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The promise of innovative applications has triggered the development of many modern technologies capable
of exploiting quantum effects. But in addition to future applications, such quantum technologies have already
provided us with the possibility of accessing quantum-mechanical scenarios that seemed unreachable just a few
decades ago. With this spirit, in this work we show that modern optomechanical setups are mature enough to
implement one of the most elusive models in the field of open system dynamics: degenerate parametric oscillation.
Introduced in the eighties and motivated by its alleged implementability in nonlinear optical resonators, it rapidly
became a paradigm for the study of dissipative phase transitions whose corresponding spontaneously broken
symmetry is discrete. However, it was found that the intrinsic multimode nature of optical cavities makes it
impossible to experimentally study the model all the way through its phase transition. In contrast, here we show
that this long-awaited model can be implemented in the motion of a mechanical object dispersively coupled to
the light contained in a cavity, when the latter is properly driven with multichromatic laser light. We focus on
membranes as the mechanical element, showing that the main signatures of the degenerate parametric oscillation
model can be studied in state-of-the-art setups, thus opening the possibility of analyzing spontaneous symmetry
breaking and enhanced metrology in one of the cleanest dissipative phase transitions. In addition, the ideas put
forward in this work would allow for the dissipative preparation of squeezed mechanical states.

DOI: 10.1103/PhysRevA.93.023846

I. INTRODUCTION

The last decades have seen the birth of a plethora of new
technologies working in the quantum regime, starting with the
laser [1–8], and including nonlinear optics [9–13], trapped ions
[14–18] and atoms [19–27], cavity quantum electrodynamics
[28–31], or, more recently, superconducting circuits [32–36]
and optomechanical resonators [37–39]. Apart from their po-
tential for quantum computation [40–42] and simulation [43–
50], quantum metrology [51,52], and quantum communication
[53–55], all these technologies have allowed us to reach phys-
ical scenarios that were nothing but a dream (or a “gedanken”
experiment) for the founding fathers of quantum mechanics.

In this work we keep going deeper into the possibility
of using new technologies to access phenomena predicted
decades ago, but which have eluded observation so far, or only
until very recently [56]. In particular, we show how modern
optomechanical setups based on oscillating membranes
[57–67] allow for the implementation of degenerate para-
metric oscillation (DPO), a fundamental model in the field of
dissipative phase transitions [68–72]. Together with the laser,
DPO is possibly the best-studied quantum-optical dissipative
model, since it holds the paradigm of a phase transition whose
associated spontaneously broken symmetry is discrete [71,72]
(in contrast to those of the laser [73,74] or the nondegenerate
parametric oscillator [12,75,76], which are continuous). Even
though the main motivation for studying such a model came
during the eighties from the possibility of implementing it
with nonlinear optics [12,76] (see Fig. 1 and the next section),
the intrinsic multimode nature of optical cavities prevents
crossing the phase transition without additional locking
techniques that break the symmetry of the system. In other
words, despite the great deal of work invested in this model
and its optical implementation, continuous-wave degenerate
optical parametric oscillators (DOPOs) do not exist in reality.

The situation is rather different in the microwave realm of
electronic circuits, where one can build single-mode cavities
in the form of simple LC circuits. Indeed, it is in this context
where DPO has been traditionally studied [77–79]. However,
the strong thermal microwave background completely masks
quantum-mechanical effects. This scenario was radically
changed with the advent of superconducting circuits [32–36],
which are cooled down to mK temperatures. This allowed,
just a few months ago, to finally observe quantum-mechanical
effects appearing above the DPO phase transition [56].

Apart from being a clean system where studying fundamen-
tal questions related to spontaneous symmetry breaking and
ergodicity of open quantum systems [80–83], DPO might serve
as a perfect test bed for enhanced metrology via dissipative
phase transitions [84–87]. Motivated then by the interest that
this model generates in different communities ranging from
the purely theoretical to the most applied ones, in this work
we show that DPO can be implemented in the motion of
a membrane dispersively coupled to the field of an optical
cavity [57–67], when a multichromatic laser properly drives
the latter. Starting from a first-principles model, analytical and
numerical methods allow us to identify the regimes where the
desired model appears, as well as proving the feasibility of the
scheme for the parameters under which current experiments
take place. Our results open then the way to the experimental
analysis of DPO in a completely different scenario, providing a
feasible alternative to the recent circuit QED implementation.

II. DEGENERATE PARAMETRIC OSCILLATION
AND ITS OPTICAL IMPLEMENTATION

In its minimal formulation (see Fig. 1) a DOPO consists
of an optical cavity containing a crystal with second-order
nonlinearity and pumped by a laser at frequency 2ω0 for which
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FIG. 1. (a) Sketch of the optical implementation of the DPO model. (b) Phase transition of the DPO model for g = 0.1. The central panel
shows the steady-state field amplitude as a function of σ , in the classical limit. The left and right panels show the steady-state Wigner function
for σ = 0.9 and 2, respectively, which for our purposes can be interpreted as the joint probability density function W (x,p) providing the
statistics of “position” (x̂ = â† + â) and “momentum” (p̂ = iâ† − iâ) measurements.

the cavity is transparent (nonresonant-pump configuration).
The parametric down-conversion process occurring inside the
χ (2) crystal is able to generate photons at the subharmonic
frequency ω0, which is assumed resonant. The model can
then be formulated as a master equation for the state ρ̂ of
the intracavity field [88,89]:

dρ̂

dt
= −i[ĤDPO,ρ̂] + γg2

4
Da2 [ρ̂] + γDa[ρ̂], (1)

with

ĤDPO = ω0â
†â + iγ σ (e−2iω0t â†2 − e2iω0t â2)/2, (2)

where â is the annihilation operator of cavity photons and we
use the notation DJ [ρ̂] = 2Ĵ ρ̂Ĵ † − Ĵ †Ĵ ρ̂ − ρ̂Ĵ †Ĵ . The last
term describes the loss of cavity photons through the partially
transmitting mirror (with damping rate γ proportional to the
mirror transmittance). The second term describes the loss of
photon pairs which are up-converted to a pump photon that
leaves the cavity (at rate γg2/4, where g is proportional to
the crystal’s nonlinear susceptibility). Finally, the Hamiltonian
term describes the exchange of photon pairs with the coherent
background of the pumping field (at rate γ σ/2, where σ is
proportional to the amplitude of the laser), as well as the free
evolution of the cavity mode.

This master equation is invariant under the parity transfor-
mation Û = (−1)â

†â , which performs the operation Û †âÛ =
−â. On the other hand, defining ᾱ = limt→∞ eiω0t 〈â(t)〉, it
is well known [12] that the classical limit of this equation
predicts an off (or below-threshold) stationary state ᾱ = 0
for σ � 1, and an on (or above-threshold) phase-bistable
state ᾱ = ±√

2(σ − 1)/g for σ > 1; see Appendix A. Hence,
at σ = 1 (threshold) the classical theory predicts a phase
transition, accompanied by spontaneous symmetry breaking
of the discrete phase above threshold, since the system has to
choose between two possible steady states which individually
do not preserve the symmetry.

In contrast to the classical state, the quantum steady-state
solution ρ̄ = limt→∞ eiω0t â

†âρ̂(t)e−iω0t â
†â of Eq. (1) is unique

for any σ [72,89,90]. The symmetry of the master equation, to-
gether with the uniqueness of the steady state, forces the latter
to be invariant under the transformation as well, Û ρ̄Û † = ρ̄,

which in turn implies that ᾱ = tr{ρ̄â} = 0 ∀ σ , which seems to
contradict the classical phase-bistability prediction. However,
the situation is a bit more subtle: as shown in Fig. 1(b)
through the Wigner function [91,92] (see also Appendix A),
below threshold the quantum state is a squeezed state cen-
tered at the origin of phase space, while above threshold
it develops two lobes centered (approximately) around the
classical solutions. Hence, quantum mechanically, the classical
phase transition has the significance of a crossover between
phases which preserve the symmetry in two physically distinct
ways.

Unfortunately, in real experiments, degenerate down-
conversion has to compete with the generation of photon
pairs at nondegenerate frequencies ω1 and ω2 such that
ω1 + ω2 = 2ω0 (energy conservation), and phase-matching in
the nonlinear crystal (momentum conservation) tends to give
preference to one of such processes above threshold [93–95].
Even though modern devices are able to produce photon
pairs oscillating even within the same longitudinal cavity
mode [96], exact frequency degeneracy cannot be ensured
without additional locking techniques that compromise the
phase transition, since, in the words of Ref. [97], “degeneracy
occurs only accidentally since it corresponds to a single point
in the experimental parameter space.” Therefore, these devices
cannot be used to study experimentally the DPO model all the
way through its phase transition.

III. OPTOMECHANICAL IMPLEMENTATION OF
DEGENERATE PARAMETRIC OSCILLATION

In contrast to the optical case, we show that optomechanical
resonators in which a mechanical degree of freedom is disper-
sively coupled to the cavity field allow for the study of the
full DPO model. Our proposal follows closely current experi-
mental setups based on dielectric membranes [57–67]. In such
setups, the type of coupling arising between the membrane’s
motion and a given driven cavity mode depends on the position
of the former with respect to the standing wave defined by the
latter [57,58,65]. In particular, denoting by x̂ the displacement
of the membrane with respect to its equilibrium position
(normalized to its zero-point fluctuations [37]), the frequency
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FIG. 2. (a) Sketch of the optomechanical setup with which we propose to implement the DPO model. (b) Asymptotic phonon number as
a function of the pump parameter, for a set of parameters in correspondence with current experiments (see the text for details). The main plot
corresponds to the predictions in the classical limit, and the inset corresponds to the predictions obtained from the asymptotic state generated
by the master equation. The blue circles correspond to the optomechanical model, while the red curves are evaluated from its effective DPO
model. Note the good agreement between both models.

shift felt by the optical mode is proportional to x̂2 when the
membrane is located in a node or an antinode, while it is
proportional to x̂ when it is halfway between them. In most op-
tomechanical systems the linear coupling dominates, and many
exciting phenomena have been already proven by exploit-
ing it, including mechanical cooling [57,60,62,67,98–106],
optical squeezing [107–110], and induced transparency
[66,111–114]. On the other hand, the quadratic coupling
has already promised very interesting applications such as
quantum nondemolition measurements of the phonon number
[57,58], and in our case it will provide the leading mechanism
to achieve DPO.

Our proposal is sketched in Fig. 2(a). We consider two
optical modes with frequencies ωl and ωq, linearly and
quadratically coupled to the fundamental mechanical mode of
the membrane (with frequency �), respectively; consequently,
we will refer to them as the linear and quadratic modes. In
the absence of optomechanical coupling, the membrane is at
some equilibrium temperature T with its thermal environment,
which drives it at some rate γm to a thermal state with mean
phonon number n̄th = kBT/�� � 1. However, we assume
the linear mode to be driven by a monochromatic laser at
frequency ωL tuned to cool down the membrane to an effective
phonon number n̄eff ≈ n̄th/Cl at rate γeff = Clγm, where Cl is
the cooperativity of the linear optomechanical coupling [37];
current experiments reach cooperativities ∼10 000, which
together with cryogenic temperatures allow us to cool down
the mechanical motion close to its ground state [67] n̄eff = 0,
which we assume in the following. On the other hand, the
quadratic mode is driven with a laser containing a tone at
frequency ωQ, plus a sideband at frequency ωQ − �q. We will
use the first tone to create the two-phonon lossesDa2 needed in
the DPO model (1), while the combined action of the two tones
will provide the coherent exchange of phonon pairs present in
the Hamiltonian (2).

We model the system by a master equation for its state ρ̂,
which in a frame rotating at the laser frequency ωQ takes the
form

dρ̂

dt
= −i[Ĥqm + Ĥq(t),ρ̂] + γqDaq [ρ̂] + γeffDb[ρ̂], (3)

with Hamiltonian terms

Ĥqm = �b̂†b̂ − gqâ
†
qâqx̂

2, (4a)

Ĥq(t) = −	qâ
†
qâq + i[Eq(t)â†

q − E∗
q (t)âq]. (4b)

The bichromatic driving amplitude can be written as Eq(t) =
E0 + E1e

−i�qt+iφ , with φ some relative phase between the two
tones. 	q = ωQ − ωq is the laser detuning. b̂ is the mechanical
annihilation operator, from which the mechanical displace-
ment is written as x̂ = b̂ + b̂†. âq is the quadratic mode’s
annihilation operator, with corresponding cavity damping rate
γq. The driving amplitudes E0,1 are written in terms of the
power P0,1 of the laser at the corresponding frequency as
E0,1 ≈ √

2γqP0,1/�ωq [76].
We can understand the conditions under which this bichro-

matically driven optomechanical setup is mapped to the DPO
model by adiabatically eliminating the quadratic mode. We
provide the details of the derivation in Appendix B, and
here we just point out some relevant steps. We follow the
usual projector-superoperator technique [115–118] in which
the quadratic mode is assumed to be in some reference state
and follow some reference dynamics. For our current purposes,
it is enough to assume that it does not feel any mechanical
backaction, so that its dynamics is described by the master
equation above with gq = 0. This means that (i) we can take a
coherent state with amplitude

αq(t) = eiarctan(	q/γq)[
√

n̄0 − i
√

n̄1e
−i�Qt ], (5)

as its reference state, where we have made a concrete choice
of the second tone’s phase φ that simplifies the expression [see
Eq. (B5)] and defined

n̄j = E2
j

/[
γ 2

q + (	q + j�q)2
]
, (6)

which are the number of photons introduced by the correspond-
ing laser in the cavity; and (ii) all the correlation functions of
its quantum fluctuations δâq = âq − αq will decay in time at
rate γq.

Keeping in mind the traditional picture of sideband cooling
[37], it is intuitive to understand how the DPO model arises
from Ĥqm upon adiabatic elimination of the optical mode.
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First, it is convenient to work in the weak-sideband regime
n̄1 � n̄0 in order to avoid undesired time-dependent terms
from being non-negligible (see Appendix B). The coherent
part of the optical field generates then an effective mechanical
Hamiltonian

Ĥeff = �b̂†b̂ − gq|αq(t)|2x̂2

≈ �eff b̂
†b̂ + igq

√
n̄0n̄1(ei�qt b̂2 − H.c.), (7)

where �eff = � − 2gqn̄0, and any other term can be neglected
as long as we work within the rotating-wave approximation
�eff � gqn̄0; see Appendix B for details. Therefore, choosing
the second tone as �q = 2�eff , this effective Hamiltonian
provides precisely ĤDPO; see Eq. (1).

On the other hand, the elimination of the optical fluctuations
generates both dissipative and Hamiltonian mechanical terms.
Within the weak sideband and rotating-wave approximations,
all the Hamiltonian terms can be neglected, while only
the dissipators Db2 , Db†2 , and Db†b survive, corresponding,
respectively, to two-phonon cooling, heating, and dephasing.
In the weak-sideband regime, the rate of each process is static
and solely controlled by the fundamental tone. Hence, setting
its detuning to the red two-phonon resonance, 	q = −2�eff ,
while working in the resolved sideband regime, 4�2

eff � γ 2
q ,

the heating and dephasing terms are highly suppressed just
as in standard cooling [37], leaving us with a two-photon
cooling dissipator at rate γmCq, where we have introduced
the cooperativity Cq = g2

q n̄0/γqγm. It is important to note
that the Markov approximation (central to this method),
requires a decay of the optical correlators much faster than the
effective mechanical dynamics induced by the optical fields
(see Appendix B), that is, γq � max{γeff,γmCq,gq

√
n̄0n̄1}.

This shows that the dynamics of the mechanical mode
should follow an effective DPO master equation of the
form (1), with ω0 = �eff , γ = γeff , g2 = 4Cq/Cl, and σ =
g
√

n̄1γq/γeff . Remarkably, we obtain a set of parameters that
can be optically tuned by means of the two laser powers P0

and P1 and that, as we show next, allow us to explore physical
regimes not available in all-optical implementations.

IV. IMPLEMENTABILITY IN CURRENT SETUPS

We take the experiments of Ref. [67] as a reference, in which
� = 4.4 MHz, γm = 0.8 Hz, ωq = 1770 THz, γq = 1.3 MHz,
Cl = 10 000, and gq = 10−5 Hz (this last parameter taken from
Ref. [65]). In order to stay safely within the rotating-wave
approximation we must impose a bound on the intracavity
photon number given by n̄0 � �/2gq ≈ 1011, which also
certifies that we are within the resolved sideband regime,
�eff/γq ≈ 3.5. Taking n̄0 = 3.3 × 109 (corresponding to a
power of P0 ≈ 20 mW, fairly reasonable in such setups),
we then obtain a quadratic cooperativity Cq ≈ 3.3 × 10−7,
leading to an effective two-phonon loss g ≈ 10−5, on the order
of the one obtained in optical implementations [76]. On the
other hand, let us take n̄1 = 3 × 108 � n̄0 (corresponding to
P1 ≈ 35 μW) as an upper bound for the sideband photon
number; then by varying the sideband power from zero to
this value, the effective σ parameter can be varied all the
way through the phase transition and up to σ = 2.5, showing
how current optomechanical setups should be able to reach

regions of the DPO model beyond what is possible in optical
implementations. Note finally that the Markov approximation
is very well satisfied since γq/γeff ≈ 150.

V. NUMERICAL SIMULATIONS

In order to certify the predictions offered above with the
effective mechanical model under optical adiabatic elimina-
tion, we have performed numerical simulations of the full
optomechanical problem for the realistic parameters of the
previous section.

We proceed in two ways. First, by directly simulating the
evolution induced by the master equation (3) in a truncated
Fock basis [119]. We are interested in the asymptotic phonon
number limt→∞〈b̂†b̂(t)〉, which oscillates at frequency �q

and can be approximately written as n̄ + δn sin(�qt), where
typically n̄ � δn. In the inset of Fig. 2(b) we show the static
phonon background n̄ as a function of the effective σ (which
we remark that can be tuned through the sideband power P1

in an experiment), together with the phonon number predicted
from the effective DPO master equation (1). We find a very
good agreement between these quantities, up to the value of σ

that we have been able to simulate. For large phonon numbers
(for σ > 0.95 in our case) this type of “brute force” simulation
becomes unfeasible, as the Fock-space truncation needed to
capture the state becomes too large.

Fortunately, in order to prove that the DPO phase transition
is present in the full model, it is enough to consider the classical
limit, which is the second type of simulation that we have
performed. In this limit the optical and mechanical states are
assumed to be coherent, hence described by complex ampli-
tudes α and β, respectively, which, defining the mechanical
position x = 2Re{β} and momentum p = 2Im{β}, are shown
in Appendix C to evolve according to

ẋ = �p, (8a)

ṗ = −2γeffp − (� − 4gq|α|2)x, (8b)

α̇ = Eq(t) − (γq − i	q − igqx
2)α. (8c)

These are a set of coupled nonlinear equations which can be
efficiently simulated in virtually all parameter space. Their
prediction for n̄ is plotted in Fig. 2(b) as a function of σ ,
where we also show the predictions of the DPO model, given
by n̄ = 2(σ − 1)/g2. We see that this classical simulation also
finds very good agreement with the DPO model, in particular
showing the phase transition exactly as expected.

VI. CONCLUSIONS

In summary, we have shown that the elusive degenerate
parametric oscillator model can be realistically implemented
in current optomechanical setups. Apart from providing the
possibility of studying experimentally many interesting theo-
retical predictions put forward during the last three decades, the
implementation of this simple (but paradigmatic) dissipative
model in modern quantum technologies opens the way to
analyzing open questions related to ergodicity and spontaneous
symmetry breaking, as well as enhanced metrology with
dissipative phase transitions. In addition, it would allow for the
dissipative preparation of squeezed mechanical states, which
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are receiving a lot of attention lately [120–122]. Let us finally
remark that even though we have focused on a membrane-
based implementation, our ideas can be realized with any
other optomechanical system allowing for a quadratic coupling
to the mechanical position, including double-microdisk res-
onators [123], microdisk-nanocantilever [124] or microsphere-
nanostring [125] devices, paddle nanocavities [126], and
photonic crystals [127].
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APPENDIX A: ASYMPTOTIC STATE OF DEGENERATE
PARAMETRIC OSCILLATOR

In this Appendix we provide further details about the way
in which we found the asymptotic state of the DPO model,
both in the quantum and classical regimes.

1. Moving to a simpler picture

The asymptotic state of the DPO model (1) is better
analyzed in a picture rotating at frequency ω0, where the
state becomes time independent. In particular, defining the
transformation operator Ûc = exp(iω0t â

†â), in the new picture
the state of the system ρ̃ = Ûcρ̂Û

†
c obeys the master equation

dρ̃

dt
= −i[H̃DPO,ρ̃] + γg2

4
Da2 [ρ̃] + γDa[ρ̃], (A1)

where the transformed Hamiltonian reads

H̃DPO = ÛcĤDPOÛ †
c − ω0â

†â = iγ σ (â†2 − â2)/2. (A2)

Hence, we see how in this picture the master equation becomes
time independent, leading to a stationary asymptotic state of
the system.

2. Quantum asymptotic state

Indeed, the unique steady state of this master equation is
known analytically, in particular in the form of a positive
P distribution [90], from which in principle the elements
of the density operator can be reconstructed in any basis
[128]. However, such a reconstruction is computationally very
demanding, and for our purposes it is simpler to evaluate the
steady state numerically. Concretely, in Sec. II we show the

Wigner function associated with the steady state for g = 0.1
and two different values of the pump parameter, σ = 0.9 and
σ = 2, above and below the phase transition, respectively. Let
us now spend some lines explaining how we have computed
this steady states and their corresponding Wigner functions.

As explained in detail in Ref. [119], we perform the
numerics by going to superspace, where the elements of the
density matrix in the Fock basis are gathered in a vector ρ, and
the master equation becomes then a linear system d ρ/dt =
LDPO ρ, where LDPO is a representation of the Liouville
superoperator which induces the DPO dynamics, LDPO[·] =
−i[H̃DPO,·] + γDa[·] + γg2Da2 [·]/4. Note that the Fock basis
is infinite dimensional, and hence one has to introduce a
truncation {|n〉}n=0,1,...,N in order to work in the computer. In
our case, we follow the criterion of truncating to values of N

for which the observables we are interested in (e.g., the photon
number 〈â†â〉) converge up to a three-digit precision or more.
The steady state corresponds then to the eigenvector with zero
eigenvalue of LDPO, which provides us with the Fock basis
components of the steady-state operator, {ρ̄mn}m,n=0,1,...,N .

Once we have the density operator in the Fock basis, the
Wigner function can be evaluated as follows: First, given a
harmonic oscillator with position and momentum quadratures,
x̂ = â† + â and p̂ = i(â† − â), respectively, recall that the
Wigner function W (x,p) can be seen as a joint probability
density function for measurements of such observables, in
the sense that the marginal P (x) = ∫

R dpW (x,p) provides
the probability density function predicting the statistics of
position measurements (and similarly for the momentum).
Defining the polar coordinates (r,ϕ) in phase space by (x,p) =
r(cos ϕ, sin ϕ), the Wigner function of the steady state ρ̄ can
be found from its components in the Fock basis as [129–132]

W̄ (r,ϕ) =
N∑

mn=0

ρ̄mnWmn(r,ϕ), (A3)

where we have defined the Wigner function of the operator
|m〉〈n|, given by

Wmn(r,ϕ) = (−1)n

π

√
n!

m!
eiϕ(m−n)rm−nLm−n

n (r2)e−r2/2, (A4)

with L
p
n (x) the modified Laguerre polynomials and where we

have assumed m � n (note that Wnm = W ∗
mn).

3. Classical limit and steady state

Phase transitions in dissipative systems are usually revealed
in the classical limit of the corresponding quantum models. Let
us explain how such a limit can be obtained from the master
equation that describes the system quantum mechanically. The
idea is indeed quite simple in the case of bosonic systems: the
classical limit consists of assuming that the state of all bosonic
modes is coherent, with an amplitude that will play the role of
the classical variable.

In particular, in the case of the single-bosonic mode
considered in the DPO model, this means that we assume
its state to be a coherent state |α(t)〉 at all times, such that the
expectation value of any normally ordered observable factor-
izes as 〈â†k(t)âl(t)〉 = α∗k(t)αl(t), where for convenience we
are defining expectation values with respect to the state in the
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picture rotating at the laser frequency, that is 〈â†k(t)âl(t)〉 =
tr{â†k âl ρ̃(t)}. This allows us to find an evolution equation
for α(t) from the master equation (A1) as follows: given any
operator Â, the master equation allows us to write the evolution
of its expectation value as

d〈Â〉
dt

= tr

{
Â

dρ̃

dt

}

= −i〈[Â,ĤDOPO]〉 + γ (〈[â†,Â]â〉 + 〈â†[Â,â]〉)

+ γg2

4
(〈[â†2,Â]â2〉 + 〈â†2[Â,â2]〉), (A5)

which applied to the annihilation operator, and using the
coherent-state ansatz, provides us with the classical equation
of DPO:

γ −1α̇ = σα∗ − g2

2
|α|2α − α. (A6)

This is indeed the equation that would have been obtained by
using classical electromagnetic theory on the DOPO, where α

would be interpreted as the normalized amplitude of the optical
field. As explained in the text, this equation has two types of
asymptotic stationary (α̇ = 0) solutions: a trivial one ᾱ = 0,
and a nontrivial one ᾱ = ±√

2(σ − 1)/g, which exists only
for σ > 1 and has sign-indeterminacy owed to the symmetry
α → −α of Eq. (A6). We use the bar to denote “stationary
state.” In order for these solutions to be physical, they need to
be stable against perturbations; their stability can be analyzed
by studying the evolution of small perturbations around them;
that is, by writing α(t) = ᾱ + δα(t), and linearizing Eq. (A6)
with respect to δα. Defining the vector δα = col(δα,δα∗), one
obtains the linear system δα̇ = Mδα, where the linear stability
matrix reads

M =
(

−1 − 2g2|ᾱ|2 σ − g2ᾱ2/2

σ − g2ᾱ∗2/2 −1 − 2g2|ᾱ|2
)

. (A7)

Hence, the stability of a given stationary solution ᾱ is
determined by the eigenvalues of this matrix: when they all
have negative real part, it will be stable, while if some of them
have positive real part, perturbations will tend to grow, showing
that the solution is unstable. In the case of the trivial solution,
the eigenvalues are λ± = −1 ± σ , and hence, it is unstable for
σ > 1. On the other hand, the eigenvalues associated with the
nontrivial solution read λ± = −2σ + 1 ± 1, which are always
negative for σ > 1, and hence this solution is stable.

Therefore, we see that, at the classical level, the phase
transition is revealed by a nonanalytic change in the stationary
solution at threshold σ = 1.

APPENDIX B: ADIABATIC ELIMINATION
OF OPTICAL MODE

In this Appendix we perform a careful adiabatic elimination
of the quadratic optical field, identifying the region of the
parameter space where the system is expected to give rise to
the DPO model. Note that our optomechanical master equation
(3) cannot be made time independent in any picture and,
hence, while we follow well-known projector superoperator
techniques [115,116], we need to be careful and adapt them to
our time-dependent problem.

1. Moving to a simpler picture

Our starting point is the master equation of the optome-
chanical system as we introduced it in the main text:

dρ̂

dt
= −i[Ĥm + Ĥq(t) + Ĥqm,ρ̂] + γqDaq [ρ̂] + γeffDb[ρ̂],

(B1)

with Hamiltonian terms

Ĥm = �b̂†b̂, (B2a)

Ĥq = −	qâ
†
qâq + i[Eq(t)â†

q − E∗
q (t)âq], (B2b)

Ĥqm = −gqâ
†
qâqx̂

2, (B2c)

and where the bichromatic driving amplitude of the quadratic
mode can be written as

Eq(t) = E0 + E1e
−i�qt+iφ, (B2d)

with φ some relative phase between the two tones that will be
chosen shortly. All the symbols have the meaning introduced
in the main text.

In order to perform the adiabatic elimination of the optical
mode, it is convenient to move to a picture where the large
coherent background that the driving fields create in the optical
mode is already taken into account. This is accomplished
by using a displacement D̂[αq(t)] = exp[αq(t)â†

q − α∗
q (t)âq]

as the transformation operator, where the amplitude αq(t) is
chosen to obey the evolution equation

α̇q = Eq(t) − (γq − i	q)αq, (B3)

with solution

αq(t) = αq(0)e−(γq−i	q)t + E0

γq − i	q
[1 − e−(γq−i	q)t ]

+ E1e
iφ

γq − i(	q + �q)
[e−i�qt − e−(γq−i	q)t ]. (B4)

Note that, by choosing

φ = −π/2 + arctan(	q/γq) − arctan[(	q + �q)/γq],

(B5)

we obtain the asymptotic displacement

lim
t�γ −1

q

αq(t) = eiarctan(	q/γq)[
√

n̄0 − i
√

n̄1e
−i�qt ], (B6)

with n̄0 = E2
0 /[γ 2

q + 	2
q] and n̄1 = E2

1 /[γ 2
q + (	q + �q)2],

which is the amplitude that we introduced in the main text.
In the following we assume to be working in this asymptotic
regime t � γ −1

q , even if we do not write the limit explicitly to
shorten the expressions. In this new picture, the transformed
state ρ̃ = D̂†[αq(t)]ρ̂D̂[αq(t)] evolves then according to

dρ̃

dt
= −i[H̃ (t),ρ̃] + γqDaq [ρ̃] + γeffDb[ρ̃], (B7)

where the transformed Hamiltonian

H̃ (t) = D̂†[αq(t)][Ĥm + Ĥq(t) + Ĥqm]D̂[αq(t)]

+ i(α̇∗
q âq − α̇qâ

†
q), (B8)
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can be written as the sum of three terms, H̃ = H̃q + H̃m(t) +
H̃qm(t), with

H̃q = −	qâ
†
qâq, (B9a)

H̃m(t) = �b̂†b̂ − gq|αq(t)|2x̂2, (B9b)

H̃qm(t) = −gq[α∗
q (t)âq + αq(t)â†

q]x̂2 − gqâ
†
qâqx̂

2. (B9c)

The interest of moving to this picture is that now the
driving has been moved to the coupling and the mechanical
Hamiltonians, which will allow us to easily understand the
physics behind the system. Moreover, in the absence of
optomechanical coupling, the dynamics of the optical mode
is generated by the simple Liouvillian Lq[·] = i[	qâ

†
qâq,·] +

γqDaq [·], including only detuning and dissipation, which drives
it to a vacuum state at rate γq —which in the original picture
corresponds to a coherent state with amplitude αq(t).

Note finally that we could move to an even more accurate
picture in which not only the optical, but also the mechanical
mode are displaced to some reference phase-space point (e.g.,
the one corresponding to their configuration in the classical
limit, see Appendix C). However, while it might be valuable
from a quantitative point of view, this level of approximation
is not required to understand the physics of the problem and
identify the conditions required for the system to implement
the DPO model, which is clearer in the simple optically
displaced picture introduced above.

2. Derivation of effective mechanical master equation

Let us rewrite the master equation (B7) as

dρ̃

dt
= L(t)

m [ρ̃] + Lq[ρ̃] + L(t)
qm[ρ̃], (B10)

where Lq is defined above, while L(t)
m [·] = −i[H̃m(t),·] +

γeffDb[·] and L(t)
qm[·] = −i[H̃qm(t),·]. Adiabatic elimination

proceeds by choosing some reference state and dynamics for
the optical mode, which is assumed to remain unperturbed
by the mechanical mode, and hence the accuracy of the
elimination depends crucially on the choice of a proper
reference. For our purposes, it is enough to take the dynamics
generated by Lq as the optical reference, and hence its steady
state ρ̄q = |0〉q〈0| (vacuum) as the reference state. Let us then
define the projector superoperator

P[·] = ρ̄q ⊗ trq{·}, (B11)

and its complement Q = 1 − P . These superoperators satisfy
the useful relationsPL(t)

m [·] = L(t)
m P[·] (obvious sinceL(t)

m acts
on the mechanics only) and PLq[·] = 0 = LqP[·] (where the
second equality is again obvious, while the first one comes
from Lq being traceless by conservation of probability).

The next step consists of projecting the master equation onto
the corresponding subspaces defined by these superoperators.
Defining the projected components of the density operator
û(t) = P[ρ̃(t)] and ŵ(t) = Q[ρ̃(t)], and using the properties
of the projectors, it is straightforward to get the coupled linear

system

dû

dt
= (

L(t)
m + PL(t)

qm

)
[û] + PL(t)

qm[ŵ], (B12a)

dŵ

dt
= (

L(t)
m + Lq + QL(t)

qm

)
[ŵ] + QL(t)

qm[û]. (B12b)

The second equation can be formally integrated, leading to

ŵ(t) =
∫ t

0
dt ′T

{
exp

[ ∫ t

t ′
dt ′′

(
L(t ′′)

m + Lq + QL(t ′′)
qm

)]}

×QL(t ′)
qm[û(t ′)], (B13)

where T is the time-ordering superoperator, and we have not
written the term which depends on the initial value ŵ(0) since
in this concrete dissipative scenario any information related to
it has to be completely washed out asymptotically. Next, we
introduce this formal solution in the first equation and take
the Born approximation in which we neglect terms beyond
quadratic order in the interaction Lqm, which allows us to
write

dû

dt
= L(t)

m [û] + PL(t)
qm[û]

+
∫ t

0
dτPL(t)

qmU (t−τ,t)
m eLqτQL(t−τ )

qm [û(t − τ )], (B14)

where in addition we have made the variable change t ′ = t − τ

in the integral, used the fact that Lm and Lq commute, and
defined the mechanical time-evolution superoperator

U (t−τ,t)
m = T {e

∫ t

t−τ
dt ′L(t ′ )

m }. (B15)

After performing the partial trace over the optical mode, this
equation provides an effective master equation for the reduced
mechanical state ρ̂m = trq{ρ̃}. In order to simplify further such
equation, we need to write the explicit form of the interaction
Lqm, which we do as

L(t)
qm[·] = i

3∑
j=1

Gj (t)[B̂j ⊗ x̂2,·], (B16)

with

B̂ = (âq,â
†
q,â

†
qâq), (B17a)

G(t) = gq[α∗
q (t),αq(t),1]. (B17b)

Note the null asymptotic expectation value of the optical
operators, trq{B̂j ρ̄q} = 0 ∀ j , meaning that the second term
of Eq. (B14) does not contribute since PL(t)

qm = 0. Let us then
define the optical correlation functions

trq{B̂le
Lqτ [ρ̄qB̂j ]} = lim

t→∞〈B̂j (t)B̂l(t + τ )〉q ≡ Kj l(τ ),

(B18a)

trq{B̂le
Lqτ [B̂j ρ̄q]} = lim

t→∞〈B̂l(t + τ )B̂j (t)〉q ≡ Hj l(τ ),

(B18b)

where the expectation value refers to the picture rotating at
the laser frequency and we have used the quantum regression
theorem [117]. Then, the effective mechanical master equation
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can be written as

dρ̂m(t)

dt
≈ L(t)

m [ρ̂m] +
3∑

j l=1

Gj (t)Gl(t)
∫ t

0
dτKj l(τ )

[
x̂2,U (t−τ,t)

m [ρ̂m(t − τ )x̂2]
]

+
3∑

j l=1

Gj (t)Gl(t)
∫ t

0
dτHj l(τ )

[
U (t−τ,t)

m [x̂2ρ̂m(t − τ )],x̂2], (B19)

where, in order to simplify the equation and upcoming
expressions, we neglected some terms coming from the time
dependence of the couplings G, which finds justification from
conditions that will naturally appear later.

The correlation functions Kj l(τ ) and Hj l(τ ) can be eval-
uated in many ways. Instead of using the dynamics induced
by Lq in the Schrödinger picture [118], a particularly simple
way of evaluating them is by using the equivalent quantum
Langevin equations of the optical operators, which in the
simple case of having dissipation and detuning only, consist
of a single closed equation for the annihilation operator [115]:

dâq

dt
= −(γq − i	q)âq + √

2γqâin(t), (B20)

where the only nonzero input-operator correlators up to fourth
order are

〈âin(t1)â†
in(t2)〉 = δ(t1 − t2),

〈âin(t1)â†
in(t2)âin(t3)â†

in(t4)〉 = δ(t1 − t2)δ(t3 − t4),
(B21)〈âin(t1)âin(t2)â†

in(t3)â†
in(t4)〉 = δ(t1 − t3)δ(t2 − t4)

+ δ(t1 − t4)δ(t2 − t3).

The asymptotic (t � γ −1
q ) solution of this equation reads

âq(t) = √
2γq

∫ t

0
dt ′e−(γq−i	q)(t−t ′)âin(t ′), (B22)

which together with the correlators of the input operator allows
us to write

Kj l(τ ) = e−(γq+i	q)τ δj1δl2, (B23a)

Hj l(τ ) = e−(γq−i	q)τ δj2δl1, (B23b)

which are functions decaying at rate γq.
Hence, of the dynamics induced by the time-evolution su-

peroperator U (t−τ,t)
m , we see that only the processes happening

at a rate faster than or similar to γq play a role in the integral
terms of the effective mechanical master equation (B19). This
brings us to the final major approximation, known as the
Markov approximation: we assume that of all the processes
contributing to the mechanical dynamics, the only term acting
appreciably on the timescale of the optical decay is the simple
oscillation induced by the term [� − 2gq(n̄0 + n̄1)]b̂†b̂ of H̃m

(we will justify this approximation self-consistently at the end
of the derivation). Within this Markov approximation, we can
then approximate

U (t−τ,t)
m [ρ̂m(t − τ )x̂2] ≈ e−i�effτ b̂†b̂[ρ̂m(t − τ )x̂2]ei�effτ b̂†b̂

≈ ρ̂m(t)x̂(τ )2, (B24)

where �eff = � − 2gq(n̄0 + n̄1) and

x̂(τ ) = ei�effτ b̂ + e−i�effτ b̂†. (B25)

Similarly, we can approximate

U (t−τ,t)
m [x̂2ρ̂m(t − τ )] ≈ x̂(τ )2ρ̂m(t). (B26)

These approximations lead to the effective mechanical master
equation

dρ̂m

dt
= L(t)

m [ρ̂m(t)] + [�̂(t)ρ̂m − ρ̂m�̂†(t),x̂2], (B27)

where, after performing the time integrals (in the asymptotic
limit), it naturally appears the operator

�̂(t) = �(t ; �eff)b̂
2 + �(t ; −�eff)b̂

†2 + �(t ; 0)(2b̂†b̂ + 1),

(B28)

with asymptotic time-dependent rates

�(t ; ω) = γmCq

1 − i(	q + 2ω)/γq
(1 + i

√
n̄1/n̄0e

i�qt )

+ γmCq

1 − i(	q + �q + 2ω)/γq

× (n̄1/n̄0 − i
√

n̄1/n̄0e
−i�qt ), (B29)

where the cooperativity is defined as Cq = g2
q n̄0/γqγm.

In order to see that this master equation has all the
ingredients that we need plus many more, so it is just a matter
of finding the regime in which the latter do not contribute, let
us rewrite it. By defining the real and imaginary parts of the
rates, �R(t ; ω) = Re{�(t ; ω)} and �I(t ; ω) = Im{�(t ; ω)} and
defining the phonon-number operator n̂ = b̂†b̂, we can write

dρ̂m

dt
= − i[Ĥeff(t),ρ̂m] + γeffDb[ρ̂m] + �R(t ; �eff)Db2 [ρ̂m]

+ �R(t ; −�eff)Db†2 [ρ̂m] + 4�R(t ; 0)Dn[ρ̂m]

+ L(t)
NRW[ρ̂m],

where we have defined the effective Hamiltonian

Ĥeff(t) = ĤDPO(t) + Ĥ⊥DPO(t), (B30)

containing terms that we will need for the DPO model

ĤDPO(t) = �eff n̂ + igq
√

n̄0n̄1(e−i�qt b̂†2 − ei�qt b̂2), (B31)

plus some that we do not want to contribute

Ĥ⊥DPO(t) = [4gq
√

n̄0n̄1 sin(�qt)]n̂ − [�I(t ; �eff)

− 3�I(t ; −�eff) − 4�I(t ; 0)]n̂ + [�I(t ; �eff)

+�I(t ; −�eff) + 4�I(t ; 0)]n̂2 − [gq(n̄0 + n̄1

+ i
√

n̄0n̄1e
i�qt )b̂†2 + H.c.], (B32)
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and we have collected into LNRW the dissipative terms which
in the absence of the sideband are expected not to contribute
within the rotating wave approximation, which read

L(t)
NRW[ρ̂m] = [�(t ; �eff) + �∗(t ; −�eff)]b̂

2ρ̂mb̂2

−�(t ; �eff)b̂
4ρ̂m − �∗(t ; −�eff)ρ̂mb̂4

+ [�(t ; �eff) + �∗(t ; 0)]b̂2ρ̂m(2n̂ + 1)

−�(t ; �eff)(2n̂ + 1)b̂2ρ̂m

−�∗(t ; 0)ρ̂m(2n̂ + 1)b̂2

+ [�(t ; 0) + �∗(t ; −�eff)](2n̂ + 1)ρ̂mb̂2

−�(t ; 0)b̂2(2n̂ + 1)ρ̂m

−�∗(t ; −�eff)ρ̂mb̂2(2n̂ + 1) + H.c. (B33)

3. Degenerate parametric oscillation regime

Let us now discuss the conditions under which the effective
mechanical master equation above will correspond to the
master equation of the DPO; Eq. (1).

Looking at the term ĤDPO(t) of the effective Hamiltonian,
we see that the sideband �q should be chosen to match twice
the effective mechanical frequency; that is, 2�eff .

On the other hand, we would like the effective two-phonon
cooling Db2 to dominate over any other irreversible process,
in particular over the two-phonon heating Db†2 and dephasing
Dn, and to do so with a time-independent rate. Looking at
Eq. (B29), the latter can be naturally accomplished by driving
the fundamental tone much stronger than the sideband, that
is, n̄0 � n̄1. The static part of the rates (B29) then suggests
that cooling will be enhanced by choosing a detuning of
the fundamental driving tone matching the red two-phonon
sideband, 	q = −2�eff ; indeed, this choice provides the
following real, static part of the rates:

�R(t ; �eff) → γmCq ≡ �cooling, (B34a)

�R(t ; −�eff) → γmCq

1 + 16�2
eff/γ

2
q

≡ �heating, (B34b)

�R(t ; 0) → γmCq

1 + 4�2
eff/γ

2
q

≡ �dephasing, (B34c)

showing in addition that we need to work in the resolved side-
band regime 4�2

eff � γ 2
q in order for heating and dephasing

to be suppressed; in particular, we will define the parameter
r = (1 + 4�2

eff/γ
2
q )−1 � 1, which allows us to approximate

the rates by

�(t ; �eff) = γmCq(1 + i
√

rn̄1/n̄0 + i
√

n̄1/n̄0e
2i�eff t

+
√

r(n̄1/n̄0)e−2i�eff t ), (B35a)

�(t ; −�eff) = −i
√

rγmCq(1 + i
√

n̄1/n̄0e
2i�eff t

− 2i
√

n̄1/n̄0e
−2i�eff t )/2, (B35b)

�(t ; 0) = γmCq(n̄1/n̄0 − i
√

r +
√

r(n̄1/n̄0)e2i�eff t

− i
√

n̄1/n̄0e
−2i�eff t ), (B35c)

expressions that together with working in the weak sideband
regime, n̄1/n̄0 � 1, suggest that the only relevant rate is the

real static part of �(t ; �eff), which provides the two-phonon
cooling rate as desired.

The next constrain on the parameters comes from the fact
that there are many counter-rotating terms that we do not
want to contribute within the rotating-wave approximation.
Among these, inspection of L(t)

NRW and Ĥ⊥DPO shows that the
largest of such rates are γmCq and gq(n̄0 + n̄1) ≈ gqn̄0, but
note that gqn̄0/γmCq = γq/gq which is typically much larger
than 1 (optomechanical systems work far from the single-
photon strong-coupling regime, specially when referring to
the quadratic coupling), and hence gqn̄0 is the largest of these
two rates. Thus, the rotating wave approximation requires
gqn̄0 � �eff . Provided that this approximation holds, we can
neglect all the counter-rotating terms in Ĥ⊥DPO and L(t)

NRW,
approximating them by

Ĥ⊥DPO ≈ −√
rγmCq(11 + 9n̂)n̂/2, (B36)

and

L(t)
NRW[ρ̂m] =

√
n̄1/n̄0γmCqe

2i�eff t
[
ib̂2ρ̂m(2n̂ + 1)

− i(2n̂ + 1)b̂2ρ̂m + √
rρ̂m(2n̂ + 1)b̂2

− √
rb̂2(2n̂ + 1)ρ̂m + √

rρ̂mb̂2(2n̂ + 1)
] + H.c.

(B37)

This expression clearly shows that L(t)
NRW is negligible when

compared with the two-phonon-cooling term γmCqDb2 . On the
other hand, Ĥ⊥DPO provides a negligible effective mechanical
frequency shift, but also a Kerr term which is expected to
be negligible only as long as 〈n̂〉 � �eff/4.5

√
rγmCq, which

puts a bound on the number of phonons. Nevertheless, for the
parameters corresponding to a realistic implementation used
in the main text, we find this bound to be ∼1013, while the
classical limit of the DPO tells us that the phonon number
expected at σ = 2.5 is on the order of 1010, three orders of
magnitude below the limit in which the Kerr term can start
playing a role.

Provided that all these considerations are taken into ac-
count, we then expect the effective mechanical master equation
to be very well approximated by

dρ̂m

dt
≈ −i[Ĥeff(t),ρ̂m] + γeffDb[ρ̂m] + γmCqDb2 [ρ̂m],

(B38)
with effective Hamiltonian

Ĥeff(t) ≈ �eff n̂ + igq
√

n̄0n̄1(e−2i�eff t b̂†2 − e2i�eff t b̂2),
(B39)

which is exactly the DPO model [Eq. (1)].
Note that there is a final constrain on the parameters coming

from the Markov approximation that we performed in the
adiabatic elimination: since we assumed that within the decay
of the optical correlators at rate γq the only relevant mechanical
process is the simple oscillation at frequency �eff , we need the
rates γeff , γmCq, and gq

√
n̄0n̄1 to be smaller than γq. For the

parameters considered in the main text, γeff is the largest rate
of the three (for an n̄1 corresponding to σ = 2.5 in the DPO
model or smaller), and it satisfies γeff/γq ≈ 6 × 10−3, so we
are safely within the Markov regime.
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APPENDIX C: ASYMPTOTIC STATE OF FULL MODEL

Let us in this final Appendix explain how we found the
asymptotic state of the optomechanical model numerically. As
with the stationary state of the DPO model, we performed
simulations of the full master equation (B1), as well as
simulations in the classical limit.

In the first case, our starting point has been the optomechan-
ical master equation in the displaced picture; Eq. (B7). For
numerical purposes, it is important to work in this displaced
picture because the state of the optical mode should stay close
to vacuum, while in the original picture it is a highly populated
coherent state which does not allow for a reasonable truncation
of the optical Fock space. As before, we set the truncation of the
mechanical and optical Fock bases in such a way that the mean
phonon number finds convergence up to the third significant
digit, which typically does not require more than one or two
photons in this displaced picture. The simulation proceeds
again as explained in detail in Ref. [119], that is, by moving
to superspace where the master equation (B7) is turned into a
linear system d ρ(t)/dt = L(t) ρ(t). Note that now the linear
problem is manifestly time dependent and, therefore, there
will be no steady state. In particular, L(t) is 2π/�q periodic,
and this periodicity is reflected in a time-dependent asymptotic
state ρ̄(t) = limt→∞ ρ̂(t), which we find by solving the linear
system numerically starting from different initial conditions
ρ(0); that is, different initial states ρ̂(0). In all the simulations
we have checked that the asymptotic state is independent of
the chosen initial state (e.g., vacuum or the steady state of
the DPO for the mechanics). As explained in the text, the
observable we have focused on is the asymptotic phonon
number limt→∞〈b̂†b̂(t)〉 = tr{b̂†b̂ρ̄(t)}, whose time evolution
can be approximated by a function of the type n̄ + δn sin(�qt),
with δn � n̄.

The superspace simulation of the master equation becomes
quite heavy as the mechanical state gets populated, which has
prevented us from performing simulations for values of the

sideband power where the system is expected to be above
the DPO phase transition. Hence, in order to prove that the
optomechanical model leads to the expected phase transition,
we performed simulations of the optomechanical system in
the classical limit. Similarly to what we did for the DPO
model in the first section, this limit is found by assuming
that both the optical and mechanical modes are in a coherent
state at all times. Let us show the procedure explicitly for
this case too. Our starting point is the original optomechanical
master equation (B1), but replacing the mechanical dissipator
Db[·] by [x̂,{p̂,·}]/2i, where p̂ = i(b̂† − b̂) is the mechanical
momentum quadrature. For high-Q mechanical oscillators
which admit a weak-coupling description of their interaction
with the environment, this dissipator leads to the same physics
as the previous one [115], but provides better-looking classical
equations. With this change, the evolution of the expectation
value of any system operator Â reads

d〈Â〉
dt

= tr

{
Â

dρ̂

dt

}
= −i〈[Â,Ĥm + Ĥq(t) + Ĥqm]〉

+ γq(〈[â†
q,Â]âq〉 + 〈â†

q[Â,âq]〉) + γeff

2i
〈{[Â,x̂],p̂}〉,

(C1)

where, just as with the DPO model, we are defining the
expectation value with respect to the state in the picture
rotating at the laser frequency; that is, 〈·〉 = tr{· ρ̂}, with
ρ̂ the state in the rotating frame. Applied to âq, x̂, and
p̂, and denoting by α(t) and β(t) = [x(t) + ip(t)]/2 the
amplitudes of the optical and mechanical coherent states, we
find the classical evolution equations (8) that we introduced in
Sec. V. Such a nonlinear system can be efficiently simulated
numerically for (practically) any parameter set, and the phonon
number that it predicts can be evaluated as limt→∞〈b̂†b̂(t)〉 =
limt→∞[x2(t) + p2(t)]/4, which again can be approximated
by n̄ + δn sin(�qt), with (typically) δn � n̄.
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