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Dissipative long-range entanglement generation between electronic spins
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We propose a scheme for deterministic generation and long-term stabilization of entanglement between two
electronic spin qubits confined in spatially separated quantum dots. Our approach relies on an electronic quantum
bus, consisting either of quantum Hall edge channels or surface acoustic waves, that can mediate long-range
coupling between localized spins over distances of tens of micrometers. Since the entanglement is actively
stabilized by dissipative dynamics, our scheme is inherently robust against noise and imperfections.
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I. INTRODUCTION

The physical realization of a large-scale quantum infor-
mation processing (QIP) architecture constitutes a fascinating
problem at the interface between fundamental science and
engineering [1,2]. Further advances towards this goal hinge
upon two major challenges: (i) control over the undesired
influences of the environment which tend to corrupt genuine
quantum properties such as entanglement, and (ii) long-range
coupling between the logical qubits. The latter not only relaxes
some serious architectural challenges [3] but also allows for
applications in quantum communication, distributed quantum
computing, and some of the highest tolerances in error-
correcting codes that are based on long-distance entanglement
links [2,4,5].

In the solid state, electron spins confined in electrically
defined semiconductor quantum dots (QDs) have emerged as
a promising platform for QIP [6,7]: Major building blocks
such as initialization, single-shot readout, coherent control
of single spins, and two-qubit gates between adjacent spins
have been demonstrated successfully in proof-of-principle
experiments. However, at present the integration of several
qubits into a scalable architecture still remains a formidable
challenge [6,8,9]. A large amount of wiring and control
electronics needs to be accommodated on a very small scale,
since interactions between QDs are very short-range, enabling
QIP setups with nearest-neighbor interactions only. Therefore,
a scalable design is likely to require long-range couplings over
distances of several micrometers [3,10].

In this work, we propose a scheme for deterministic
preparation of steady-state entanglement between remote
qubits, defined by electron spins in spatially separated QDs.
Our approach addresses the two challenges (i) and (ii) as
described above within one unified framework: (i) By suitably
engineering the continuous coupling of the system to its
environment, our setup actively utilizes dissipation to create
and stabilize quantum coherences, turning dissipation into
the driving force behind the emergence of coherent quantum
phenomena. This approach [11–14] comes with potentially
significant advantages over previous proposals [15–17] which
aim at a coherent coupling between remote spins, as dissipative
methods are unaffected by timing and preparation errors and
inherently robust against weak random perturbations, allowing

us to stabilize entanglement for arbitrary times [18–21].
(ii) Our scheme directly builds upon recent experimental
developments towards the realization of a solid-state electronic
quantum bus, where flying electrons take over the role of
photons in more conventional atomic, molecular, and optical
based approaches in order to mediate long-range coupling
between remote qubits. In particular, we consider quantum
Hall edge (QHE) channels [15,22–27] and surface acoustic
waves (SAWs) [28–34] as exemplary candidate systems for
the coherent transport of electron spins over long distances.
Intuitively, the dissipative entanglement creation arises from
a quantum interference effect in the common coupling of the
localized spins Si(i = 1,2) to an adjacent electronic quantum
channel, in which flying electrons continuously pass by the
two localized spins. With any which-way information absent,
first-order spin-flip processes between the localized spins and
the flying ancilla spins occurring in the course of electron
transport can happen either in the first or in the second node,
which may lead to the formation of entanglement between the
nodes, if two or more such processes with a unique common
entangled steady-state dominate the dynamics [20,35].

This work is structured as follows. In Sec. II we introduce
two generic dissipative entanglement-generating dynamics,
with a subsequent discussion on the robustness inherent to
dissipative state preparation schemes. In Sec. III we then
propose and analyze two different physical setups, based on (i)
QHE channels (see Sec. III A) and (ii) SAW-induced moving
quantum dots (see Sec. III B), in order to approximately
implement the paradigmatic schemes discussed in Sec. II. In
Sec. IV we turn to the central question of whether the steady-
state entanglement found for the idealized dynamics can
prevail in a realistic, noisy scenario. We discuss the dominant
error sources, specify the experimental requirements, and
provide a comprehensive comparison of the different setups.
Finally, in Sec. V we draw conclusions and give an outlook on
future directions of research.

II. DISSIPATIVE ENGINEERING

Let us first consider two different generic dissipative
entanglement-generating dynamics for the system’s density
matrix (DM) ρ. A purely dissipative master equation (ME)
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with a unique entangled steady state is given by [14]

ρ̇ = αD[μS+
1 + νS+

2 ]ρ + βD[νS−
1 + μS−

2 ]ρ, (1)

where S±
i , i = 1,2 denote the (spin) raising and lowering

operators for the two qubits and D[A]ρ = 2AρA† − A†Aρ −
ρA†A. For all rates α,β > 0, the dissipative evolution given in
Eq. (1) drives the system into the steady state |�ss〉 = μ|↑↓〉 −
ν|↓↑〉, which is unique and entangled for all μ,ν > 0, μ�=ν.
While the entanglement is largest as μ → ν, for equality
the steady state is no longer unique (as is the case if one
of the rates is zero). When there is more than one steady state,
the long-time behavior depends on the initial state and may
be strongly affected by small perturbations—for example, for
β = 0 (that is, for only one Lindblad term) in Eq. (1). Still, a
pure unique entangled steady state can be recovered by adding
a suitable Hamiltonian term [36], e.g.,

ρ̇ = −i[H,ρ] + γD[S+
1 + S+

2 ]ρ, (2)

where H = 2�(Sx
1 + Sx

2 ) − i	(S−
2 S+

1 − S+
2 S−

1 ), with Sx
i =

(S+
i + S−

i )/2. Here, the corresponding (unnormalized)
steady state reads |�ss〉 = |↑↑〉 + i

√
2�/	|S〉, where |S〉 =

(|↑↓〉 − |↓↑〉)/√2 is the maximally entangled singlet state.
Our task in the following is then to find or engineer an

environment for two physical spins Si that leads to the effective
dynamics described by Eqs. (1) or (2).

Robustness. An important advantage of dissipative state
preparation schemes is their robustness, i.e., that the relevant
qualitative and quantitative features of the target state are
preserved under perturbations L1 of the dynamics. It is a
feature of the contractive dynamics generated by Lindblad-
form Liouvillians that the schemes are inherently unaffected by
transient, timing, and preparation errors; moreover, perturba-
tions do not affect the steady-state eigenvalue, which remains
0. Standard perturbation theory (cf., e.g., [37,38]) shows that
the changes to the steady state (and to the other eigenvalues)
remain small (for a nondefective/nondegenerate L0) as long
as α = ‖L1‖ (i.e., the strength of the perturbation) is small
compared to the smallest (in modulus) nonzero eigenvalue of
L0. This latter number is lower bounded by the “dissipative”
or “spectral” gap of L0, determined by the eigenvalue of the
Liouvillian with the largest real part different from zero, i.e.,
ε = − max{Re(λi)}, where λi are the nonzero eigenvalues of
the Liouvillian.

III. THE MODEL

In what follows, we show how our general idea can be
applied to two different exemplary physical setups, with the
ultimate goal of approximately implementing the paradigmatic
entanglement-generating dynamics given in Eqs. (1) and (2),
using a fermionic environment. First, we investigate QHE
states as this setup facilitates direct analogies to existing
quantum optical schemes with photons [26]. Thereafter, we
explore a setup based on electrically induced SAWs where
the stroboscopic control over the effective interaction times
between stationary and mobile electron spins [31,32] results
in larger amounts of entanglement. To treat each specific phys-
ical setup we employ two different input-output approaches
tailored to the specific setups.

In all setups specified below, to controllably amplify
the coupling between localized and flying electrons, we
introduce auxiliary (ancilla) QDs that are tunnel-coupled to
the QDs hosting the qubit electrons with spin Si(i = 1,2); by
appropriate gating one can ensure that the system dots always
stay occupied with a single electron each which opens up
the possibility for storage of spin-spin entanglement between
different (remote) quantum dots. An electron occupying the
ancilla dot j interacts locally with the system spin Si via the
Heisenberg exchange interaction [7]

H
i,j

IN = Ji,j Si · σ j , (3)

where σ j = 1
2

∑
σ,σ ′ d

†
jσ τ σ,σ ′djσ ′ refers to the spin-1/2 ancilla

operator; here, d
†
jσ creates an electron with spin σ = ↑,↓ in

the ancilla dot j and τ is the vector of Pauli matrices. The
exchange coupling Ji,j can be as large as several tens of μeV
and controlled in situ by gating of the tunneling barrier between
two nearby dots [6,7].

The system is subject to an external magnetic field B, taken
along ẑ. In a suitable rotating frame the global homogeneous
magnetic field drops out from the dynamics, and we are left
with (small) inhomogeneous gradient fields, described by the
Zeeman Hamiltonian

HZ =
∑

i

δiS
z
i . (4)

Here, the magnetic gradients δi � 2 μeV can be engineered
via on-probe micro- [39] or nanomagnets [40] and/or nuclear
Overhauser fields [7].

A. Transport via QHE states

A two-dimensional electron gas (2DEG) in a large magnetic
field supports QHE channels which have proven to provide
an ideal test bed for electronic-optics-like experiments, since
they allow for ballistic, one-dimensional, and chiral electron
transport [26]; with backscattering drastically reduced due to
chirality, in the QH regime the mean-free path of electrons
is increased up to ∼(0.1–1) mm [22–24]. Let us consider
two nodes, consisting of just one system and one ancilla dot
each, with the ancilla dots interconnected by such a chiral
edge channel; compare the dashed box in Fig. 1. To describe
the dynamical evolution of the system and ancilla degrees of
freedom of this cascaded quantum system [36,41], we trace out
the channel and employ the fermionic input-output formalism
(see Appendix B) [24,41]. We then arrive at the following
Markovian ME for the reduced DM of system and ancilla
dots,

�̇ = −i[HZ + HIN,�] + Ltr�, (5)

where HZ accounts for Zeeman energies [compare Eq. (4)],
HIN describes local spin-spin interactions between system and
auxiliary dots

HIN =
∑
〈i,j〉

H
i,j

IN , (6)
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FIG. 1. Scheme of the QHE-based setups. Two spatially separated
qubits (S1,S2) are coupled to auxiliary QDs, which are interconnected
by a unidirectional QH edge channel. The upstream ancilla dot(s) are
pumped selectively from a Fermi reservoir with a rate γL. While the
first (purely dissipative) scheme requires two separate QHE channels,
for the second scheme a single channel suffices (dashed box) together
with local ESR driving fields of strength �i .

and Ltr� = ∑
σ Ltr,σ � describes electron transport. The latter

reads explicitly

Ltr,σ� = γL,σ

2
D[d†

1σ ]� + γ

2
D[d1σ + d2σ ]�

+ γ

2
[d†

1σd2σ − d
†
2σd1σ ,�]. (7)

Here, the first term describes spin-selective pumping of the first
ancilla dot, which could be achieved either via ferromagnetic
leads or spin-filtering techniques [42]; in our dissipative setup,
electron pumping (resulting in an effective electron source) is
required in order to obtain a genuine nonequilibrium situation
with continuous electron driving. The last two terms give the
nonlocal incoherent and coherent contributions of the channel-
mediated coupling between the ancilla dots, respectively.
The theoretical treatment underlying Eq. (7) assumes weak
coupling to the reservoir and a flat reservoir spectral density
(Born-Markov approximation), an idealized dispersion-free
channel, and the spin-resolved ancilla dot levels to be aligned
within �γ [24]. Lastly, in accordance with the cascaded nature
of the system, � in Eq. (7) accounts for a time delay between the
nodes. For distances ∼μm, however, one can neglect this time
delay, since electron transport happens quasi-instantaneously
on the relevant time scales (see Appendix B 2 for an extended
discussion).

For fast dissipation (γ,γL�J ), the auxiliary dots settle
into a quasisteady state (ρss

a ) on a time scale much shorter
than the relevant system-dots dynamics. In this case, the
system-bath coupling HIN can be treated perturbatively and
one can adiabatically eliminate the ancilla coordinates yielding
a coarse-grained equation of motion for the system spins
(S1,S2). The subsequent full calculation follows the general
framework developed in Ref. [43] and is presented in detail in
Appendix C. The ensuing first-order contributions ∼J result
in effective, local magnetic fields for the system spins Si ,
which are oriented along the quantization axis z and given by
the mean value of the ancilla spins in the quasisteady state;
i.e., 〈σ z

i 〉ss = tra{σ z
i ρss

a } (tra[. . . ] denotes the trace over the
auxiliary degrees of freedom). As discussed in more detail
below, via a suitable choice of local magnetic gradients δi

in Eq. (4) these first-order terms can be chosen to vanish.
To second order, nonlocal charge correlations inherent to the
ancilla system are transferred to the system spins resulting in
an effective master equation with one dominant nonlocal term.
It reads �ff

+D[v+
ff · (S+

1 ,S+
2 )]ρ, where ρ = tra[�] and v+

ff =
(cos θff

2 , sin θff
2 ). Explicit expressions for θff and �ff

+ can be
found in Appendix C 2. This nonlocal Lindblad term features
two stationary states: |�ss,1〉 = cos θff

2 |↑↓〉 − sin θff
2 |↓↑〉 and a

simple product state |�ss,2〉 = |↑↑〉. To destabilize the second
(unentangled) stationary solution, we can either (i) add an
extra channel or (ii) apply a coherent driving to the localized
spins in order to (approximately) recover the dynamics stated
in Eqs. (1) and (2), respectively. In this scenario (as opposed
to the situation with just one nonlocal Lindblad term), the
steady state is unique, which makes the scheme robust against
initialization errors.

1. Two channels and no driving

To mimic Eq. (1), we consider a purely dissipative setting
with two separate edge channels that are pumped spin-
selectively by spin-up (spin-down) electrons only, respectively,
interacting through different ancilla dots with the qubits;
compare Fig. 1. Here, two separate channels are introduced in
order to effectively obtain not only one, but two independent,
nonlocal jump operators. The latter is needed to (approxi-
mately) emulate the paradigm master equation (1) with two
independent jump operators, which (under the conditions
specified in Sec. II) ensures a unique steady state. The spin
of the injected electron determines the type of nonlocal jump
operator in the effective master equation for the system spins:
Injecting a spin-up electron into the ancilla system will result in
a collective flip D[μS+

1 + νS+
2 ]ρ, because the ancilla electron

can only flip to spin-down (which comes with a spin-raising flip
to the system spins), whereas injecting a spin-down electron
into the ancilla system will lead to a collective flip of the
form D[νS−

1 + μS−
2 ]ρ, because the ancilla electron can only

flip to spin-up (which comes with a spin-lowering flip to the
system spins). In this setting, the quantized levels in the ancilla
dots help to suppress undesired, parasitic local processes
where electrons are transferred from the lower (upper) to the
upper (lower) edge channel by virtually occupying the system
dot. For J1 ≡ J1,1 = J2,4 and J2 ≡ J2,2 = J1,3, the ensuing
effective ME for the two qubits only reads

ρ̇ = +�ff
+D[v+

ff · (S+
1 ,S+

2 )]ρ

+�ff
+D[v+

ff · (S−
2 ,S−

1 )]ρ + L(1)
n-idρ. (8)

Here, the external magnetic gradients have been chosen
as δ1(2) = ∓(J1〈σ z

1 〉ss − J2〈σ z
2 〉ss) (the index in parentheses

refers to the lower sign) in order to cancel the first-order terms
∼J . Realistic numerical values for δi will be provided below.
Explicit expressions for the mixing angle θff, the effective
(second-order ∼J 2) rate �ff

+, and the undesired terms L(1)
n-id can

be found in Appendix C 2. The ME given in Eq. (8) indeed
features nonlocal transport-mediated jump terms of the same
squeezing-type form as given in Eq. (1), with μ ≡ cos θff

2 and
ν ≡ sin θff

2 ; see inset in Fig. 3(a).
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2. One channel and driving

Next, we follow the same strategy to (approximately)
recover Eq. (2). To do so, we consider a potentially simpler
setup, where a single channel suffices, but an additional (weak)
resonant drive needs to be introduced; compare Fig. 1. As
shown in detail in Appendix C 2, again for γ,γL � J , this
system is described by

ρ̇ = −i[Hd,ρ] − 	[S−
2 S+

1 − S−
1 S+

2 ,ρ]

+�ff
+D[v+

ff · (S+
1 ,S+

2 )]ρ + L(2)
n-idρ, (9)

where Hd = ∑
i=1,2 2�iS

x
i describes electron-spin-resonance

(ESR) driving of the spins in the rotating frame, and 	 is
an effective, coherent spin-spin interaction mediated by the
channel. Explicit expressions for θff, �ff

+, 	, and L(2)
n-id can be

found in Appendix C 2. Here, the Zeeman energies have been
chosen as δi = −Ji〈σ z

i 〉ss . Again, realistic numerical values
for δi will be provided below.

As evident from Eqs. (8) and (9) the continuous interaction
of the two spin qubits with the entangled steady state of
the ancilla electrons gives rise to more than just the desired
Lindblad terms; cf. also Fig. 12. To address this limitation,
we discuss below an alternative stroboscopic (that is, not
continuous) setup which allows for better control of the
system-ancilla interactions and therefore yields more ideal
effective dynamics (as discussed in Sec. II).

B. Transport via SAW moving dots

To this end we replace the edge channels by mobile quantum
dots based on SAWs. Here, we consider two ancilla QDs
which are interconnected by a long depleted one-dimensional
channel in a 2DEG; compare Fig. 2. Recently, it has been
demonstrated experimentally that in such a setup SAWs can
transfer reliably and on-demand single electrons from one dot
to the other for distances of several micrometers [31,32], with
the potential to extend this to hundreds of micrometers [34].
Our protocol then consists of a continuous train of mobile
dots that interact successively with the two system spins Si

for a (electrostatically) controlled time τi , very much like in
a conveyor belt. Therefore, for a single ancilla electron the
protocol comprises five steps: (i) load the first ancilla dot with
electron spin σ , (ii) interact with system spin S1 via Heisenberg
coupling (3) for a time τ1, (iii) transfer the electron to the
second ancilla dot (generically, S1 and the mobile electron
are entangled by now), (iv) interact with system spin S2 via
Heisenberg coupling (3) for a time τ2, and (v) eject the electron

|. . . ↓, ↓, ↑, ↑〉

|. . . ↑, ↑, ↑, ↑〉

�S1 �S2

d1,σ, d†1,σ d2,σ, d†2,σ

Jσ
1,1 Jσ

2,2

Ω1

Ω2

FIG. 2. Scheme of the SAW-based setups. Two spatially separated
qubits (S1,S2) are coupled to auxiliary QDs, which are interconnected
by a depleted one-dimensional channel. Via mobile dots single
electrons are continuously transferred between the two ancilla dots,
where they interact successively with the system spins Si for a
controlled interaction time τi .

from the second ancilla dot. The corresponding concatenated
evolution for the two localized spins Si (i = 1,2) can be
described by [44]

ρ(n) = tra[eL2,nτ2eL1,nτ1 (ρ(n−1) ⊗ |σn−1〉〈σn−1|)], (10)

where ρ(n) defines the state after the nth cycle of the protocol.
Here, the trace is taken over the ancilla degrees of freedom
and the Liouvillian Li,n encodes both the interaction of the
auxiliary electron with the main qubit i = 1,2 via Eq. (3)
and Zeeman terms, Eq. (4). This model assumes perfect spin
transfer which is approximately correct for distances much
shorter than the characteristic dephasing length scale which
we estimate as ∼vsT

∗
2 � 100 μm for vs ≈ 3 μm/ns and T ∗

2 ≈
100 ns [32].

Along the lines of our previous analysis, in what follows
we present two SAW-based schemes: (i) a protocol with
alternating spin directions and suitably synchronized exchange
couplings and (ii) a spin-polarized protocol with a coherent
driving. Both transport protocols will be shown to drive the
localized spins to an entangled steady state, independently of
the initial state.

1. Alternating spin sequences

To recover the purely dissipative dynamics (1), we assume
alternating spin sequences (as could be realized by proper spin
filtering on subnanosecond time scales [42]), together with
appropriately synchronized interaction times τi or exchange
couplings J σ

i ≡ J σ
i,i (see Appendix D for a detailed derivation).

This is necessary to achieve the desired asymmetry μ�=ν. In
the following, τ ≡ τ1 = τ2. Then, setting μ = J

↑
1 τ = J

↓
2 τ ,

ν = J
↑
2 τ = J

↓
1 τ , up to O(τ 3J σ3

i ), the evolution of the DM
simplifies to

ρ(n+1) − ρ(n−1) = 1
8D[μS+

1 + νS+
2 ]ρ(n−1)

+ 1
8D[μS−

2 + νS−
1 ]ρ(n−1). (11)

Here, the inhomogeneous magnetic gradients have been cho-
sen as δ1(2) = ∓μ−ν

8τ
, such that all first-order terms effectively

vanish. Typical numerical values for δi will be provided below.
Indeed, we recover nonlocal dissipators of the desired asym-
metric (squeezing-type) form; compare Eq. (1). Alternating
sequences of spin-up and spin-down electrons (with suitably
synchronized couplings) then yield approximately the desired
entangling dynamics.

2. Single spin component and driving

Next, to emulate dynamics similar to Eq. (2), we assume
mobile dots with a single spin-filtered spin-component [42]
and introduce an additional coherent external driving field.
In this case, for asymmetric, but time-independent couplings
(μ = J

↑
1 τ , ν = J

↑
2 τ ), magnetic gradients δi = −J

↑
i /4, and

weak driving �1,2�J , the evolution of the DM is approxi-
mately given by (see Appendix D)

ρ(n) = ρ(n−1) + μν

8
[S−

1 S+
2 − S−

2 S+
1 ,ρ(n−1)]

+ 1/8D[μS+
1 + νS+

2 ]ρ(n−1) − 2iτ [Hd,ρ
(n−1)]. (12)

Thus, we can realize the dynamics of Eqs. (1) and (2) with
arbitrary accuracy by reducing the dwell times τi .
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(a) (b)

FIG. 3. Steady-state entanglement quantified via the EF for the
two QHE-based proposals as a function of δJ . (a) and (b) are based
on Eqs. (8) and (9), respectively. The solid lines refer to the ideal
result, where the peak is reached for μ = ν (see inset). The dashed
lines also take into account the undesired terms, described by L(i)

n-id,
while the dotted lines in addition account for nuclear dephasing (see
text). Numerical parameters: γL = γ = 30 μeV, J0 = 3 μeV, and
δi∈(−2,2) μeV. In (b), for each value of δJ , �i has been optimized
in the range �i∈(0–50) neV.

IV. RESULTS AND DISCUSSION

In the previous section, we have derived master-equation-
based models for four different physical setups in total, two
of them based on QHE channels and the remaining two based
on SAW-induced moving quantum dots. In this section, we
specify the experimental requirements and discuss in detail
the results of our analysis, as quantified via the amount of
entanglement that the different setups are able to generate
between two remote spin qubits under realistic conditions.
First, we discuss the QHE states based proposals, then the
SAW-based proposals; we conclude the discussion with a
comprehensive comparison of the different proposed setups.

A. QHE states

Both Eqs. (8) and (9) potentially recover the ideal
entanglement-generating dynamics given in Eqs. (1) and (2),
respectively, up to undesired terms absorbed into L(i)

n-id. We
now turn to the central question of whether the entanglement
inherent to the ideal dynamics can prevail in a realistic
scenario. Due to the presence of the nonideal terms, even
without further decoherence mechanisms, the steady state
of Eqs. (8) and (9) is mixed. We confirm and quantify its
entanglement using the entanglement of formation EF (see
Appendix A) [45]. As shown in Fig. 3, for a broad range
of coupling parameters (J1(2) = J0 ∓ δJ ) the generation of
steady-state entanglement persists in the two schemes even in
the presence of the undesired terms L(i)

n-id.
In order to obtain sizable steady-state entanglement (which

arises from nonlocal second-order effects ∼J 2), the first-order
contributions ∼J have to be canceled via local magnetic fields
as described by Eq. (4); compare our discussion in Sec. III.
For γL = γ (as considered in the text), the Zeeman energies δi

are typically of the order of (or smaller than) the Heisenberg
coupling strengths Ji (i.e., typically a few μeV); see Fig. 4.
Using for example nanomagnets, gradients of this size can be
readily achieved (e.g., in GaAs by local magnetic fields of a
few 100 mT) [39,40].

(a) (b)

FIG. 4. Value of the local magnetic fields δ1(2) required to get (a)
Eq. (8) and (b) Eq. (9), respectively, as a function of δJ . Note that
in (b) δ1,2 < 0 because we arbitrarily choose pumping with spin-up
ancilla electrons. Correspondingly, for spin-down pumping the sign
would be reversed. Numerical parameters: γL = γ = 30 μeV, J0 =
3 μeV.

Another important question is how long it approximately
takes for the system to reach its steady state. This time scale
is directly related to the spectral gap of the corresponding
dissipative dynamics, which is shown in Fig. 5 for the
two QHE-based proposals. The spectral gap is found to be
proportional to J 2

0 /γ , which can be increased for small values
of γ , provided that the conditions for adiabatic elimination
(J0 � γ ) are still fulfilled. For the parameters γ = 30 μeV
and J0 = 3 μeV (for which the adiabatic elimination of the
fast degrees of freedom is perfectly valid), we then estimate
ε ∼ 0.15 μeV and ε ∼ 0.03 μeV, respectively. Accordingly,
the steady state is reached on a very fast time scale of
roughly ∼(5–25) ns. Then, as discussed in Sec. II, any noise
sources or imperfections that are slow compared to this very
fast, zeroth-order time scale should not affect severely the
qualitative and quantitative features of the steady state.

First, this is demonstrated explicitly for qubit dephasing due
to nuclear spins in the (GaAs) host environment. As explained
in more detail in Appendix E, the hyperfine interaction with
the nuclei is modeled in terms of a random, slowly evolving
effective magnetic field for the electron spins, yielding an extra
Hamiltonian of the same form as Eq. (4), where the detuning
parameters δi are sampled independently from a normal

(a) (b)

FIG. 5. Spectral gap of the dissipative dynamics (continuous red
line) and dominating rate �ff

+ (dotted black line) as a function of δJ .
(a) and (b) are based on Eqs. (8) and (9), respectively. Numerical
parameters: γL = γ = 30 μeV, J0 = 3 μeV, and δi∈(−2,2) μeV. In
(b), for each value of δJ , �i (green lines) have been optimized in the
range �i∈(0–50) neV.

115404-5



BENITO, SCHUETZ, CIRAC, PLATERO, AND GIEDKE PHYSICAL REVIEW B 94, 115404 (2016)

distribution with standard deviation σnuc [7]. The result-
ing time-ensemble-averaged electron dephasing time T ∗

2 =√
2/σnuc has recently been extended up to T ∗

2 ≈ 3 μs [46]. As
shown in Fig. 3, already for T ∗

2 ≈ 30 ns, the purely dissipative
scheme is basically unaffected by nuclear noise.

Second, again because of the relatively large spectral
gap ε, perfect cancellation of the first-order terms ∼J is
not strictly required, provided that the residual (uncanceled)
magnetic fields 	i are small compared to the gap; as shown
in Appendix E, typically our scheme can tolerate residual
gradients 	i of up to ∼0.1 μeV without severely affecting
the generation of steady-state entanglement.

Lastly, in our analysis we have neglected several detrimen-
tal effects that may be encountered in an actual experiment,
an approximation that we now justify: First, at sufficiently low
temperatures T <5 K, dispersive effects and scattering out of
the edge channel may be neglected for propagation distances
�100 μm [24]. Nevertheless, in Appendix E we show that even
a few percent of losses can be tolerated. Second, dephasing
during propagation should be negligible for distances small
compared to a characteristic coherence length scale Lφ , which
we estimate as Lφ = vdT

∗
2 ≈ (102–103) μm for a drift velocity

vd ≈ 104 m/s and (due to motional narrowing) extended de-
phasing time T ∗

2 ≈ (10–100) ns [24,30,32,33]. Then, in order
to suppress errors due to nonresonant dot energies, these should
be controlled with a precision �1 μeV [24]. Finally, based on
QD experiments [42] where basically 100% bipolar spin-filter
efficiency has been demonstrated, we have assumed perfect
spin-selective driving. Still, with all these simplifications, the
amount of steady-state entanglement that we obtain for a
realistic scenario (with continuous ancilla-electron pumping)
is modest (EF ≈ 0.2) as compared to the idealized cases
discussed in Eqs. (1) and (2), respectively (even though it is still
comparable to what has been predicted theoretically for two
adjacent dots [21] and achieved experimentally for two atomic
ensembles [18]). As shown below, one can largely circumvent
this limitation by considering well-controlled stroboscopic
interaction times between system and ancilla dots (as opposed
to the arguably more simple continuous settings with largely
fluctuating interaction times).

B. SAW moving dots

The dynamical equations given in Eqs. (11) and (12) suggest
that the system qubits will be driven to an entangled steady
state regardless of the initial state (as long as τJi � 1). Our
analytical results stated above have been confirmed by exact
numerical simulations of Eq. (10), where the ancilla degrees of
freedom have not been eliminated. As demonstrated in Fig. 6,
the generation of entanglement persists even in the presence
of nuclear noise and residual time jitter. We include this noise
source by choosing the interaction times τi randomly from
a Gaussian distribution centered around the average τ with
a standard deviation of στ (see Appendix E for a detailed
analysis of noise sources). For sufficiently low time jitter and
typical dephasing times T ∗

2 = (30–300) ns, we find EF � 0.4,
which extends up to EF � 0.7 for T ∗

2 ≈ 1 μs. Typically, the
steady state is reached after ∼103 iterations, that is, within
∼(0.1–1) μs for τ ≈ (0.1–1) ns. The local Zeeman energies
required to effectively cancel the first-order terms are shown in

(a) (b)

FIG. 6. Steady-state entanglement quantified via the EF for the
two SAW-based proposals as a function of δJ , with J

↑
1(2) = J0 ∓ δJ .

(a) and (b) are based on Eqs. (11) and (12), respectively. The solid
lines refer to the ideal result, given by the lower order terms present
in Eqs. (11) and (12), while the dashed lines correspond to the full
evolution. The dotted lines also account for noise due to uncertainty
in the dwell times and dephasing. Numerical parameters: στ = 5%,
J0τ ≈ 0.38, and T ∗

2 /τ ≈ 300. In (b), for each value of δJ , �i has
been optimized in the range �iτ∈(0–1.5) × 10−2.

Fig. 7. However, we have also checked numerically that perfect
cancellation of the first-order terms is not strictly required (for
details see Appendix E); accordingly, residual gradients of up
to ∼0.03 μeV can be tolerated without severely affecting our
results.

The ideal, analytical result given in Eq. (11) assumes the in-
jection of alternating spin components of the form ↑,↓,↑, . . . .
However, this condition can be relaxed to longer sequences of
aligned ancilla spins, of the form ↑,↑, . . . ,↓,↓, . . . ,↑,↑, . . . .
This has been confirmed numerically in Fig. 8. Accordingly,
the switching times of the gates can be increased by about an
order of magnitude without severely affecting the amount of
steady-state entanglement.

C. Comparison of the setups

The presented proposals based on QHE states constitute
continuous entangling generating setups in the sense that
once the setup has been prepared there is no need to
interact externally with the system before the entanglement
measurement; moreover, they have been shown to drive the
system to the steady state on very fast time scales (in a matter

(a) (b)

FIG. 7. Value of the local magnetic fields δ1(2) required to get (a)
Eq. (11) and (b) Eq. (12), respectively, as a function of δJ . Note that
in (b) δ1,2 < 0 because we arbitrarily choose pumping with spin-up
ancilla electrons. Correspondingly, for spin-down pumping the sign
would be reversed. Numerical parameters: J0 = 2.5 μeV.
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FIG. 8. Steady-state entanglement quantified via the EF for the
SAW-based proposal corresponding to Eq. (11) as a function of time
(t = 2nτ ) for two different initial states (continuous and dashed lines,
respectively). Blue: Alternating spins. Orange: Alternating sequences
of ten spins. Numerical parameters: δJ/J0 = 0.28 and J0τ ≈ 0.38.

of few ns). However, this (arguably simple) continuous setting
comes with the disadvantage of undesired terms in the master
equations (8) and (9). As a consequence, even in the cleanest
setup, we cannot go beyond a steady-state entanglement of
EF ≈ 0.2 ebits. As evidenced by our stroboscopic SAW-based
scheme, this limitation can be overcome by suitably controlling
the electron dwell times τi in the ancilla dots. In this way, the
effective dynamics given in Eqs. (11) and (12) can be ensured
to approach the ideal ones (by controlling the dwell times τi).
Therefore, in the limit τi → 0 and without noise sources, we
would recover the pure entangled steady states of Eqs. (1)
and (2) and could approach perfect entanglement (EF = 1).
Here, we estimate an upper limit of EF ≈ 0.7 when accounting
for typical experimental parameters and imperfections. This
better performance comes with the experimental challenge to
transport many electrons via (for example) the SAW-created
potentials reliably and with accurate (electrical) control of
the electronic dwell times. Moreover, the proposal with
alternating spin sequences comes with further requirements
as the proper spin-filtering synchronized with the exchange
couplings. However, based on recent progress demonstrated
for single-electron transport experiments with SAW moving
dots [31,32,34] and the robustness against errors (as we
demonstrate here) a future, successful experimental realization
of our scheme should be feasible.

Given the additional experimental challenges for an ac-
curate control of the ancilla electron dwell times τi with
synchronized (electrical) control of the Heisenberg coupling
constants, one may wonder whether the increase in obtainable
steady-state entanglement (in the stroboscopic SAW-based
schemes) is worth the effort. This, of course, depends on
the ultimate purpose of entanglement generation. When
viewing entanglement production mainly as an experimental
benchmark to demonstrate the capability to entangle, any
entanglement measure (such as our canonical choice, the
entanglement of formation EF) would do; any state with
nonzero EF can be shown (in principle) to be entangled
either by measuring a suitable entanglement witness or by
sufficiently precise state tomography. However, EF will not
tell us, in general, how useful the state is for subsequent
QIP tasks. Since most applications of entanglement require
almost pure states, one of the most relevant uses of mixed-

(a) (b)

FIG. 9. Upper and lower bounds of distillable entanglement in the
steady-state quantified via the EF (orange) and ED→ (blue) for the
two SAW-based proposals as a function of δJ , with J

↑
1(2) = J0 ∓ δJ .

(a) and (b) show results based on Eqs. (11) and (12), respectively.
The solid lines correspond to the full evolution, while the dashed
lines account for noise due to uncertainty in the dwell times and
nuclear dephasing. Numerical parameters: στ = 5%, J0τ ≈ 0.38, and
T ∗

2 /τ ≈ 300. In (b), for each value of δJ , �i has been optimized in
the range �iτ∈(0–1.5) × 10−2.

state entanglement is as an input to entanglement distillation
protocols [47,48]. Usefulness for such a task is measured by
distillable entanglement [49] ED(ρ), which quantifies how
many pure Bell states can be obtained from many copies of ρ

by local operations and classical communication (per copy and
in the limit of many copies). While ED(ρ) > 0 for all entangled
states of two qubits, in general only upper and lower bounds
are known. We use ED→, the entanglement that can be distilled
using only one-way communication and which is given by [50]
ED→(ρ) = max{0,S(ρ1) − S(ρ),S(ρ2) − S(ρ)}, where S is
the von Neumann entropy and ρi the reduced state at site
i = 1,2. Using this lower bound we find that the steady states
in the continuous QHE-based protocols are too noisy to contain
meaningful one-way distillable entanglement [ED→(ρs) <

0.01], while the stroboscopic SAW-based schemes produce
0.1–0.2 ebits of ED→, cf. Fig. 9, showing that from a supply
of 5n-10n such pairs we can distill n high-fidelity Bell states
which would, in turn, allow for, e.g., quantum teleportation
or remote gate implementation. Similar considerations should
apply for stroboscopic QHE-based settings with accurate
control over the electron dwell times, as experimentally
demonstrated for example in Ref. [26].

V. CONCLUSIONS

To conclude, we have presented a general scheme for
the deterministic generation of entanglement between spins
confined in spatially separated gate-defined QDs. We have
detailed our ideas for two specific electron-based setups
feasible with current state-of-the-art technology, for which
the coherence length of the corresponding quantum channels
should allow us to generate sizable entanglement (EF ≈
0.2–0.7) over distances of up to 100 μm. While such noisy,
modestly entangled two-qubit states can be used, e.g., for
quantum teleportation, their main use lies in the fact that
they can be distilled into highly entangled states by means
of local operations on several copies [47,51]. We have seen,
in particular, that the stroboscopic schemes generate a sizable
amount of distillable entanglement. Running our steady-state
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scheme on several spin qubits in parallel could provide
deterministic inputs to such a distillation procedure. We
have focused on GaAs-based systems, as these have been
investigated most thoroughly in experiments, with the ambient
nuclei posing one of the dominant sources of undesired
noise. Two complementary strategies to address the role of
nuclear spins in future studies would be (i) either to investi-
gate nuclear-spin-free systems with T ∗

2 > 100 μs [52,53] or
(ii) to associate the Heisenberg coupling (3) with the hyperfine
interaction between ancilla electron spins and collective
nuclear spin operators, with (possibly large) collective spin
operators Ii(i = 1,2) replacing the spin-1/2 system electron
spins Si considered in this work. By carefully choosing
the spin-projection of the injected ancilla spins as well
as the interaction times between electron and nuclear spins via
the dwell times of the ancilla electrons in the QDs, one should
be able to engineer a dissipative master equation of the form
given in Eq. (1), again with the replacement Si → Ii . Since
nuclear spin ensembles typically comprise 104–106 nuclei, this
scheme could possibly generate large amounts of entanglement
over mesoscopically large distances, provided that narrowed
nuclear spin states with a width much smaller than the average
polarization are prepared initially [20].
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APPENDIX A: ENTANGLEMENT OF FORMATION

The entanglement measure used in this work is the entangle-
ment of formation (EF ) [45], defined as the minimum average
entanglement of an ensemble of pure states that represents the
mixed state ρ. It quantifies the necessary resources to create
a given entangled state. For a mixed state ρ of two qubits
the concurrence is C = max{0,λ1 − λ2 − λ3 − λ4}, where λi

are the square roots of the eigenvalues of the matrix ρAρ∗A
arranged in decreasing order, where A is the antidiagonal
matrix with elements {−1,1,1, − 1}. For two qubits it ranges
from 0 (separable states) to 1 (maximally entangled states).
The EF can be calculated from the concurrence as

EF = −1 + √
1 − C2

2
log2

1 + √
1 − C2

2

− 1 − √
1 − C2

2
log2

1 − √
1 − C2

2
(A1)

and also ranges from 0 to 1.

APPENDIX B: CASCADED MASTER EQUATION
FOR ANCILLA SYSTEM

In Appendix B 1 we introduce the fermionic input-output
formalism [41] and apply it to “cascaded quantum systems,”
which consist of quantum nodes connected through an ideal
chiral reservoir. Then in Appendix B 2 we employ the obtained
cascaded master equation (ME) to model the ancilla quantum
dots (QDs) connected via a quantum Hall edge (QHE) state as
considered in the main text.

1. Fermionic input-output formalism

First of all, we address the interaction of a system with
a Markovian reservoir of noninteracting fermions. The total
Hamiltonian has the generic system Hamiltonian HS, the bath
Hamiltonian

HB =
∫ ∞

0
dωωf †(ω)f (ω), (B1)

where ω is the bath energy and f (ω) are bath
fermionic annihilation operators with anticommutation rela-
tions [f (ω),f (ω′)†]+ = δ(ω − ω′), and the interaction Hamil-
tonian

HSB = i

∫ ∞

0
dω

√
γ

2π
{f †(ω)d − d†f (ω)}, (B2)

where d is a fermionic annihilation operator acting on the
system and the coupling to the reservoir is assumed to be
independent of the frequency (Markov approximation). The
Heisenberg equation of motion of the bath operators is

ḟ (ω) = −iωf (ω) +
√

γ

2π
d, (B3)

which can be formally integrated as

f (ω) = e−iωtf (ω,0) +
√

γ

2π

∫ t

0
dt ′e−iω(t−t ′)d(t ′). (B4)

Here f (ω,0) is the value of f (ω) at time t = 0. A general
system operator a may commute or anticommute with the
bath operators depending on its nature. We call it even if
it commutes with all bath operators and odd if not. The
Heisenberg equation of motion is

ȧ = − i

�
[a,HS]

+
∫ ∞

0
dω

√
γ

2π
{∓f †(ω)[a,d]± − [a,d†]±f (ω)}, (B5)

where the top (bottom) signs apply for odd (even) a operator
and [A,B]± = AB ± BA. Inserting the expression (B4) into
Eq. (B5) we derive the quantum Langevin equation

ȧ = − i

�
[a,HS] ∓

{√
γ f †

in(t) + γ

2
d†(t)

}
[a,d]±

− [a,d†]±

{√
γ fin(t) + γ

2
d(t)

}
, (B6)
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where

fin(t) = 1√
2π

∫ ∞

0
dωe−iωtf (ω,0) (B7)

is called the noise input field and is determined by the initial
state of the bath. The noise output field, defined as the time-
reversed evolution from the final time operator f (ω,tf), is
related to it by

fout(t) − fin(t) = √
γ d(t), (B8)

an identity known as the input-output relation. Up to this
point, no assumption has been made concerning the den-
sity operator of the bath. We will use the white-noise
approximation which assumes the following correlation func-
tions for the input field: 〈f †

in(ω)fin(ω′)〉 = N̄δ(ω − ω′) and
〈fin(ω)f †

in(ω′)〉 = (1 − N̄ )δ(ω − ω′). Here N̄ is the Fermi
distribution function of a thermal reservoir. Moreover we will

assume a weak system-reservoir coupling in the sense that
the correlation functions of the bath are not affected by the
interaction.

The input-output formalism provides a powerful treatment
for two or more subsystems sharing a common unidirectional
reservoir [54–56], also known as cascaded quantum systems.
Let us consider the case of two nodes coupled to the
reservoir via Eq. (B2) with operators dj (j = 1,2). Following
the previous argument a system operator of subsystem j ,
aj , follows Eq. (B6) with the change d → dj , γ → γj ,
and fin → f

(j )
in . The fact that the reservoir is common

and unidirectional implies a relation between the output of
subsystem 1 and the input in 2. For a dispersion-free channel
f (2)

in (t) = f
(1)
out (t − L/v), where L is the distance between the

two subsystems and v the group velocity of the reservoir
modes, i.e., all the output of the first subsystem is used later
as the input into the second one; therefore we are able to write
a generic equation for an odd (even) operator as [24]

ȧ(t) = − i

�
[a,HS] ∓

{√
γ1f

†(1)
in (t) + γ1

2
d
†
1(t)

}
[a,d1]± − [a,d

†
1]±

{√
γ1f

(1)
in (t) + γ1

2
d1(t)

}

∓
{√

γ2f
(1)†
in (t − L/v) + γ2

2
d
†
2(t) + √

γ1γ2d
†
1(t − L/v)

}
[a,d2]±

− [a,d
†
2]±

{√
γ2f

(1)
in (t − L/v) + γ2

2
d2(t) + √

γ1γ2d1(t − L/v)

}
. (B9)

Since the coupling operators d1,2 are fermionic annihilation
(odd) operators, they (anti)commute with any (odd) even
operator a of the other system. Then it is clear from Eq. (B9)
that the time evolution of an operator of the second subsystem
depends on the first one but not the other way around, which
reflects the unidirectionality condition. Following [55,57], for
a dispersionless channel, the fixed time delay may be set to
zero, i.e., one can choose L/v = 0+ without loss of generality.
The previous equation can be easily rewritten as

ȧ(t) = − i

�

[
a,HS + i

√
γ1γ2

2
(d†

1d2 − d
†
2d1)

]

− [a,d†]±

{
d

2
+ f (1)

in (t)

}
∓

{
d†

2
+ f †(1)

in (t)

}
[a,d]±

(B10)

in terms of the nonlocal operator d = √
γ1d1 + √

γ2d2. Once
we have derived this quantum Langevin equation, we can find
a ME for the partial density operator excluding the bath �

by tracing out the bath degrees of freedom from the total
density operator W , � = trB{W}. For this we make use of
the relation tr{ȧ(t)W} = tr{aẆ(t)} = trs{a�̇(t)}. Since any
physical state is fully described by the expectation values of
even observables (the odd ones have vanishing expectation
value due to the parity superselection rule) we can restrict
ourselves in Eq. (B10) to the lower sign for all observables of
interest and end up with the ME

�̇ = −i

[
HS + i

√
γ1γ2

2
(d†

1d2 − d
†
2d1),�

]

+ 1

2
(1 − N̄ )D[d]� + 1

2
N̄D[d†]�, (B11)

where D[A]� = 2A�A† − A†A� − �A†A and N̄ is the Fermi
distribution function of the fermionic reservoir. This expres-
sion contains the nonlocal coherent and incoherent contribu-
tions of the coupling between subsystems mediated by the
reservoir. For simplicity we have neglected the spin index in
this derivation. Moreover, in the main text we work in a rotating
frame such that the global homogeneous magnetic field drops
out. If the ancilla dots’ energy levels are not aligned within
γ , this would generate an undesired rotation of the nonlocal
terms in Eq. (B11) [24].

2. Ancilla quasisteady state

The dynamics of the ancilla QDs connected via a QHE state
considered in the main text can be described by Eq. (B11). Note
that we consider only the nearest resonant subband because the
tunneling rates decrease exponentially with the distance from
the dots [24]. For simplicity, we restrict ourselves to the case
γ ≡ γ1 = γ2. Moreover, we consider the case of an empty
channel N̄ = 0; we need to account explicitly for spins and we
add the contribution from the reservoir that pumps electrons
into the first ancilla QD. Finally, if the spin-resolved levels of
the two ancilla QDs are aligned, the system Hamiltonian term
vanishes in a suitable rotating frame. Therefore the dynamics
of the ancilla dots is described by the transport Liouville
superoperator Ltr� = ∑

σ Ltr,σ� with

Ltr,σ � = γL,σ

2
D[d†

1σ ]� + γ

2
D[d1σ + d2σ ]�

+ γ

2
[d†

1σd2σ − d
†
2σ d1σ ,�]. (B12)
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For fast dissipation (γ,γL � J ), the auxiliary dots settle into a quasisteady state (ρss
a ) on a time scale much shorter than the

relevant system dots dynamics. We now compute and analyze this quasisteady state since it will play a central role for the system
dots ME to be derived in Appendix C 2. If a single spin component is introduced, γL,↓ = 0 and γL ≡ γL,↑, the quasisteady state
associated with Eq. (B12) is

ρss
a = 1

(γL + γ )(γL + 2γ )2

{
γ (2γ − γL)2|0,0〉〈0,0| + γL

(
4γ 2 + γ 2

L

)|↑,0〉〈↑,0| + 8γLγ 2|0,↑〉〈0,↑

− 2γ γL(γL + 2γ )(|↑,0〉〈0,↑| + |0,↑〉〈↑,0|) + 4γ γ 2
L |↑,↑〉〈↑,↑|}. (B13)

The average populations of the ancilla dots depend on the
reservoir and channel rates as shown in Fig. 10.

For all γ,γL �= 0, the quasisteady state is entangled (due
to the Markovian coupling to the common channel) and
reaches an EF of ∼0.55 at γL = 2γ , at which point the
steady state is a mixture of the two-electron state |↑,↑〉
and the maximally entangled state |↑,0〉 − |0,↑〉 that is a
“dark state” for the collective coupling via the operator
(d1,↑ + d2,↑) in Eq. (B12). However, this entanglement comes
in a form of limited usefulness as it involves a superposition
of a single fermion in the first or in the second ancilla and
due to fermionic superselection rules a single such state
(while entangled [58,59]) cannot be distinguished from a
separable state by local operations. Our scheme shows that
this entanglement can still provide the quantum correlations
necessary to produce a usable spin-qubit entanglement for the
system spins, which are weakly coupled to this ancilla system.

In accordance with the cascaded nature of the system, � in
Eq. (B12) takes into account a time delay between systems 1
and 2. If transport happens almost instantaneously even on the
time scale of the channel-ancilla coupling (L/v � 1/γ ), the
delay can be neglected and the quasisteady state in Eq. (B13)
can be understood as an equal-times state. However, this
condition limits the length of the edge channels to L < 1 μm.
For larger separations (L/v � 1/γ ) we see that the first
QD is driven into its steady state before the electrons that
interact with it have time to reach the second QD. Hence
we conclude that at any given time, QD1 and QD2 are
not entangled; instead, QD1 is getting entangled with the
bath (the electron modes in the channel connecting the two
QDs). This notwithstanding, as the cascaded equation tells
us, this system-bath entanglement is faithfully transported
to QDs so that time-delayed measurements at the two dots

FIG. 10. Value of the diagonal elements of the ancilla steady state
in Eq. (B13) as a function of the ratio γL/γ .

show strong quantum correlations. If other quantum systems
(such as the system spins in our setup) interact weakly with
these two correlated ancillas they are exposed to a nonlocal
master equation that can be effectively taken as an equal-time
equation if L/v is short compared to the time scale of the
qubit dynamics, shown in Appendix C to be on the order of
J 2

0 /γ . For realistic parameter values, we thus obtain a standard
equal-time entangled steady state for channel lengths of up to
a few tens of micrometers.

APPENDIX C: ADIABATIC ELIMINATION
OF THE ANCILLA SYSTEM

1. Adiabatic elimination

The adiabatic elimination is a useful method when one has
a main system weakly coupled to an auxiliary system, which
undergoes fast dynamics (given by a Liouvillian L0), since
it allows us to determine the effective dynamics of the main
system to (in principle) arbitrary order in the interaction [43].
Analogously to the Schrieffer-Wolff transformation for closed
systems, it allows us to decouple the slow subspace, given by
the steady state of the auxiliary system, i.e., L0ρ

ss
a = 0 [60],

from the fast one. To this end, one defines the projectorP by its
action over the total density matrix (DM)P� = tra{�} ⊗ ρss

a =
ρ ⊗ ρss

a , where we have introduced the reduced DM as the trace
over the auxiliary system ρ ≡ tra{�}, and apply it to the total
ME of the form �̇ = (L0 + V)�, where V is the perturbative
part. In this way we can obtain the subsequent orders of
the effective Liouville operator expansion that governs the
dynamics of the main system (ρ̇ = tra{Leff�}) [43]. Defining
the Laplace transform of L0 as L−1

0 = − ∫ ∞
0 dτeL0τ , one can

easily find

Leff,1 = PVP, (C1)

Leff,2 = −PVQL−1
0 QVP, (C2)

where Q = 1 − P is the projector into the fast subspace. The
perturbation V contains the interaction between the main and
auxiliary systems as well as a main-system Hamiltonian; i.e.,
in general

V� = −i

N∑
j=1

[Aj ⊗ Sj ,�] − i

N∑
j=1

aj [Sj ,�]. (C3)

Here Aj and Sj are auxiliary and main-system operators,
respectively, and aj ∈ IR. The first-order term of ρ̇ is

tra{Leff,1�} = −i

N∑
j=1

[〈Aj 〉ssSj ,ρ] − i

N∑
j=1

aj [Sj ,ρ], (C4)
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which means that to first order the main system experiences
the effect of the mean values of the auxiliary-system operators
in the quasisteady state, 〈Aj 〉ss = tra{Ajρ

ss
a }, plus the original

main-system Hamiltonian. To second order, one can show

tra{Leff,2�} = −
∑
i,j

tra
{
δAiL−1

0 δAjρ
ss
a

}
[Sjρ,Si]

−
∑
i,j

tra
{
δAiL−1

0 ρss
a δAj

}
[Si,ρSj ], (C5)

where δAj are the fluctuations of the auxiliary-system op-
erators: δAj = Aj − 〈Aj 〉ss. Using the quantum regression
theorem

tra
{
δAie

L0τ
[
δAjρ

ss
a

]} = 〈δAi(τ )δAj 〉ss,

tra
{
δAie

L0τ
[
ρss

a δAj

]} = 〈δAjδAi(τ )〉ss, (C6)

and the relation 〈δAjδAi(τ )〉∗ss = 〈δA†
i (τ )δA†

j 〉ss, Eq. (C2)
reads

tra{Leff,2�} =
∑
i,j

C(Ai,Aj )[Sjρ,Si]

+
∑
i,j

C∗(A†
i ,A

†
j )[S†

jρ,S
†
i ]†, (C7)

where we introduce the correlation functions

C(Ai,Aj ) = tra
{
δAiL−1

0 δAjρ
ss
a

}
. (C8)

In the specific case under consideration in the main text, L0 =
Ltr and V� = −i[HZ + HIN,�].

2. Effective master equation for the system spins

In the following, we apply the method of adiabatic elimi-
nation developed in Appendix C 1 to the physical setup based
on QHE states in order to eliminate the ancilla coordinates
and obtain an effective ME for the system spins. An electron
occupying the ancilla dot j interacts locally with the system
spin Si via the Heisenberg exchange interaction [61]

H
i,j

IN = Ji,j Si · σ j , (C9)

where σ j = 1
2

∑
σ,σ ′ d

†
jστdjσ refers to the spin-1/2 ancilla

operator; here, d
†
jσ creates an electron with spin σ = ↑,↓ in

the ancilla dot j and τ is the vector of Pauli matrices. The
complete interaction Hamiltonian is then HIN = ∑

〈i,j〉 H
i,j

IN ,
which describes local spin-spin interactions between ancilla
and system dots. According to Eq. (C3), the generic ancilla
operators An are σ α

j , with α = x,y,z and j = 1, . . . ,4, and
the system operators Sn are Ji,jS

α
i , with i = 1,2.

According to Eq. (C4) the first-order contributions are given
by the mean value of the magnetic field created by the ancilla
electrons in the quasisteady state ρss

a , i.e., 〈σ z
i 〉ss = tra{σ z

i ρss
a },

and the system Hamiltonian

tra{Leff,1�} = −i

⎡
⎣HZ +

∑
〈i,j〉

〈
σ z

j

〉
ssJi,jS

z
i ,ρ

⎤
⎦, (C10)

HZ =
∑

i

δiS
z
i . (C11)

|↑, 0〉 〈↑, 0|

|↓, 0〉 〈↑, 0|

|↓, 0〉 〈↑, 0|

|↑, 0〉 〈↑, 0|

|0, ↓〉 〈0, ↑|

|0, ↑〉 〈0, ↑|

|0, ↑〉 〈0, ↑|

|0, ↓〉 〈0, ↑|

|0, ↓〉 〈0, ↑|

|0, ↑〉 〈0, ↑|

|0, ↑〉 〈↑, 0| |↑, 0〉 〈0, ↑|

|0, ↓〉 〈↑, 0|

|0, ↓〉 〈0, ↑|

|0, ↑〉 〈0, ↑|

|↓, 0〉 〈0, ↑|

|0, ↓〉 〈0, ↑|

|0, ↑〉 〈0, ↑|

σ−
1 σ−

2 σ−
2 σ−

1

L−1
0 L−1

0 L−1
0 L−1

0 L−1
0

σ+
1 σ+

2 σ+
2 σ+

2 σ+
2

FIG. 11. Schematic representation of the second-order correla-
tion functions; compare Eq. (C8). The different components of ρss

a

are coupled to the elements in rectangles via ancilla spin-flip operators
σ−

1,2. Then, the pseudoinverse of the transport Liouvillian Ltr couples
them to the matrix elements shown in the bottom rectangles. Finally,
a second application of the ancilla spin-flip operators couples the
initial component to the components shown in the bottom ellipses.
For simplicity, this example refers to the limiting case γL � γ ; in
this regime one can restrict the discussion to the single-electron
regime, where at most a single electron is found in the ancilla system
(comprising the two ancilla dots) and the population of the state with
one electron in each of the two auxiliary QD is negligibly small;
moreover, double occupation of a single ancilla QD is disregarded
due to strong Coulomb interaction effects. Note that this schematic
representation refers to just two system QDs coupled to just two
ancilla dots interconnected by a single channel.

The local constant fields in HZ can then be chosen such that
they cancel Eq. (C10) and will be on the order of the exchange
coupling. Using Eq. (C7) we calculate the second-order
contribution of the coupling to two ancilla dots connected
via a unidirectional channel (Ji ≡ Ji,i). There is a term due to
the parallel component of the Heisenberg interaction (z-z),

Lzzρ =
2∑

i=1

J 2
i C

(
σ z

i ,σ z
i

)
D

[
Sz

i

]
ρ + J1J2

[
C
(
σ z

2 ,σ z
1

)

+ C
(
σ z

1 ,σ z
2

)]([
Sz

1ρ,Sz
2

] + [
Sz

2,ρSz
1

])
, (C12)

and another one due to the perpendicular component (flip-
flop),

Lffρ =
2∑

i=1

C(σ+
i ,σ−

i )
J 2

i

4
D[S+

i ]ρ

+ C(σ+
2 ,σ−

1 )
J1J2

4
{[S+

1 ρ,S−
2 ] + [S+

2 ,ρS−
1 ]}. (C13)

The correlation functions are defined in Eq. (C8). In Fig. 11, we
represent schematically the second-order processes related to
the operators σ±

i . Note that the unidirectionality of the channel
implies C(σ+

1 ,σ−
2 ) = 0.

For practical reasons, it is more adequate to express
Eqs. (C12) and (C13) by means of nonlocal terms. By simply
diagonalizing the quadratic form we end up with

Lzzρ = �zz
+D

[
cos

θzz

2
Sz

1 + sin
θzz

2
Sz

2

]
ρ

+�zz
−D

[
sin

θzz

2
Sz

1 − cos
θzz

2
Sz

2

]
ρ (C14)
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and

Lffρ = �ff
+D

[
cos

θff

2
S+

1 + sin
θff

2
S+

2

]
ρ + �ff

−D
[

sin
θff

2
S+

1 − cos
θff

2
S+

2

]
ρ − 	[S−

2 S+
1 − S−

1 S+
2 ,ρ]. (C15)

The rates in Eqs. (C14) and (C15) are all given in terms of the correlation functions as

�zz
± = 1

2

2∑
i=1

C
(
σ z

i ,σ z
i

)
J 2

i ± 1

2

√[
C
(
σ z

1 ,σ z
1

)
J 2

1 − C
(
σ z

2 ,σ z
2

)
J 2

2

]2 + [
C
(
σ z

1 ,σ z
2

) + C
(
σ z

2 ,σ z
1

)]2
J 2

1 J 2
2 , (C16)

�ff
± = 1

8

2∑
i=1

C(σ+
i ,σ−

i )J 2
i ± 1

8

√[
C(σ+

1 ,σ−
1 )J 2

1 − C(σ+
2 ,σ−

2 )J 2
2

]2 + C(σ+
2 ,σ−

1 )2J 2
1 J 2

2 , (C17)

and the angles that define the nonlocal operators into the
Lindblad dissipators as

θzz = arctan

[
C
(
σ z

1 ,σ z
2

) + C
(
σ z

2 ,σ z
1

)]
J1J2

C
(
σ z

1 ,σ z
1

)
J 2

1 − C
(
σ z

2 ,σ z
2

)
J 2

2

, (C18)

θff = arctan
C(σ+

2 ,σ−
1 )J1J2

C(σ+
1 ,σ−

1 )J 2
1 − C(σ+

2 ,σ−
2 )J 2

2

. (C19)

Finally, the Hamiltonian term in Eq. (C15) is an effective
coherent spin interaction between the spatially separated spins
mediated by the reservoir with strength

	 = C(σ+
2 ,σ−

1 )J1J2

8
. (C20)

Following the intuition of spin-flip processes between the
localized spins and the ancilla electrons, we expect that a
nonlocal term may dominate over all other processes. In
Fig. 12(a) the different rates contributing to Eqs. (C16)
and (C17) are shown as a function of the coupling strength
difference δJ , with J1(2) = J0 ∓ δJ . Clearly, the rate �ff

+ is
found to dominate; however, other processes may not be
neglected completely. Note that we have chosen the case of
equal rates γL = γ for simplicity because it is close to the
optimum working point. For this particular case

ρss
a = 1

18 {|0,0〉〈0,0| + 5|↑,0〉〈↑,0| + 8|0,↑〉〈0,↑|
− 6(|↑,0〉〈0,↑| + |0,↑〉〈↑,0|) + 4|↑,↑〉〈↑,↑|}. (C21)

Then the average fields are 〈σ z
1 〉ss = 1/4 and 〈σ z

2 〉ss =
1/3 and the correlation functions are C(σ+

1 ,σ−
1 ) = 1/(2γ ),

C(σ+
2 ,σ−

2 ) = 76/(63γ ), C(σ+
2 ,σ−

1 ) = 22/(21γ ), C(σ z
1 ,σ z

1 ) =

(a) (b)

FIG. 12. (a) Rates of the effective ME for the system spins.
Since the rate �ff

+ dominates, we show in (b) the structure of the
corresponding nonlocal operator cos θff

2 S+
1 + sin θff

2 S+
2 as a function

of δJ , with J1(2) = J0 ∓ δJ .

1/(32γ ), C(σ z
2 ,σ z

2 ) = 1/(54γ ), C(σ z
1 ,σ z

2 ) = −1/(72γ ), and
C(σ z

2 ,σ z
1 ) = 1/(72γ ).

The dominating term �ff
+D[cos θff

2 S+
1 + sin θff

2 S+
2 ]ρ [see

the structure in Fig. 12(b)] possesses two stationary states:
|�ss,1〉 = cos θff

2 |↑↓〉 − sin θff
2 |↓↑〉 and |�ss,2〉 = |↑↑〉. To

make it unique, we can (i) add an extra channel or (ii) apply a
coherent driving to the localized spins.

a. Two channels and no driving

We introduce an extra channel at the top with electrons
flying in the opposite direction (from 4 to 3 in Fig. 1), opposite
spin polarization, and with the following symmetry in the
exchange couplings: J1 ≡ J1,1 = J2,4, J2 ≡ J2,2 = J1,3. Sum-
ming up the first-order contributions from the two channels,
the Zeeman energies (4) necessary to cancel the first-order
term are [see Eq. (C10)] δ1(2) = ∓(J1〈σ z

1 〉ss − J2〈σ z
2 〉ss) (the

index in parentheses refers to the lower sign), which in the
case of equal rates become δ1(2) = ± J0+7δJ

12 .
For the second-order term of the adiabatic elimination we

need to calculate the correlation functions C(σ+
i ,σ−

j ) and
C(σ z

i ,σ z
j ), i,j = 1, . . . ,4; in particular this includes cross-

correlations between the two channels. As the ancilla dot 4 (3)
is symmetric to 1 (2), the correlations into the same channel do
not need to be computed again. Since the ancilla quasisteady
state does not contain any cross-channel correlations, nonlocal,
cross-channel correlators vanish (when one traces out the
ancilla degrees of freedom). Then the new channel contributes
mainly with the dissipator �ff

+D[cos θff
2 S−

2 + sin θff
2 S−

1 ]ρ (note

the symmetry S
+(−)
1 ↔ S

−(+)
2 ) and the effective ME for the

system spins is

ρ̇ = +�ff
+D[v+

ff · (S+
1 ,S+

2 )]ρ

+�ff
+D[v+

ff · (S−
2 ,S−

1 )]ρ + L(1)
n-idρ, (C22)

where we have included all the nondominating (nonideal)
terms in

L(1)
n-idρ = −2	[S−

2 S+
1 − S−

1 S+
2 ,ρ] +

∑
σ=±

�zz
σ D

[
vσ

zz · (
Sz

1,S
z
2

)]
ρ

+
∑
σ=±

�zz
σ D

[
vσ

zz · (
Sz

2,S
z
1

)]
ρ

+�ff
−D[v-

ff · (S+
1 ,S+

2 )]ρ + �ff
−D[v-

ff · (S−
2 ,S−

1 )]ρ.

(C23)

Here v+
a = (cos θa

2 , sin θa
2 ) and v−

a = (sin θa
2 , − cos θa

2 ), for a =
ff,zz.

115404-12



DISSIPATIVE LONG-RANGE ENTANGLEMENT . . . PHYSICAL REVIEW B 94, 115404 (2016)

b. One channel and driving

The second solution avoids the inclusion of a second
channel and the extra ancilla QDs and consists of applying
a weak coherent driving field in resonance with the Zeeman
frequency, giving rise to the equation

ρ̇ = −i[Hd,ρ] − 	[S−
2 S+

1 − S−
1 S+

2 ,ρ]

+�ff
+D[v+

ff · (S+
1 ,S+

2 )]ρ + L(2)
n-idρ, (C24)

with the nonideal part

L(2)
n-idρ =

∑
σ=±

�zz
σ D

[
vσ

zz · (
Sz

1,S
z
2

)]
ρ + �ff

−D[v-
ff · (S+

1 ,S+
2 )]ρ.

(C25)

In this case, the Zeeman energies are δi = −Ji〈σ z
i 〉ss .

3. Validity of adiabatic elimination

In the main text, we discuss to what extent the entanglement
of the localized spins inherent to the ideal dynamics persists
despite the undesired terms absorbed into L(i)

n-id. These results
are based on the previous adiabatic elimination of ancilla dots.
To check the validity of our perturbative treatment, in Fig. 13
we compare the entanglement in the steady state resulting
from the full ME including ancilla QDs to the Eqs. (C22)
and (C24), i.e., after adiabatic elimination. For the experimen-
tally achievable parameters γ = 30 μeV and J0 = 3 μeV the
agreement is very good, showing that the approximation is
valid for physically achievable conditions and it is possible to
work with the simplified effective ME for the system spins.
Obviously, the approximation becomes less accurate for larger
values of the coupling J0 with respect to γ (not shown).

APPENDIX D: EFFECTIVE STROBOSCOPIC EVOLUTION

In this Appendix, we provide further details for the SAW-
based setup explained in the main text. The protocol consists

(a) (b)

FIG. 13. Steady-state entanglement between two remote qubits
quantified via the EF for the two QHE-based proposals as a function
of δJ . The solid lines in (a) and (b) refer to Eqs. (C22) and (C24),
respectively, while the blue dots are calculated with the full ME
including ancilla QDs in order to check the validity of our perturbative
treatment. Numerical parameters: γL = γ = 30 μeV, J0 = 3 μeV,
and δi∈(−2,2) μeV. In (b), for each value of δJ , �i has been
optimized in the range �i∈(0–50) neV.

of a continuous train of mobile dots that interact successively
with the two system spins. The concatenated evolution of the
localized spins DM is described by

ρ(n) = tra[eL2,nτ2eL1,nτ1 (�(n−1))], (D1)

�(n−1) = ρ(n−1) ⊗ |σn−1〉〈σn−1|, (D2)

where ρ(n) defines the state of the system after the nth cycle of
the protocol and the Liouvillian Li,n encodes the interaction
of the ancilla electron with the system spin i and the Zeeman
Hamiltonian (C11). Still, dephasing during transport could
be included straightforwardly in this model by adding a
corresponding superoperator in between the two interaction
terms. For Jiτj ,δiτj � 1, we can perform a short-time Taylor
expansion eLi,nτ = 1 + τLi,n + τ 2

2 L2
i,n + · · · to approximate

ρ(n) to second order (let us employ for simplicity equal times
τ ≡ τ1 = τ2):

ρ(n) = tra
{
�(n−1) − iτ

[
HZ + H

1,1
IN ,�(n−1)

] − iτ
[
HZ + H

2,2
IN ,�(n−1)

]} + tra

{
τ 2

2
D

[
HZ + H

1,1
IN

]
�(n−1) + τ 2

2
D

[
HZ + H

2,2
IN

]
�(n−1)

}

+ τ 2tra
{[

HZ + H
2,2
IN ,�(n−1)

(
HZ + H

1,1
IN

)] + [(
HZ + H

1,1
IN

)
�(n−1),HZ + H

2,2
IN

]} + O(τ 3J 3). (D3)

When the injected spin is |σn−1〉 = |↑〉,

ρ(n) = ρ(n−1) − 2iτ
[
δ1S

z
1 + δ2S

z
2,ρ

(n−1)
] − i

2
τ
[
J

↑
1 Sz

1 + J
↑
2 Sz

2,ρ
(n−1)

]

+ τ 2

2
D

[(
2δ1 + J

↑
1

2

)
Sz

1 +
(

2δ2 + J
↑
2

2

)
Sz

2

]
ρ(n−1) + 1

8
D[τJ

↑
1 S+

1 + τJ
↑
2 S+

2 ]ρ(n−1)

+ τ 2 J
↑
1 J

↑
2

8
[S−

1 S+
2 − S−

2 S+
1 ,ρ(n−1)] + O(τ 3J 3), (D4)

and if |σn〉 = |↓〉 the next step is given by

ρ(n+1) � ρ(n) − 2iτ
[
δ1S

z
1 + δ2S

z
2,ρ

(n)] + i

2
τ
[
J

↓
1 Sz

1 + J
↓
2 Sz

2,ρ
(n)] + τ 2

2
D

[(
2δ1 − J

↓
1

2

)
Sz

1 +
(

2δ2 − J
↓
2

2

)
Sz

2

]
ρ(n)

+ 1

8
D[τJ

↓
1 S−

1 + τJ
↓
2 S−

2 ]ρ(n) − τ 2 J
↓
1 J

↓
2

8
[S−

1 S+
2 − S−

2 S+
1 ,ρ(n)] + O(τ 3J 3). (D5)
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Analogously to the two proposals of the QHE-based setup,
we consider (i) a protocol with alternating spin directions
and suitably synchronized exchange couplings and (ii) a
spin-polarized protocol with a coherent driving. Both transport
protocols drive the localized spins to an entangled state
independent of the initial state.

1. Alternating spin sequences

The concatenation of two steps with the injection of an
opposite spin results in a first-order term that can be canceled

by choosing the Zeeman energies as δi = − J
↑
i −J

↓
i

8 . Setting in

addition τJ
↑
1 = τJ

↓
2 ≡ μ and τJ

↓
1 = τJ

↑
2 ≡ ν, this is simply

a gradient of magnetic field between the two localized spins:
δ1(2) = ∓ δJ

4 , with J
↑
1(2) = J0 ∓ δJ . Not only the first-order

terms but also the dephasing second-order terms in Eqs. (D4)
and (D5) cancel and it is readily seen that

ρ(n+1) = ρ(n−1) + 1
8D[μS+

1 + νS+
2 ]ρ(n−1)

+ 1
8D[νS−

1 + μS−
2 ]ρ(n−1) + O(τ 3J 3), (D6)

whose second-order terms are the considered ideal dynamics
in the main text because they have a unique pure entangled
steady state.

2. Single spin component and driving

For the protocol with a single spin component the approx-
imated stroboscopic evolution is given by Eq. (D4); therefore
by choosing the magnetic fields with strengths δi = −J

↑
i /4,

we cancel the first-order contribution. With the definitions
μ = J

↑
1 τ and ν = J

↑
2 τ and applying a coherent driving

Hd =
∑
i=1,2

2�iS
x
i (D7)

such that �1,2 � J , the stroboscopic evolution reads

ρ(n) = ρ(n−1) − 2iτ [Hd,ρ
(n−1)]

+ μν

8
[S−

1 S+
2 − S−

2 S+
1 ,ρ(n−1)]

+ 1

8
D[μS+

1 + νS+
2 ]ρ(n−1) + O(τ 3J 3), (D8)

which is also like the desired one up to second order.
Note that for a direct comparison of Eqs. (D6) and (D8) with

a ME, one needs to assume infinitesimal interaction times, but
we have confirmed that the schemes work for finite interaction
times.

APPENDIX E: NOISE SOURCES

In this Appendix we detail the different noise sources
taken into account in the proposed setups. First of all, we
account for qubit dephasing induced by nuclear spins in the
(GaAs) host environment. Second, we consider electron losses
due to imperfections in the transport mechanisms. Then, we
analyze the effect of an imperfect cancellation of the first-order
terms, i.e., the effect of some residual gradient. Finally, in
the SAW-based proposal we account for imperfections due to
uncertainties in the effective electron interaction times.

FIG. 14. Steady-state entanglement between two remote qubits
quantified via the EF for the two QHE-based proposals as a function
of the cooperativity C = J 2

0 /γ σnuc. The solid (dotted) line results are
based on Eqs. (C22) and (C24), respectively. Numerical parameters:
γL = γ = 30 μeV, J0 = 3 μeV, δJ/J0 = 0.44 (δJ/J0 = 0.14) for
solid (dotted) line and δi∈(−2,2) μeV.

To account for dephasing due to the nuclear spins, we follow
the standard treatment [62] and assume that the spins in the
QDs experience non-Markovian noise. The fluctuations of the
Overhauser field lead to a time-ensemble-averaged electron
dephasing time T ∗

2 , that is related to the width of the nuclear
field distribution σnuc as T ∗

2 = √
2/σnuc. In order to model this

effect, we have to include the Hamiltonian [7,62,63]

Hdeph =
∑
i=1,2

Bnuc
i Sz

i (E1)

with random parameters Bnuc
i sampled independently from a

normal distribution with standard deviation σnuc.
Before we proceed, we note that, due to the several time

scales involved, our scheme should be very amenable to
the inclusion of dynamical decoupling techniques, which
allow for significantly extended electron coherence times,
T2 ≈ 102T ∗

2 [7,62,63].

1. Transport via QHE states

The full MEs were derived in Appendix C 2. In Fig. 14
we plot the EF of the steady state for different values of
the 9-like parameter C = J 2

0 /γ σnuc, which compares desired
∼J 2

0 /γ to undesired ∼σnuc ∼ 1/T ∗
2 rates. As expected from

the analysis of the spectral gap the purely dissipative proposal
is typically found to be more robust. By choosing the values
γ = 30 μeV and J0 = 3 μeV we can predict that a value
of σnuc = 0.03 μeV, which corresponds to a cooperativity
C = 10, would be very good concerning the purely dissipative
proposal. This standard deviation corresponds to a dephasing
time T ∗

2 � 30 ns, which is experimentally feasible and can
be improved up to 3 μs using nuclear-state-narrowing tech-
niques [46,62].

To model the possible electron losses due to imperfections
in the transport channel, we include a Lindblad operator with
rate �l acting in the first ancilla QD, i.e.,

∑
σ �l/2D[dσ

1 ] (also
in dσ

4 in the two-channels proposal). The result, shown in
Fig. 15, predicts that we can afford a small percent of losses.

Finally, we verify in Fig. 16(a) that the perfect cancellation
of the first-order terms is not necessary, provided that the
residual gradients 	i are small compared to the gap.
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(a) (b)

FIG. 15. Steady-state entanglement between two remote qubits
quantified via the EF for the two QHE-based proposals as a function
of δJ . The solid lines in (a) and (b) refer to Eqs. (C22) and (C24),
respectively, while the dots are calculated with the full ME including
ancilla QDs and different losses rates �l . Numerical parameters: γL =
γ = 30 μeV, J0 = 3 μeV, and δi∈(−2,2) μeV. In (b), for each value
of δJ , �i has been optimized in the range �i∈(0–50) neV.

2. Transport via SAW moving dots

The approximated Eqs. (D6) and (D8) suggest that the
simulation of the full problem given in Eq. (D1) will drive
the main qubits to an entangled steady state regardless of
the initial state (as long as τJi � 1). However, in a realistic
experimental situation, there will be also some noise sources.
In the following, we account for (i) dephasing due to the
nuclear spins, (ii) imperfections due to the uncertainty in
the dwell time τ (time jitter), (iii) electron losses due to
imperfections in the transport mechanism, and (iv) residual
gradients. (i) As explained above, we include a dephasing
Hamiltonian as in Eq. (E1) to model the non-Markovian
noise due to the hyperfine interaction. We assume that the
ancilla dots are refilled very quickly after every step and thus
neglect the evolution in the short intermittent intervals when
the ancilla dot is empty. (ii) In a realistic experimental situation,
there will be also some noise associated with the uncertainty
in the dwell times [64]. We include this noise source by
choosing the times τi randomly from a Gaussian distribution
centered around the average (τ ) with a standard deviation of στ .
(iii) To model the losses we assume during the time simulation
that with a certain probability an ancilla spin never interacts
with the second localized spin. (iv) We estimate how large the

(a) (b)

FIG. 16. Steady-state entanglement between two remote qubits
quantified via the EF for two proposals as a function of δJ . The
solid lines in (a) and (b) refer to Eqs. (C22) and (D6), respectively,
while the results in dashed and dotted lines account for different
values of the residual gradient 	1 (	2 = 0). Numerical parameters:
(a) γL = γ = 30 μeV, J0 = 3 μeV. (b) J0 = 2.5 μeV, τ = 0.1 ns.

(a)

(b)

FIG. 17. Entanglement between two remote qubits quantified via
the EF for the SAW-based proposal corresponding to Eq. (D6) as
a function of time (t = 2nτ ) for two different initial states (solid
and dashed lines, respectively) and δJ/J0 = 0.28, J0 = 2.5 μeV,
and τ = 0.1 ns. In both (a) and (b), the black curves depict the ideal
case and the remaining curves show the effect of different kinds of
noise [time jitter στ and nuclear dephasing in (a); electron losses
in (b)] averaged over several random trajectories of the respective
processes.

imperfections in the magnetic gradients can be such that the
entanglement generation is not severely affected.

In Fig. 17 we show the effect of the noise sources (i),
(ii), and (iii) in the simulation in terms of EF of the state. The
convergence is found after ∼103 iterations, which corresponds
to the regime of (0.1–1) μs for τ = (0.1–1) ns. Note that
if the product J0τ is fixed, the results do not change, but
the time to reach the steady state and consequently the

(a) (b)

FIG. 18. Steady-state entanglement between two remote qubits
quantified via the EF for the two SAW-based proposals as a function
of δJ (J ↑

1(2) = J0 ∓ δJ ). (a) and (b) show the results of Eqs. (D6)
and (D8), respectively. The solid lines refer to the ideal result, given
by the lower order terms present in Eqs. (D6) and (D8), while the
dashed lines correspond to the full evolution. The dotted lines also
account for noise due to uncertainty in the dwell times and dephasing.
Numerical parameters: στ = 5%, J0τ ≈ 0.15, and T ∗

2 /τ ≈ 30 000.
In (b), for each value of δJ , �i has been optimized in the range
�iτ ∈ (0–3) × 10−3.
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undesired dephasing decrease with τ . Once a small enough
τ is fixed, the result improves as J0 decreases but obviously
the time grows and we need to find a compromise between the
conditions τJ0 � 1 and a time sufficiently short for the given
nuclear dephasing time. In Fig. 16(b) we show the effect of
(iv) in the entanglement generation scheme with alternating
spins.

The short dephasing times considered within the main
text force us to choose a quite large value of τJ0 = 0.38;
therefore the amount of entanglement generated is bounded
to EF � 0.4. If the dephasing time reaches the maximal
experimental reported value of T ∗

2 = 3 μs, the amount of
steady-state entanglement increases up to EF � 0.7, as shown
in Fig. 18.
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