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1. Introduction

There are condensed matter systems which can hold collective
quasiparticles that are their own antiparticles, therefore satisfying
the Majorana condition [1–3]. These quasiparticles are termed
Majorana Fermions (MFs) and follow non-abelian statistics. De-
tection of MFs in solid state systems has been recently experi-
mentally proposed [4–6,53]. Recently, the interest in encoding a
qubit in these kinds of excitations has grown due to the possibility
to be non-local, a property which has a great potential in quantum
computation due to the robustness of the qubit against local per-
turbations [7]. Furthermore, how to tune MFs in condensed matter
systems is one of the main purposes of research in the emergent
field of topological quantum computation.

In the last years, different works have shown how the appli-
cation of ac fields enriches the properties of these quasiparticles
and facilitate their tunability. For instance, it is possible to gen-
erate Floquet Majorana fermions (FMFs) as steady-states of non-
equilibrium systems which present interesting properties for
ateriales, CSIC, Cantoblanco,
quantum computation: non-locality and non-abelian statistics
[8,9].

In every system with particle–hole symmetry, the quasi-
particles come in pairs E Eγ γ=−

† , therefore they can hold MFs as long
as the energy can be tuned to zero. One of the simplest and most
tunable system with particle hole symmetry is a double quantum
dot (QD) connected via an s-wave superconductor [10]. It is well
known that the proximity effect induces Cooper pairs correlations
across the dots [11,12] generating effectively superconductivity
[13]. Interestingly, fractional Josephson effect, a signature of the
presence of MFs [5,14,15], in a quadruple quantum dot in the
presence of an s-wave superconductor has been predicted by
Markus Büttiker and coworkers [16].

The advantage that configurations of a few QDs connected to
s-wave superconductors present, in order to generate and detect
MFs, in comparison with nano-wires [17–19] or long QD chains
[20–22] proposals is their great tunability, while in the latter the
MFs have topological protection.

In this paper we analyze two different configurations of QDs in
proximity to superconducting leads such that Cooper pair corre-
lations are induced between the neighboring dots as long as the
coherence length is larger than the distance between them. We
include periodically driven gates and search for the conditions for
appearance of FMFs. The paper is organized as follows: in Section
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2 we present the model, in Section 3 we discuss the generation of
FMFs in a double and a triple superconducting QD. Finally, we
present our conclusions in Section 4.
2. Undriven system

Systems of QDs coupled to s-wave superconductors have been
a subject of study [11,13,16] because the proximity effect induces
Cooper pair correlations that can be easily detected due to the low
number of degrees of freedom in QDs. In a system where neigh-
boring QDs are coupled through superconducting reservoirs as in
Fig. 1, in the limit of large superconducting gap the super-
conductors can be traced out and an effective Hamiltonian for the
dots is obtained [23,24] as
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which already contains effective superconductivity between
neighboring dots. The fermionic operator di,σ represents the an-
nihilation of an electron in the i-QD with spin s. The symbol σ̄
means the opposite spin to s, which can be ,σ = ↑ ↓. μi is the
onsite energy in i-QD, the parameter ti i, 1+ is the effective tunneling
probability from dot i to dot i 1+ through the superconductor by
virtual occupation of the above gap excitations and i i, 1Δ + is the
effective superconducting amplitude due to the superconductor
connecting the i and i 1+ dots. If a large magnetic field is applied
to the dots only one spin comes into play. However, the magnetic
fields have to be non-collinear in order to have s-wave type
Cooper pair correlations (see Fig. 1) [10]. In this configuration, it is
more natural to work on the basis of the quantization axes given
by the magnetic field in each dot. For that purpose, we have to
perform the rotation

d d dcos
2
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2 22, 2, 2,

θ σ θ→ + ( )σ σ σ̄

as the magnetic field in the central QD forms an angle θ with the
magnetic fields in the left and right QDs (see Fig. 1). The low-
frequency Hamiltonian will be given by Eq. (1) by neglecting the
contribution from the high-energy spin direction in each dot
(keeping σ = ↓ ):
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Fig. 1. Scheme of three QDs coupled by tunnel and coupled to a superconductor.
The existence of Cooper pairs generates correlations of the type d di i, 1,σ σ+ ¯ in the
effective Hamiltonian for the QDs. The applied magnetic fields and their directions
are also shown in the picture. The angle θ controls the ratio t/i i i i, 1 , 1Δ + + (see text
below).
where d di i,≡ ↓, t t cos /2i i i i, 1 , 1 θ′ ≡ ( )+ + and sin /2i i i i, 1 , 1Δ Δ θ′ ≡ ( )+ + .
Therefore the normal and superconducting tunneling amplitudes
are renormalized and their renormalization depends on the angle
between the magnetic field directions. This dependence in-
troduces a simple way to tune externally the coupling parameters
of the system [10].

In order to obtain the excitation spectrum of the system the Ha-
miltonian is written in the Nambu basis d d d d, , , , ,N N1 1Ψ = ( … … )† † as
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For a triple QD h reads
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The eigensystem of h ( hv vi i iλ= ) determines the quasiparticles,
given by vi iγ Ψ= · . A zero-energy solution, 0iλ = , implies the pre-
sence of a pair of Majorana quasiparticles.

In the case of a double QD one can choose an angle such that
t1,2 1,2Δ′ = ± ′ and if 01μ = , there are two MFs given by
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where t/22 1,2δ μ= ′ . Only in the case where 02μ = the MFs are
spatially separated [10]. In the case of a triple QD, assuming

ti i i i, 1 , 1Δ′ = ± ′+ + and 01μ = , there are two MFs given by
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where t/23 2,3α μ= ′ and t t/42 3 12 23β μ μ= ′ ′ . In the case where μ2 or μ3

are zero the MFs are spatially separated [25]. Interestingly, the
manipulation of the onsite-energies allows us to change the
localization of the MFs, which would be relevant for their detec-
tion in transport [10].
3. Floquet Majorana fermions

In the following, we will apply external ac fields in order to
change periodically the onsite energies of the QDs and in this way
obtain FMFs as steady-state solutions of the non-equilibrium
problem.

For every system described by a time-periodic Hamiltonian a
set of solutions exists, called Floquet states, which have the form

t e u tn
i t

nnψ| ( )〉 = | ( )〉− ϵ , where u tn| ( )〉 are time periodic functions
called Floquet modes and ϵn are the so-called quasienergies [26–
28]. As the quasienergies are only defined modulo Ω, where

T2 /Ω π= and T is the period of the Hamiltonian, a system with
particle–hole symmetry (with excitations in pairs γ γ=−ϵ

†
ϵ) will hold

FMFs if 0, /2Ωϵ = ± . If the frequency is large enough, it is a good
approximation to consider the time-averaged Hamiltonian to de-
scribe the dynamics. For lower frequencies, where multi-photon
processes are relevant, the dynamics becomes more involved but
there is also a way to find an effective time-independent



Fig. 2. Quasienergy gap δ0 for a superconducting double QD as a function of the
amplitude and frequency of the driving. The dark regions correspond to closed gap,
i.e., zero quasienergy. The plot shows that the 4-fold degeneracy at high frequency
at the zeros of the Bessel function A /0 0 Ω( ) splits into two different sweet spots
with FMFs as the frequency decreases. The bottom plot shows the region around
the first zero and the top plot around the second zero. Parameters: 01 2μ μ= = ,

11,2Δ′ = , t 0.81,2′ = , 03 1φ φ− = . All the energies are in units of 1,2Δ′ , which is set to 1.
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Hamiltonian which includes as many photon processes as neces-
sary [29,30].

The motivation to consider periodically driven quantum sys-
tems is the fact that their time-evolution is governed by an ef-
fective time-independent Hamiltonian, whose properties can be
engineered according to the particular purposes. This method,
called Floquet engineering, has been employed to achieve dynamic
localization [31–33], photon-assisted tunneling [26,34] or nobel
topological band structures [35–41,54,55].

The application of degenerate perturbation theory in the ex-
tended Floquet Hilbert space provides a high-frequency expansion
(in powers of 1/Ω) for this effective Hamiltonian, such as
H HF F0= ∑ν

ν
=

∞ [29]. With the definition of the Fourier components
of the time-periodic Hamiltonian

H
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the leading orders of the expansion for the effective Hamiltonian
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These terms will be considered below in order to obtain FMFs in
two different configurations of driven quantum dots: DQDs and
TQDs.

The time periodic perturbation applied to the i-QD is

V t A t d dcos .
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In order to study the effect of an external driving at high fre-
quency, it is convenient to move to the interaction picture which
transfers the time-dependence to the tunneling terms by means of

the unitary transformation: U t i V t dtexp
t

0
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non-diagonal elements change under the transformation de-
pending on whether they commute or not with the time-periodic
term:
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Therefore, the renormalization of the tunneling and the super-
conducting pairing depends on the symmetry of the driving, i.e.,
on the intensities applied in the different dots and on the phase
difference of the ac gate voltages between the different dots. As an
example of this, in the case of two QDs if an ac gate potential is
applied to each of them with the same amplitude ( A A1 2= ) and
frequency, the tunneling term does not change if the phases are
equal but it does if the phase difference is π and the opposite
happens for the superconducting pairing (see Eq. (11) [42,43].

3.1. Superconducting double QD:

In the present work, we are interested in a configuration such
that both the tunnel and the superconducting amplitudes are
equally renormalized by the ac voltages. By inspection of Eq. (11),
one can see that this corresponds to driving one of the gates
periodically, it means A A1 0= and A 02 = . In this case, the Fourier
components of the time-dependent Hamiltonian are
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where t t A /m m1,2 0 Ω≡ ′ ( ), A /m m1,2 0Δ Δ Ω≡ ′ ( ) and m is the m-Bessel
function of first kind. The zeroth order effective Hamiltonian only
predicts spatially separated FMFs if 01,2μ = and t1,2 1,2Δ′ = ± ′ (see
Eq. (6)). However, the following order corrections allow us to
generate new sweet spots for FMFs. The first order correction is
zero and the effect of the second one is the renormalization of t1,2′
and 1,2Δ′ to some effective values given by
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where f A /0 Ω( ) is a function of all the Bessel functions. Considering
only two sidebands ( A / 0n n, 0 Ω( ) =− for n 2> ) its analytical ex-
pression becomes
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As the ratio between the intensity and the frequency of the ac field
increases more terms contribute to f A /0 Ω( ).

The key point in the previous discussion is that the re-
normalization of t1,2′ and 1,2Δ′ by the ac field makes it possible to
choose the driving amplitude such that teff effΔ = ± even when

t1,2 1,2Δ′ ≠ ′ . This is exactly what we observe in the quasienergy
spectrum (see Fig. 2). In this calculation, the on-site energies μ1

and μ2 are set to zero and the static normal and superconducting
tunnelings are different, i.e., t1,2 1,2Δ′ ≠ ′ . At high frequencies all the
quasienergies are zero at the zeros of the function A /0 0 Ω( ) (ap-
proximately A / 2.40, 5.52, 8.650 Ω = , etc.) and there are no FMFs.



Fig. 3. Quasienergy gap δ0 for a superconducting triple QD as a function of the
amplitude and frequency of the driving. The dark regions correspond to closed gap,
it means, zero quasienergy. The plot shows that the 4-fold degeneracy at high
frequency at the zero of the Bessel function A /0 0 Ω( ) splits into two different sweet
spots with FMFs as the frequency decreases. The bottom plot shows the region
around the first zero and the top plot around the second zero. Parameters:

01 2μ μ= = , 1.53μ = , 1Δ = , t¼0.8, 03 1φ φ− = . All the energies are in units of Δ,
which is set to 1.

Fig. 4. Lower part of the quasienergy spectrum for a superconducting triple QD as a
function of the amplitude of the driving. The dotted (blue) line corresponds to
teff effΔ− and the dashed (red) to teff effΔ+ . We show that the FMFs appear close to
the conditions teff effΔ = ± . Parameters: 01 2μ μ= = , 1.53μ = , 1Δ = , t¼0.8, 4Ω = ,

03 1φ φ− = . All the energies are in units of Δ, which is set to 1. (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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As the second order correction becomes important, i.e., as the
frequency decreases, two different driving amplitudes allow for
the condition required to the existence of FMFs: the one for which

teff effΔ = and the one for which teff effΔ = − . This is why at lower
frequencies there are two quasienergy gap closings around each
zero of the Bessel function, i.e., two different sweet spots (the
bottom panel of Fig. 2 shows the gap around the first zero, 2.40∼
and the top panel around the second one 5.52∼ ). In the following
we generalize this method for generation of FMFs to a largest
system, i.e., to an array of three QDs.

3.2. Superconducting triple QD:

Analogously to the case of the double QD, we use the driving
fields such that all the non-diagonal terms of the Hamiltonian are
renormalized in the same way by the ac field at high-frequency.
That implies driving the left and right dots with ac gate voltages
such that A A A1 3 0= = and A 02 = . Let us choose for simplicity
t t t1,2 2,3≡ ′ = ′ and 1,2 2,3Δ Δ Δ≡ ′ = ′ . We are going to analyze the pre-
sence of FMF as a function of the different parameters of the
present setup, in particular of the phase difference between the ac
voltages. With the driving fields in phase 03 1φ φ φ≡ − = , the
Fourier components of the time-dependent Hamiltonian are
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where t t A /m m 0 Ω≡ ( ) and A /m m 0Δ Δ Ω≡ ( ). Due to the driving
symmetry, if we keep only the zero order term of the expansion
for the effective Hamiltonian all the non-diagonal terms vanish at
the zeros of A /0 0 Ω( ) so there is no effective tunneling or super-
conducting pairing and the quasienergies are iμ± for i 1, 2, 3= . In
the following, we show how the higher order corrections to this
high-frequency approximation generate FMFs around these zeros.
We will focus on the case 01 2μ μ= = , 03μ ≠ and ti iΔ′ ≠ ± ′ such
that there are no MFs in the static case. In Fig. 3, we plot the gap of
the quasienergy spectrum as a function of the amplitude and the
frequency of the driving. In the limit of high-frequency the
effective tunneling and superconducting pairing are zero so there
is a four-fold degeneracy at 0ϵ = and there are no MFs. At lower
frequencies, these zero-quasienergy pairs appear at different
amplitudes in which the Majorana condition is satisfied, two
different sweet spots. This is due to the second order correction
to the effective Hamiltonian. The largest effect of this term is a
correction of the tunneling amplitudes, which becomes
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One difference with the double QD system is that in this case a
small effective tunneling between dots 1 and 3 appears due to
virtual processes. The expression for this long-range tunneling is
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Moreover, the chemical potentials μ2 and μ3 are shifted, such
that
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The shift in the chemical potentials only changes the localization
of the states (see Eq. (7)) and the effect of the long-range tunneling
is small. In order to probe this, we plot in Fig. 4 the quasienergy
spectrum around zero and the functions teff effΔ ± as a function of
the driving amplitude. The sweet spots are very close to the zeros



Fig. 5. Spatial location of the second FMF appearing when teff effΔ= . The blue,
green and orange bars are respectively a1, a2 and a3 (see Eq. (22)). Parameters:

01 2μ μ= = , 1Δ = , t¼0.8, 4Ω = , 03 1φ φ− = . All the energies are in units of Δ,
which is set to 1. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)

Fig. 6. Quasienergy gap δ0 for a superconducting triple QD as a function of the
amplitude and the relative phase of the driving fields 3 1φ φ φ= − . The dark regions
correspond to closed gap, it means, zero quasienergy. The plot shows that one of
the sweet spots varies with the phase, while the other does not. The bottom plot
shows the region around the first zero of the function A /0 0 Ω( ) and the top plot
around the second zero. Parameters: 01 2μ μ= = , 1.53μ = , 1Δ = , t¼0.8, 4Ω = . All
the energies are in units of Δ, which is set to 1.

                                          612
of these functions, indicating that the effect of 1,3τ is small. Finally,
we calculate the localization of the FMFs found in this configura-
tion. We choose the FMF that appears when teff effΔ= (left zero in
Fig. 4). The Majorana pairs are given by

d d

a d d a d d a d d
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2

,

, 22

1 1 1

2 1 1 1 2 2 2 3 3 3

γ

γ

= ( − )
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with normalization a2 1i i1
3 2∑ == . In the bar diagram in Fig. 5 the

value of the constants ai for different values of the chemical
potential μ3 is plotted. Interestingly, Fig. 5 shows that for certain
values of the chemical potential μ3 the two FMFs are spatially
separated and that it is possible to tune the position of γ2.

Furthermore, as we will see below, the phase difference be-
tween the local ac gate voltages within each dot plays an im-
portant role. Then, in order to conclude the analysis about the
generation of FMFs in a triple QD configuration, we will show that
the existence of sweet spots depends on the relative phase be-
tween the driving fields. When the two fields have opposite
phases, 3 1φ φ π− = , the zero order term of the expansion (9) does
not change with respect to the previous case where 03 1φ φ− = .
However, the following corrections depend on the phase differ-
ence. We have calculated the effective tunneling amplitudes in the
case 3 1φ φ π− = and the result is
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Therefore the functions teff effΔ ± become zero for the same value
of A0 in contrast with the previous case for 0φ = . In Fig. 6 we show
the gap of the quasienergies as a function of the phase difference
and the amplitude of the driving field. The measurement of this φ-
dependence would be an important signature of the existence of
FMFs.

The existence of these exotic dynamical quasiparticles can be
detected by connecting two metallic leads and measuring trans-
port [10,25,44,45]. The signatures of FMFs will be present in the
differential conductance measurement by the fulfillment of the
Floquet sum rule [46]. It is expected that FMFs could be measured
by transport by tuning the parameters of the ac driving and
therefore the normal and superconducting couplings.
4. Conclusions

To summarize, we have discussed the existence of FMFs in two
different configurations of QDs driven by ac gate voltages and
coupled through superconductor leads. The simplicity of these
systems and their tunability in comparison with other proposed
setups which provide MFs deserve to consider them as suitable
solid state devices to host MFs. We have shown the existence of
FMFs by means of the expansion of an effective Floquet Hamilto-
nian in power series. By modifying the frequency of the driving
field applied to a double QD it is possible to control the existence
of a series of sweet spots. Moreover, we analyze as well a driven
triple QD and we predict the existence of sweet spots as a function
of the relative phase of the local drivings. This method for FMFs
generation can be extended to chains of QDs with more than three
atoms. One would expect that as the number of QDs increases, the
localization of the FMFs changes and Eq. (22) would be general-
ized. Experimentally, the recent achievements in the fabrication
and control of triple [47–50] and even quadruple semiconductor
QDs [51], also for driven configurations [52], open the avenue for
the experimental realization of hybrid configurations with super-
conductor contacts where FMFs can be experimentally
investigated.
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