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Under nonequilibrium conditions, bosonic modes can become dynamically unstable with an exponen-
tially growing occupation. On the other hand, topological band structures give rise to symmetry protected
midgap states. In this Letter, we investigate the interplay of instability and topology. Thereby, we establish a
general relation between topology and instability under ac driving. We apply our findings to create
dynamical instabilities which are strongly localized at the boundaries of a finite-size system. As these
localized instabilities are protected by symmetry, they can be considered as topological instabilities.
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Introduction.—Because of their underlying symplectic
structure, bosonic systems can exhibit so-called dynamical
instabilities [1–3]. This effect can occur in the presence of
nonparticle conserving terms which appear, e.g., in the
Bogoliubov excitations of Bose-Einstein condensates.
Thereby, the bosonic occupation of a mode grows expo-
nentially in time due to a nonequilibrium state of the
system. On the other hand, the theory of topological band
structures predicts symmetry protected midgap states
[4–13]. A priori, dynamical instability and topology are
independent phenomena.
In this Letter, we formalize a relation between insta-

bilities and topology under ac driving. More precisely, we
explain that different topological phases are separated by
regions of instability. Using this relation, we demonstrate
how to employ topology to systematically engineer topo-
logically protected dynamical instabilities. Thereby, spa-
tially localized midgap modes are rendered dynamically
unstable with exponentially growing bosonic occupation as
has been exemplarily proposed for Bose-Einstein conden-
sates in Refs. [11,14,15], and for photonic systems [16].
Here, we suggest a very flexible tool in the form of ac fields
in order to engineer topological instabilities governed by
corresponding artificial, effective Hamiltonians [17]. This
simultaneously provides us the possibility to detect the
midgap states as their occupation increases exponentially in
time. Topological instabilities are an effect with no direct
analogue in fermionic topological insulators. This stresses
the need for a more intensive investigation of topological
effects in bosonic systems.
In fermionic systems, ac driving has been applied to

control topological phases [18–24]. In particular, the top-
ology of a band can change if there is a degeneracy of the
form ϵi0 ¼ ϵi þΩ, where Ω denotes the driving frequency.
As this is a single-particle effect, it can also appear in
bosonic systems [25,26]. The main challenge, however, is
that dynamical instabilities appearing in bosonic systems
generated by an ac field constitute an obstruction in the

search for a stable system with nontrivial topology [25]: by
slightly changing parameters, the systemmight get uninten-
tionally unstable within the bulk, which obscures the
existence of midgap states. For the one-dimensional
Hamiltonian under consideration, we show how to employ
stability diagrams to facilitate the search of adequate
system parameters. The latter can be regarded as a
higher-dimensional version of the famous Arnold tongues
in parametrically driven oscillators [3].
Selective enhancement of edge states and related effects

can be achieved using different approaches, e.g., non-
Hermitian Hamiltonians [27–30]. Furthermore, in a driven
spin chain the crossing of topological phase transitions is
accompanied by a Kibble-Zurek scaling phenomenon
[31]. These effects raise the question, to what extent
the instability-topology relation established here for bosonic
ac-driven systems can be generalized to other fields of
physics.
The system.—Bogoliubov Hamiltonians are important in

many areas of physics. For instance, they appear when
expanding Hamiltonians describing interacting bosonic
particle or polariton condensates in orders of the fluctua-
tions [1,2,14,32]. They also describe excitations in mag-
nonic crystals [8,9] or in quantum-optical systems [33].
More generally, they appear in the linear stability analysis
of nonlinear bosonic systems [34].
We analyze a one-dimensional system of coupled

bosonic modes which is subjected to periodic driving.
However, we emphasize that the relation between
instability and topology established here applies also for
higher-dimensional systems. A Hamiltonian allowing for a
systematic investigation of the topological instabilities
which we are interested in reads

H¼
X
m

−ðνðtÞâ†m;1âm;2þν0ðtÞâ†m;2âmþ1;1þH:c:Þ

þg
X

m;s¼f1;2g
ðâ†m;sâ

†
m;sþH:c:Þ−

X
m;s¼f1;2g

μâ†m;sâm;s; ð1Þ
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where âm;s with s ¼ 1, 2 are bosonic annihilation operators,
νðtÞ≡ ν0 þ ν1 cosðΩtÞ, ν0ðtÞ≡ ν00 þ ν01 cosðΩtÞ and μ is
the chemical potential. The system is sketched in Fig. 1(a).
For ν1 ¼ ν01 ¼ 0 the first line resembles the famous
Su-Schrieffer-Heeger model which exhibits a topological
phase transition for ν0 ¼ ν00 [35]. Because of the non-
particle-conserving terms in the second line the bosonic
modes can exhibit dynamical instabilities with exponen-
tially growing bosonic occupation.
After a transformation into the momentum space, the

Bogoliubov Hamiltonian reads

ĤðBÞðtÞ ¼ 1

2

X
k

ðâ†k; â−kÞHkðtÞ
�

âk

â†−k

�
: ð2Þ

The symbol â†k ¼ ðâ†k;1; â†k;2Þ denotes a vector of bosonic
creation operators, and

HkðtÞ≡ 1 ⊗ ~hðk; tÞ~σ − μ1 ⊗ 1þ gσx ⊗ 1; ð3Þ

where ~σ ¼ ðσx; σyÞ is a vector of Pauli matrices and we
defined a pseudo magnetic-field vector with components
hxðk; tÞ ¼−νðtÞ− ν0ðtÞcosk≡hx;0ðkÞþhx;1ðkÞcosΩt and
hyðk; tÞ ¼ −ν0ðtÞ sin k≡ hy;0ðkÞ þ hy;1ðkÞ cosΩt.
Importantly, the Bogoliubov Hamiltonian fulfills a gen-

eralized chiral symmetry at all times t. This is defined by

Σ½HkðtÞ þ μ1 ⊗ 1 − gσx ⊗ 1�Σ
¼ −½HkðtÞ þ μ1 ⊗ 1 − gσx ⊗ 1�; ð4Þ

where Σ ¼ σz ⊗ σz. Accordingly, the Hamiltonian corre-
sponds to the topological class BDI according to the
Altland-Zirnbauer classification [37]. The band structure
of the undriven and noninteracting system exhibits two
bands. They are described by a topological quantum
number given by

W ¼ 1

2πi

Z
π

−π

d
dk

ln ½hxðkÞ þ ihyðkÞ�; ð5Þ

which counts how often the vector ~hðkÞ winds around
~hðkÞ ¼ 0. Consequently, W can only change if there is a
degeneracy, as this is related to ~hðkÞ ¼ 0. By definition, the
winding number describes translational invariant systems.
However, there is an important consequence for finite-sized
systems with boundaries. There are spatially confined
states close to the boundary with energy located within
the band gap. The number of these states equals W [6,38].
We now show how the physics is modified in the presence
of periodic driving and interactions.
Floquet-Bogoliubov theory.—As regular Bogoliubov

excitation energies of an undriven system, the Floquet-
Bogoliubov quasienergies for bosons reveal the stability of
a system. It is stable, if all quasienergies are real-valued and
unstable if one or more have a finite imaginary part. They
can be obtained as follows [1–3,25,39,40]: first, we have to
solve the differential equation

i
d
dt

UðtÞ ¼ σzHðtÞUðtÞ; Uð0Þ ¼ 1; ð6Þ

where σz ¼ σz ⊗ 1 emerges as the Bogoliubov
Hamiltonian couples bosonic creation and annihilation
operators, whose equations of motion differ by a minus
sign. The matrix Uð2π=ΩÞ is the Floquet operator and its
eigenvalues and eigenstates fulfill

Uð2π=ΩÞjΨii ¼ e−ið2π=ΩÞϵi jΨii; ð7Þ

where ϵi denotes the Bogoliubov quasienergies and jΨii the
stroboscopic Floquet states [34]. There are always 2d
Floquet states where d denotes the dimension of the
single-particle Hamiltonian. As usual quasienergies, the
real part of the Bogoliubov quasienergies can be repre-
sented within the window (−Ω=2, Ω=2). A system is only
stable if the quasienergies for all k ∈ ð−π; πÞ are real
valued. In this case we denote the system to be globally
stable.
Additionally, we introduce the concept of strong stability

according to Refs. [3,40]. A Floquet state with Im ϵi ¼ 0 is
denoted to be strongly stable, if a small perturbation of the
system does not result in a finite imaginary part Im ϵi ≠ 0.
If a state is strongly stable, then it can be normalized as
Ci ≡ hΨijσzjΨii ¼ �1 [1,40]. For every state with ϵi there
is a corresponding state with ϵi0 ¼ −ϵi. If the states are

(a)

(b)

(c)

FIG. 1. (a) Sketch of the system. (b) and (c) depict quasienergy
spectra with colored lines for ν0 ¼ 1.5, ν00 ¼ 0, ν1 ¼ 3, μ ¼ −5
and Ω ¼ 5.2. We choose ν01 ¼ 11 and ν01 ¼ 6 in (b) and (c),
respectively. Black lines depict the spectrum of an effective
Hamiltonian [36]. All quantities are expressed in units of g.
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normalizable, then Ci ¼ −Ci0 . A system is considered to be
strongly stable, if all Floquet states are strongly stable.
Two Bogoliubov quasienergy dispersions are depicted in

Figs. 1(b) and 1(c), where we take the state with Ck;i ¼ 1 if
it is normalizable. In panel (c), we recognize momenta k
with Im ϵk;i ≠ 0, leading to a dynamical instability with
bosonic occupations growing exponentially in time [1,2],
which we analyze in Fig. 2(a), where the system is not
globally stable in the green areas.
Following Refs. [3,40], one finds that if the quasiener-

gies of two strongly stable states with Ci ≠ Cj merge by
varying system parameters, thus, they become

Re ϵi ¼ Re ϵj mod Ω; ð8Þ

then the states are not strongly stable. Moreover, even
when becoming unstable, the states i, j still fulfill Eq. (8)
which thus constitutes a necessary instability condition.
Consequently, if the quasienergy of an originally strongly
stable state gets Re ϵi ¼ 0, Ω=2, it is not strongly stable.
We relate this to topology in the following.

Topology.—Motivated by Refs. [8,10], we define a
topological invariant generalizing Eq. (5) for driven
bosonic Bogoliubov systems by

WS ≡ 1

πi

X
i∈S

Z
π

−π
dkhΨk;ijσz

d
dk

jΨk;ii; ð9Þ

where S ¼ fij0 < ϵk;i < Ω=2∧Ck;i ¼ 1 for all kg is the
set of all positive normalizable quasienergies. We note
thatWS is only defined for globally strongly stable systems.
As our Hamiltonian fulfills a generalized chiral sym-

metry, the topological invariant is integer valued, i.e.,
WS ∈ Z. It predicts midgap states energetically located
close to ϵi ¼ 0,Ω=2, thus, close to the instability condition,
Eq. (8). The number of midgap states at each boundary
equals WS.
The topological phase diagram is depicted in Fig. 2(a).

There we find a phase with WS ¼ 0 (white) and one with
WS ¼ 2 (yellow). Interestingly, these two phases are
separated by instability regions which is a general feature
in driven bosonic systems, cf. below.
Instability-topology relation.—We are now in a position

to establish a general relation between topology and
instability of a bosonic system under ac driving: The
topological invariant, Eq. (9), can only change by a smooth
variation of system parameters pðtÞ with t ∈ ½0; 1�, if the
system is not globally strongly stable for at least one t ¼ t0.
The relation is a direct consequence of the instability

condition Eq. (8). When we only perform parameter
variations so that the system is globally strongly stable,
Eq. (8) is never fulfilled and S remains unchanged.
Moreover, the bands i ∈ S are not in contact with the
bands i ≠ S so that the topological invariant cannot change.
By definition, in the vicinity of stable but not strongly

stable parameters there are always unstable parameters.
Consequently, the topological phases in Fig. 2(a) are
separated by unstable regions.
We emphasize that this relation is valid for systems of

arbitrary dimensions. One only has to replaceWS in Eq. (9)
by a higher-dimensional topological invariant.
To elucidate this relation, we investigate the stability of

the Hamiltonian [Eq. (2)] as a function of hη;1 with η ¼ x, y
and Ω. The result is depicted in Fig. 2(b), where we depict
unstable parameters in green. A set of system parameters p
specifies a curve as a function of momentum k in the
stability diagram due to the parametrization of hη;1 with
η ¼ x, y below Eq. (3). For instance, the points p ¼ a, b, c
depicted in Fig. 2(a) correspond to curves γpðkÞ in the
stability diagram in Fig. 2(b). The curves γa and γc do not
traverse any unstable areas, so they are globally stable,
while γb is not.
If one can smoothly contract a globally strongly stable

γðkÞ while clearly avoiding areas of unstable parameters,
then WS

γ ¼ 0. In Fig. 2(b), γcðkÞ can be trivially contracted
to P so that it has a trivial topology. By contrast, the

(a)

(b)

FIG. 2. (a) Topological phase diagram. The parameters are as in
Fig. 1(b). In the green (dark gray) areas, the system is not globally
stable, so the topological invariant WS in Eq. (9) is not defined
there. In the white and yellow (light gray) areas, we find that
WS ¼ 0 and WS ¼ 2, respectively. The topological phases are
separated by instability areas (green). Dashed lines are obtained
by using an effective Hamiltonian [36]. (b) Stability diagram as a
function of hx;1 and hy;1 corresponding to (a). The parameters of
the curves γa;b;c are depicted in (a) by the points p ¼ a, b, c. The
parameters p ¼ a and p ¼ b correspond to Figs. 1(b) and 1(c).
Curve γc can be contracted to point P, so that it is topologically
trivial according to the explanations in the main text.
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deformation of γaðkÞ onto a stable point in Fig. 2(b), is only
possible by traversing the two unstable green regions. For
this reason, it is a candidate for a nontrivial topology with
WS

γ ≠ 0. We thus have a one-to-one correspondence
between points in the topological phase diagram in
Fig. 2(a), and (non-) contractible curves in the stability
diagram in Fig. 2(b).
Moreover, the stability diagram assists in finding param-

eters corresponding to a stable and topological-nontrivial
system. We only have to calculate WS for noncontractible
curves which cannot be transformed to each other in a
stable way.
The black lines in Figs. 1(b), 1(c) and 2(a) depict

the calculations using a time-independent effective
Hamiltonian [36]. For its derivation, we generalized the
procedure of Ref. [23] to Bogoliubov Hamiltonians which,
to our knowledge, has not been done before. As the
effective Hamiltonian resembles the features of the spec-
trum, it is an appropriate tool to calculate stability diagrams
which enable an efficient search for parameters of stable
and topologically nontrivial systems.
Topological instabilities.—Because of its definition, WS

predicts midgap states energetically located close to ϵi ¼ 0,
Ω=2, thus, close to the instability condition [Eq. (8)]. In
Fig. 3(a), we depict the numerical quasienergy spectrum for
a finite-sized system with boundaries with parameters given
by p ¼ a in Fig. 2(a). There are four midgap states with
Re ϵi ≈ 0 which we mark with arrows. Their wave func-
tions are strongly confined to the boundaries. The wave
function of one of them is depicted in the inset of panel (b).
The imaginary part of the quasienergies of two midgap
states is finite, so they are dynamically unstable, which
gives rise to an exponential growth of the occupation as a
function of time. The imaginary part of the quasienergies
of the other two midgap states is zero, so they are stable.
The states not marked by an arrow are bulk modes and
are stable.
In principle, one can render all four midgap states to be

unstable by slightly adjusting the system parameters as
Re ϵi ≈ 0. However, we did not find parameters where all
four midgap states are unstable without destabilizing the
bulk modes.
The initial state of the time evolution in Fig. 3(b) is the

vacuum state defined by âjjvaci ¼ 0 [11,14,15]. We
recognize, that the occupation grows exponentially on sites
close to the boundary, while it remains small within the
bulk. As the instabilities are generated by the unstable
midgap states, they can be thus considered to be topologi-
cally protected instabilities.
To conclude, we found that topological phases are

separated by regions of instability in ac-driven systems
which we illustrated using stability diagrams. We recall that
this finding is valid for systems of arbitrary dimension. We
used this to selectively generate dynamical instabilities
which are strongly localized close to the boundaries.

To this end, we employed localized midgap states whose
occupation grows exponentially in time. Recently, stability
and the onset of chaos have been experimentally explored
in a periodically driven two-mode Bose-Einstein conden-
sate [41]. We assume that the spatially extended system
investigated here is also a candidate for such an exper-
imental investigation.
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