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Floquet Majorana fermions appear as steady states at the boundary of time-periodic topological phases of
matter. In this work, we theoretically study the main features of these exotic topological phases in the periodically
driven one-dimensional Kitaev model. By controlling the ac fields, we can predict topological phase transitions
that should give rise to signatures of Majorana states in experiments. Moreover, the knowledge of the time
dependence of these Majorana states allows one to manipulate them. Our work contains a complete analysis of
the monochromatic driving in different frequency regimes.
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I. INTRODUCTION

In recent years, the phases of matter with topological
origins have received intense attention in the field of solid-
state physics [1–7]. In topological superconductors, these
phases result in elementary excitations with non-Abelian
statistics [8,9]. The bulk-boundary correspondence shows how
differences between bulk topologies give rise to edge states
localized at the boundaries [10].

Driven systems constitute a fruitful arena to study topolog-
ical states of matter because they exhibit topological features
that are richer than those of time-independent systems. Of
particular interest are periodically driven systems, which have
many close analogies with static systems [11–16]. Floquet
eigenstates and quasienergies are similar to eigenstates and en-
ergies of static systems, but the periodicity of the quasienergy
spectrum introduces new features unique to periodically driven
systems [12,15,17–20]. In fact, the complete characterization
of the topology of a time-periodic Hamiltonian requires the
search for new topological invariants [12,21–23].

In this work, we propose an analytic approach to describe
the topological phases of a driven chain of spinless fermions
with p-wave superconductivity, i.e., the one-dimensional
Kitaev model [8]. The end states emerging in driven topolog-
ical superconductors are called Floquet Majorana fermions,
because they are the analogous counterpart for Majorana
fermions in static systems [8,24–30]. The characterization
of these excitations allows one to design protocols for
their manipulation, which is potentially relevant for braiding
operations, which are essential for fault-tolerant quantum
computation [31]. Furthermore, periodic driving opens a new
avenue to detect these elusive particles [19,32].

In recent years, some works have addressed the effect
of ac driving fields in topological superconductors. Most
of them are restricted to the high-frequency regime. Those
addressing lower frequencies are mainly focused on numerical
treatments [17,31,33,34]. A more complete analysis was
done in the cases of periodically kicked systems [35] and
steplike periodic pulses [20], including the definition of new
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topological invariants, while the harmonic driving is treated
just numerically [35].

In contrast to previous works, in this paper we develop
a complete analysis of monochromatic driving for different
frequency regimes, which is more feasible in experiments.
Our analytical treatment allows us to characterize different
topological phases by means of effective Hamiltonians in
rotated reference frames. Furthermore, we address different
ways to drive the Kitaev chain, giving rise to a variety of
topological quantum phase transitions (TQPTs), which could
be experimentally tested.

The correspondence between the Kitaev chain and the
one-dimensional transverse Ising model [36] is used mainly
as a mathematical tool to simplify the analysis and to set a
different framework to probe the phase transitions. In this
sense, our results not only have relevance in the field of
topological states of matter, but they also provide insight into
quantum magnetism under nonequilibrium situations [37–40].

The simple characterization of the driven system for
arbitrary frequencies by means of rotations of frame is the
most important result of our work. This allows us to obtain
the wave function of the Majorana end states in an easy
way and to understand the role of the quasienergies in the
TQPTs. Moreover, we show that the driving protocols allow
one to manipulate the effective interactions between different
neighbors, generating effective models that are difficult to
implement in time-independent systems. Apart from this,
we establish a connection between the effective interactions
generated in the Kitaev model under the effect of driving and
the magnetic interactions in the Ising model.

In Sec. II, we introduce the model and describe the main
tools used in this paper. In particular, the behavior of Floquet
states and the Magnus expansion under a rotation of the
reference frame is studied in detail. In Sec. III, we analyze
the case of an ac driven chemical potential. In this section,
we present a thorough discussion of the methodology used
to determine the TQPTs, based on effective Hamiltonians in
different frames. In Secs. IV and V, we consider different
driving protocols and discuss the emergence of exotic phases.
In particular, we discuss the effective long-range interactions
arising under the control of the tunneling amplitude.
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II. MODEL AND TOOLS

The system we analyze consists of a chain with N � 1
sites. Each site j can be either empty or occupied by a
spinless fermion fj . It consists in the driven version of the
one-dimensional Kitaev model [8],

H (t) = μ(t)

2

N∑
j=1

(2f
†
j fj − 1) − w(t)

2

N∑
j=1

(f †
j fj+1 + H.c.)

− �(t)

2

N∑
j=1

(f †
j f

†
j+1 + H.c.), (1)

where μ(t) is the chemical potential, w(t) is the tunneling,
and �(t) is the BCS superconducting pairing between nearest
neighbors in the presence of driving. In the case of periodic
boundary conditions, fN+1 = f1, we can use a discrete Fourier
transformation to obtain the bulk Hamiltonian,

Hk(t) =
(

μ(t) − w(t) cos k −i�(t) sin k

i�(t) sin k −μ(t) + w(t) cos k

)

= [μ(t) − w(t) cos k]σ z
k + �(t) sin k σ

y

k , (2)

where σ λ
k for λ ∈ {x,y,z} are the Pauli matrices in Nambu

space. Correspondingly, we can write Eq. (1) as H (t) =∑
k>0 �

†
kHk(t)�k , where �

†
k = (f †

k ,f−k) and fk are fermionic
operators in reciprocal space [41].

The undriven model, i.e., μ(t) = μ0, w(t) = w0, and
�(t) = �0, undergoes a TQPT [8]. Given that �0 > 0,
the system exhibits a topologically nontrivial phase when
μ0 < w0 and a topologically trivial behavior as long as
μ0 > w0. The Hamiltonian has particle-hole and time-reversal
symmetry [36,42], and therefore the different topological
phases can be classified by means of the value of a bulk
Z topological invariant, which corresponds to the winding
number

W = 1

2π

∫ π

−π

dϕk, (3)

where tan ϕk = �0 sin k (μ0 − w0 cos k)−1. The winding num-
ber is W = 1 in the nontrivial phase and W = 0 in the trivial
one. A chain in the nontrivial phase with open boundary
conditions exhibits Majorana modes localized at the ends [8].

The Hamiltonian of the driven XY model in an external
transverse field

H (t) = −1

2

N∑
j=1

[
μ(t)σ x

j − Jz(t)σ
z
j σ z

j+1 − Jy(t)σ y

j σ
y

j+1

]
(4)

can be mapped exactly onto the Kitaev Hamiltonian in
Eq. (1) by means of a Jordan-Wigner transformation [41].
The time-dependent anisotropies are related to the tunneling
and the superconducting gap as Jz(t) = [w(t) + �(t)]/2 and
Jy(t) = [w(t) − �(t)]/2. In the time-independent case, there
is a correspondence between the magnetic phases of the spin
system and the topological phases of the fermion model, i.e.,
the paramagnetic phase is related to the trivial phase, and the
ferromagnetic phase corresponds to the nontrivial phase [43].
Under monochromatic driving, new magnetic phases arise,
corresponding to new topological phases in the fermionic
system.

A. Floquet theory under rotation of the reference frame

We analyze the effect of a periodic time dependence of
the Hamiltonian in Eq. (1). In this case, H (t + T ) = H (t)
(with T = 2π/ω the period of the driving), therefore the
Floquet theory is applicable [44–46]. By using the Floquet
states |ψν(t)〉 = e−iεν t |φν(t)〉, the time-dependent Schrödinger
equation becomes an eigenvalue equation for the Floquet
modes |φν(t + T )〉 = |φν(t)〉, referred to as the Floquet
equation,

[H (t) − i∂t ] |φν(t)〉 = εν |φν(t)〉. (5)

The operator H(t) = H (t) − i∂t is the Floquet Hamiltonian,
its eigenvalues are the quasienergies εν , and the eigenvectors
|φν(t)〉 are the Floquet modes. The index ν corresponds to
the band index. The quasienergies εν are not uniquely defined
[44–46]. Therefore, we restrict them to the first Brillouin zone
−ω/2 � εν � ω/2.

To simplify the resolution of the Floquet equation, one
should find an appropriate rotating frame in which a simple
effective Hamiltonian can be defined, as we describe below.
First of all, we will clarify the effect of a rotation of frame
in the Floquet formalism. In the rotating frame, given by the
unitary transformation S(t), the Floquet equation becomes[
H̃ (t) − i∂t

] |φ̃ν(t)〉 = εν |φ̃ν(t)〉, where the Hamiltonian in the
new frame is

H̃ (t) = S†(t)H (t)S(t) − iS†(t)Ṡ(t), (6)

and |φ̃ν(t)〉 = S†(t)|φν(t)〉. As a consequence, the quasiener-
gies do not change, but the periodicity of the Floquet modes
does,

|φ̃ν(t + T )〉 = S†(t + T )S(t)|φ̃ν(t)〉. (7)

The one-period time-evolution operator makes a state evolve
as U (T ,0)|ψ(0)〉 = |ψ(T )〉. Apart from Eq. (5), the quasiener-
gies can also be obtained from the eigenvalue equation
U (T ,0)|φν(0)〉 = e−iενT |φν(0)〉. If we are working in a rotated
frame, we can use Eq. (7) to obtain the eigenvalue equation
for the one-period evolution operator

Ũ (T ,0)|φ̃ν(0)〉 = e−iενT S†(T )S(0)|φ̃ν(0)〉. (8)

As a consequence of this, the relation between quasienergies
εν and eigenvalues of Ũ (T ,0) depends on the matrix S.
A common method to study time-dependent systems is to
calculate the eigenvalues of the one-period evolution opera-
tor [44–46]. Equation (8) shows the relationship between these
eigenvalues in an arbitrary reference frame (given by S) and
the quasienergies.

B. Magnus expansion for effective Hamiltonians

Once we are in the most suitable reference frame, we define
a time-independent effective Hamiltonian H̃eff such that

Ũ (T ,0) = exp(−iH̃ effT ), (9)

with H̃ (t) periodic in time. The Fourier decomposition H̃ (t) =∑
p eipωtH̃p allows us to write a power series expansion in

1
ω

for the time-independent Hamiltonian, referred to as the
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Magnus expansion [47,48],

H̃ eff = H̃0 + 1

ω
[H̃0,H̃1] − 1

ω
[H̃0,H̃−1]

− 1

ω
[H̃−1,H̃1] + · · · (10)

with an infinite number of terms. This series is only useful if
it converges with a finite number of terms. The convergence
is given by the condition

∫ T

0 ‖H̃ (t)‖dt < π , where ‖H̃ (t)‖
is the Euclidean norm of the Hamiltonian, as is discussed in
Refs. [47,48]. At this point, the choice of the frame of reference
is relevant, since the Hamiltonian in different frames H̃ (t) has
different convergence conditions.

The previous explanations are valid for general time-
periodic Hamiltonians. In particular, the expansion Eq. (10)
can be used for a Bogoliubov–de Gennes Hamiltonian in
Nambu space. In this case, the transformation into the rotating
frame factorizes as S = ⊗

k>0 Sk . For a given k, we can use
Eq. (6) to obtain the transformation of Hamiltonian Eq. (2) into
the rotating frame H̃k(t) = S†

kHk(t)Sk − iS†
k Ṡk(t). Therefore,

the convergence condition reads

∫ T

0
‖H̃k(t)‖dt < π. (11)

In Nambu space, Eq. (8) implies the eigenvalue problem for
the Floquet modes,

Ũk(T ,0)|φ̃ν,k(0)〉 = e−iεν,kT S†
k (T )Sk(0)|φ̃ν,k(0)〉, (12)

where εν,k is the νth band quasienergy dispersion, |φ̃ν(0)〉 =⊗
k>0 |φ̃ν,k(0)〉, and Ũ (T ,0) = ⊗

k>0 Ũk(T ,0).

III. DRIVING THE CHEMICAL POTENTIAL

We focus here on the study of the topological properties of
the Kitaev model with a time-dependent chemical potential.
Therefore, we assume w(t) = w0, �(t) = �0, and μ(t) =
μ0 + μ1

2 cos ωt , where μ0 is a constant term and μ1

2 is the
amplitude of the driving.

As the Kitaev model is described by a Bogoliubov–de
Gennes Hamiltonian, the solutions give the spectrum of ex-
citations. Due to the particle-hole symmetry, these excitations
come in pairs such that creating an excitation with energy E

is equivalent to annihilating the excitation with energy −E.
It means γ

†
E|GS〉 = γ−E|GS〉, where |GS〉 is the vacuum

of excitations fulfilling γE|GS〉 = 0 ∀ E > 0. Given this
symmetry, a zero-energy excitation will fulfill the Majorana
condition γ0 = γ

†
0 . In the driven case, excitations come also

in pairs γε(t) = γ
†
−ε(t), where ε is the quasienergy. Due to the

periodicity of the quasienergies, not only ε = 0 but also ε =
±ω

2 excitations fulfill the Majorana condition γ0, ω
2

= γ
†
0, ω

2
[17].

Therefore, a complete phase diagram has to take into account
possible closings of the quasienergy spectrum at quasienergies
ε = ±ω

2 , as well as ε = 0. Furthermore, both quasienergy gaps
can support Majorana end states, and the topological phase
is characterized by two Z topological invariants (Z × Z). In
the following, we present a method based on reference frame
transformations to find the topological phase diagram of the

Hamiltonian Eq. (1). Moreover, our method provides the wave
function of the Majorana excitations.

A. Reference frame choice

Let us consider first the convergence of the Magnus
expansion in the laboratory frame H̃ (t) = H (t). We calculate
the first harmonics of the Hamiltonian Eq. (2):

Hk,0 = 1

T

∫ T

0
dt ′Hk(t ′)

= (μ0 − w0 cos k)σ z
k + �0 sin k σ

y

k ,

Hk,±1 = 1

T

∫ T

0
dt ′Hk(t ′)e∓iωt

= μ1

4
σ z

k . (13)

Regardless of the value of the quasimomentum k, the first term
of the Magnus expansion Hk,0 is already a good approximation
if the frequency is much larger than the bandwidth τ = μ0 +
w0 and the driving amplitude μ1. We will show below that by
means of a rotation of frame, the convergence regions can be
increased.

We work with a whole family of rotating frames given
by the transformations S

†
k,α(t) = eiθα (t)σ z

k with θα(t) = αω
2 t +

μ1

2ω
sin ωt for α ∈ {0, ± 1, ± 2, . . . }. For α = 0, we obtain the

transformation into the interaction picture. The Hamiltonians
in the rotating frame are

H̃ α
k (t) =

(
μ0 − αω

2
− w0 cos k

)
σ z

k − i�0 sin k e2iθα (t)σ+
k

+ i�0 sin k e−2iθα (t)σ−
k . (14)

Given that S†
k,α(T )Sk,α(0) = eiαπσ z

k , Eq. (12) becomes

Ũα
k (T ,0)|φ̃ν,k(0)〉 = e−iεν,kT eiαπσ z

k |φ̃ν,k(0)〉. (15)

This leads to the eigenvalue equation for the effective bulk
Hamiltonian in Eq. (9),

H̃
eff,α
k |φ̃ν,k(0)〉 =

(
εν,k − αω

2
σ z

k

)
|φ̃ν,k(0)〉, (16)

which implies that the quasienergies and the eigenvalues of
the effective Hamiltonian are related by a αω

2 shift. Due to the
periodicity of the quasienergies, this shift is relevant just in the
case of odd values of α.

For a given α, the transformed Hamiltonian of Eq. (14)
has different regions of convergence, determined by the
condition in Eq. (11). The Fourier components H̃ α

k,p ≡
1
T

∫ T

0 dt ′H̃ α
k (t ′)e−ipωt of H̃ α

k (t) are given by

H̃ α
k,p =

(
μ0 − αω

2
− w0 cos k

)
δp,0σ

z
k

− i�0 sin k Jp−α

(μ1

ω

)
σ+

k

+ i�0 sin k J−p−α

(μ1

ω

)
σ−

k , (17)

where Jn(x) is the nth − order Bessel function. We remark
that the eigenvalues of the Hamiltonian in Eq. (14) do not
depend on the amplitude μ1. Then, the convergence condition
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ω/τ

μ0/τ

FIG. 1. (Color online) Regions of convergence of the Magnus
expansion of H̃ α

k (t) for α ∈ {0,1,2,3,4} as a function of μ0 and ω. To
obtain a convergent Magnus expansion, the Hamiltonian H̃ α

k (t) has
to fulfill the convergence condition Eq. (11) for all the values of k. At
high frequency ω > 2τ , the series of H̃ 0

k (t) converges. For ω < 2τ ,
the successive H̃ α

k (t) have convergent series for some values of μ0.
We consider a fixed bandwidth τ = μ0 + w0.

Eq. (11) is μ1-independent. Figure 1 depicts the regions of
convergence of the Magnus expansion for successive H̃ α

k (t).
The series of H̃ 0

k (t) converges in the high-frequency regime
ω > 2τ . For ω < 2τ , the successive Hamiltonians H̃ α

k (t) have
convergent series for different values of μ0.

By obtaining a frame where the Hamiltonian has a conver-
gent Magnus series, we are able to get an approximation of the
full quasienergy spectrum from the eigenvalues of the time-
independent Hamiltonian of Eq. (10). Moreover, the effective
Hamiltonian allows a simple description of the TQPTs. Within
the regions of convergence, the effective Hamiltonian can be
approximated by the zeroth-order term of Eq. (10). Thereby,
we can use Eq. (17) with p = 0 as a zeroth-order effective
Hamiltonian,

H̃
eff,α
k = (μeff − w0 cos k) σ z

k + �eff sin k σ
y

k , (18)

which is an effective Kitaev model with μeff = μ0 − αω
2 and

�eff = �0J−α(μ1

ω
).

It is instructive to understand the form of the effec-
tive Hamiltonian in Eq. (18) in terms of Pauli matrices
in real space. After a Jordan-Wigner and discrete Fourier
transformation, we obtain an effective time-independent XY

Hamiltonian [41],

H̃ eff,α = − μeff

2

N∑
j=1

σ x
j − 1

4
(w0 + �eff)

N∑
j=1

σ z
j σ z

j+1

− 1

4
(w0 − �eff)

N∑
j=1

σ
y

j σ
y

j+1. (19)

Apart from the existence of a paramagnetic phase, the
effective anisotropies in Eq. (19) can be tuned to generate a
ferromagnetic phase in the z direction (FMZ) or the y direction
(FMY), as is discussed in Ref. [39]. In terms of Jordan-Wigner
fermions in real space, the effective Hamiltonian Eq. (19)

reads

H̃
eff,α
k = μeff

2

N∑
j=1

(2f
†
j fj − 1) − w0

2

N−1∑
j=1

(f †
j fj+1 + H.c.)

− �eff

2

N−1∑
j=1

(f †
j f

†
j+1 + H.c.). (20)

The bulk topological invariant is the winding number, which
for the effective Hamiltonian Eq. (18) becomes Wα =
1/2π

∫ 2π

0 dϕα
k , where tan ϕα

k = �eff sin k (μeff − w0 cos k)−1.
There is a trivial-nontrivial TQPT at μ0 − αω

2 = w0, where
the winding number changes from Wα = 0 to 
= 0. In ad-
dition, in the nontrivial region, there are TQPTs between
different topological phases at critical lines defined by
J−α(μ1

ω
) = 0. The different topological phases are classified

by the winding number Wα = sgnJ−α(μ1

ω
). Figure 2(a) depicts

the phase diagram for α = 0 and Fig. 2(b) depicts it for
α = 1.

−1

1

−1
1

(−1, 1)

(−1, 1)

(1,−1)

(1,−1)

μ0/τμ0/τ

μ0/τ

ω > 2τ ω = 1.5τ

ω = 1.5τ

(a) (b)

(c)

FIG. 2. (Color online) Phase diagram of the Kitaev Hamiltonian
of Eq. (1) with time-dependent chemical potential μ(t) = μ0 +
μ1
2 cos ωt . The white region is topologically trivial (W = 0), while

the other ones are nontrivial (W 
= 0). (a) In the frequency regime
ω > 2τ , H̃ eff,0

k is used to calculate the bulk invariant W0 for all values
of μ0, because the series of H̃ 0

k (t) converges. Transitions between
the topological phases W0 = +1 and −1 occur at zeros of J0( μ1

ω
).

(b) For ω = 1.5τ , the series of H̃ 1
k (t) converges for μ0 > 0.5τ . The

trivial phase appears for μ0 > 0.875τ and transitions between phases
W1 = 1 and −1 take place at zeros ofJ1( μ1

ω
). (c) Depicts the extension

of the phase diagram shown in (b) for ω = 1.5τ to smaller values
of μ0. Besides the phases W1 = 0, ± 1, we find new topological
phases that are described by two topological invariants (W0,W1),
corresponding to the effective Hamiltonians H̃

eff,0
k and H̃

eff,1
k . We

consider a fixed bandwidth τ = μ0 + w0.
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The family of effective Hamiltonians given by Eq. (18) can
close only at zero quasienergy, while the quasienergies present
also closings at ε = ω

2 . The shift of Eq. (16) implies that a
Hamiltonian with even α will describe closings of the gap at
ε = 0 and a Hamiltonian with odd α closings of the gap at ε =
±ω

2 . By now, we have found regions of the parameter space
that can be described with only one effective Hamiltonian
H̃

eff,α
k for every k. Consequently, in these regions only one of

the gaps (ε = 0 or ω
2 ) can close. However, it is possible to use

two effective Hamiltonians at the same time, e.g., H̃
eff,α
k and

H̃
eff,α+1
k , to get a full convergence of the Magnus series in such

a way that one of the Hamiltonians reproduces the 0 gap and
the other one reproduces the ω

2 gap. In the following, we probe
that this is possible and show where it can be used and how it
works.

B. Combination of frames

Looking at the convergence of the Magnus expansion, we
realize that even when the series of H̃ α

k (t) does not converge
for all k values, it is possible that it converges for some k values
while H̃ α+1

k (t) converges for the rest. In that case, a complete
convergence is possible using both. This concept increases the
size of the regions that can be studied analytically in a good
approximation.

This motivates the use of two effective Hamiltonians to
classify the topological features of the system. Therefore,
we use two invariants Wα and Wα+1, which give a complete
topological description encoded in the pair (Wα,Wα+1). In
these cases, there are TQPTs at zeros of both Jα(μ1

ω
) and

Jα+1(μ1

ω
). An example of this situation is shown in Fig. 2(c)

for ω = 1.5τ , in which we extend the phase diagram of
Fig. 2(b) to smaller values of μ0. Figure 1 shows that for
ω > 2τ the Magnus series of H̃ 0

k (t) converges independently
of k and μ0. However, for values of k in a neighborhood
of k = 0, the Magnus series converges even for a lower
driving frequency ω = 1.5τ . This allows us to extend the
phase diagram of Fig. 2(b), because the series of H̃ 1

k (t) also
converges for values in the neighborhood of k = π in the
region 0.25τ < μ0 < 0.5τ . In Appendix A, we discuss the
features of the phase diagrams of Fig. 2 and compare them with
the numerical result, obtaining a good agreement. Moreover,
all the critical lines of the TQPTs are explained in detail from
an analytic approach.

C. Majorana end states

The bulk-boundary correspondence involves the existence
of end states localized at the boundary between different
bulk topologies. In this section, we find the time evolution
of the Majorana end state at the boundary between a nontrivial
topological phase and the vacuum.

Let us assume that one of the effective Hamiltonians
Eq. (18) converges in a particular region of the parameter
space, as is depicted in Fig. 1. In the case of open boundary
conditions, we can use the Majorana operators a2j−1 = fj +
f

†
j and a2j = −i(fj − f

†
j ) as defined in Ref. [8] to write the

effective Hamiltonian Eq. (20) as follows:

H̃
eff,α
k =μeff

2

N∑
j=1

(ia2ja2j−1 − 1)

− i(w0 + �eff)

4

N−1∑
j=1

a2ja2j+1

− i(−w0 + �eff)

4

N−1∑
j=1

a2j−1a2j+2. (21)

In the limit μeff � |w0 + �eff|,| − w0 + �eff| there are no
zero-energy excitations. In the case μeff � |w0 − �eff| and
�eff � −w0 the third term dominates and the zero-energy
excitations a2 and a2N−1 with bulk invariant Wα = −1 do not
appear in the Hamiltonian, but they define the nonlocal fermion
f̃ = 1

2 (a2 + ia2N−1), which is topologically protected [8,9]. In
the case of a semi-infinite chain with a large number of sites
N � 1, we can obtain time evolution of the left end state in
the laboratory frame,

γ̃ (t) ≈ −i
(
f1e

−iθα (t) − f
†
1 eiθα (t)). (22)

In the case in which μeff � |w0 + �eff| and �eff � w0, the
second term dominates and the Majorana operators a1 and
a2N do not appear in the Hamiltonian [8]. Similarly to the
previous case, they are combined into a nonlocal fermion f =
1
2 (a1 + ia2N ). In this regime, the system possesses the bulk
invariant Wα = 1, and the time evolution of the mode localized
at the first site reads

γ (t) ≈ f1e
−iθα (t) + f

†
1 eiθα (t). (23)

Interestingly, at discrete times t = nT , the edge states of
Eqs. (22) and (23) are given by γ̃ (nT ) ≈ −(−1)nαi(f1 − f

†
1 )

and γ (nT ) ≈ (−1)nα(f1 + f
†
1 ), respectively.

For a finite chain with N sites, the numerical calculation
explained in Appendix B allows us to obtain the Floquet
Majorana modes

� l(t) =
N∑

i=1

[uli(t)fi + vli(t)f
†
i ]. (24)

To compare our analytical results with numerical calculations,
we consider Eqs. (22) and (23) for α = 1. In this case, the
quasienergy gap closes at ε = ±ω/2. Therefore, to obtain the
edge states for a chain with N = 60 sites, we numerically
calculate the coefficients ui(t) and vi(t) for a state with
quasienergy ε = ±ω/2, as we explain in Appendix B. By
assuming a fixed bandwidth τ = μ0 + w0, we perform the
calculation for the parameters ω = 1.5τ and μ0 = 0.75τ .

To verify that Eq. (22) gives us the correct stroboscopic
dynamics for γ̃ (nT ), we plot the imaginary part of the
coefficients ui(t) and vi(t) in Fig. 3(a). One can see that at
discrete times t = nT they are approximately in agreement
with our analytical results. In addition, Fig. 3(b) depicts the real
part of ui(t) and vi(t) at discrete times and shows qualitative
agreement with the stroboscopic evolution γ (nT ) obtained
from Eq. (23). The states spread along the vicinity of the end,
because the solution of Eqs. (22) and (23) is only exact in the
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(a) (b)

(c)

FIG. 3. (Color online) (a,b) Temporal stroboscopic evolution of
the stationary left end state for a finite chain with N = 60 sites.
The color indicates the value of coefficients ui and vi in Eq. (24)
(l corresponding to the left Majorana end mode) for the first five sites.
For a frequency ω = 1.5τ , we have performed numerical calculations
in the case of a driven chemical potential μ(t) = μ0 + μ1

2 cos ωt with
μ0 = 0.75τ . (a) Depicts the evolution for μ1

ω
= 1, beingJ−1( μ1

ω
) < 0,

and (b) for μ1
ω

= 4.5, when J−1( μ1
ω

) > 0. The stroboscopic dynamic
agrees with the predicted one. (c) Shows the evolution of coefficients
ũi and ṽi [Eq. (26)] in case μ0 = 0.3τ and μ1

ω
= 1 imposing the initial

condition �(0) = f1 at t = 0. The predicted double period electron-
hole oscillations are observed. We consider a fixed bandwidth
τ = μ0 + w0.

limit w0 = �0J−1( g1

ω
) � μ0 − ω

2 , but the weight of the states
along the chain decreases exponentially.

In a case with end states in the gaps ε = 0 and ε = ω/2,
we require the use of the effective Hamiltonians H̃

eff,α
k

and H̃
eff,α+1
k . For instance, in the phase with the invariant

(W0,W1) = (1,−1), there are two Majorana end states, one in
each gap,

γε=0(t) ≈ f1e
−iθ0(t) + f

†
1 eiθ0(t),

γε= ω
2
(t) ≈ −i(f1e

−iθ1(t) − f
†
1 eiθ1(t)),

(25)

for parameters ω = 1.5τ , μ0 = 0.3τ , and μ1/ω = 1. The
fact that two nondegenerate (in quasienergy) end states are
present in the system generates interferences characteristic of
ac-driven topological systems [17,18]. To see the interference
of states in both gaps, we are interested in the study of the
time evolution of the system for a given initial condition.
According to the approximated Majorana modes, if the initial
excitation is �(0) = f1, it can be written as �(0) ≈ [γε=0(0) +
iγε= ω

2
(0)]/2. Therefore, the evolved excitation is known to be

�(t) ≈ [γε=0(t) + iγε= ω
2
(t)]/2 at all times. At discrete times

t = nT the system exhibits a doubly periodic stroboscopic

dynamics �(nT ) ≈ f1

2 [1 + (−1)n] + f
†
1
2 [1 − (−1)n]. In Ap-

pendix B, we explain how to obtain the evolved excitation

after an imposed initial condition, written as

�(t) =
N∑

i=1

[ũi(t)fi + ṽi(t)f
†
i ]. (26)

We show the predicted doubly periodic oscillations in Fig. 3(c),
where we plot the real part of the numerically obtained
coefficients ũi(t) and ṽi(t) of �(t) in Eq. (26) at discrete times,
for the initial condition �(0) = f1. These oscillations are due
to the interference of states in both gaps.

IV. DRIVING THE TUNNELING AND BCS PAIRING

In this section, we apply the findings of the preceding
section to study the Kitaev model considering a different
driving protocol, which introduces different phases with more
end states. We consider the Kitaev chain of spinless fermions
fj given in Eq. (1) with a constant chemical potential μ0 and
time-periodic tunneling and BCS pairing such that w(t) =
�(t) = J (t) = J0 + J1

2 cos ωt . Using the equivalence of the
Kitaev and Ising models and a duality transformation, the
resolution of the problem is straightforward.

After a Jordan-Wigner transformation, this model corre-
sponds to the one-dimensional Ising model in an external
magnetic field,

H (t) = −μ0

2

N∑
j=1

σ x
j − J (t)

2

N∑
j=1

σ z
j σ z

j+1, (27)

which follows directly from the Hamiltonian Eq. (4) with
μ(t) = μ0, Jz(t) = J (t), and Jy(t) = 0. Under the duality
transformation σ x

i = μz
i μ

z
i+1, σ z

i = �k�iμ
x
k [43], we get what

is called the dual Hamiltonian of Eq. (27),

H (D)(t) = −J (t)

2

N∑
j=1

μx
j − μ0

2

N∑
j=1

μz
jμ

z
j+1, (28)

which is exactly the corresponding Ising model to the system
studied in the preceding section with μ(t) → J (t) and �(t) =
w(t) → μ0 in Eq. (4)—in this case, however, written in terms
of the Pauli matrices μλ

i . This means that the quasienergy
spectrum is the same, and by performing the inverse duality
transformation to the effective Hamiltonians in Eq. (19), we
obtain the effective Hamiltonians for the new driven system
Eq. (27). The effective spin model reads

H̃ eff
α = −Jeff

2

N∑
j=1

σ z
j σ z

j+1 − μ0

4

[
1 + J−α

(
J1

ω

)] N∑
j=1

σ x
j

+μ0

4

[
1 − J−α

(
J1

ω

)] N∑
j=1

σ z
j−1σ

x
j σ z

j+1, (29)

where Jeff = J0 − αω
2 . The last term is a three-spins interac-

tion, which in the spinless fermion basis is a second-neighbor
interaction term that will give rise to a new topological phase
with winding number Wα = 2.

The phase diagrams for the present configuration are like the
ones found in the previous section (Fig. 2), but with a different
value of the topological invariants. The phase diagram in the
high-frequency regime is shown in Fig. 4(a). It is important to
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w0/τJ0/τ

(a) (b)

FIG. 4. (Color online) Phase diagram for ω > 2τ in the case
of μ(t) = μ0, (a) �(t) = w(t) = J (t) = J0 + J1

2 cos ωt , (b) w(t) =
w0 + w1

2 cos ωt , and �(t) = �0. The white region is topologically
trivial (W = 0), the light-orange (W = 1) and blue (W = −1) regions
are nontrivial phases with one end state, and the brown region
(W = 2) is a nontrivial phase with two end states.

notice that the trivial region in the static case (J1 = 0) becomes
nontrivial in the high-frequency regime. In Fig. 4(a), the bulk
invariant can be tuned from trivial (Wα = 0) to nontrivial
(Wα = 2), depending on the strength of the driving. In contrast
to this, in the case of a driven chemical potential, the trivial
region remains trivial at high frequency independently of the
strength of the driving.

In the case Jeff > μ0, the chain supports end states given
in Eq. (23), while no end states are present if Jeff < μ0

and J−α( J1
ω

) > 0. To study the existence of end states
in the new phase [Jeff < μ0 and J−α( J1

ω
) < 0], we write

the second-neighbor interaction term in terms of Majorana
operators [8] a2j−1 = fj + f

†
j and a2j = −i(fj − f

†
j ) as

H ∝ i
∑

j a2j−2a2j+1. Therefore, if the chain is semi-infinite,
the Majorana operators a1 and a3 will not appear in the
Hamiltonian, being therefore two Majorana end states:

γa(t) � f1e
−iθα (t) + f

†
1 eiθα (t),

γb(t) � f3e
−iθα (t) + f

†
3 eiθα (t).

(30)

To sum up, we have found an effective Kitaev model with
second-neighbor tunneling and BCS pairing, and, conse-
quently, a topological phase hosting two Majorana end states.

V. DRIVING THE TUNNELING

Finally, and for completeness, we are interested in the
consequences of a driving just of the tunneling term of
the Kitaev model Eq. (1). We consider a constant chemical
potential μ0, BCS pairing �0, and a monochromatic driving
of the tunneling strength w(t) = w0 + w1

2 cos ωt .
In this section, we obtain a solution in the high-frequency

limit by means of a transformation into the interaction picture
Sk = eiθ(t) cos kσ z

k , where θ (t) = w1
2ω

sin ωt . The high-frequency
effective Hamiltonian is

H̃ eff
k = (μ0 − w0 cos k)σ z

k + �0 sin k J0

(w1

ω
cos k

)
σ

y

k .

(31)

The transition between trivial and nontrivial phases takes place
at μ0 = w0. More gap closings are found whenJ0(w1

ω
cos k) =

0 and μ0 − w0 cos k = 0. This implies J0(w1
ω

μ

w0
) = 0, as long

as μ0 < w0. The high-frequency phase diagram is shown in
Fig. 4(b).

Despite its apparent simplicity, the Bogoliubov Hamilto-
nian Eq. (31) contains a rich physical meaning. The first
term of Eq. (31) is trivial in the sense that it describes the
local term proportional to the chemical potential μ0 and the
tunneling between nearest neighbors with amplitude w0. The
second term, however, generates new features of the BCS
pairing, which arise from effective long-range interactions
in real space. To understand the nature of these interactions
arising in Eq. (31), let us consider the BCS term

V = �0

2i

∑
k

sin k J0

(w1

ω
cos k

)
(f−kfk − f

†
k f

†
−k).

(32)

Performing the inverse Fourier transformation in order to
obtain the real-space representation is not straightforward due
to the k dependence in the argument of the Bessel function.
However, we can use the expansion of the Bessel function in
power series of its argument,

J0 (zk) =
∞∑

m=0

(−1)m

m!2

(
w1

2ω
cos k

)2m

=
∞∑

m=0

2m∑
r=0

(−1)m

m!2

(
w1

4ω

)2m(
2m

r

)
e2i(m−r)k, (33)

where the binomial theorem was used. After some manipula-
tions, we get

V = −�0

2

N∑
j=1

∞∑
m=0

2m∑
r=0

Cm,r (f †
j f

†
j+am,r

− f
†
j f

†
j+bm,r

+ H.c.),

(34)

with coefficients

Cm,r = (−1)m

2(m!)2

(
w1

4ω

)2m(
2m

r

)
. (35)

This means that V is an effective BCS interaction term with a
neighbors range given by

am,r = 2(m − r) + 1,

bm,r = 2(m − r) − 1.
(36)

Finally, the Hamiltonian in real space can be simplified to

H̃ eff =μ0

2

N∑
j=1

(2f
†
j fj − 1) − w0

2

N∑
j=1

(f †
j fj+1 + H.c.)

− �0

2

N∑
j=1

N∑
l=1,3,...

gl(w1)(f †
j f

†
j+l + H.c.), (37)
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FIG. 5. (Color online) BCS interaction strength gl as a function
of w1/ω for neighbors l = 1,3,5,7,9. Notice that the sign of the
interaction is (−1)

l−1
2 .

where the strength of the BCS interaction between lth
neighbors is given by the function gl(w1):

gl(w1) = 2

[
D

(
l − 1

2

)
− D

(
l + 1

2

)]
,

D(d) =
∞∑

m=0

Cm,m−d . (38)

We show the function gl(w1) in Fig. 5. As expected, for small
w1 the first-neighbor interaction is larger. However, as the am-
plitude of the driving increases, the next-neighbor interactions
become important. Since the sign between the first-neighbor
and third-neighbor interaction is opposite (Fig. 5), the winding
number changes sign, as was shown in Fig. 4(b).

In the reciprocal space, the Hamiltonian Eq. (37) reads

H̃ eff
k = (μ0 − w0 cos k)σ z

k + �0

N∑
l=1,3...

gl(w1) sin kl σ
y

k , (39)

which shows how the driving allows us to engineer exotic
phases of matter. Finally, we derive the expression of the long-
range BCS interaction arising in Eq. (37) in terms of Pauli
matrices in real space. This allows us to obtain the effective
spin model,

H̃ eff = −μ0

2

N∑
j=1

σ x
j − w0

4

N∑
j=1

(
σ z

j σ z
j+1 + σ

y

j σ
y

j+1

)

− �0

4

N∑
j=1

N∑
l=1,3,...

gl(w1)
(
σ z

j Mx
j,lσ

z
j+l − σ

y

j Mx
j,lσ

y

j+l

)
,

(40)

where Mx
i,l = σ x

i+1 · · · σ x
i+l−1. Long-range spin interactions are

generated by means of the ac driving of the tunneling, which
in the spin basis corresponds to a time-periodic anisotropy
between the Z and Y directions [see Eq. (4)].

The Kitaev chain is a simple model that considers spinless
fermions. A physical realization of this model is a one-
dimensional wire with Rashba spin-orbit interaction, Zee-
man splitting, and proximity-induced s-wave superconduc-
tivity [29]. In this realization, the periodic variation of the

chemical potential in the wire is possible by means of an
alternating gate voltage applied to the substrate, as suggested
in [33]. Another proposed realization of the Kitaev chain
consists in using semiconductor quantum dots coupled to
superconducting grains [49]. In this setup, the access to
the other parameters is more suitable because the relations
between the experimental and effective parameters are more
simple [50]. The advantage of our analytical approach is that
it allows us to easily predict the TQPTs at any frequency
regime, i.e., not only in the high-frequency regime but also at
intermediate and low frequencies. Our approach allows for a
comparison with future experiments performed in a full range
of frequency regimes of the external driving, as long as we
restrict ourselves to the studied convergence regions.

VI. CONCLUSIONS

We have discussed the nonequilibrium TQPTs in the Kitaev
model with three different driving protocols. In all the cases,
we focus on the effect of monochromatic control of the
parameters, which is a realistic driving. By means of rotations
of frame, we get a completely analytical description of the
topological phase diagram in a wide range of frequencies
for some values of the parameters. Moreover, we are able
to provide an approximated wave function of the Majorana
end states.

The equivalence between the Kitaev model and the Ising
model allows us to use a simple duality transformation to relate
the previous results with the resolution of a Kitaev chain whose
tunneling and BCS parameters are varied in time harmonically.
In this case, new features are found, such as the appearance of
two Majorana end states at high frequency.

Finally, by only driving the tunneling, very interesting
effective models with long-range superconductivity arise.
Our analysis addressing three different ways of driving with
harmonic time-dependent potentials gives a full picture of the
consequences of the topological phases at arbitrary frequen-
cies. It allows us to design the most efficient way to search
signatures of Floquet Majorana fermions by appropriated drive
of the system. Moreover, we briefly explain the equivalence
of these properties in the spin chain basis, emphasizing the
novelties detected.
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APPENDIX A: EXPLICIT DESCRIPTION OF THE
COMBINATION OF FRAMES

In this Appendix, we discuss the phase diagram of Fig. 2
for ω = 1.5τ . We analyze in more detail the origin of each
TQPT and calculate the critical lines numerically in order
to check the validity of our approximated method used in
Sec. III. In Fig. 6(a), the critical lines corresponding to the 0
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FIG. 6. (Color online) Phase diagram for ω = 1.5τ in the case of
a driven chemical potential. The dark lines show the closings of (a) the
0 gap, (b) the ω

2 gap, and (c) both gaps. The whole topological phase
diagram is given by (c), which agrees perfectly with the analytical
result in Fig. 2.

gap of quasienergies are shown, while the critical lines of the
ω
2 gap are represented in Fig. 6(b). The dark lines indicate the
occurrence of TQPTs. The combination of both gaps provides
the whole topological phase diagram depicted in Fig. 6(c).

By means of the method developed in the main text, we
are able to explain the different phases present in this phase
diagram. In the regime τ < ω < 2τ and for any value of k,
the convergence condition of Eq. (11) for H̃ α=1

k (t) can be
reduced to μ0 > 0.5τ . On the other hand, the trivial-nontrivial
transition occurs at μ0 − ω

2 = w0, which implies μ0 = τ
2 + ω

4 .
By fixing the frequency, ω = 1.5τ , we predict TQPTs at zeros

FIG. 7. (Color online) Phase diagram for ω = 0.9τ in the case of
a driven chemical potential. The dark lines show the closings of (a)
the 0 gap, (b) the ω

2 gap, and (c) both gaps. The diagram (c) in the
right part is the same as the diagram for ω = 1.5τ but changing the
zeros of J0 by zeros of J1 and the zeros of J1 by zeros of J2 (τ = 1).

of the Bessel function J1(μ1

ω
), which occur at values μ1

ω
∈

{3.8,7.0,10.2, . . . }, in the regime 0.5τ < μ0 < 0.875τ shown
in Fig. 6(b). For smaller values of μ0, we need to use H̃ α=0

k (t)
and H̃ α=1

k (t), as we explained in Sec. II, and consequently we
predict TQPTs at zeros of J0(μ1

ω
) and J1(μ1

ω
) as in Fig. 6(c).

We show also in Fig. 7 the same calculation for ω = 0.9τ , in
order to see that for large values of μ0 the analytical approach
is useful. For 2

3τ < ω < τ , the Magnus series of H̃ α=2
k (t)

converges if μ0 > ω
4 + τ

2 . For ω = 0.9τ , this value is μ0 >

0.725τ . On the other hand, the trivial-nontrivial transition
occurs at μ0 − ω = w0. This means μ0 = τ

2 + ω
2 = 0.95τ .

Then, for values 0.725τ < μ0 < 0.95τ , the phase diagram
shows TQPTs at zeros of J2(μ1

ω
), which appear at values

μ1

ω
∈ {5.1,8.4,11.6, . . . }, as is shown in Fig. 7(c). For smaller

values of μ0, we predict TQPTs at zeros of J2(μ1

ω
) and

J1(μ1

ω
). However, for even smaller values of μ0, our analytical

approach is not valid anymore and the phase diagram is more
complex.

APPENDIX B: NUMERICAL CALCULATION
OF TEMPORAL EVOLUTION

In this Appendix, we want to give more details about the
numerical calculation of the temporal evolution shown in
Fig. 3. Following the seminal paper of Kitaev [8], one can
write the Hamiltonian Eq. (1) as a quadratic form in terms of
the Majorana operators a2j and a2j−1,

H (t) = i

4

2N∑
l,r

alMlr (t)ar , (B1)

where M(t) is a time-periodic real antisymmetric matrix. Mo-
tivated by a previous work [35], we calculate the Heisenberg
equations of motion for the Majorana operators,

dal(t)

dt
= i[H (t),al(t)] =

2N∑
r=1

Mlr (t)ar (t). (B2)

Following Refs. [8,35], we construct the column vector A =
(a1,a2, . . . ,a2N )T, which allows us to write Eq. (B2) as follows:

d A(t)

dt
= M(t)A(t). (B3)

Now we can build the evolution operator such that
U (t,0)A(0) = A(t). Invoking Floquet theory [44], we look for
Floquet states of the form � l(t) = e−iεl tϒ l(t) with Floquet
modes ϒ l(t) = ϒ l(t + T ) satisfying the eigenvalue equation
U (T ,0)ϒ l(0) = e−iεlT ϒ l(0). Our aim is to obtain the Ma-
jorana field operators corresponding to the end state with
quasienergies εl = 0, ± ω

2 . In so doing, we just need to find the
corresponding ϒ l̃(t) such that U (T ,0)ϒ l̃(0) = ϒ l̃(0) for the
εl̃ = 0 gap, and U (T ,0)ϒ l̃(0) = e∓iπϒ l̃(0) for the εl̃ = ±ω

2
gap. These Majorana field operators can be written in terms of
complex fermions,

� l̃(t) =
N∑

r=1

[ul̃r (t)fr + vl̃r (t)f †
r ]. (B4)
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In the main text, for simplicity, we have dropped the index l in
the definition of the Majorana mode of Eq. (B4). The coeffi-
cients ui(t) and vi(t) are shown in Figs. 3(a) and 3(b) for differ-
ent cases, and they are in agreement with the predicted ones.

Given an initial condition �(0) = f1 = [a1(0) + ia2(0)],
the evolution is known to be �(t) = [a1(t) + ia2(t)], written

in a general form as

�(t) =
N∑

r=1

[ũr (t)fr + ṽr (t)f †
r ]. (B5)
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