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Edge-state blockade of transport in quantum dot arrays
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We propose a transport blockade mechanism in quantum dot arrays and conducting molecules based on an
interplay of Coulomb repulsion and the formation of edge states. As a model we employ a dimer chain that exhibits
a topological phase transition. The connection to a strongly biased electron source and drain enables transport.
We show that the related emergence of edge states is manifest in the shot noise properties as it is accompanied
by a crossover from bunched electron transport to a Poissonian process. For both regions we develop a scenario
that can be captured by a rate equation. The resulting analytical expressions for the Fano factor agree well with
the numerical solution of a full quantum master equation.
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I. INTRODUCTION

Quantum electronics is governed by charging energies
which give rise to Coulomb blockade which is apparent in
the diamond-like charging diagrams of quantum dots [1] and
conducting molecules [2]. When electron spins and phonons
come into play, additional blockade phenomena may influence
the current-voltage characteristics. For example, the Pauli
exclusion principle may cause a spin blockade in double [3,4]
and triple quantum dots [5]. Moreover, in suspended quantum
dots, an entering electron may emit a phonon and become
trapped until it reabsorbs a phonon, which is known as a
phonon blockade [6].

Some blockade phenomena are less pronounced in the
current, but have a strong impact on the current noise.
Most prominently, the strong coupling of an electron in a
molecular wire with a vibrational degree of freedom may
lead to a switching between conducting and almost isolating
configurations and cause Franck-Condon blockade. Then the
transport becomes avalanchelike, which drastically enhances
the shot noise [7,8]. A similar effect occurs in capacitively
coupled transport channels, where noise measurements reveal
that a mutual channel blockade causes electron bunching
[9,10].

A one-dimensional tight-binding model with alternating
tunnel matrix elements represents a simple description of a
dimerized polymer [11]. It is characterized by a topological
invariant, the Zak phase [12], which depends on the ratio
between the inter- and intradimer coupling and has been
measured recently [13]. For finite chains in the topologically
nontrivial phase, a pair of exponentially decaying edge states
emerges [14]. Moreover, Coulomb interaction may lead to
long-range tunneling of doublons between edge states [15].
When the chain is in contact with the electron source and
drain, however, the impact of the edge states on the transport
properties remains an open question.

In this paper we propose an edge-state current blockade
in voltage-biased arrays such as that sketched in Fig. 1,
which relates to the transition from a topologically trivial to
a nontrivial regime. We show that it is most clearly visible
in the shot noise. In Sec. II, we introduce our model and
a master equation description. The main results and the
physical mechanism of the resulting transport are presented in

Sec. III. Finally, in Sec. IV we discuss possible experimental
realizations and draw our conclusions in Sec. V. Some
technical aspects of the numerical scheme and details of the
calculations can be found in the Appendixes.

II. MODEL AND MASTER EQUATION

We employ spinless electrons on an array of length N

described by the Hamiltonian H0 = HSSH + Hint. It contains
nearest-neighbor tunneling according to the Su-Shrieffer-
Heeger (SSH) Hamiltonian [11]

HSSH =
N−1∑
n=1

τnc
†
n+1cn + H.c., (1)

with the alternating tunnel matrix elements τn = τ0 + (−1)nδτ
and the fermionic annihilation operator cn. We keep τ0 constant
and use δτ as a control parameter.

The SSH model is probably the simplest one with a
topological phase transition. For δτ < 0, it describes a chain
of weakly coupled dimers which form two bands with a gap
that closes at δτ = 0. When δτ assumes positive values, two
edge states emerge [see the inset of Fig. 2(a)]. In the bulk,
the wave function of the edge states decays exponentially with
a localization length given by the inverse of κ = ln(τ/τ ′) ≈
2δτ/τ0. Thus, for finite arrays, the edge states form a doublet
with a level splitting � ≈ τ0 exp(−Nδτ/τ0) (see Appendix A).
It will turn out that this doublet governs the transport properties
for δτ > 0. If the array consists of an odd number of sites, a
monomer will remain, forming an edge state. Thus, we witness
a transition from a situation with an edge state at the right end
of the chain (δτ < 0) to one with an edge state at the left end
(δτ > 0) [16]. This transition, however, is not visible in the
spectrum [see the inset of Fig. 2(b)].

For the Coulomb repulsion, we assume Hint =∑
n>n′ U|n−n′|NnNn′ with the site occupations Nn and the

interaction energies Ud which decay with the distance d =
n − n′ between the sites. Moreover, by working with spinless
electrons, we have already ruled out double occupation of a
single site. Physically, this is justified by the typically very
strong on-site interaction U0 in quantum dots.

To enable transport, we couple the ends of the array to
biased leads acting as the electron source and drain with
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FIG. 1. Dimer chain with tunnel couplings τ ′ = τ0 − δτ and τ =
τ0 + δτ , respectively, connected to the electron source (left) and drain
(right). At δτ = 0, the chain undergoes a topological phase transition.
The wave function depicts the stationary state in the topological
regime. Electron trapping in the edge state at the source causes an
edge-state blockade.

a voltage bias V . Within second-order order perturbation
theory we integrate out the leads to obtain a Bloch-Redfield
type master equation for the reduced density operator. For
low temperatures and in the limit τ,τ ′ � eV � Ud < U0,
only single-electron states are energetically accessible and
the electron transport becomes unidirectional. Moreover, the
array-lead tunneling becomes independent of the details
of the array’s level structure. Then the master equation assumes
the convenient Lindblad form

ρ̇ = Lρ ≡ − i

�
[HSSH,ρ] + �LD(c†1)ρ + �RD(cN )ρ, (2)

with D(x)ρ = (2xρx† − x†xρ − ρx†x)/2 and the dot-lead
rates �L,R . The first term in D(x) corresponds to incoherent
transitions induced by the operator x = c

†
1,cN , which in our

case is the electron tunneling from the source to the array and
from the array to the drain, respectively. Thus, the (particle)
current is described by the superoperator J ρ = �Lc

†
1ρc1 (or

alternatively by �RcNρc
†
N ). Notice that neither the bias V

nor the interaction constant U appear explicitly in Eq. (2).
Let us therefore emphasize that our master equation holds
only in the limit in which strong Coulomb repulsion inhibits
the occupation with two or more electrons, i.e., it has to be
evaluated in the subspace of zero or one electron on the chain.
As a consequence, the dynamics on the chain is governed by
the single-particle quantum mechanics induced by the SSH
Hamiltonian, while the electron tunneling from the source to
the chain is affected by the interaction.

Low-frequency current fluctuations can be characterized
by the counting statistics of the transported electrons. For this
purpose, we introduce a counting variable χ and consider the
modified master equation Ṙχ = LχRχ with Lχ = L + (eiχ −
1)J [17,18]. It is constructed such that tr(Rχ ) = 〈eiχNR 〉
becomes the moment generating function for the electron
number in the drain, φ(χ,t). The current cumulants Cn =
(∂/∂iχ)n ln φ̇(χ,t)|χ=0,t→∞ contain the full information about
the low-frequency noise. The spectral decomposition of Rχ

into the eigenbasis ofLχ yields a formal solution which at long
times is dominated by the eigenvalue with the largest real part,
λ0(χ ). Then, Rχ ∝ exp[λ0(χ )t] and thus ln φ(χ,t) = λ0(χ )t .
Being interested in derivatives close to χ = 0, we can treat χ

as a small parameter and obtain the cumulants from an iteration

FIG. 2. Current (dashed line) and Fano factor F = C2/|I | (solid
line) for an array of (a) N = 20 and (b) N = 21 sites as a function
of the imbalance δτ/τ0 and the lead couplings �R = �L = 5τ0. The
dotted horizontal lines mark the analytically obtained limits. Despite
the different single-particle spectra (insets), the results for an even
and odd number of sites are qualitatively the same.

based on the Rayleigh-Schrödinger perturbation theory [19].
The first two steps yield the current I = C1 = tr(J ρ0) and
the variance C2 = I − 2 tr(JRJ ρ0) [18], where ρ0 is the
stationary solution of the master equation (2) and R is the
pseudoinverse of L. For details, see Appendix B.

It is worthwhile to define the Fano factor F = C2/|I |,
which is a dimensionless measure of the noise strength and
hints at the nature of the transport mechanism [20]. The value
F = 1 corresponds to uncorrelated events, while larger values
indicate bunching. For more profound statements, one has to
consider also cumulants of higher order.

III. EDGE STATES, CURRENT, AND SHOT NOISE

A. General scenario for dimer chains

Let us start by investigating a dimer chain, i.e., the case of
an even number of sites for which the current in the different
regimes is shown in Fig. 2(a). We notice that in the monomer
limit δτ = 0, the current assumes an appreciable value.
Towards both the topologically trivial and the nontrivial region,
it decays. In the nontrivial region, the decay is faster despite the
presence of interband states. The asymmetry is also found for
the Fano factor, which is super-Poissonian for δτ � 0, while
for δτ > 0 it converges to the Poissonian value F = 1. This
indicates that the transport relates to topology.

To reveal the physics behind this observation, we conjecture
for each region a dominating mechanism and capture it
by a rate equation that provides analytical expressions for
the current and the Fano factor. For the monomer chain
realized at the transition point δτ = 0 (for finite systems
it is rather a crossover at δτ ≈ τ0/N [14]), the eigenstates
read φ�(n) ∝ sin[π�n/(N + 1)], where � = 1, . . . ,N labels
the solutions. We assume that each eigenstate forms a transport
channel, where a strong Coulomb interaction leads to mutual
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exclusion of the channel occupation. The corresponding load
and unload rates γ

L,R
� are determined by the overlaps with

the terminating sites, i.e., by |φ�(1)|2 and |φ�(N )|2. For a
symmetric setup, γ L

� = γ R
� ≡ γ�. States with � ≈ N/2 are

much stronger coupled to the leads than those with � = 1
or � = N and, thus, most of the time, the strongly coupled
states support a regular current. However, whenever a weakly
coupled state becomes populated, an electron will remain
there for the rather long time γ −1

� and thereby interrupt the
transport process. Accordingly, we expect bunching, as is
indicated by a large Fano factor. For a quantitative treatment,
we formulate the above scenario as a rate equation from which
we obtain the current I = �/(N + 1) and the Fano factor
Fmono(N ) ≈ (N − 2)/3. Since the effects are most noticeable
in longer arrays, we ignore corrections of the order N−1. For
the full expressions and their derivation, see Appendix C 1.

Deep in the trivial region δτ < 0, the central system consists
of weakly coupled dimers. Then we can consider each dimer
as one site and, thus, expect the behavior of a monomer array
with N/2 sites. Therefore, without an explicit calculation, we
can conclude that the Fano factor is F = Fmono(N/2).

Finally, in the topological region δτ > 0, the electrons
mainly enter and leave the array via an edge state which is at
zero energy. Since all other states are energetically far off, they
merely mediate long-range tunneling with the exponentially
small effective matrix element � given above. This means
that the situation can be captured by a two-level system. For a
sufficiently large array, � � �, the bottleneck of the transport
is the tunneling between edge states. The corresponding
current reads I � �2/� and consists of uncorrelated events
[21], i.e., it is a Poissonian process with the characteristic Fano
factor F = 1. For an explicit derivation, see Appendix C 2.

The Fano factor of the full numerical calculation agrees
rather well with the limits obtained analytically [see the
horizontal lines in Fig. 2(a)]. This provides evidence that the
transport process in each region indeed follows the scenario
sketched above.

Since the separation of the Fano factors in the different
regions grows with the length of the array, one may aim at an
experimental realization with as many sites as possible. This,
however, will raise the experimental difficulties drastically.
Moreover, beyond a certain system size, the limit of a strong
Coulomb blockade may no longer be realistic. Thus the
length dependence of the Fano factors deserves a closer
inspection. The data shown in Fig. 3(a) confirm our analytical
results even down to rather small lengths. For an intermediate
length N ≈ 10, the Fano factors in the three regimes are
already significantly different from each other. In particular,
the differences are larger than the demonstrated resolution of
mesoscopic noise measurements [22]. The data for cumulants
of higher order presented in Figs. 3(b) and 3(c) support our
conjecture of Poissonian transport in the topological phase.

B. Arrays with an odd number of sites

A further important observation is that the behavior of the
shot noise for chains with an odd number of sites interpolates
the behavior of dimer chains. In particular, we find that the
current and the Fano factor as a function of δτ indeed are
qualitatively the same as for even N [see Fig. 2(b)].
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FIG. 3. (a) Fano factor, (b) third cumulant, and (c) fourth
cumulant as a function of the chain length for various δτ and the
lead coupling �R = �L = 5τ0. Solid symbols mark positive values,
and stroked symbols correspond to negative values.

For odd N , irrespective of the sign of δτ , there always exists
one edge state which has zero energy [see the spectrum shown
in the inset of Fig. 2(b)]. Thus, the chain does not exhibit a
transition between a topological and a nontopological phase.
Nevertheless, the emergence of the edge state at one specific
end of the chain can be explained in terms of the bulk-edge
correspondence as follows. Let us consider a not too short
chain with even N and δτ > 0, such that the tunnel splitting
� ∼ exp(−Nδτ/τ0) between the edge states is much smaller
than the lead coupling �. Then decoherence will turn a possible
superposition of both edge states into a mixture so that the edge
state at the source will not be influenced by its counterpart at
the drain. Then removing the last site of the chain will not
have a major effect on the edge-state formation at the source.
In this sense, also finite chains with odd N still exhibit some
footprint of a topological transition that is found for infinite or
semi-infinite dimer chains.

The common feature for even and for odd N is that only
for δτ > 0 does the chain possess an edge state at the electron
source. The relevance of its location at the source is visible in
the behavior under inverting the applied bias: For even N , the
chain is symmetric, so that only the direction of the current
changes. Therefore, the Fano factor in Fig. 2(a) will remain
the same. For odd N , by contrast, the inverted bias leads to
a situation with an edge state at the drain but none at the
source. Thus, bias inversion is equivalent to changing the sign
of δτ , which for odd N moves the edge state from one end
of the chain to the other. Therefore, upon bias inversion, F in
Fig. 2(b) becomes reflected at the y axis (not shown).

C. Blocking mechanism and localization

To underline the importance of the edge state and to develop
a physical picture for the blockade, we consider the population
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FIG. 4. Population of the quantum dots in the stationary state
for the array lengths (a), (b) N = 10 and (c), (d) N = 9 and the
lead coupling �R = �L = 5τ0. The data in the lower row are with the
source and drain interchanged, as indicated by the sketches at the right
margin. They reveal that a current blockade emerges when the edge
state at the source is strongly populated (dark blue areas). Comparing
the upper row with the lower row highlights the reflection symmetry
for even N , while for odd N the spatial reflection corresponds to
inverting the sign of δτ .

of the sites in the stationary state of the open system (see
Fig. 4). For an even number of sites [Figs. 4(a) and 4(b), where
the latter is computed with source and drain interchanged], in
the topological phase (δτ > 0) the edge state at the source is
predominantly populated. This is consistent with the scenario
drawn above in which the transport occurs via weak long-
range tunneling. Consequently, an electron becomes trapped
in the edge state localized at the source, while once it is at the
opposite side of the array, it leaves quickly to the drain.

For an odd number of sites, the behavior is similar. Outside
the crossover region |δτ | 
 τ0, one edge state always exists.
For δτ > 0, it is localized at site 1 and causes a current
blockade [see Fig. 2(b)]. By contrast, for δτ < 0, despite the
emergence of an edge state at site N , an appreciable current
flows.

To resolve this seeming contradiction, let us focus on an
array with odd N and δτ < 0 such that an edge state at the
drain is formed. Nevertheless, a small overlap of the bulk states
with the last site opens a way to circumvent the edge state.
Moreover, in rare cases in which an electron reaches the edge
state, it will proceed quickly to the drain, consequently, no
relevant blockade occurs. For δτ > 0, the edge state is located
at the source and is mostly occupied [see Fig. 4(c)]. Then,
bypassing site 1 is in principle possible, but would require
double occupation of the chain. This, however, is inhibited by
Coulomb repulsion so that transport is interrupted until the
electron in the edge state is released. This reveals that the
blockade results from an interplay of edge-state formation at
the source and a strong Coulomb repulsion. The population
for interchanged source and drain [Fig. 4(d)] confirms that the
edge-state formation at the source is also decisive for trapping
an electron when N is odd.

D. Disorder

The formation of edge states with exponentially small
splitting is protected by sublattice symmetry present in our
idealized array Hamiltonian HSSH. In a realistic experiment,
however, it may be quite difficult to tune the system sufficiently
well. To investigate the influence of imperfections, we consider

FIG. 5. Fano factor in the presence of disorder with strength W

for a chain of lengths (a) N = 20 and (b) N = 21 with the parameters
used in Fig. 2. Insets: Deviation of the averaged Fano factor from its
value in the absence of disorder for δτ = −0.5τ0.

disorder and add random on-site energies,

HSSH → HSSH + W
∑

ξnc
†
ncn, (3)

where W is the disorder strength and ξn is taken from a
normalized box distribution with −1/2 � ξn � 1/2.

Figure 5 shows the resulting Fano factor, now defined as
C̄2/Ī , i.e., the ratio of the averages. Comparing Figs. 5(a) and
5(b), the behavior for an even and an odd number of sites
again turns out to be practically the same. For δτ � 0, we
find that the Fano factor grows with increasing disorder. The
enhancement is roughly ∝ W 2, as can be appreciated in the
inset. Notice that for larger values of W and much longer
arrays, Anderson localization [23] becomes relevant and may
change this behavior.

For δτ > 0, by contrast, disorder has almost no influence
on the Fano factor. This finding is consistent with the physical
picture drawn above: The transport occurs via the two states
localized at the ends of the array, while the other states are
off-resonant and not populated. Since disorder even supports
localization, the Poissonian behavior remains unaffected.

IV. POSSIBLE EXPERIMENTAL REALIZATION

The high tunability of the various types of quantum
dots makes them natural candidates for the implementation
of blockade effects in mesoscopic transport. Recently, two
parallel quantum dot arrays, each with seven dots, have
been demonstrated [24]. In such systems, the charging and
the tunnel matrix elements are highly controllable by gate
voltages. Thus it should be possible to tune them such that
they meet the requirement of an interaction much larger than
the tunneling, at least in not too long arrays.

Molecular wires represent a realistic alternative, in particu-
lar, since they are rather small and thus possess huge charging
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energies. Between experimental runs, they can be modified by
atomic force microscopy techniques [25]. Since this may also
affect wire-lead tunneling rates, the visibility of the blockade
in the Fano factor is a virtue since this quantity, in contrast to
the current, depends only weakly on the wire-lead coupling.
Moreover, one may change the topology of the molecule by ac
fields [26].

V. CONCLUSIONS

We have investigated a current blockade mechanism for
strongly biased contacted dimer chains. It results from an
interplay of Coulomb repulsion and edge-state formation
which relates to a topological transition. The edge state at the
source can trap an electron, while Coulomb repulsion inhibits
a further electron to enter the chain. The resulting electron
transport consists of rare tunnel events between the edge states
and exhibits a characteristic Poissonian behavior. By contrast,
in the topologically trivial region, we find transport through
delocalized states and electron bunching. Since the edge state
at the source turned out to be responsible, the effect can
be observed also in chains with an odd number of sites in
which a different but related transition occurs, namely, the
displacement of the edge state from one end to the other.
Clear experimental evidence for the transition between the
different regions can be provided by shot noise measurements.
While we have demonstrated that the mechanisms on both
sides of the transition are fairly insensitive to static disorder, a
more realistic description of an implementation with molecular
wires should consider also spin effects, vibrational degrees of
freedom, and decoherence.
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APPENDIX A: OVERLAP OF THE EDGE STATES

The Schrödinger equation for a dimer chain with intra- and
interdimer couplings τ and τ ′, respectively, is

τσ+φn−1 + τ ′σxφn + τσ−φn+1 = εnφn, (A1)

where φn = (c2n,c2n+1)T and n labels the unit cells. For
periodic boundary conditions we use the Bloch ansatz φn =
eiknϕ(k) and obtain the Bloch equation(

0 τe−ik + τ ′

τeik + τ ′ 0

)
ϕ(k) = ε(k)ϕ(k). (A2)

An edge state in a semi-infinite chain corresponds to a solution
that vanishes at some site such that, e.g., φ−1 = 0. Then,
we obtain from the Schrödinger equation and Eq. (A2) the
condition (

0 τ ′

τeik + τ ′ 0

)
ϕ(k) = 0. (A3)

It possesses a nontrivial solution if k = π + i ln(τ/τ ′), which
for τ > τ ′ is decaying as φn ∝ exp(−κn) with the exponent

κ = ln(τ/τ ′). Close to the phase transition |δτ | � τ0, it
becomes κ = 2δτ/τ0. Therefore, the overlap between the two
edge states of a chain with N/2 dimers can be estimated as

� ≈ τ0e
−δτN/τ0 . (A4)

It agrees with the splitting of the interband doublet found in
finite dimer chains [14].

APPENDIX B: ITERATION SCHEME FOR THE
CUMULANTS

As we are interested in the statistics of the transport, we
need to generalize the master equation formalism, introducing
a counting variable χ which keeps track of the electron number
in the leads. The cumulants of the corresponding distribution
function are given by the kth derivatives with respect to iχ

at χ = 0 of the logarithm of the moment generating function
φ(χ,t) = 〈eiχNR 〉. The moment generating function can be
written as the trace of the generalized reduced density operator
Rχ (t) = trleads (ρtote

iχNR ), which obeys the master equation

Ṙχ (t) = LχRχ (t), (B1)

where Lχ = L + (eiχ − 1)J . Notice that we have restricted
ourselves to unidirectional transport, i.e., to the limit of large
bias in which all relevant eigenstates of the conductor are
within the voltage window and thermal excitations do not play
a role.

In the long-time limit, the dynamics of Rχ (t) is governed
by the eigenvalue of Lχ with the largest real part, denoted
as λ0(χ ). Then, Rχ (t) ∝ exp[λ0(χ )t] and thus ln φ(χ,t) =
λ0(χ )t (besides a correction that vanishes in the long-time
limit). Instead of calculating the proper eigenvalue of Lχ

and its derivatives with respect to χ , one can treat χ as a
small parameter and obtain the cumulants from an iteration
based on Rayleigh-Schrödinger perturbation theory [19,27].
The solution in the Markovian case is

Ck =
k−1∑
k′=0

(
k

k′

)
tr(JPk′), (B2)

where C0 = 0 and LP0 = 0. The other components Pk follow
from the equation

LPk = −
k−1∑
k′=0

(
k

k′

)
(J − Ck−k′)Pk′ , (B3)

which has to be solved under the condition tr Pk = 0. This step
is equivalent to applying the pseudoinverse of the Liouvillian to
the right-hand side of Eq. (B3). In this way, the first cumulant,
i.e., the current, can be written as C1 = tr(JP0). This enables
the computation of P1 from the equation LP1 = −(J −
C1)P0. Then the second cumulant, i.e., the zero-frequency
noise, becomes C2 = C1 + 2 tr(JP1).

APPENDIX C: ANALYTICAL APPROACH TO THE
TRANSPORT CUMULANTS

The current for the full model follows directly from the
stationary solution of the master equation (2) of the main text,
i.e., from the kernel of the Liouvillian L. It can be computed
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FIG. 6. Stationary current as a function of the chain length for
the values of δτ displayed. The dot-lead coupling is �R = �L = 5τ0.

analytically, which allows us to evaluate the expression for the
current. For an even number of sites, we obtain

Ieven = �R

N + �R

�L
+ �2

R

4τ 2

[
N − 2 + (

τ
τ ′

)N ] , (C1)

while for odd N , the current reads

Iodd = �R

�R

�L
+ �2

R (N−1)
4τ 2 + (

τ ′
τ

)2[
N − 1 + (

τ
τ ′

)N+1] . (C2)

Both expressions assume their maximum close to τ ≈ τ ′. For
τ 
 τ ′, i.e., in the region in which we find edge-state blockade,
it decays ∝ (τ ′/τ )N . In the opposite limit, τ � τ ′, the decay
is algebraic, I ∝ N−1 (see Fig. 6).

By contrast, computing the cumulants Cn with n � 2
requires not only the kernel of the Liouvillian, but also its
pseudoinverse, which considerably complicates the analytical
solution. To nevertheless find analytical results for the noise,
below we develop a description with a simplified master
equation for the two limits discussed in the main text.

1. Mutually exclusive channels

A general model for transport via mutually exclusive
channels � that are weakly coupled to both leads with equal
strength is sketched in Fig. 7(a). It corresponds to the rate
equation

Ṗ =

⎛
⎜⎜⎝

−� γ1 · · · γN

γ1 −γ1 0
...

. . .
...

γN 0 · · · −γN

⎞
⎟⎟⎠

⎛
⎜⎜⎝

p0

p1
...

pN

⎞
⎟⎟⎠, (C3)

where normalization is ensured by � = ∑
� γ�. The rates γ�

are determined by the overlap between the eigenstates φ� with
the terminating sites. In a symmetric setup, the rates at the
source and at the drain are equal, which is reflected by the
symmetry of the matrix in Eq. (C3). To be specific, for δτ = 0
the eigenstates of the array are

φ� =
√

2

N + 1
sin

(
π�n

N + 1

)
, (C4)

so that the rates become

γ� = 2�

N + 1
sin2

(
π�

N + 1

)
. (C5)

γ1

Δ

Γ

γN
...

(a)

(b)

FIG. 7. Sketch of the situations that we treat analytically with
rate equations. (a) Mutually exclusive channels for the delocalized
eigenstates of a monomer chain. The rates γ� reflect the overlap
between the eigenstates and the first and the last site and obey

∑
� γ� =

�. (b) Two-state model for the edge states in the topological region.
The intersite tunneling � is the exponentially small overlap between
the edge states given in Eq. (A4).

Then the stationary solution of Eq. (C3) reads P0 =
(1,1, . . . ,1)T /(N + 1) and thus I = �/(N + 1), which rep-
resents the weak coupling limit of Eq. (C1).

The second cumulant follows from evaluating the formal
solution derived above. It reads

C2 = I + 2�

(N + 1)3

[
�

�̃
− N (N + 1)

]
, (C6)

where �̃−1 = ∑
� γ −1

� is dominated by the weakly coupled
states owing to their small γ�. Inserting the rates and perform-
ing the iteration scheme also for the next two orders, we find

C2

I
= N2 − N + 3

3(N + 1)
≡ Fmono(N ), (C7)

C3

I
= − N2(N − 7)

30
+ O(N ), (C8)

C4

I
= N4(2N − 25)

315
+ O(N3). (C9)

Notice that the cumulant ratio grows with the length of the
array as Cn+1/Cn ∝ N2.

2. Two-site model

In the topological region and for a sufficiently long array,
the transport occurs mainly via long-range tunneling from
one edge state to the other, while the population of the other
eigenstates is negligible. Then a proper simplified model is
that of a two-level system with tunnel splitting � and a
coupling to the source and drain, as is sketched in Fig. 7(b).
It can be captured by the master equation (in the basis
{|0〉〈0|,|L〉〈L|,|R〉〈R|,|L〉〈R|,|R〉〈L|})

ρ̇ =

⎛
⎜⎜⎜⎝

−�L 0 �R 0 0
�L 0 0 i�/2 −i�/2
0 0 −�R −i�/2 i�/2
0 i�/2 −i�/2 −�R/2 0
0 −i�/2 i�/2 0 −�R/2

⎞
⎟⎟⎟⎠ρ.

(C10)
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In the symmetric case � = �R = �L, the current and the Fano
factor can be obtained along the lines described in Appendix
B as

I = ��2

�2 + 3�2
, (C11)

F = �4 + 5�4 − 2�2�2

(�2 + 3�2)2
. (C12)

In the limit � � �, considered in the main text, we expand
Eqs. (C11) and (C12) to second order in � and obtain

I = �2

�
, (C13)

C2

I
= 1 − 8

�2

�2
= F. (C14)

Moreover, we perform the iteration scheme for the next
cumulants within the same accuracy, which provides the
expressions

C3

I
= 1 − 24�2

�2
, (C15)

C4

I
= 1 − 56�2

�2
. (C16)

Thus, to lowest order in �, all cumulants equal the current,
which indicates that the transport process is essentially
Poissonian.
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