologically enforced
bifurcations and therefore is robust.
Discussion.—Our investigations reveal interesting

effects appearing in the nonlinearly rendered SSH model.
The time evolution exhibits periodic dynamics, quasiper-
iodicity, and even chaos.
Despite the similarity of the periodic dynamics of the

linear and nonlinear EOM, the nonlinear dynamics exhibits
a rich fixed-point structure in contrast to the linear system,
where there is only one fixed point. The parametric
dependence of the fixed points enforces bifurcations, which
give rise to a chaotic regime, separating the two areas with
distinct topological character Δ ¼ �1. Comparing the
structure of the fixed points of the two topological limiting
cases, we found that it is not possible to smoothly transform
one into the other without a bifurcation. Thereby, the
previously stable fixed point vanishes, which gives rise to
chaos. This is in strong analogy to the topology of the linear
system, where the presence and absence of topologically
protected boundary modes is also apparent from a consid-
eration of the topological limiting cases. Despite this
analogy, it is not possible to apply the topological concepts
known from the linear model, namely, the winding number
[18], to describe the topologically enforced bifurcations,
which refers to a fixed-point analysis. Nevertheless, the
topologically enforced bifurcation and the topological phase
transition of the linear model are both independent of the
system size due to the previously mentioned arguments,
whichwe confirmed by simulating smaller system sizes (not
shown). For instance, for 20 nodes the phase diagram in
Fig. 3(a) exhibits larger chaotic regions in the nontrivial part
α < 0.We alsomention that the topologically induced chaos
is reminiscent of the topological instability appearing at
the phase transition considered in Ref. [10], although the
underlying reason is different. By introducing the order
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parameter Δ quantifying the topological character of the
dynamics, we found that there are two types of chaotic
dynamics, only one of which is indicated clearly byΔ. In the
other chaotic region, the time evolution surprisingly still
exhibits the topological features of the linear model. We
emphasize that the order parameters Δ and χ are exper-
imentally accessible bymeasuring the current of the first two
nodes n ¼ 1, 2 only. This could be possible with similar
experimental techniques as those in Refs. [33–37,41].
Finally, we emphasize that, due to their topological origin,
our findings do not depend on details of the system. The
topological-enforced bifurcations appear also, e.g., with a
different kind of dissipation or for δ ¼ 1. The latter case is
particularly important as such types of Josephson junction
arrays are used to fix the voltage standard [42]. So this type
of setup could also be used to test our findings. Furthermore,
the form of the nonlinearity is not relevant. Bifurcations
occur even for, e.g., a−x3 term in Eq. (2) instead of the sine,
which also suggests that our findings can appear in other
types of systems. We also suppose that the effects discussed
here appear in more complex systems with underlying
nontrivial topology, such as nonlinear versions of the
two-dimensional Hofstadter or Haldane models [43,44].

The authors gratefully acknowledge financial support
from the DFG Grants No. BR 1528/7, No. BR 1528/8,
No. BR 1528/9, No. SFB 910, and No. GRK 1558, as well
as inspiring discussion with Jordi Picó, Jan Totz, and Anna
Zakharova. This work was supported by the Spanish
Ministry through Grant No. MAT2014-58241-P and the
FPI program.

*georg@itp.tu‑berlin.de
[1] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den

Nijs, Phys. Rev. Lett. 49, 405 (1982).
[2] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045

(2010).
[3] B. A. Bernevig and T. L. Hughes, Topological Insulators

and Topological Superconductors (Princeton University
Press, Princeton, NJ, 2013).

[4] R. Süsstrunk and S. D. Huber, Science 349, 47 (2015).
[5] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.

Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Nature (London) 496, 196 (2013).

[6] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. Taylor, Nat.
Photonics 7, 1001 (2013).

[7] S. McHugh, Phys. Rev. Applied 6, 014008 (2016).
[8] G. Engelhardt and T. Brandes, Phys. Rev. A 91, 053621

(2015).
[9] V. Peano, M. Houde, C. Brendel, F. Marquardt, and A. A.

Clerk, Nat. Commun. 7, 10779 (2016).
[10] G. Engelhardt, M. Benito, G. Platero, and T. Brandes, Phys.

Rev. Lett. 117, 045302 (2016).
[11] V. Peano, M. Houde, F. Marquardt, and A. A. Clerk, Phys.

Rev. X 6, 041026 (2016).
[12] C. H. Lee, G. Li, G. Jin, Y. Liu, and X. Zhang,

arXiv:1701.03385.

[13] J. Tomkovič et al., arXiv:1509.01809.
[14] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger,

Nature (London) 464, 1301 (2010).
[15] S. H. Strogatz, Nonlinear Dynamics and Chaos: With

Applications to Physics, Biology, Chemistry, and Engineer-
ing (Westview Press, Boulder, 2014).

[16] R. Kautz, Rep. Prog. Phys. 59, 935 (1996).
[17] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett.

42, 1698 (1979).
[18] J. K. Asbóth, L. Oroszlány, and A. Pályi, in A Short Course

on Topological Insulators, Lecture Notes in Physics
Vol. 919 (Springer, Berlin, 2016).

[19] N. Goldman, J. Budich, and P. Zoller, Nat. Phys. 12, 639
(2016).

[20] O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179
(2006).

[21] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B.
Paredes, and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013).

[22] T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and
C. A. Regal, Phys. Rev. X 3, 031012 (2013).

[23] S. Mookherjea and A. Yariv, IEEE J. Sel. Top. Quantum
Electron. 8, 448 (2002).

[24] B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat.
Photonics 5, 141 (2011).

[25] J. Dahdah, M. Pilar-Bernal, N. Courjal, G. Ulliac, and F.
Baida, J. Appl. Phys. 110, 074318 (2011).

[26] V. Gurarie, Phys. Rev. B 83, 085426 (2011).
[27] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[28] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev.

Lett. 48, 1559 (1982).
[29] H. L. Stormer, D. C. Tsui, and A. C. Gossard, Rev. Mod.

Phys. 71, S298 (1999).
[30] F. Grusdt, M. Höning, and M. Fleischhauer, Phys. Rev. Lett.

110, 260405 (2013).
[31] Y. Hadad, A. B. Khanikaev, and A. Alù, Phys. Rev. B 93,

155112 (2016).
[32] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.118.197702 for details
concerning this point.

[33] V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H.
Devoret, Science 326, 113 (2009).

[34] A. Ergül, D. Schaeffer, M. Lindblom, D. B. Haviland, J.
Lidmar, and J. Johansson, Phys. Rev. B 88, 104501 (2013).

[35] J. Koch, V. Manucharyan, M. H. Devoret, and L. I.
Glazman, Phys. Rev. Lett. 103, 217004 (2009).

[36] J. Pfeiffer, M. Schuster, A. A. Abdumalikov, and A. V.
Ustinov, Phys. Rev. Lett. 96, 034103 (2006).

[37] D. B. Haviland and P. Delsing, Phys. Rev. B 54, R6857
(1996).

[38] M. H. Devoret, Quantum Fluctuations, in Proceedings of
the Les Houches Summer School, Session LXIII, edited by
S. Reynard, E. Giacobino, and J. Zinn-Justin (Elsevier,
Amsterdam, 1995).

[39] C. Kane and T. Lubensky, Nat. Phys. 10, 39 (2014).
[40] S. Shapiro, A. R. Janus, and S. Holly, Rev. Mod. Phys. 36,

223 (1964).
[41] D.-R. He, W. J. Yeh, and Y. H. Kao, Phys. Rev. B 30, 172

(1984).
[42] C. A. Hamilton, Rev. Sci. Instrum. 71, 3611 (2000).
[43] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[44] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

PRL 118, 197702 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
12 MAY 2017

197702-5

https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1126/science.aab0239
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1103/PhysRevApplied.6.014008
https://doi.org/10.1103/PhysRevA.91.053621
https://doi.org/10.1103/PhysRevA.91.053621
https://doi.org/10.1038/ncomms10779
https://doi.org/10.1103/PhysRevLett.117.045302
https://doi.org/10.1103/PhysRevLett.117.045302
https://doi.org/10.1103/PhysRevX.6.041026
https://doi.org/10.1103/PhysRevX.6.041026
http://arXiv.org/abs/1701.03385
http://arXiv.org/abs/1509.01809
https://doi.org/10.1038/nature09009
https://doi.org/10.1088/0034-4885/59/8/001
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1038/nphys3803
https://doi.org/10.1038/nphys3803
https://doi.org/10.1103/RevModPhys.78.179
https://doi.org/10.1103/RevModPhys.78.179
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevX.3.031012
https://doi.org/10.1109/JSTQE.2002.1016347
https://doi.org/10.1109/JSTQE.2002.1016347
https://doi.org/10.1063/1.3647770
https://doi.org/10.1103/PhysRevB.83.085426
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/RevModPhys.71.S298
https://doi.org/10.1103/RevModPhys.71.S298
https://doi.org/10.1103/PhysRevLett.110.260405
https://doi.org/10.1103/PhysRevLett.110.260405
https://doi.org/10.1103/PhysRevB.93.155112
https://doi.org/10.1103/PhysRevB.93.155112
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.197702
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.197702
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.197702
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.197702
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.197702
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.197702
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.197702
https://doi.org/10.1126/science.1175552
https://doi.org/10.1103/PhysRevB.88.104501
https://doi.org/10.1103/PhysRevLett.103.217004
https://doi.org/10.1103/PhysRevLett.96.034103
https://doi.org/10.1103/PhysRevB.54.R6857
https://doi.org/10.1103/PhysRevB.54.R6857
https://doi.org/10.1038/nphys2835
https://doi.org/10.1103/RevModPhys.36.223
https://doi.org/10.1103/RevModPhys.36.223
https://doi.org/10.1103/PhysRevB.30.172
https://doi.org/10.1103/PhysRevB.30.172
https://doi.org/10.1063/1.1289507
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevLett.61.2015

