
Designing and Enacting Cross-organisational
Business Processes:

A Model-driven, Ontology-based Approach

Stephan Roser

Dissertation

Programming Distributed Systems

Department of Computer Science

University of Augsburg

ii

Supervisor: Prof. Dr. Bernhard Bauer (University of Augsburg)

Advisors: Prof. Dr. Jörg P. Müller (Clausthal University of Technology)

Prof. Dr. Wolfgang Reif (University of Augsburg)

Day of defense: 9th May 2008

Copyright© Stephan Roser, Augsburg, March 2008

Abstract

Under the pressure of globalization, companies are urged to constantly adapt to new
market situations and competitors innovations. Focusing on their core business and core
competencies, they engage in Cross-organisational Business Processes (CBPs) with new
partners all over the world in ever changing constellations. Companies are organized
into global networks and outsource those activities that can be performed more quickly
and effectively or at lower costs, by others. These developments create new challenges
for enterprise Information and Communication Technology (ICT), requiring ICT sys-
tems to support constantly changing enterprise collaboration relationships and to create
application systems that support or automate business process enactment starting from
business level descriptions and models of CBPs.

Model Driven Software Development (MDSD) provides techniques to realize and
automate the propagation of changes at the business level to the technical level. MDSD
can be used to provide end-to-end support for the realization of business processes, from
the business level (users’ view) down to deployed applications (ICT view) on specific
platforms via well-defined, largely automated model transformations and refinements.
However, there still exist several problems that prevent MDSD from being practically
applicable for efficient and effective CBP enactment.

This thesis provides contributions that enable MDSD projects to improve their pos-
sible impact on software development and the way ICT systems support business. It
develops solutions to three main problems, namely for the areas of CBP modelling and
enactment infrastructure, ICT architecture selection, and model and transformation evo-
lution. The contributions of this thesis are as follows:

1. We develop architecture patterns, a code generation framework, and model trans-
formations that facilitate the generation of executable code from high-level, do-
main-specific models. These artifacts help to bridge the semantic gap between
domain-specific, high-level business process descriptions and the technologies
used to implement them in service-oriented ICT systems. Domain and IT ex-
perts benefit since our contribution provides a set of sensible and customizable
transformations they can reuse to improve the development of their ICT systems.

2. We investigate new evaluation and decision methods as well as guidelines for the
selection of appropriate ICT architectures. We develop a model for decision sup-
port that helps IT architects to derive an appropriate architecture paradigm for a
given use case or application domain. The decision model combines the Analytic
Hierarchy Process (AHP) with scenario-based architecture evaluation techniques.
Further, we describe how contingencies influence ICT system coordination archi-
tecture. Our decision method, the scenario descriptions, and a set of guidelines

iv

help IT architects to select and reuse appropriate ICT system coordination archi-
tectures for CBP enactment in a timely manner. This helps to gain productivity
wins by reducing the development time and improving the quality of development
with existing and tested solutions.

3. We develop the Ontology-based Model Transformation (OntMT) approach that fa-
cilitates the exchange of models between different enterprises as well as the reuse
and evolution of model transformations. OntMT helps to overcome differences
in syntax and semantics of modelling formalisms with as little effort as possible.
Therefore, we apply semantic and reasoning technology to the domain of MDSD.
We develop a higher-order model transformation language that allows to modify
model transformations. Organisations and modellers benefit from OntMT since it
allows them to exchange, customize, and evolve models and model transforma-
tions more efficiently.

Acknowledgements

I would like to thank all people that supported me in writing my thesis:

• First of all, I am deeply grateful to my supervisor Prof. Dr. Bernhard Bauer for
giving me the opportunity to conduct research in the field of Model Driven Soft-
ware Development. His guidance, support, and motivation were the basis for the
successful completion of this thesis.

• I am also indebted to Prof. Dr. Jörg P. Müller for his support in the ATHENA IP
project as well as for his feedback and contribution to joint research and publica-
tions. He also volunteered to be advisor of my thesis.

• I want to thank Prof. Dr. Wolfgang Reif who accepted to be advisor of my thesis.

• Special thanks go to my colleagues from the Programming Distributed Systems
group (in alphabetical ordering) Wolf Fischer, Holger Kasinger, Florian Lauten-
bacher, Raphael Romeikat, and Viviane Schöbel, who created a friendly and cheer-
ful working atmosphere that I enjoyed a lot. Each of them contributed in his own
way to this thesis, e.g. by working together in projects, discussing joint research,
or sharing everyday work with me.

• I want to thank all students that helped me to save time with their implementations
and to improve the results of my work with their valuable feedback.

• Especially, I want to thank all other people, who directly or indirectly influenced
this thesis. The fruitful discussions with them at workshops and conferences as
well as in research and industrial projects were an important source of inspiration.

• I gratefully thank all my friends who shared their leisure with me. Their informal
support and encouragement had positive influence on this thesis.

• Finally, I want to thank my parents Hannelore and Hans-Dieter Roser. They have
always supported and encouraged me to do my best in all matters of life.

Contents

1 Introduction 1
1.1 Problems and Challenges . 3
1.2 Objectives, Approach, and Contributions 5
1.3 Outline . 7

2 Basics 11
2.1 Service-oriented Paradigm . 11
2.2 Process Modelling and Execution . 14

2.2.1 Orchestration & Choreography 18
2.2.2 Process Modelling . 18
2.2.3 Cross-organisational Business Processes 19

2.3 Architecture Evaluation and Decision Methods 21
2.3.1 Architecture Evaluation . 21
2.3.2 Analytic Hierarchy Process . 23
2.3.3 Contingency Theory . 24

2.4 Semantic Technologies and Technological Spaces 25
2.4.1 Technological Spaces . 25
2.4.2 Ontology . 27
2.4.3 Syntax, Semantics, and Ontology 29

2.5 Summary . 30

3 Model Driven Software Development 31
3.1 MDE Approaches to Software Development 32

3.1.1 MDA . 32
3.1.2 Software Factories . 35
3.1.3 Benefits of Model Driven Engineering 35
3.1.4 MDE Tool Suites and Initiatives 36

3.2 Models . 38
3.2.1 MegaModel for MDE . 38
3.2.2 Metamodelling Hierarchy . 40
3.2.3 UML vs. Domain Specific Languages 41
3.2.4 Types of Models . 42
3.2.5 Models as Assets of Organisations 44

3.3 Model Transformation and Code Generation 44
3.3.1 Features of Model Transformations 48
3.3.2 Classification of Model Transformation Approaches 50
3.3.3 OMG Standard: Query/View/Transformation 53

3.4 Summary . 59

viii CONTENTS

4 Enacting Cross-organisational Business Processes with MDSD 61
4.1 Transforming CIM to PIM . 62

4.1.1 Problem Description . 62
4.1.2 Software Architectures for ICT System Coordination 63
4.1.3 Case Study . 66
4.1.4 Implementation and Execution CIM to PIM Model Transforma-

tions . 68
4.1.5 Discussion . 73

4.2 Transforming PIM to PSM . 73
4.2.1 Context and Example . 74
4.2.2 Problem Description . 75
4.2.3 Model and Code Generation Framework 79
4.2.4 Case Study . 81
4.2.5 Discussion . 84

4.3 Conclusions . 85

5 ICT Architectures for CBP Enactment: Applicability Criteria and Evalua-
tion 87
5.1 Example and Problem Description . 88
5.2 A Method for Evaluation of ICT Architecture Applicability 89

5.2.1 Methodological Issues . 89
5.2.2 Multi-criteria Evaluation and Decision Model 90
5.2.3 Measuring Qualitative Factors 92
5.2.4 Measuring Quantitative Factors 100

5.3 Applying the Evaluation Method . 102
5.3.1 Virtual Enterprise Scenario . 102
5.3.2 SME Scenario . 105

5.4 Discussion and Conclusions . 107

6 Ontology-based Model Transformation 109
6.1 Problem Description . 110

6.1.1 A MDSD Scenario . 111
6.1.2 Problem Statement . 112

6.2 The Ontology-based Model Transformation Approach 112
6.2.1 Automated Generation of Model Transformations 113
6.2.2 Evolution of Model Transformations 115

6.3 Components of Ontology-based Model Transformation 116
6.3.1 Components of a Sem-MT-Tool 116
6.3.2 Architecture of Ontology-based Model Transformation 117

6.4 Realization of Ontology-based Model Transformation 124
6.4.1 Model Transformation Bootstrapping 124
6.4.2 Higher-order Model Transformation Language 129
6.4.3 Ontology Representation and Reasoning 148
6.4.4 Sem-MT-Component . 155

6.5 Case Studies . 159
6.5.1 Mapping Generation for Process Modelling 159
6.5.2 Model Transformation Evolution for Service Modelling 172

6.6 Assessment of Ontology-based Model Transformation 182

CONTENTS ix

6.6.1 Application Areas . 182
6.6.2 Evaluation . 183
6.6.3 Discussion . 184

6.7 Related Work . 184
6.7.1 Mapping Approaches . 185
6.7.2 Comparison of Model and Model Transformation Evolution Ap-

proaches . 186
6.8 Conclusions . 191

7 Conclusions 195
7.1 Summary . 195
7.2 Discussion and Outlook . 196

Bibliography 198

Acronyms 223

Figures 228

Tables 231

Listings 235

A CBP Enactment 239

B CBP Architecture Evaluation 253
B.1 Scenarios Descriptions . 253
B.2 Influences of Contingencies . 259
B.3 Virtual Enterprise Scenario . 261
B.4 SME Scenario . 268

C Ontology-based Model Transformation 275
C.1 Library Example . 275
C.2 Reasoning Rules . 277
C.3 Case Study - Process Modelling . 288

C.3.1 Bootstrap Model Transformation 288
C.3.2 Reasoning Results . 291
C.3.3 Generated Model Transformation 293

C.4 Case Study - Service Modelling . 298
C.4.1 Initial Model Transformation 298
C.4.2 Output Model Transformation 303

Chapter 1

Introduction

Today, companies are urged to adapt to market pressures and competitors’ innovations
with increasing speed. They globally search for opportunities and resources and per-
form only those functions for which the company has expert skills. Companies are
organised in global networks and outsource those activities that can be performed more
quickly and effectively or at lower costs, by others [270]. However, outsourcing and
interacting in global networks will also increase overhead costs for collaboration, coor-
dination, intermediation, etc. One approach to describe the influence of organisational
structure on these overhead costs is the transaction cost model. In transaction cost eco-
nomics [322, 323] Williamson distinguishes between production costs and transaction
costs. Production costs are the direct production expenses, i.e. the costs for transforming
inputs into outputs. Transaction costs are those costs incurred by indirect production
expenses through imperfect economic exchange [318, p.97]. These are costs for infor-
mation processing necessary to coordinate the work, costs for searching and information
about required goods, bargaining costs, or costs for management, monitoring, and ad-
ministration. With the aim to reduce overall costs, Williamson characterizes transaction
costs with the variables frequency, uncertainty, and specificity of assets. These variables
are used to determine for which organisational structure transaction costs will be lowest.

In today’s economies transaction costs have often become more and more important.
For example transaction costs make up more than 30% of the total costs of an auto-
mobile and about 50% of the total costs of a Logitech mouse [280]. Business systems
govern nearly all forms of transactions by facilitating business relationships and value
chains. Thus, in modern economies low transaction costs heavily depend on the capabil-
ities of business systems to keep up with constantly evolving business relationships and
cross-organisational value chains. This requires methodologies, methods, software ar-
chitectures, and infrastructures to support changes to business processes that are defined
at the business level and propagated down to the level of Information and Communica-
tion Technology (ICT) systems.

Model Driven Software Development (MDSD) [278], a specialization of the new
trend of Model Driven Engineering (MDE) [37], provides techniques to realize and au-
tomate the propagation of changes at business level to the technical level. MDSD can
be used to provide end-to-end support for the realization of business processes, from
the business level (users’ view) down to deployed applications (ICT view) on specific
platforms via well-defined, largely automated model transformations and refinements.
MDSD treats models as primary development artifacts, uses models to raise the level
of abstraction at which developers create and evolve software [116], and reduces com-

2 Introduction

plexity of the software artifacts by separating concerns and aspects of a system under
development [122].

Within the context of the European integrated project Advanced Technologies for In-
teroperability of Heterogeneous Enterprise Networks and their Applications (ATHENA
IP) [15], the MDSD paradigm was extended to fit the needs of modelling Cross-organi-
sational Business Processes (CBPs), in order to realize such CBPs. The ATHENA IP was
a three years project funded by the European commission with the mission to be a main
contributor in the European efforts to enabling enterprises to seamlessly interoperate. In
this thesis we also present results that we have achieved in the ATHENA IP.

mapping

mapping

transformation

transformation

transformation

transformation

Figure 1.1: Scenario realizing cross-organisational business process modelling and exe-
cution

The main goals of the ATHENA IP were to realize more flexible businesses, which
are able to move into new markets and product areas rapidly, and to realize more eco-
nomic businesses through improvements in efficiency, productivity, and cost effective-
ness. We contributed to develop and generate executable processes like Web Services
Business Process Execution Language (WS-BPEL) [205] processes from models of
cross-enterprise collaborations by applying MDSD techniques. Figure 1.1 illustrates
the conceptual framework that was applied to develop and enact CBPs with MDSD. The
vertical dimension distinguishes the different layers of abstraction applied in MDSD.
Enterprise A and B develop models for their processes at three levels of abstraction, i.e.
business-level, platform independent Information Technology (IT) level, and IT system
level. The gaps between these abstraction levels are overcome by vertical transforma-
tions like presented in [26]. These transformations encode knowledge about architecture
and platform in order to transform models from higher level to models of lower abstrac-

1.1 Problems and Challenges 3

tion level. The horizontal dimension represents the collaborative modelling between two
enterprises A and B. To develop CBPs both enterprises have to exchange at least parts of
their models as a basis for collaborative modelling and to align their organisations and
processes. Hence, models of enterprise A and B are shared at different abstraction levels
via mappings.

1.1 Problems and Challenges

In the ATHENA IP the feasibility of model-driven CBP development and enactment was
demonstrated. However, there still exist several problems that prevent MDSD from being
practically applicable for efficient and effective CBP enactment. This section describes
important problems and derives concrete challenges for the areas of CBP modelling and
enactment infrastructure, ICT architecture selection, as well as model and transformation
evolution.

CBP Modelling and Enactment Infrastructure. According to Booch et al. [46] one
of the "greatest difficulties associated with software development is the enormous seman-
tic gap that exists between domain-specific concepts encountered in modern software
applications and standard programming technologies used to implement them". MDSD
has to make use of Domain Specific Languages (DSLs) [114, 183, 289] and shifts the
focus of software development away from the technology domain towards the ideas and
concepts of the problem domain. To bridge this semantic gap, transformation engines
and generators are used to generate code and other target domain artifacts with input
from both modelling experts and domain experts [262].

Problems. Support of modellers by adequate MDSD tools and assets is a critical pre-
condition to successfully apply MDSD.

• Developing model transformations is a time consuming and error-prone task
that requires deep knowledge of model transformation techniques as well as of
the problem and solution domains.
• Domain and IT experts are needed to develop sensible model transformations

that bridge the gap between high-level business process descriptions and exe-
cutable code for service-oriented ICT systems.

Challenge 1. Provide frameworks, tools, and model transformations that facilitate the
generation of executable code from high-level, domain-specific models.

ICT Architecture Selection. Once developed, models and model transformations em-
body critical solutions and insights to enterprises’ challenges and hence are seen as as-
sets for an organisation [162]. Assets are artifacts that provide solutions to problems
and should be reusable in and customizable to various contexts. If it takes longer to
reuse models and model transformations than what seems reasonable, people will start
to recreate the content (i.e. the models and model transformations) themselves [162].
The benefit of applying MDSD can be described by the individual daily wins an organ-
isation makes in its software development process through automating the development
process but also by capturing and reusing knowledge and critical solutions. To reuse
these knowledge and solutions, and to achieve productivity improvements, organisations

4 Introduction

have to be able to discover, understand, and customize them for their business and ICT
systems in a timely manner.

Problems. Treating models as assets requires efficient reuse mechanisms.

• If the selection and customization of models and model transformations does
not deliver significant improvements in quality and development time, people
will continue building the models from scratch.
• Organisations have to be able to understand and select model transformations

for their business and ICT systems in a timely manner.

Challenge 2. In the context of developing CBPs, one has to select model transforma-
tions which encode software architecture patterns that suit the organisations’ and
businesses’ needs.

Model and Transformation Evolution. Without appropriate support MDSD is diffi-
cult to adopt. This is especially the case for model transformations, which are often not
straightforward to implement and require a significant investment effort. Organisations
have to be able to customize model transformations for their business and ICT systems
in a timely manner to meet interoperability problems, that arise from the use of DSLs
and the constant evolution of models and modelling languages. It has to be possible for
organisations to exchange models and reuse existing models and model transformations
with as little effort as possible.

Problems. Syntactic and semantic differences in representation formats are obstacles
that hinder the efficient exchange, customization, and evolution of models and model
transformations.

• Modelling languages and metamodels differ though they were developed de-
scribing the same application domain. People often associate different seman-
tics with the same metamodel.
• Metamodels evolve as new versions are released, e.g. the metamodels for UML

1.x and UML 2.x. Since models and model transformations depend on meta-
model specifications, one not only has to deal with the evolution of metamod-
els, but also with respect to the evolution of models and model transformations.

Challenge 3. It has to be possible to efficiently exchange models between enterprises
and customize model transformations for the support of various DSLs despite of
differences in syntax and semantics of modelling formalisms.

Further Challenges. The described challenges are only those challenges we address
in this thesis. They are not an exhaustive list of obstacles one faces with the introduction
of MDSD in organisations. Another important aspect of applying MDSD is the definition
of methods specifying skills, roles, and responsibilities of people that are involved in the
MDSD process. IBM, for example, identifies up to eight organisational roles for their
process modelling and execution suite [320, p.4ff]. As discussed in [254], other solutions
like AgilPro [28] manage with less roles.

1.2 Objectives, Approach, and Contributions 5

1.2 Objectives, Approach, and Contributions

This section identifies objectives to deal with the problems and challenges for the areas of
CBP modelling and enactment infrastructure, ICT architecture selection, and model and
transformation evolution as described in Section 1.1. Figure 1.2 provides an overview of
the objectives of this thesis. We describe the approach we take to meet these objectives
and list the contributions of this thesis.

Objective 3

Objective 2

ICT
Arch. 1

ICT
Arch. 2

ICT
Arch. 3

Models

Meta-
models

Model
Transformations

Models

Meta-
models

Enterpr. A Enterpr. B

O
bj

ec
tiv

e
1

Figure 1.2: Objectives overview

CBP Modelling and Enactment Infrastructure. Figure 1.2 depicts model-driven
CBP enactment that spans over multiple abstraction levels. Higher-level models are
(semi-)automatically refined to more specific models at ICT expert level via transforma-
tions. From these models ICT system models and code are generated. As described in
Challenge 1, this has to be supported by adequate frameworks, tools, and transforma-
tions.

Objective 1. Facilitate the generation of executable code from high-level business pro-
cess descriptions.

Approach. To address this objective, we follow the design science approach. The de-
sign science paradigm seeks to extend the boundaries of human and organisational
capabilities by creating new and innovative artifacts (for details see [125]). Hence,
we develop model transformations and MDSD infrastructure components, that help
to bridge different levels of abstraction in ICT system development. The outcomes
facilitate the generation of service-oriented ICT systems from high-level business
process descriptions.

Contributions. We develop the following artifacts for model-driven CBP modelling
and enactment:

• Software architecture patterns that enable ICT system coordination in a service-
oriented environment.

6 Introduction

• Implementation of a set of model transformations that are based on software
architecture patterns and allow automated generation of service-oriented Plat-
form Independent Models (PIMs) from computational independent CBP mod-
els.

• A model and code generation framework that facilitates the generation of exe-
cutable workflow code from higher-level process models.

• A case study in which the model and code generation framework is applied to
generate WS-BPEL code from arbitrary higher-level process descriptions.

ICT Architecture Selection. For the transformation of business expert models to ICT
expert models, decisions about ICT architecture have to be made (cp. Objective 2 in
Figure 1.2). According to Challenge 2 it has to be possible to select and reuse transfor-
mations that encode appropriate ICT architectures.

Objective 2. Investigate new decision methods and guidelines for selecting appropriate
ICT architectures.

Approach. We study this problem with behavioural science research, where our sys-
tems under study are the software architecture patterns developed for the first objec-
tive. We develop an evaluation model for the selection of ICT system architecture.
The model helps us to explain phenomena, i.e. the influence of contingencies on the
architecture selection, that occur with respect to the ICT architectures’ use and its
impact on ICT systems and organisations [125]. The model captures knowledge that
aids in the productive application of information technology to organisations.

Contributions. We develop the following artifacts for the selection of adequate ICT
system architectures:

• A model for decision support suitable for IT architects to derive an appropriate
architecture paradigm for a given use case or application domain. The decision
model combines the Analytic Hierarchy Process (AHP) [256] with scenario-
based architecture evaluation techniques.

• Scenario descriptions that allow the evaluation and selection of appropriate ICT
system coordination architecture paradigms for CBP enactment.

• A set of guidelines of how contingencies influence ICT system coordination
architecture based on our experiences in model-driven CBP modelling and en-
actment.

• We validate our observations (the guidelines) by applying our decision support
method, the scenario descriptions for CBP enactment, and the guidelines about
contingency influence to application scenarios with differing characteristics.

Model and Transformation Evolution. The use of different metamodels in various
enterprises results in the need to exchange models via mappings and transformations.
Another issue that necessitates the change of models and model transformations is the
evolution of metamodels. When a metamodel changes, not only the models (’instances
of’ the metamodel) but also the model transformations change. To efficiently exchange
models and adjust model transformations it is necessary to overcome the differences in
syntax and semantics of modelling formalisms (see Challenge 3).

1.3 Outline 7

Objective 3. Facilitate the technical aspects of exchanging models between different
enterprises and the reuse and evolution of model transformations.

Approach. For this objective we again apply the design science paradigm. We develop
an approach that uses ontologies and reasoning techniques to overcome differences
in syntax and semantics of modelling formalisms. The approach increases the inter-
operability of enterprises models and modelling tools by automatically generating
transformations between the different modelling syntax. The approach also provides
mechanisms to automatically customize model transformations to various modelling
formalisms, which allow enterprises to more efficiently reuse model transformations.

Contributions. We develop the following artifacts to support the exchange of models
and the evolution of model transformations.

• We develop the Ontology-based Model Transformation (OntMT) approach,
which provides means to automatically deal with model and model transfor-
mation evolution scenarios. We implement OntMT and apply it to two real
world case studies.

• We introduce and describe an architecture for a semantic-enabled modelling
and development suite. Semantic-enabled tools support developers and mod-
ellers in a sophisticated manner by making use of reasoning results. We imple-
ment OntMT as such a semantic-enabled tool.

• We develop concepts and techniques to realize and implement the OntMT ap-
proach. These are bootstrapping rules to generate QVT Relations model trans-
formations [233], a higher-order model transformation language for QVT Rela-
tions model transformations as well as representation and reasoning techniques
to infer relationships between metamodels. We develop a correlation algorithm
and a rating that allow to generate and choose applicable model transforma-
tions.

• We develop a higher-order model transformation language that allows to mod-
ify model transformations and lends itself for automating reuse of model trans-
formations.

Overall Objective. In general, this thesis aims to contribute to a broader dissemina-
tion and easier adoption of MDSD. On the basis of the ATHENA IP framework for
model-driven CBP enactment (see Figure 1.1) it illustrates the benefits and opportunities
of MDSD but also discusses pitfalls and problems in its application. It provides solu-
tions to the problems and challenges identified in Section 1.1. Although the solutions are
presented via model-driven CBP enactment, this thesis also yields more general results
from which other application domains of MDSD can benefit. It provides solutions to
the objectives described in this section in order to enable MDSD projects to fully de-
velop their possible impact on software development and the way ICT systems support
business.

1.3 Outline

The structure of this thesis is illustrated in Figure 1.3. The arrows indicate suggested
reading sequences. However, experienced readers that are familiar with the technology

8 Introduction

presented in Chapter 2 and Chapter 3 may skip these chapters or parts of them. Readers
have choice of first reading Chapter 4 and Chapter 5 or reading Chapter 6. Chapter 5
uses content introduced in Chapter 4. Summary and conclusions are given in Chapter 7.

Chapter 1 – Introduction

Chapter 2 – Basics

Chapter 3 – Model Driven Software Development

Chapter 4 – Enacting Cross-organisational Business
Processes with MDSD

Chapter 7 – Conclusions

Chapter 5 – ICT Architectures for CBP Enactment:
Applicability Criteria and Evaluation

Chapter 6 – Ontology-based Model Transformation

Figure 1.3: Structure of the thesis

Chapter 1 provides an introduction and motivation to this thesis. It identifies problems
and challenges for the practical application of MDSD and defines research chal-
lenges and objectives for this thesis. We further describe the method of work we
apply to achieve these objectives and summarize our contributions.

Chapter 2 introduces technology that is relevant for this thesis but does not primarily
belong to the domain of MDE and MDSD respectively.

Chapter 3 describes the current state of the art of MDE and MDSD. It illustrates how
software development can benefit from MDE. In addition to approaches, tools,
initiatives, and projects that realize MDSD, it introduces and explains core con-
cepts of MDSD like models, metamodels, and model transformations as they are
described in literature.

Chapter 4 demonstrates the definition and implementation of a gradual transition pro-
cess that transforms CBPs from high-level descriptions to executable, service-
oriented implementations. We develop software architecture patterns for service-
oriented ICT systems, implement these in model transformations, and present how
arbitrary process models are finally transformed to block-structured WS-BPEL
code.

Chapter 5 presents an evaluation and decision method to understand and choose ap-
propriate ICT architectures. This method aims to increase the productivity wins in
software development that are gained through MDSD by enabling organisations
to more easily reuse existing models and architectures. It helps organisations in
understanding the impact of internal and external factors (i.e. contingencies) on
the selection of adequate ICT software architectures.

1.3 Outline 9

Chapter 6 introduces the approach of Ontology-based Model Transformation (OntMT).
OntMT provides a solution that combines semantic technology with MDSD con-
cepts and allows (semi-)automated generation, reuse, and customization of model
transformations. OntMT fosters automated support for the evolution of models
and model transformations. This provides the basis to improve interoperability in
collaborative MDSD, where models are exchanged between the various partici-
pants involved in the MDSD process.

Chapter 7 summarizes the contributions presented in this thesis and provides an over-
view of future work and research directions.

Chapter 2

Basics

In this chapter we introduce technology that is used or referenced in this thesis but does
not primarily belong to the domain of MDE and MDSD respectively. In Section 2.1 we
introduce the basic concept of service-orientation and give an overview over the field
of service-oriented modelling. Section 2.2 presents process execution and modelling
techniques. In Section 2.3 we introduce architecture evaluation and decision methods
from which we make use. Finally, we give an overview over semantic technologies in
Section 2.4 and discuss their relationship to the field of MDE.

2.1 Service-oriented Paradigm

Service-orientation is based on the concept of service, which can be defined "as a well-
defined, self-contained function that does not depend on the context or state of other
services" [45]. In ICT architectures based on service-orientation one can distinguish
various notions of basic service models (from [85]):

• Application Service: A service that contains logic derived from a solution or tech-
nology platform.

• Business Service: A service that contains business logic.

• Hybrid Service: A service that contains both business and application logic. Most
services created as part of traditional distributed solutions fall into this category.

• Controller Service: A service that composes others.

• Process Service: A service that represents a business process as implemented by
an orchestration platform and described by a process definition.

In recent years various metamodels, UML profiles and approaches for service-ori-
ented modelling have been developed and published. [143] describes a UML profile for
software services that allows the modelling of services, Service Oriented Architecture
(SOA), and service-oriented solutions. It focuses on the structural aspects of service
modelling and has commonalities with Web Services Description Language (WSDL)
[302]. The UML profile presented in [175] focuses on the behavioural aspect of process
description and provides a mapping to Business Process Execution Language for Web

12 Basics

Services (BPEL4WS)1 [129]. In the context of the ATHENA IP [15] a metamodel called
Platform Independent Model for Service Oriented Architectures (PIM4SOA) [1, 30, 235,
p.51ff] was developed, that allows the specification of service-oriented, platform inde-
pendent models. This metamodel comprises service, process, information, and quality
of service aspects for SOA. It supports the smooth integration into web service compo-
sition standards, in particular Web Services Business Process Execution Language (WS-
BPEL) [205]. In cooperation with MID2 we have developed an UML profile for service-
oriented modelling called SPL4AOX [23, 235, p.78ff] has been created for and imple-
mented in the Unified Modeling Language (UML) tool MID Innovator AOX eXcel-
lence 2007 [187]. The UML profile description has been extended with mappings to
BPEL4WS 1.1 and WSDL.

Also standardization organisations have been concerned with service-orientation and
modelling services and service-oriented systems. The Web Service Architecture (WSA)
defined by the W3C [312] intends to provide a common definition of a web service,
and to define its place within a larger web services framework. It provides a conceptual
model and a context for understanding web services and the relationships between the
components of this model. The WSA is an interoperability architecture that identifies
those global elements of the global web services network that are required in order to
ensure interoperability between web services. However, it does not attempt to specify
how web services are implemented. The OASIS Reference Model for Service Oriented
Architecture [204] is also an abstract framework for understanding significant entities
and relationships between these entities within a service-oriented environment, and for
the development of consistent standards or specifications supporting that environment.
The reference model is not directly tied to any standards, technologies or other concrete
implementation details. It seeks to provide a common semantics that can be used unam-
biguously across and between different implementations. In 2006 the Object Manage-
ment Group (OMG)3 issued a request for proposal for an UML Profile and Metamodel
for Services (UPMS) [232]. It requests a services metamodel and profile for extending
UML with capabilities applicable to modelling services using an SOA. In the current
standardization process there are substantially two submissions [236, 235] that provide
a metamodel and UML profile for modelling services. Both submission concentrate on
defining a core metamodel for modelling service and reference other specifications for
related modelling aspects. The submissions reference the Business Process Definition
Metamodel (BPDM) [225] for the process modelling aspect and the Business Motivation
Model (BMM) [224] to specify service usage and business requirements. The UML Pro-
file and Metamodel for Services – for Heterogeneous Architectures (UPMS–HA) sub-
mission additionally provides extensions to more easily apply service-oriented (mod-
elling) techniques for various architectural styles and technologies like web services,
service component architectures, peer-to-peer (P2P), Grid, Agents, Event driven archi-
tectures and semantic web services.

Metamodel for Service-oriented Modelling As one representative of the mentioned
approaches, we will shortly introduce PIM4SOA as a metamodel for service-oriented
modelling. We describe those parts of PIM4SOA that are essential for the transforma-

1BPEL4WS is the predecessor of WS-BPEL. We use BPEL4WS instead of WS-BPEL, whenever work
was explicitly developed for BPEL4WS.

2http://www.mid.de
3http://www.omg.org

http://www.mid.de
http://www.omg.org

2.1 Service-oriented Paradigm 13

tions described in Section 4.1 and Section 4.2.
In PIM4SOA Collaborations are used to specify bi-directional, complex, long-lived

and asynchronous interactions between service consumers and providers (see Figure 2.1).
A collaboration is a service contract that defines the patterns of interaction between par-
ticipating roles, i.e. it defines the involved roles and their responsibilities within the col-
laboration. Collaboration specifications can be nested to arbitrary depth. Collaborations
can be defined on the basis of +subcollaborations via CollaborationUses. A collabo-
ration use specifies a link (+collaboration) to the used Collaborations definition and a
RoleBinding (+bindings). The RoleBinding relates the specific roles within the current
collaboration (+boundRole) to the roles of the used collaboration (+role). A Role can be
requester or a provider of service. A ServiceProvider specifies an entity that provides or
consumes services. Therefore it takes on roles through which it +participates in collab-
orations and realizes roles in collaborations. The RoleBinding is used to specify which
roles of the collaboration are realized by the roles of the service provider. A service
provider is ’executable’ or ’abstract’ and owns a Behaviour that can be used to describe
its internal realization as well as the message exchange with its environment.

Figure 2.1: PIM4SOA metamodel: service modelling

The communication behaviour as well as the activities, that together realize the
provided services, are described by the service provider’s behaviour (see Figure 2.2).
Process implements the behaviour for service providers as a set of tasks and decisions
(Steps) linked by control flows (Flows). Tasks represent actions carried out by the pro-
cess. A task is either an internal processing task that is not further specified and requires
implementation beyond the scope of this model, or an interaction with another service
provider. In the latter case the (invoked) service is referenced by specifying a +collabo-
rationUsePath.4. StructuredTasks are used to represent subprocesses. Flows provide the
links between steps via their interactions. An Interaction defines an interface for input or
output flows on a step. A Message defines a chunk of information sent from one role to
another role in a collaboration. Interactions reference the Messages they send or receive.

UML Profile for Service-oriented Modelling For a clearer description of our usage
of PIM4SOA in the following sections we introduce a UML profile for PIM4SOA (see

4In order to derive BPEL4WS code from arbitrary platform-independent, service-oriented models au-
tomatically, the collaborationUsePath would have to reference the respective RoleBinding instead to the
CollaborationUse Examples for this improvement can be found in [23, 232].

14 Basics

Figure 2.2: PIM4SOA metamodel: process modelling

[1]) that was defined and implemented within the ATHENA IP project [15]. Table 2.1
depicts the definition of the UML profile [1]. The metamodel elements of PIM4SOA
became stereotypes in the UML profile. The second column depicts the UML metaclass
to which the stereotype adds information.

Figure 2.3 and Figure 2.4 depict simplified excerpts of the Purchase Order example
(for more details about the example see [232]) to illustrate modelling with the UML
profile for PIM4SOA. In Figure 2.3 one can see two collaborations: PurchaseOrder
and Productions. The PurchaseOrder collaboration make use of the Productions collab-
oration via a collaboration use (productions:Productions). The roles of the composed
collaboration are bound to the roles of the used collaboration, e.g. the role orderProces-
sor is bound to the role client. Further the service provider OrderProcessor and its role
purchasing is bound to the role orderProcessor, i.e. it participates in the collaboration
PurchaseOrder.

The behavioural description of the OrderProcessor is modelled as a process and
activity in UML respectively (see Figure 2.4 for an excerpt). Internal tasks of the pro-
cessPurchaseOrder activity are for example decisions, where the purchase order process
has to compute which outgoing control flow has to be followed. The task requestProd-
uctScheduling is an interaction task that is used to realize an interaction for exchanging
messages with the scheduling role in the PurchaseOrder collaboration. Thus the task
references the collaboration use poParticipation via which the service provider Order-
Processor participates in the PurchaseOrder collaboration with a collaboration use path.

2.2 Process Modelling and Execution

People with different background, i.e. business or IT, that speak about processes not
always mean the same. IT people often refer to the term process in the context of process
execution and workflows. Business people use process to describe procedures within and
between organisations, that are of coarse granularity at a high level of abstraction and
can often not be executed (directly) by workflow engines. Hammer and Champy [123]
"define a business process as a collection of activities that takes one or more kinds of
input and creates an output that is of value to the customer". The term business process

2.2 Process Modelling and Execution 15

Figure 2.3: UML profile for PIM4SOA: service modelling

16 Basics

Figure 2.4: UML profile for PIM4SOA: process modelling

2.2 Process Modelling and Execution 17

Stereotype Metaclass Description
Collaboration Collaboration This element represents the definition of a service.

Each service description is viewed as a collabora-
tion between roles.

CollaborationUse CollaborationUse A collaboration use represents the usage of a ser-
vice. This service must to be defined previously.
CollaborationUse specification must be encapsu-
lated in a composition structure. This structure is
provided by a collaboration definition or by a ser-
vice provider.

RoleBinding Dependency RoleBinding is used to connect two roles in the
structural part of a class or collaboration.

ServiceProvider Class This element represent the service provider.
Role Role A role represents a structural part in a collaboration.
Process Activity A process represents a behavioural description.

This behaviour is contained by a service provider
or collaboration.

Task StructuredActivity
Node

A structured task is related with a collaboration use.
This element contains a set of interactions.

Interaction CallBehaviorAction An interaction defines an interface for input or out-
put flows.

Flow ControlFlow This flow relates two interactions.
CollaborationUse
Path

Dependency This dependency relates a task (source) with a col-
laboration use (target).

Message Operation The message concept is related with a role through
an interface.

Table 2.1: UML profile definition for PIM4SOA

is used by both camps. However, business processes often include manual activities and
can be related to every kind of resource.

A variety of languages for describing workflows and process executions like Web
Services Business Process Execution Language (WS-BPEL) [129, 205], Business Pro-
cess Modeling Language (BPML) [14], Web Services Flow Language (WSFL) [167],
XLANG [286], Web Service Choreography Interface (WCSI) [303], Yet Another Work-
flow Language (YAWL) [293], or XML Process Definition Language (XPDL) [319]
has been developed. Until now several different approaches became apparent, where
WS-BPEL and XPDL are the most promising representatives. WS-BPEL workflows are
defined in a block-structured way similar to programs written in programming languages
like Java or C. XPDL allows users to specify workflows whose control flows represent
arbitrary graphs. As we will see in Section 4.2 this difference has important implications
on the generation of executable workflow code from higher level descriptions.

Other languages like Business Process Modeling Notation (BPMN) [226], UML 2.0
Activity Diagrams, BPML, or Event-driven Process Chains (EPCs) are used to repre-
sent processes at higher level of abstraction. The BPMN has turned out to be a notation
that can be easily used by business people. UML activity diagrams are often favoured
by technical oriented people. With the Business Process Definition Metamodel (BPDM)
[225] the OMG has developed a common metamodel for process modelling that includes
also mappings from BPMN to BPDM and mappings from BPDM to BPEL4WS. Map-
pings to the Web Services Choreography Description Language (WS–CDL) [313] will
be incorporated in a future version of the BPDM specification. Concepts represented in
UML activity diagrams, BPMN and Enterprise Distributed Object Computing (EDOC)

18 Basics

[220] have also been incorporated into BPDM.

2.2.1 Orchestration & Choreography

Orchestration and choreography describe two complimentary notions of a process. In
orchestration a central entity coordinates the execution of services involved in a higher-
level business process. Only the coordinator of the orchestration is aware of this com-
position. He defines sequences of activities that are carried out with branching and
synchronization of different threads (see Figure 2.5 [148]).

1: Receive 2: Invoke

4: Invoke3: Invoke

5: Reply

Figure 2.5: Orchestration

Choreography describes the interactions of collaborating entities (e.g. services), each
of which may have their own internal orchestration processes (see Figure 2.6 [148]).
These interactions are often structured into interaction protocols to represent the con-
versation between the parties. These protocols usually exist between both internal or-
ganisational roles and external stakeholders such as other departments, business units,
as well as customers, suppliers and regulatory authorities [225]. An important distinc-
tion between orchestration and choreography is the fact that orchestration is generally
owned and operated by a single organisation while in a choreography no organisation
necessarily controls the collaboration logic [85].

1: Invoke

2: Invoke4: Invoke

5: Invoke

3: Reply

Figure 2.6: Choreography

2.2.2 Process Modelling

In process modelling it is common to distinguish between an internal and an external
view of business processes. Depending on the viewpoint, a process is described either
as an executable, abstract, or collaborative process (see Figure 2.7). [249] distinguishes
between these process modelling patterns, which serve as process modelling primitives
from which process models are combined.

• Executable Process: The internal view models the ’how’ of a business process
from the modeler’s view. Processes that model process flows as a set of partially
ordered tasks, are called executable processes [129]. As the flow of an executable

2.2 Process Modelling and Execution 19

Executable Process

Executable Process

Executable Processes
of Process Group A

Executable Process

Executable Processes
of Process Group B

Abstract Process

Collaborative Process
(Business Protocol)

Process Choreography
Pr

oc
es

s O
rc

he
st

ra
tio

n

Figure 2.7: Executable, abstract, and collaborative processes

process is described from the viewpoint of a single process coordinating its sub-
processes, this is often referred to as process orchestration.

• Abstract Process: The external view models the ’what’ of a business process.
Each process specifies its roles in the collaboration with other processes, but hides
the way it is realized. The interfaces of such business processes components are
called abstract processes describing the public interactions they perform in relation
to their roles in collaborations.

• Collaborative Process: A collaborative process describes the collaboration be-
tween abstract processes in the case of process choreography. Collaborative pro-
cesses use abstract processes to model the sequence of the message exchange from
the viewpoint of an external observer. The collaborations between the involved
parties are modelled as interaction patterns between their roles.

2.2.3 Cross-organisational Business Processes

In order to coordinate inter-organisational workflow, Liu and Shen introduced the con-
cept of views, as they are used in database systems, to provide abstract information
about internal processes. In [171] they extend their work to Cross-organisational Busi-
ness Processes (CBPs). Chiu et al. introduce workflow views to control visibility of
internal processes and to enable interoperability of e-services, focusing on combining
views of different partners to composite e-services CBPs. Schulz et al. use the concept
of views, and formalize the dependencies between private processes, process views and
CBPs [263]. Adopting the general approach of [263], we distinguish between Private
Processes (PPs), View Processes (VPs), and CBPs (according to [170]). Note, the ele-
mentary primitives for process modelling are still executable, abstract, and collaborative
processes as described in Section 2.2.2. The distinction between PPs, VPs, and CBPs can
be used as an additional categorization in process modelling. In a process model, a PP
for example is still represented by an arbitrary elementary process modelling primitive

20 Basics

like executable process or a combination of the process modelling primitives introduced
in Section 2.2.2.

• Private Processes (PPs) are internal to an organisation. They contain data not to
be revealed by default. Views on processes provide an abstraction of PPs, which
is sufficient to coordinate internal actions with activities of external business part-
ner(s) [263]. A particular interaction may require involved partners to adapt for the
purpose of the communication. This adaptation may not necessarily be reflected
in the partners’ private (internal) business processes without impairing their ability
to interact with other partners in a different context.

• View Processes (VPs) combine PPs to an abstract level that enables companies
to hide critical information from unauthorized partners. The VP connects the PP
with the abstract process an organisation provides to a CBP. Based on one PP, dif-
ferent views can be generated, which reflect the specific requirements of different
interactions.

• Cross-organisational Business Processes (CBPs) define the interactions between
two or more business entities. These interactions take place between the defined
abstract processes and are defined as a sequence of message and/or other material
input/output exchange. Using different views of the same internal processes, or-
ganisations are able to interact in a different context without changing the internal
process.

To represent these processes in service-oriented models, the PIM4SOA has been
extended to model CBPs. Figure 2.8 depicts the extensions of the PIM4SOA metamodel
(see Section 2.1) to allow the modelling of PPs that participate in various collaborations
through their VPs.

Figure 2.8: PIM4SOA metamodel CBP-extension: Providers

Private processes, view processes and collaboration processes are service providers.
A private process is an executable service provider who references view processes.
These view processes enact the participation of the private process in external collab-
orations. Its behaviour is modelled by an executable process. A view process is an
executable service provider whose behaviour is a process flow model that may include
view tasks. A view task is an activity that abstracts a set of activities of the realizing pri-
vate processes into a single task. A view process realizes roles in a single collaboration;
view tasks are visible in the collaboration (see Figure 2.9). A collaboration process is
an abstract service provider whose behaviour is a process flow model. The collaboration
process may specify the view processes that together enact the collaboration.

2.3 Architecture Evaluation and Decision Methods 21

Figure 2.9: PIM4SOA metamodel CBP-extension: ViewTasks

Note, a view process is an executable process that realizes several abstract processes
- one for the collaborations it participates in and the others to participate in the im-
plicit collaborations with the private processes it supports. A view process connects the
abstract process an organisation provides to a CBP to the private processes of the organ-
isation. Nevertheless a view process is an executable process. Section 4.1.4 will provide
more detailed examples for this mechanism.

2.3 Architecture Evaluation and Decision Methods

This section introduces architecture evaluation and decision methods, which are further
relevant for this thesis.

2.3.1 Architecture Evaluation

Scenario-based ICT architecture evaluation is used to determine quality of software ar-
chitecture. In architecture evaluation methods like ATAM, SAAM, or ARID [21, 57]
quality attributes are characterized by scenario descriptions.

Quality attributes are part of the non-functional requirements and therefore proper-
ties of a system. They can be broadly grouped into two categories [71]. Qualities like
performance, security, availability, and usability are observable via execution (i.e. at run-
time) and qualities like extensibility, modifiability, portability, reusability, etc. which are
not observable via execution but at build-time [31].

According to Bass et al. [21], scenario descriptions (see Figure 2.10 [21, p.75]) con-
sist of a stimulus (a condition that needs to be considered when it arrives at a system), a
source of stimulus (some entity that generates the stimulus), an environment (the stimulus
occurs within certain conditions), an artifact (the part of the system that is stimulated),
a response (the response is the activity undertaken after arrival of the stimulus) and a re-
sponse measure (defines how the result of the response is measured). General scenarios
[22] are applicable to many software systems and have architectural implications; they
establish sets of scenarios which are configured to the respective application domain
(for which evaluation is performed) by varying the expected response value scales of the
scenarios.

Tactics To be able to decide how well a quality attribute or a scenario is supported
by a software architecture pattern and to compare architecture patterns, it is crucial to
understand how an architecture influences quality attributes. According to Bass et al.

22 Basics

Artifact

Environment
Stimulus Response

Source of Stimulus

Response
Measure

Figure 2.10: Quality Attribute

[21] architects use so-called tactics to achieve quality attributes. A tactic is a design
decision that influences the control of a quality attribute. The software architecture pat-
terns described in this thesis make use of the following tactics (non-exclusive list; for
detailed description see also [21, p.99ff]): Maintain semantic coherence, anticipate ex-
pected changes, generalize module, restrict communication paths, use an intermediary,
maintain existing interfaces, and hide information.

• Maintain semantic coherence: The goal of this tactic is to ensure that the re-
sponsibilities among modules work together without excessive reliance on other
modules. Patterns and principles for realizing this tactic are abstraction, loose
coupling, and orchestration.

• Anticipate expected changes: This tactic tries to limit the set of modules that
need to be modified in case of certain changes. In contrast to the semantic co-
herence strategy anticipating expected changes does not concern itself with the
coherence of a module’s responsibilities but rather with minimizing the effects of
the changes. Patterns and principles for realizing this tactic are wrapper, broker,
abstraction, loose coupling, and orchestration.

• Generalize module: Making a module more general allows it to compute a broader
range of functions based on input. The more general a module is, the more likely
it is that changes can be made by adjusting the input rather than by modifying
the module. Patterns and principles for realizing this tactic are abstraction and
orchestration.

• Restrict communication paths: This tactic tries to limit modifications to the lo-
calized modules by reducing the number of modules a given module shares data
with. Patterns and principles for realizing this tactic are broker, loose coupling,
and orchestration.

• Use an intermediary: Intermediators manage the activities associated with de-
pendencies between modules. A bridge, mediator, etc. pattern can for example
convert the syntax of service from one form into another. A broker pattern can be
used to mask changes in the identity of interfaces and modules respectively.

• Maintain existing interfaces (separate interface from implementation): Maintain-
ing the name and signature of a module’s interface, allows other modules using
this interface to remain unchanged (this tactic works well at least for syntactic
changes). Patterns and principles for realizing this tactic are wrapper and broker.

2.3 Architecture Evaluation and Decision Methods 23

• Hide information: Information hiding is the decomposition of the responsibilities
for an entity into smaller pieces and choosing which information to make private
and which to make public. Its goal is to isolate data and logic within one module
and prevent changes from propagating to other modules. Patterns and principles
for realizing this tactic are abstraction and orchestration.

Architectural Patterns and Principles Tactics are used by an architect to create a
design using design patterns, architectural patterns, or architectural strategies. An ar-
chitect usually chooses a pattern or a collection of patterns designed to realize one or
more tactics. However, each pattern implements multiple tactics, whether desired or not.
The following list provides an overview of architecture patterns, design patterns, and
design principles used to realize the above described tactics (non-exclusive list compiled
from [21], [84], [85], and [101]): Wrapper, broker, abstraction, loose coupling, and
orchestration.

• Wrapper: Wrappers encapsulate components like legacy environments and ex-
pose (legacy) functionality of these components. Wrappers are often utilized for
integration purposes and are a frequently used form of adapters.

• Broker: A broker consists of software used for mediation between components. It
can be used for integration enabling communication between components requir-
ing different data formats and it can be used to mask (changes in) the identity of
interfaces (e.g. by forwarding messages).

• Abstraction: Abstraction is a principle to reduce and factor out details so that
one can focus on a few concepts. It allows components to act as black boxes
hiding their details from the outside world. It can be used for both encapsulating
potentially complex processing logic and abstracting from data structures.

• Loose coupling: Loose coupling is a principle that aims to decrease coupling and
increase independence of components. A component that acquires knowledge of
another component still remains independent of that component.

• Orchestration: Orchestration describes the automated arrangement and coordi-
nation of services and fosters the separation of computation from coordination.
Process logic encapsulated by an orchestration can be modified or extended in a
central location while still remaining extensible. Orchestration is also a good way
to provide composed services.

2.3.2 Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) [256] is a decision making approach, which
decomposes a decision problem into a hierarchical network of factors and subfactors.
Factor decomposition establishes a hierarchy of first level and second level factors cas-
cading from the decision objective or goal. AHP applies pairwise comparisons to the
factors and the alternatives in the decision making process. Pairwise comparisons lend
themselves to solving problems with limited number of choices, where each choice has
a number of attributes and it is difficult to formalize some of those attributes. Finally the
ratings of the second level factors are aggregated to first level factors and the final rating.
We illustrate the AHP via an example for ’choosing the best house to buy’ (cp. [257]):

24 Basics

1. In a first step, we construct a hierarchy that represents the decision problem (see
Figure 2.11). The overall objective ’satisfaction with house’ is located at the top
of the hierarchy, the criteria and alternatives are placed at each descending level
of the hierarchy.

Figure 2.11: AHP example: decomposition tree

2. To apply the principle of comparative judgment, one has to set up a compari-
son matrix at each level by comparing pairs of criteria, or pairs of alternatives at
the lowest level. Table 2.2 depicts the comparison matrix for the criteria ’size of
house’. Since house A is bigger than house B and house C, it gets the higher
comparison values (6 and 8).

Size of house House A House B House C Priority vector
House A 1 6 8 0.754
House B 1

6 1 4 0.181
House C 1

8
1
4 1 0.065

Table 2.2: AHP example: rating size of house

3. The last step determines the final rating, which is given through the composite or
global priorities of the houses. One can find the local priorities of the houses with
respect to each criterion in the matrix depicted in Table 2.3. We multiply each
column with the priority of the corresponding criterion and add across each row
the results of the multiplication. House A has the highest global priority and is
probably the house that is bought.

Size of house Transportation Neighborhood ... Financing
0.173 0.054 0.188 ... 0.333

House A 0.754 0.233 0.754 ... 0.072 0.396
House B 0.181 0.055 0.065 ... 0.650 0.341
House C 0.065 0.713 0.181 ... 0.278 0.263

Table 2.3: AHP example: local and global priorities

2.3.3 Contingency Theory

The contingency theory for organisations [72] is used to rationalize how the various as-
pects of organisations’ environment (called contingency factors) influence organisation
structure. It suggests, that there is no unique or best way to organise an organisation,
but the design of an organisation and its systems must ’fit’ with its environment. The

2.4 Semantic Technologies and Technological Spaces 25

"organizational effectiveness results from the fitting characteristics of the organization,
such as its structure, to contingencies that reflect the situation of the organization" [72,
p.1]. "Contingency theory (...) sees maximum performance as resulting from adopting,
not the maximum, but rather the appropriate level of the structural variable that fits
the contingency. Therefore, the optimal structural level is seldom the maximum, and
which level is optimal is dependent upon the level of the contingency variable" [72, p.4].
In other words, an organisational structure (e.g. hierarchical, organic, bureaucratic or
functional) which fits the contingency factors, such as size of the organisation, environ-
ment or organisational strategy, is more effective with regard to efficiency, profitability
or innovation rate. [72] distinguishes contingencies within (e.g. task uncertainty, task
interdependence) and outside (e.g. environmental uncertainty) of the organisation. If the
contingency, its value and its influence on the organisational effectiveness is known to the
organisation, the organisation is able to adapt its organisational design (e.g. its structure)
and thereby increases its performance. On the other hand, if the organisational structure
misfits the contingency, a negative impact on the performance will be the result. [165]

Translating this into the terms of companies and their business systems, a maximum
of centralization, decentralization, or some of the ICT system architectural qualities like
modifiability, security, etc., will seldom yield maximum performance of an ICT system
for the overall business goals. An appropriate level of performance, where an ICT system
best supports the overall business goals, can be reached, if the ICT system fits the internal
and external contingencies.

2.4 Semantic Technologies and Technological Spaces

Semantics is a very important aspect of IT, since it helps the receiver of data, e.g. com-
puters or people, to interpret the data correctly in the way that was intended by the sender
of the data. In the recent years a new field of research has emerged that promises to im-
prove current IT solution by a computer-understandable semantics: the Semantic Web
[32, 33]. This section introduces the concept of Technological Space and distinguishes
model-based from Semantic Web technology. It further discusses the notion of ontology
in the IT and gives a definition of syntax, semantics, and ontology that is used throughout
this document.

2.4.1 Technological Spaces

Kurtev et al. [160] introduce the concept of Technological Spaces (TSs) aiming to im-
prove efficiency of work by using the best possibilities of different technologies. A
technological space is in short a zone of established expertise and ongoing research. It is
a working context with a set of associated concepts, body of knowledge, tools, required
skills, and possibilities. Initially five technological space, the MDA TS, the XML TS,
the Abstract Syntax TS, the Ontology TS, and the DBMS TS, have been presented in
[160], of which the MDA TS and the Ontology TS are important for our work. The
ontology engineering space performs outstanding in traceability, i.e. in the specification
of correspondences between various metamodels, while the MDA TS is much more ap-
plicable to facilitate aspects or content separation. The XML TS is based on the XML
format, where documents are written in a syntax constrained by well-formedness and
validity constraints. The Abstract Syntax TS has its foundations in context-free gram-
mars for specification of language syntax and a number of formalisms for specification

26 Basics

of language semantics (attribute grammars, denotational and action semantics, etc.). The
DBMS TS is defined on the basic concepts of data and schema.

MDA TS

In the MDA TS models are considered as first-class citizens, representing particular
views on the system being built. A model is an artifact that conforms to a metamodel
and that represents a given aspect of a system. These relations of conformance and rep-
resentation are central to model engineering. A model is composed of model elements
and conforms to a unique metamodel. This metamodel describes the various kinds of
contained model elements and the way they are arranged, related and constrained. A
language intended to define metamodels and models is called a metametamodel [39]. In
the Modelware and Model-based Technology TS (MDA TS) models and their metamod-
els are commonly arranged in four-level metamodelling hierarchy. More information
about MDSD and the MDA TS can be found in Chapter 3.

Ontology TS

The Ontologyware and Ontology Engineering TS (Ontology TS) can be considered as
a subfield of knowledge engineering, mainly dealing with representation and reasoning.
The Semantic Web [32, 33] is one way to combine techniques and standards in the
Ontology TS. In general, a set of languages is used for knowledge representation. These
languages correspond to formalisms (normally logic), that allow to perform reasoning
on the data expressed with these languages.

In the Semantic Web languages are based on Extensible Markup Language (XML)
[314], which is used as standardized syntactical representation and uniform way to struc-
ture data. Uniform Resource Identifiers (URIs) [134] are used to identify abstract and
physical resources. XML does not itself imply specific interpretation of data. Other
languages, like the Resource Description Framework (RDF) [308, 310] or RDF Schema
(RDF(S)) [309] provide the models, that allow machine interpretation of data [111].
RDF gives XML structured data meaning by representing data as triples (statements).
A triple consists of a subject (a resource, identified by an URI), a predicate (the prop-
erty of the subject), and an object (the value of the property) [307]. The value can be
a literal or another resource. However, RDF itself is only used to describe instances of
ontologies [105]. RDF(S) extends RDF with means to enable the creation of taxonomies
and ontologies. RDF(S) provides primitives such as Class, subClassOf, and subProp-
ertyOf. The Web Ontology Language (OWL) [306] is used as a standard language to
describe ontologies in the Semantic Web. OWL is a combination of increasingly ex-
pressive sublanguages built on top of each other. OWL Lite is intended to support the
building of simple classification hierarchies and simple constraints. OWL DL provides
more expressiveness, but also guarantees that all conclusions are computable and rea-
soning terminates in a finite time. OWL DL can be classified as a SHOIN(D)5 language
[126]. OWL Full does provide maximum expressiveness, but does not guarantee com-
putational completeness and decidability. The Semantic Web uses further languages and

5SHOIN(D) classifies the description logic expressivity of OWL DL. S comprises atomic negation,
concept intersection, universal restrictions, limited existential quantification, and complex concept negation.
H stands for role hierarchy, O for nominals, I for inverse properties, and N for cardinality restrictions. (D)
represents the use of datatype properties, data values, or data types.

2.4 Semantic Technologies and Technological Spaces 27

techniques to address issues like query (SPARQL [315]), rules (RIF [300]), unifying
logic, proof, trust, and crypto [66, 68].

With the Ontology Definition Metamodel (ODM) [234] the OMG issues a specification
defining a family of independent metamodels, related profiles, and mappings among the
metamodels corresponding to several international standards for ontology definition, as
well as capabilities supporting conventional modelling paradigms for capturing concep-
tual knowledge. It is based on a grounding in formal logic, through standards-based,
model-theoretic semantics, sufficient to enable reasoning engines to understand, vali-
date, and apply ontologies developed using ODM. ODM includes a set of metamodels
which are grouped logically together according to the nature of the representation for-
malism that each represents; ODM comprises metamodels for RDF(S), OWL, Common
Logic (CL), Topic Maps (TM), and as a non normative part Description Logic (DL).
Metamodels for RDF(S) and OWL represent more structural or descriptive representa-
tions that are commonly used in the Semantic Web community. ODM further defines
transformations between the UML 2 metamodel and different metamodels defined in
ODM (e.g. OWL and RDF(S)).

According to [37], the notion of a metamodel is strongly related to the notion of on-
tology, since a metamodel is a formal specification of an abstraction, usually consensual
and normative. Atkinson and Kühne [17] provide a framework that clarifies further the
relationship between metamodel and ontologies. They distinguish between the orthogo-
nal dimensions of linguistic instanceOf relationships, as they are used in e.g. a four-level
metamodelling hierarchy, and ontological instanceOf relationships, which are used e.g.
for the definition of the user’s domain.

2.4.2 Ontology

In the field of computer science, ontologies have attracted more and more attention dur-
ing the last years. The word "Ontology" comes from the Greek ontos, for "being", and
logos, for "word". In Philosophy, ontology is concerned with the fundamental questions
of what exists. Computer scientists use this idea to enable automated knowledge sharing
by the use of ontologies.

Gruber [118] defines an ontology as an "explicit specification of conceptualization".
He aims to improve the knowledge exchange between different software systems. If
the knowledge base of an intelligent system is to represent (parts of) the world for some
purpose, then it must be committed to some conceptualization. Conceptualization stands
for an abstract, simplified, view of the world, i.e. a model. An ontology is an explicit and
formal description of this model and conceptualization, respectively. Certain concepts of
the real world (the "universe of discourse") are linked with formal elements like classes,
relations or functions. The formal representation also implies that an ontology should be
machine-readable (for more information see [105]).

According to [207] an ontology differs from existing methods and technologies in the
following way: (i) the primary goal of ontologies is to enable agreement on the meaning
of specific vocabulary terms and, thus, to facilitate information integration across indi-
vidual languages; (ii) ontologies are formalized in logic-based representation languages.
Their semantic are thus specified in an unambiguous way. (iii) The representation lan-
guages come with executable calculi enabling querying and reasoning at run time.

Gruber describes criteria [118, p.2ff], which ’good’ ontology should meet. First of

28 Basics

all an ontology should communicate the meaning of the defined terms effectively and
thus provide clarity. The defining axioms should be logically consistent and, hence,
contain no contradictions (coherence). Due to the frequent modification in knowledge
systems, extensibility is a crucial feature. For compatibility issues, a minimal encoding
bias is essential. Specific encoding of a value (e.g. a number as float or decimal with a
certain number of digits) should not lead to a "biased" representation of knowledge. An
ontology should make as few claims about the world as possible, i.e. a minimal ontolog-
ical commitment is desirable. Finally, suitability for the specific field of application is an
important issue for ontology design.

There exist a number of terms that are used to classify ontologies according to their
usage (for more information see [207]). Application ontologies contain the definitions
specific to a particular application [119], while reference ontologies refer to ontological
theories whose focus is to clarify the intended meaning of terms used in specific domains.
Leightweight ontologies only consist of concepts and their relations, while heavyweight
ontologies contain many axioms, additional conditions and restrictions to allow auto-
mated checking. Another classification refers to the specificity [120]: Generic or top-
level ontologies define very basic facts like states, processes or components, whereas
domain ontologies and application ontologies contain conceptualizations, that are con-
fined to a certain universe of discourse [119]. In the intermediate range core ontologies,
which refer to several domains. The terms upper ontology or foundation ontology both
have the same characteristics as top-level ontologies. [47] provides two more classifi-
cation criteria for ontological analysis: Descriptive ontologies are based on the human
perception of the world, even if it is not fully scientific and correct. Revisionary on-
tologies tend to avoid ambiguous concepts or unscientific use of language. Of course,
they are less intuitively understandable. A further distinction can be made between mul-
tiplicative and reductionist ontologies: Multiplicative ontologies allow overlapping of
several entities, i.e. light can be classified as wave and as particle, which induces a big-
ger number of basic concepts. Reductionist ontologies dissolve such contradictions by
introducing different concepts and allow only one object for each point in the space time
continuum.

Ontologies for Interoperability Solutions Ontologies are considered a key element
for semantic interoperability and act as shared vocabularies for describing the relevant
notions of a certain application area, whose semantics is specified in a (reasonably)
unambiguous and machine-processable form [47].

The Interoperability Development for Enterprise Application and Software (IDEAS)
network stated in its vision for 2010 [132] requirements to enable enterprises to seam-
lessly interoperate with others. According to this, it is necessary to integrate and adapt
ontologies in architectures and infrastructures to the layers of enterprise architecture and
to operational models. As enterprises often apply different methodologies, they need to
share their enterprise models and knowledge independent of languages and tools. There-
fore, one needs to develop mappings between different existing enterprise modelling
formalisms based on an enterprise modelling ontology as well as tools and services for
translating models (IDEAS analysis - gap 12 [131]).

[83] proposes a rather abstract interoperability framework for MDSD of software
systems, which supports the business interoperability needs of an enterprise. Mutual
understanding on all levels of integration, conceptual, technical, and applicative level,
has to be achieved. One uses the conceptual reference model to address model interop-

2.4 Semantic Technologies and Technological Spaces 29

erability, whereas metamodels and ontologies are used to define model transformations
and model mappings between the different views of an enterprise system.

Computational Independent
Model (CIM)

Semantic
Annotation

Platform Independent
Model (PIM)

Semantic
Annotation

Platform Specific
Model (PSM)

Semantic
Annotation

Execution Platform A

Model Driven Architecture (MDA) &
Architecture-Driven Modernization (ADM)

Computational System A

MT

Model Driven Architecture (MDA) &
Architecture-Driven Modernization (ADM)MTOntologies

Reference
Ontology

Enterprise System A

Computational Independent
Model (CIM)

Semantic
Annotation

Platform Independent
Model (PIM)

Semantic
Annotation

Platform Specific
Model (PSM)

Semantic
Annotation

Execution Platform B

Model Driven Architecture (MDA) &
Architecture-Driven Modernization (ADM)

Computational System B

MT

Model Driven Architecture (MDA) &
Architecture-Driven Modernization (ADM)MTOntologies

Enterprise System B

Figure 2.12: Reference model for conceptual integration

In the reference model for conceptual integration (see Figure 2.12) the models at
the various abstraction levels (CIM, PIM, and PSM) are semantically annotated using
ontologies. This helps to achieve a mutual understanding on all abstraction levels. MDA
and the ADM [239] are top-down and bottom-up approaches to software development
and integration. The use of a reference ontology aids to perform model transformations
and mappings between and across the three model levels. [83] also proposes the usage
of interoperability patterns for horizontal and vertical integration.

2.4.3 Syntax, Semantics, and Ontology

The notion of the term semantics differs in the context it is used and by the people using
it. As the root of the problem Harel and Rumpe [124] identify insufficient regard for the
crucial distinction between syntax and true semantics. Thus we clarify a few terms that
have particular significance to this thesis.

• Syntax: Syntax NL is the notation of a language L. A distinction is made between
the concrete syntax, the textual or graphical representation of the language, and
an abstract syntax or metamodel, being the machine’s internal representation. A
metamodel is a way to describe a language’s syntax [124].

• Semantic: Semantic is the meaning of language, which is expressed by relating
the syntax to a semantic domain. The description of a semantic domain S (its
notation is NS) can vary from plain English to mathematics. Semantics is defined
by a semantic mapping M : L Ñ S from the language’s syntax to its semantic
domain [124, 327].

• Ontological: According to [230] an ontology defines the common terms and con-
cepts (meaning) used to describe and represent and area of knowledge. Talking
about ’ontological’ we mean technology of the Ontology TS, i.e. technology based
on logics like RDF(S) or OWL used by the semantic web community to describe

30 Basics

e.g. vocabularies or ontologies. Instead of semantic web enabled we also use the
term semantic-enabled as synonym in this thesis.

2.5 Summary

In this chapter we have introduced technologies that are further important in this thesis.
The concepts and definitions presented for service-orientation, process modelling, pro-
cess execution, semantic technologies, and Technological Spaces build a foundation on
the basis of which we develop our solutions. It is also important to understand the ar-
chitecture evaluation and the decision methods described in Section 2.3, since we apply
a combination of these methods to the new application area of ICT architecture evalua-
tion. In the next section we introduce the basics of MDSD which is the main topic of
this thesis.

Chapter 3

Model Driven Software
Development

In software engineering one can currently observe a paradigm shift from object-orienta-
tion towards models, that may have important consequences on the way information sys-
tems are built and maintained [37]. J. Greenfield and K. Short write in [115, p.1]: "The
software industry remains reliant on the craftsmanship of skilled individuals engaged
in labor intensive manual tasks. However, growing pressure to reduce cost and time to
market and to improve software quality may catalyze a transition to more automated
methods. We look at how the software industry may be industrialized, and we describe
technologies that might be used to support this vision. We suggest that the current soft-
ware development paradigm, based on object orientation, may have reached the point of
exhaustion, and we propose a model for its successor." This new global trend is called
Model Driven Engineering (MDE). Model Driven Software Development (MDSD)
[278], which is sometimes also called Model Driven Software Engineering (MDSE), is
the intersection between MDE and software engineering, i.e. it is subset of MDE which
is concerned with software production [94].

MDSD is an approach to software development based on modelling and automated
transformation of models to implementations [99]. Higher-level models are transformed
to more detailed lower-level models. MDSD solutions consist of an arbitrary number of
such transformations. Each model may require some human refinement. Finally, code
is generated from lower-level models. In MDSD models are more than abstract descrip-
tions of systems, as they are used for model and code generation – they are the key part
of the definition of a software system. Largely automated model transformations refine
abstract models to more concrete models (vertical model transformations1) or simply
describe mappings between models of the same level of abstraction (horizontal model
transformations). As model transformations play a key role in MDSD, it is important
that transformations can be developed as efficiently as possible [103]. With the MOF
2.0 Query, Views, and Transformation (QVT) specification [233] the OMG provides
a standard syntax and execution semantics for transformations used in a MDSD tools
chain.

This chapter describes the current state of the art in MDSD and sets the context of

1In the case of vertical model transformation knowledge of platforms is encoded into transformations
or provided by separate platform models, reused for many systems rather than re-designed for each new
system.

32 Model Driven Software Development

this thesis. Section 3.1 describes how software development can benefit from MDE. It
introduces approaches, tools, initiatives, and projects that realize MDSD. Section 3.2
and 3.3 provide more details about the key concepts of MDSD. They explain concepts
and technologies used to realize and implement models and model transformations.

3.1 MDE Approaches to Software Development

The MDE approach pursues multiple objectives: Apply models and model technolo-
gies to raise the level of abstraction at which developers create and evolve software
[116, 122]; use models as primary artifacts, not just as sketches or blueprints, from
which efficient implementations are generated [104]; reduce complexity of software ar-
tifacts by separating concerns and aspects of a system under development [37, 122];
domain-oriented models expressed with domain-specific languages are the primary fo-
cus when developing new software components [37, 104]; use transformation engines
and generators to generate code and other target domain artifacts with input from both
modelling experts and domain experts [104, 262].

The ideas behind MDE are not totally new. Since the beginning of the computing
discipline, software researchers and developers have been creating abstractions both of
language and platform technologies. One well-know effort is Computer-aided Software
Engineering (CASE), which focused on developing software methods and tools that en-
abled developers to express their designs in terms of general purpose graphical program-
ming representations. Except a few domains like telecom call processing, CASE was
not widely adopted in practice and had very little impact on commercial software de-
velopment [262]. One reason was that abstractions provided by CASE focused on the
solution space, i.e. they were computing-oriented, rather than on the problem space by
expressing designs in terms of concepts in application domains. According to Booch et
al. [46], to bridge the semantic gap between domain-specific concepts encountered in
modern software applications and standard programming technologies is the greater and
more important challenge. Furthermore, CASE tools also did not support many applica-
tion domains effectively because their ’one-size-fits-all’ graphical representations were
too generic and non customizable.

Having learned lessons from CASE tools in the 1980s, MDE today combines do-
main specific languages with transformation engines and generators [262]. Currently
there are a variety of approaches and standards which realize MDE like Model Driven
Architecture (MDA) [227], Software Factories [116], Agile Model-Driven Development
[9], Domain-Oriented Programming [287], or Model Integrated Computing (MIC) [284].
In the following, we present with MDA and Software Factories the two most prominent
representatives. We have a detailed look at the MDA approach, since its tool chain based
on MOF is of particular importance in this thesis.

3.1.1 MDA

Model Driven Development (MDD) and Model Driven Architecture (MDA) [208] are
both trademarks of the OMG. MDD can be described as an approach to build systems
using models. MDD solutions start with a formalized description of the problem in terms
of the problem domain and apply transformations, which lead a model that specifies the
solution in terms of the solution domain [217]. MDA is a specific MDD deployment
effort around a set of OMG standards like MOF, XMI, UML, CWM, QVT, SPEM, etc.

3.1 MDE Approaches to Software Development 33

OMG’s initial definitions of MDA [158, 212] described MDA as an approach build-
ing on a set of distinctive artifacts: Computation Independent Models (CIMs), Platform
Independent Models (PIMs), Platform Models (PMs), Platform Specific Models (PSMs),
and code. Most current MDA-based solutions make use of the following three models
(see [213, 283]):

• A Computation Independent Model is a view of a system from the computation
independent viewpoint. A CIM describes the requirements for a system and the
business context in which the system will be used. It specifies what a system will
be used for, and does not show details of the structure of the system or how it
is implemented. The CIM plays an important role in bridging the gap between
the experts of the domain and its requirements, and the experts of the design and
construction of the artifacts that together satisfy the domain requirements. It uses a
vocabulary that is familiar to the practitioners of the domain and is often expressed
in a business or domain specific language.

• A Platform Independent Model is a view of a system from the platform indepen-
dent viewpoint. It describes how a system is constructed, but without reference to
the technologies used to implement the model. A PIM exhibits a specified degree
of platform independence and may be implemented by one platform rather than
another, or it may be suitable for implementation on many platforms.

• A Platform Specific Model is a view of a system from the platform specific view-
point. It is a model of a solution from a particular platform perspective. It includes
both the details from the PIM that describe how the CIM can be implemented, and
the details describing how the implementation is realized on a specific platform.

MDA mappings provide specifications that transform PIMs into PSMs for particu-
lar platforms, where the PMs determine the nature of the mappings [212, p.3-2]. The
MDA specification [227] gives examples for a variety of platforms like object, batch,
dataflow, and embedded for generic platforms or AJAX, CORBA, J2EE, and Spring for
technology specific platforms. Finally, code is generated from the PSM in the MDA tool
chain.

In MDA models and modelling languages should be described by the means of UML,
Meta Object Facility (MOF), and UML profiles. The narrow focus on distinctive model
types and modelling languages led to a lot of debates and criticism on MDA [61, 94, 121,
114]. Thus, OMG’s current official statement about MDA [216], which was approved in
June 2004, was put on a broader basis. It says:

MDA is an OMG initiative that proposes to define a set of non-proprietary standards
that will specify interoperable technologies with which to realize model-driven develop-
ment with automated transformations. Not all of these technologies will directly concern
the transformations involved in MDA.

MDA does not necessarily rely on the UML, but, as a specialized kind of MDD
(Model Driven Development), MDA necessarily involves the use of model(s) in develop-
ment, which entails that at least one modelling language must be used. Any modelling
language used in MDA must be described in terms of the MOF language, to enable the
metadata to be understood in a standard manner, which is a precondition for any ability
to perform automated transformations.

The current definition of MDA includes the development and use of arbitrary do-
main specific languages beneath UML. Modelling languages must be described in terms

34 Model Driven Software Development

of MOF, which is OMG’s standard language to define metadata. This ensures inter-
operability to exchange models and metamodels between MDA tools and the ability to
perform automated transformations. The OMG recognizes also the fact that "there are
no magic buttons" [114, p.5] and still design decisions must be made. It considers a
mixture of manual and automatic transformation [227].

Such a definition of MDA indeed fits very well the IBM view on MDA described by
Booch et al. [46]. They explain the three basic and complementary tenets of MDA to be
direct representation, automation and standards (see Figure 3.1 [46]).

Figure 3.1: Tenets of MDA

• Direct representation stands for modelling with languages that map their concepts
to domain concepts rather than computer technology concepts. This allows a more
direct coupling of solutions to problems, leading to more accurate designs and
increased productivity.

• Automation aims to increase speed and reduce errors in software development
by the automated transformation of domain-specific models into implementation
code. Generation tools exploit the domain and technology choices modelled in
frameworks and the knowledge built into particular application frameworks.

• Standards encourage the emergence of an entire ecosystem of tool vendors ad-
dressing many different needs. Open source development ensures that standards
are implemented consistently and encourages the adoption of standards by ven-
dors.

Summing up, MDA approaches build models that directly represent domain con-
cepts. DSLs may either be built on top of general languages such as UML or on the
metamodelling framework MOF. By using frameworks that explicitly model assump-
tions about the application domain and the implementation environment, automated tools
can transform models into implementations. [46]

3.1 MDE Approaches to Software Development 35

3.1.2 Software Factories

Software factories are an initiative from Microsoft2 towards MDE. They promote the
use of DSLs, which are software development languages that have been developed for
particular problem domains.

"A software factory is a software product line that configures extensible tools, pro-
cesses, and content using a software factory template based on a software factory schema
to automate the development and maintenance of variants of an archetypical product by
adapting, assembling, and configuring framework-based components." [116]

Software factory schemas define viewpoints, i.e. the kinds of models and the tools
used to build them, and computable relationships between viewpoints. Viewpoints de-
scribe the artifacts that must be developed to produce a software; these are DSLs used
to build artifacts, refactorings that can improve artifacts, or mappings that support trans-
formations between artifacts. Software factory templates implement software factory
schemas by defining the DSLs, patterns, frameworks, and tools the software factory
schemas describe, packaging them, and making them available to product developers.

Like MDA the software factory approach advocates the direct representation and
the automation paradigm by working with application domain concepts and introducing
automation into the software life cycle. Both approaches emphasize the importance of
visual modelling and capturing expertise through patterns. The main difference between
MDA and the software factory approach is the emphasis that is put on open standards,
particularly UML and MOF [104].

3.1.3 Benefits of Model Driven Engineering

When applying MDE, i.e. the MDA, the software factory, or any other approach, it is
crucial to use only those abstractions (models), transformations, frameworks, and tools
that are appropriate for the problem and the solution domain. Abstractions and transfor-
mations should justify the effort that is necessary to realize them in MDE applications by
yielding significant added value for the achievement of the overall objectives. Respect-
ing these aspects, MDE has the potential to greatly improve current mainstream software
development practices. The following list, which based on [283], gives an overview of
benefits of MDE.

• Increased productivity: MDE reduces the costs of software development by gen-
erating code and artifacts from models, which increases developer productivity.

• Maintainability: MDE facilitates maintainable architectures where changes are
made rapidly and consistently, enabling more efficient migration of components
onto new technologies. This makes it easier to handle changes in the underlying
platform technology and its technical architecture.

• Reuse of legacy: Reverse transformations and engineering allows to derive mod-
els from components implemented on legacy platforms. These components are
brought to a higher level of abstraction. Then one has the option of migrating
the components to a new platform or generating wrappers to enable the legacy
component to be accessed via integration technologies.

2http://www.microsoft.com

http://www.microsoft.com

36 Model Driven Software Development

• Adaptability: Adaptability is a key requirement for businesses, and IT systems
need to be able to support it. When using a MDE approach, adding or modifying
a functionality is quite straight forward since the investment in automation was
already made.

• Consistency: Applying manually coding practices and architectural decisions is
an error prone activity. MDE ensures that artifacts are generated consistently.

• Repeatability: The return on investment of MDE from developing the transfor-
mations increases each time they are reused. The use of tested transformations
increases the predictability of developing new functions and reduces the risk since
the architectural and technical issues were already resolved.

• Improved stakeholder communication: Models omit implementation detail that is
not relevant to understand the logical behaviour of a system. Models are therefore
much closer to the problem domain, reducing the semantic gap between the con-
cepts that are understood by stakeholders and the language in which the solution
is expressed.

• Improved design communication: Models facilitate understanding and reasoning
about systems at the design level. This leads to improved discussion and commu-
nication about a system.

• Expertise capture: Projects or organisations often depend on the knowledge of ex-
perts who repeatedly make best practice decisions. The knowledge of an organisa-
tion is maintained in models when experts leave the organisation. The application
of best practices in general improves the quality of solutions.

• Models as long-term assets: In MDE, models are important assets that capture
what the IT systems of an organisation do. High-level models are resilient to
changes at the state-of-the-art platform level. They change only when business
requirements change.

• Ability to delay technology decisions: In the MDE approach, early application
development is focused on modelling activities. The choice of a specific technol-
ogy platform or product version can be delayed until a later point when further
information is available.

However, there exist several obstacles to realize these benefits of MDE. There is a
lack of proven solutions and reusable MDE assets for most application domains. Still,
model transformations that bridge the gap between domain-specific concepts and soft-
ware applications have to be developed for various application domains. Further, there
is little support by frameworks and tools that help to reuse models and model transfor-
mations. Without appropriate support MDSD is difficult to adopt. However, with the use
of DSLs and the constant evolution of models and modelling languages there arise in-
teroperability problems that have to be dealt with. Further open research issues in MDE
can be found in [37, p.184ff].

3.1.4 MDE Tool Suites and Initiatives

Today, there exist a range of MDE tool suites and initiatives that aim to support soft-
ware development with MDE tools. Commercial tools suites like the Rational Software

3.1 MDE Approaches to Software Development 37

Architect [127, 283] from IBM3, Innovator [187] from MID, or MagicDraw [173] from
No Magic4 support UML modelling and some model transformations for MDA. For a
more complete and current list of companies that support MDA see the OMG website5.
Other commercial MDE products like the Visual Studio DSL Tools [186] from Microsoft
or MetaEdit+ [185] from MetaCase6 focus more on domain-specific modelling and the
software factory approach.

In addition to commercial products there exist various open source approaches and
projects dedicated to MDSD. The Eclipse Generative Modeling Tools (GMT) project
[78] provides a set of research tools illustrating operations applicable to abstract mod-
els. Those tools range from code generation (openArchitectureWare (oAW) [81, 206],
MOFScript [196]) over model transformation and weaving Atlas ModelWeaver (AMW)
[74] to model management ATLAS MegaModel Management (AM3) [73]. The Eclipse
Model Driven Development integration (MDDi) project [80] is dedicated to offer a plat-
form with the integration facilities needed for applying a MDE approach. It provides
the ability to integrate modelling tools to create a customizable MDE environment.
The Generic Modeling Environment (GME) [133] is a configurable toolkit for creat-
ing domain-specific modelling and program synthesis environments. The configuration
is accomplished through metamodels representing the modelling languages of the appli-
cation domains. GME is based on the MIC approach and realizes a four-level metamod-
elling hierarchy (see Section 3.2.2).

In the last years the European Commission has launched various research projects,
which reside in the area of MDE. The MODELWARE project [195] was the biggest Eu-
ropean research project solely dedicated to MDE. Its goal was to develop the complete
infrastructure required for large scale deployment of MDE strategies to ensure the suc-
cessful adoption of MDE solutions by industry. The MODELPLEX project [194] is the
official follow-up of the MODELWARE project. Its goals are to develop an open solu-
tion for complex systems engineering built on MDE improving quality and productivity,
and to ensure its successful adoption of the solution by the industry. MDE for software
development was applied to specific application domains in a variety of projects: In the
ATHENA IP project [15] MDSD was applied for cross-organisational development and
the enactment and execution of business processes. The SECSE project [264] focuses on
cost-effective development and usage of services. It applies MDE techniques to service
development and service centric systems engineering. The AMPLE project [10] sup-
ports SPL based software development through a combination of AOSD and MDE. The
AGILE project [3] applies MDE techniques to the domain of embedded systems. Other
projects like the SERIOUS project [268] and the MOMOCS project [197] focus on the
methodological aspect. They study and develop methodologies which apply MDE tech-
niques to various application domains. There are multiple other projects in the field of
MDE, which are funded by national institutes, like the ModelCVS project [193] or the
AgilPro project [4]. The Networked European Software and Services Initiative (NESSI)
[201] is a European Technology Platform (ETP) with the objective of defining medium
to long-term research and technological objectives. NESSI aims at shaping a vision and
building an ecosystem that together enable the emergence of a service-oriented economy
in Europe. At the core of the NESSI vision is the provision of new approaches enabling

3http://www.ibm.com
4http://www.nomagic.com
5http://www.omg.org/mda/committed-products.htm
6http://www.metacase.com

http://www.ibm.com
http://www.nomagic.com
http://www.omg.org/mda/committed-products.htm
http://www.metacase.com

38 Model Driven Software Development

the transformation of the European economy through service oriented business models
[86]. In this thesis we will mention and describe the relevant projects when necessary.

3.2 Models

In his work The Nature of Modeling [255] J. Rothenberg gives the following definition
of modelling:

"Modeling, in the broadest sense, is the cost-effective use of something
in place of something else for some cognitive purpose. It allows us to use
something that is simpler, safer or cheaper than reality instead of reality for
some purpose. A model represents reality for the given purpose; the model
is an abstraction of reality in the sense that it cannot represent all aspects
of reality. This allows us to deal with the world in a simplified manner,
avoiding the complexity, danger and irreversibility of reality."

The most important ideas of this statements towards software development are that
models are a copy with probably smaller scale than the software ("something in place of
something else") and that models are a simplified version of the software ("deal with the
world in a simplified manner").

When entering the MDE world, one is confronted with terms like model, modelling
language, metamodel, metametamodel, and various other kinds of models. Moreover,
many definitions vary according to the purpose they are used for. Seidewitz [265] defines
a model as a set of statements about some system under study (SUS). The UML standard
[238] defines a model as an abstraction of a physical system, with a certain purpose.
Kleppe, Warmer, and Bast give in [158] a more restrictive definition of models in the
context of MDA: "A model is a description of (part of) a system written in a well-defined
language". The MOF standard defines the notion of a metamodel as follows: "A meta-
model is a model that defines the language for expressing a model" [210, glossary p.10].
Seidewitz [265] defines "a metamodel as a specification model for a class of SUS where
each SUS in the class is itself a valid model expressed in a certain modelling language".

Section 3.2.1 provides definitions for the concepts used in MDE by the means of
a megamodel. Sections 3.2.2–3.2.5 describe various aspects of models like concepts
to realize modelling tools, modelling languages, model types, and usage scenarios of
models.

3.2.1 MegaModel for MDE

A megamodel is "a model whose elements represent models, metamodels and other
global entities" [36]. A megamodel is used to define the set of entities and relations that
are necessary to model some aspect about MDE. The megamodel presented in [93, 94]
provides a terminology and specification of the concepts use in MDE that will be used
throughout this thesis.

In this megamodel the system is the central element when talking about MDE. The
megamodel distinguishes further between three kinds of systems: physical systems (PS)
are observable elements or phenomenons pertaining to the physical world, digital sys-
tems (DS) are those systems that reside in computer memories and are processed by
computers, and abstract systems (AS) are ideas and concepts that eventually reside in
human mind to be processed by human brains.

3.2 Models 39

Figure 3.2: Megamodel: system, model, and representationOf

[41] defines a model as a simplification of a system built with an intended goal in
mind. The model should be able to answer questions in place of the actual system. In
short a model is representationOf a system. Figure 3.2 depicts these elements and the
representationOf relationship [94].

Dealing with more and more systems or models leads to the abstract concept of set.
The term set refers here to the mathematical concept of the set theory. The relation
between the elements of a set and the set will be called elementOf in our MegaModel
(see Figure 3.3 [93]).

Figure 3.3: Megamodel: set and elementOf

A modelling language is a set of models, and models are elements of a modelling
language. Models conform to a model of the modelling language, i.e. a metamodel.
Those metamodels can be used to validate models. For one modelling language multiple
(meta)models can exist, which can differ in the language they are described in. Figure 3.4
summarizes the basic concepts in the metamodelling context.

For example the English dictionary is a physical model of the English language. If
one writes an English text, i.e. a model in the English language, the dictionary can be
used to check whether the words in the text exist in the English language. However, there
may be words of the English language that are not in the dictionary, i.e. represented in
the metamodel. To check the grammar of the English text one would have to use another
metamodel, for example an English grammer book.

representationOf

representationOf

elementOf

/conformsTo

Figure 3.4: Modelling languages, metamodels, models and their relationships

40 Model Driven Software Development

3.2.2 Metamodelling Hierarchy

The MDA Guide defines in its glossary metamodel as "a model of models" [213, p.A-2].
Since a metamodel itself is a model, "this structure can be applied recursively many
times so that we get a possibly infinite number of meta-layers; what is a metamodel in
one case can be a model in another case, and this is what happens with UML and MOF.
(...) MOF is commonly referred to as a metametamodel, even though strictly speaking it
is a metamodel" [237, p.16].

The OMG promotes a four-level architecture, which Bézivin [37] more precisely
calls a 3+1 architecture (see Figure 3.5). At the bottom level, the M0 layer is the real
world system. A model represents this system at level M1. At level M2 metamodels are
used to define modelling languages. A model of level M1 conforms to its metamodel
defined at level M2. A metamodel itself conforms to the metametamodel at level M3.
The metametamodel conforms to itself.

representedBy

conformsTo

conformsTo

conformsTo

MOF

UML IDL

UML
model

IDL
model

Figure 3.5: The 3+1 metamodelling hierarchy

This metamodelling hierarchy has proved to be extremely valuable in the implemen-
tation software engineering and modelling tools. Though many tools have been built to
support the Unified Modeling Language (UML) [237, 238], its metamodel, and graphical
representation, the real power of the metamodelling hierarchy comes from the existence
of level M3 [37]. The existence of the Meta Object Facility (MOF) [228] in MDA at
level M3 allows building tools for standardized metamodels like the Common Ware-
house Metamodel (CWM) [209], Software Process Engineering Metamodel (SPEM)
[223], Enterprise Distributed Object Computing (EDOC) [220], Ontology Definition
Metamodel (ODM) [234], etc. Further it allows building coordination between mod-
els, based on different metamodels. Examples are the coordination of models though
model transformation based on the QVT standard or model exchange based on the XML
Metadata Interchange (XMI) standard [221].

A very popular implementation of the described metamodelling hierarchy is the
Eclipse Modeling Framework (EMF) [75]. EMF is an implementation of the a Essential

3.2 Models 41

MOF (EMOF) standard, which is the object-oriented subset of MOF, and is a basis for
a various (meta)modelling tools that are based on the Eclipse platform. Another imple-
mentation of the MOF standard is the Metadata Repository (MDR) [202, 178], which is
integrated in the NetBeans Tools Platform. The Kernel MetaMetaModel (KM3) [144] is
a DSL for describing metamodels which provides an easy to use textual concrete syntax
[18]. The KM3 metamodel is also based on EMOF.

There are further MDE metamodelling environments that do not use MOF or ex-
tend MOF as their metametamodel, but are also built on the 3+1 metamodelling hier-
archy. The KerMeta [135, 97] language extends MOF with the possibility to specify
static and dynamic semantics for metamodels. Other examples are the Generic Model-
ing Environment (GME) [133, 164], the MetaEdit+ tool [185], or the Visual Studio DSL
Tools [186] from Microsoft (a preliminary version of the metametamodel can be found
in [42]).

3.2.3 UML vs. Domain Specific Languages

The basic use of metamodels and modelling languages is that they facilitate the separa-
tion of concerns. When dealing with a given system, one may observe and work with
different models of the same system, each one characterized by a given metamodel [37].

MDA treats the UML, which is a general-purpose modelling language for software-
intensive systems, as the modelling language of choice for most application modelling,
but also provides two possibilities to use Domain Specific Languages (DSLs). A DSL is
a modelling language that is designed to express the requirements and solutions of a par-
ticular business or architectural domain. The alternative that is commonly recommended
to realize DSLs is to use the UML profile mechanism [237], which allows UML to be
constrained and customized for specific domains and platforms. The MDA approach
also acknowledges the value of non-UML DSLs as a necessary technique and provides
the MOF to specify metamodels for DSLs.

In contrast, the software factory approach (see Section 3.1.2) suggests to use UML
only for developing sketches, documentation, and conceptual drawings that do not di-
rectly relate to code. Non-UML DSLs should be used for developing precise abstractions
from which code is generated, mappings between DSLs, and conceptual drawings that
have precisely specifiable mappings to other DSLs or to code artifacts [62].

However, decisions of whether to use UML or a DSL are too complex to reduce them
to how precise a model is. Based on [283] we present a list of arguments that illustrate
further advantages and disadvantages of using UML. Advantages of UML are:

• UML is an open standard modelling language with many available books and
training courses. UML is a recognized and transferable skill for software devel-
opers.

• UML profiles provide a lightweight approach that is easily implemented using
readily available UML tooling. In the future, it may be possible to generate tooling
for DSLs, but some customization is still likely to be needed.

• Models with UML profiles applied can be read by all UML tools, even if they
don’t have any knowledge of the profile.

• Basing all DSLs on UML creates a set of related languages that share common
concepts. This makes new profiles more readily understandable and enables mod-

42 Model Driven Software Development

els expressed by different DSLs to be integrated easily. Having a set of models
expressed using different DSLs replicates the middleware integration problem at
the modelling level.

• UML can be used for both, high-level architectural models and detailed models
from which code can be generated. It provides consistency throughout the soft-
ware life cycle, enabling users to move seamlessly from modelling-in-the-large to
modelling-in-the-small.

There are also arguments to use DSLs as they are languages designed for specific
usage purposes and application domains, context, and user groups, instead of UML and
UML profiles.

• DSLs are adjusted to specific user groups, application domains, and usage context.
Thus, for users it is easier to model since the language (exactly) provides the
concepts they need for modelling and they have less possibilities for modelling
the same thing. UML profiles only permit a limited amount of customization. It
is not possible to introduce new modelling concepts that cannot be expressed by
extending existing UML elements.

• In DSLs the semantics of the modelling language is better understandable to the
users of the application domain. It is easier for people to interpret models right or
in the same way.

• The scope of domain specific modelling languages is customized to its application
domain and use; the user will be guided by the modelling language towards cer-
tain types of solutions. The use of UML does require familiarity with modelling
concepts.

• Large monolithic metamodels like UML 2.x have some limitations regarding their
usage because of their complexity. Most of UML usages only rely on a small
subset of the entire metamodel. Since any well designed process should provide
a precise characterization of these subsets, it is necessary to restrict the usage of
UML with UML profiles. In general is much more difficult to work by restriction
than by extension (developing new DSLs) [37]. This also fosters the possibili-
ties of automating code generation, since code generation does have to take into
account less modelling and interpretation possibilities.

3.2.4 Types of Models

After describing the concepts of modelling and presenting standards and implementa-
tions of those concepts, very few has been said about the actual usage of the models. To
understand MDE, one has to know more about the intents and purposes models are build
for. Based on [94] we introduce a set of terms that help to differentiate these aspects of
models.

The terms specification model and descriptive model [265] distinguish models on
the basis of the purpose they are used for. Specification models are used to specify sys-
tems that are built; descriptive models are used to describe existing systems. Another
distinction that is based on the usage of models is sketchy models, blueprint models, and
executable models. A sketchy model is not precise or complete. The purpose of such

3.2 Models 43

models is typically to try out an idea when the model is a specification or to simplify
communication and understanding when the model is descriptive. Blueprint models
are more precise and can be used as specifications to build a systems. Normally they
describe only some aspect of these systems. Executable Models contain enough infor-
mation to be directly interpreted by a processor or to derive an executable system. The
Executable UML approach [180] is one representative that uses executable models.

In MDE various models at various abstraction levels are used to develop systems. As
described in Section 3.1.1, MDA distinguishes between computation independent mod-
els, platform independent models, and platform specific models. A similar distinction to
specify models at different abstraction levels are conceptual models, specification mod-
els, and implementation models. This kind of classification emphasises the fact that each
kind of models can be described using the same modelling language.

Another distinction between models is the difference between product models and
process models. Product models are used to specify software artifacts; process models
describe the process of software development. For example, the OMG provides with
UML a software product metamodel, while Software Process Engineering Metamodel
(SPEM) [223] is a metamodel to describe software development processes [37]. One
can further distinguish between static and behavioural models. In general semantics
specification, checking, verification, code generation, etc. is far easier for static models.
Hence, there exist already a variety of practical solutions for static models. In the field
of behavioural models these tasks get more complicated. Up to now there is few support
for behavioural models except for state machines.

Bézivin postulates in his article "The unification power of model" [37] that "every-
thing is a model". To complete this section about models, we provide an non-exclusive
list of concepts and artifacts related to the information technology domain which can be
seen as models.

• Programs as models. Programs are expressed in a programming language. If
one makes explicit the correspondence between a grammar and a metamodel, pro-
grams can be converted into equivalent MDA-models. For example, MDA models
can be converted into Java programs or XML documents. The challenge is to be
able to implement agile bridging between these different TSs.

• Traces as models. A trace is a model of the dynamic execution of a program. It
expresses the specific events traced (object creation, process activations, method
calls, exception events, etc.) during program execution.

• Platforms as models. In order to generate Platform Specific Models (PSMs) from
Platform Independent Models (PIMs) with sufficient automation, precise models
of the targeted platforms, i.e. Platform Models (PMs), are necessary.

• Legacy as models. To integrate applications and functionality developed for plat-
forms of the past into today’s and future platforms, MDE-models have to be ex-
tracted from legacy systems. In service-oriented environments one can concen-
trate on extracting interfaces and protocol specifications by regarding the legacy
application as a black box. However, the extraction of MDE models from legacy
systems is a great challenge, especially when also complex behaviour has to ex-
tracted.

44 Model Driven Software Development

• Transformations as models. Model transformations are a kind of metaprogram-
ming, which allow building coordination between models based on different meta-
models. Languages to specify model transformation are implemented as DSLs,
like the QVT standard in MOF, so that model transformations themselves are
models.

• Verification as models. Many operations on models may be seen as special cases
of transformations. A refactoring, an improvement, or a verification could be
viewed as regular operations on models. To enable verification, the semantics of
metamodels has to be rigorously like it is done in the UML 2 Semantics Project
[292] for UML.

Other forms of models are processes, systems, metamodels, model-elements, mea-
sures, tests, aspects, or patterns [36].

3.2.5 Models as Assets of Organisations

Organisations which develop and use ICT systems to support their business face chal-
lenges like to bridge the semantic gab between the problem space (business require-
ments) and the solution space (ICT systems) [46], an increase in the complexity of ICT
infrastructures and solutions, applications that may be difficult to use, and continued
pressure to achieve tight time-to-market timelines [162]. MDE is an approach to address
these problems by using models. Models can embody critical solutions and insights and
thus can be seen as assets for an organisation.

Larsen [162] describes an asset as "a collection of artifacts that provides a solution
to a problem. The asset has instructions on how it should be used and is reusable in one
or more contexts, such as a development or a runtime context. The asset may also be
extended and customized through variability points.".

The main intend behind treating models as assets is to reuse the knowledge and so-
lutions captured in models and transformations (which are also models in MDE). This
requires the ability to discover, understand, and customize models for the relevant con-
text in a timely manner. If it takes an organisation longer than what seems reasonable,
the organisation will search elsewhere or stop search and re-create the content them-
selves [162]. The benefits of treating models as assets in MDE are realized through
cost reduction, time-to-market reductions, and quality improvements. This is achieved
not only through automating the development process but also by capturing and reusing
knowledge and critical solutions.

3.3 Model Transformation and Code Generation

Model transformations play a key role in MDSD. Vertical model transformations re-
fine abstract models to more concrete models while horizontal model transformations
describe mappings between models of the same level of abstraction. Thus, it is im-
portant that transformations can be developed as efficiently as possible [103]. With
the MOF 2.0 Query, Views, and Transformation (QVT) specification [222, 233] the
OMG provides a standard syntax and execution semantics for model-to-model trans-
formations used in a MDSD tools chain. For model-to-text transformations the OMG
issued a separated request for proposal in 2004 (MOF Model to Text Transformation

3.3 Model Transformation and Code Generation 45

Language [219]) that will eventually lead to a standard for mapping MOF-based mod-
els to text. Applications scenarios for which model transformations are developed are
manifold: generating lower-level models, and eventually code, from higher-level mod-
els [158, 266], mapping and synchronizing among models at the same level or different
levels of abstraction [136], creating query-based views of a system [54, 271], model
evolution tasks such as model refactoring [282, 330], or reverse engineering of higher-
level models from lower-level models or code [92]. The following introduction to model
transformations and overview of related terms, approaches, tools and standards is mainly
based on [65, 103, 182].

Model Transformations (MTs) are a kind of metaprogramming. They are used to
write or manipulate other programs, i.e. models. Thus, a model transformation is defined
with respect to the metamodels (see Figure 3.6). When executing a model transforma-
tion Mt, models like Ma conforming to the source metamodel MMa are transformed
to target models like Mb conforming to the target metamodel MMb. In general, model
transformations can have multiple source and target models. Applying principle ’Every-
thing is a model’, the model transformation Mt itself is a model [37]. As a consequence,
different transformation languages can be defined on the basis of MOF – one of them is
QVT. The model transformation Mt : Ma Ñ Mb (i.e. the transformation program itself)
conforms to a metamodel MMt which represents a model transformation language.

Transformation Definition
Mt:Ma→Mb

Target Metamodel
MMb

Source Metamodel
MMa

Target Model
Mb

Source Model
Ma

Transformation
Engine

Transformation Metamodel
MMt

Metametamodel
MMM

conformsTo

conformsTo

conformsTo

refersTorefersTo

conformsTo

reads

executes

writes

conformsTo conformsTo

Figure 3.6: Basic concepts of model transformation

One consequence of this organisation is that higher-level transformations are pos-
sible, i.e. transformations taking other transformations as input and/or producing trans-
formations as output [37]. Higher-level transformations, which are also referred to as
higher-order transformations in literature [38, 182], can be for example applied to refac-
tor a given set of transformations (e.g. a family of code generators) to reduce the amount
of code duplication in these transformations. Examples of higher-order transformations
can be found in [38] and [295].

Model transformations are characterized through many aspects. Mens and Van Gorp
[182] provide a list of dimensions which allows to characterize model transformations.

• Endogenous vs. exogenous: Endogenous transformations are transformations be-
tween models expressed in the same metamodel. Endogenous transformations

46 Model Driven Software Development

are also called rephrasing. Transformations between models expressed using dif-
ferent metamodels are referred to as exogenous transformations or translations
[298]. Typical examples of endogenous transformations are optimization, refac-
toring, simplification, and normalization of models. Typical examples of exoge-
nous transformations are synthesis of a higher-level specification into a lower-level
one, reverse engineering, and migration from a program written in one language
to another.

• Horizontal vs. vertical: A horizontal transformation is a transformation where the
source and target models reside at the same abstraction level. Typical examples are
refactoring (an endogenous transformation) and migration (an exogenous transfor-
mation). A vertical transformation is a transformation where the source and target
models reside at different abstraction levels. A typical example is refinement,
where a specification is gradually refined into a full-fledged implementation, by
means of successive refinement steps that add more concrete details.

• Level of automation: The level of automation is the grade to which a model trans-
formation can be automated. When applying MDSD in practice, one can often
find transformations that need to be performed manually (or at least need a certain
amount of manual intervention).

• Complexity: Model transformation also differ in their complexity. Simple trans-
formations can be for example mappings for identifying relations between source
and target model elements. More complex transformations are needed to spec-
ify for example synthesis, where higher-level models are refined to lower-level
models. The difference in complexity of transformations can require an entirely
different sets of techniques and tools.

• Preservation: Each transformation preserves certain aspects of the source model
in the transformed target model. The properties that are preserved can differ signif-
icantly depending on the type of transformation. For example, with refactorings
the (external) behaviour needs to be preserved, while the structure is modified.
With refinements, the program correctness needs to be preserved [20].

In literature one can find many requirements that are necessary for successful ap-
plication of model transformations in practices [65, 103, 182, 266]. In [103] Gardner
et al. provided a review of submissions to the OMG’s QVT-RfP [211] and made sug-
gestions about which concepts and requirements they thought important for a successful
adoption of QVT. The following non exhaustive list, which was compiled from the
mentioned work, provides an overview of requirements and applications scenarios that
model transformation approaches should fulfill.

• Transformations should be able to handle string expressions in the source and
target model.

• A transformation should support the propagation of incremental changes occur-
ring in one model to the other model. Thereby, the changes the user has made to
the target models shall be maintained.

• The proposed languages should support the traceability of transformation execu-
tions. Transformations with a transactional character should be definable (commit,

3.3 Model Transformation and Code Generation 47

rollback), which would prevent an invalid (not well-formed) model resulting from
a transformation that has failed during execution.

• A transformation language should support the reuse and extension of generic
transformations. It should provide mechanisms to inherit and override transfor-
mations and the ability to instantiate templates or patterns.

• The use of additional transformation data that is not contained in the source model
but that parameterizes the transformation process should be possible.

• Transformations should be able to implement updates of models, i.e. the target
model is the same as the source model.

• A transformation language should allow grouping, composing, and decomposing
transformations.

• Transformation execution should be resilient to errors. The occurrence of an ex-
ception during transformation execution should not halt the transformation.

• It should be possible to specify transformations from partial source models.

• It should be possible to specify symmetrical, bidirectional transformations.

• A transformation language should allow to specific many-to-many transforma-
tions with multiple source and target models.

Beneath the MOF 2.0 QVT specification, which provides a standard for Core, Re-
lational, and Operational languages, and the MOF Model to Text Transformation Lan-
guage [231] a number of other transformation approaches has be published in literature
and implemented in open-source and commercial tools. The following non exhaustive
list provides an overview over them:

• Published in literature: VIsual Automated model TRAnsformations (VIATRA)
framework [296, 295], Kent Model Transformation language [8, 7], Tefkat [107,
163], Graph Rewriting and Transformation language (GReAT) language [5], At-
las Transformation Language (ATL) [40, 145], UMLX [324], A Tool for Multi-
formalism and Meta-Modeling (AToM3) [19, 67], Bidirectional Object-oriented
Transformation Language (BOTL) [50, 177], MOdel transformation LAnguage
(MOLA) [149], Attributed Graph Grammar (AGG) [285], Atlas ModelWeaver
(AMW) [43, 44], triple-graph grammars [159], Model Transformation Language
(MTL) [299], Yet Another Transformation Language (YATL) [244], Kermeta [199],
Constraint-Specification Aspect Weaver (C-SAW) [113], and MT Model Transfor-
mation Language [290].

• Implemented within open-source tools: AndroMDA [13], openArchitectureWare
(oAW) [81, 206], From UML to Java And Back Again (Fujaba) [100], Java Model
Driven Architecture (Jamda) [137], Java Emitter Templates (JET) [79], Model
Transformation Framework (MTF) [130], MOFScript [196], and StringTemplate
[281].

• Implemented within commercial tools: XMF-Mosaic [328], OptimalJ [60] Meta-
Edit+ [185, 288], ArcStyler [110], and Codagen Architect [176].

48 Model Driven Software Development

In the following, we introduce a taxonomy for model transformations (Section 3.3.1)
and a classification of model transformation approaches (Section 3.3.2). In the classifica-
tion section the different transformation approaches are also compared via their strengths
and weaknesses. Furthermore, we provide a more detailed introduction to the QVT stan-
dard in Section 3.3.3.

3.3.1 Features of Model Transformations

In [64] one can find a taxonomy for model transformations published by Czarnecki in
2003, that describes and clarifies terms and concepts relevant for model transformation.
The taxonomy was revised in [65] and is represented with feature diagrams [150]. The
feature diagram in Figure 3.7 provides an overview of the key features of model transfor-
mation languagess. Model-to-model and model-to-text approaches are treated uniformly
by the feature diagrams. We distinguish them in the classification Section 3.3.2.

Model Transformation

Specification TracingTransform-
ation Rules

Rule
Application

Control

Rule
Organisation

Source-Target
Relationship

Incrementality Directionality

Figure 3.7: Feature diagram representing the top-level areas of variation

• Specification: Some transformation approaches provide a dedicated specification
mechanism, such as preconditions and postconditions expressed in Object Con-
straint Language (OCL) [229]. A particular transformation specification may rep-
resent a function between source and target models and be executable.

• Transformation rules: A transformation rule consists of two parts: a left-hand
side (LHS) and a right-hand side right-hand side (RHS). The LHS accesses the
source model, whereas the RHS expands in the target model.

A domain is the part of a rule responsible for accessing one of the models on which
the rule operates. Rules usually have a source and a target domain, but they may
also involve more than two domains.

The body of a domain can be devided into three subcategries: variables, patterns
and logic. Variables may hold elements from the source and/or target models (or
some intermediate elements). Patterns are model fragments with zero or more
variables. Sometimes, such as in the case of templates, patterns can have not
only variables embedded in their body, but also expressions and statements of the
metalanguage. Logic expresses computations and constraints on model elements.

The transformations variables and patterns can be typed. In the case of syntac-
tic typing, a variable is associated with a metamodel element whose instances
it can hold. Semantic typing allows stronger properties to be asserted, such as
well-formedness rules (static semantics) and behavioral properties (dynamic se-
mantics). A type system for a transformation language could statically ensure
for a transformation that the models produced by the transformation will satisfy a

3.3 Model Transformation and Code Generation 49

certain set of syntactic and semantic properties, provided the input models satisfy
some syntactic and semantic properties.

• Rule application control: For rule application control one can distinguish between
location determination and scheduling. Location determination is the strategy
for determining the model locations to which transformation rules are applied.
Scheduling determines the order in which transformation rules are executed.

• Rule organisation: Rule organisation is concerned with composing and stucturing
multiple transformation rules by mechanisms such as modularization and reuse.

• Source-target relationship: This is concerned with issues such as whether source
and target are one and the same model or two different models. Some approaches,
such as ATL, mandate the creation of a new target model that has to be sepa-
rate from the source. However, in-place transformation can be simulated in ATL
through an automatic copy mechanism. In some other approaches, such as VIA-
TRA and AGG, source and target are always the same model; that is, they only
support in-place update. Yet other approaches, for example, QVT Relations and
MTF, allow creating a new model or updating an existing one. QVT Relations
also support in-place update. Furthermore, an approach could allow a destructive
update of the existing target or an update by extension only, that is, where existing
model elements cannot be removed.

• Incrementality: This refers to the ability to update existing target models based on
changes in the source models. The basic feature of all incremental transformations
is target-incrementality, that is, the ability to update existing target models based
on changes in the source models. This basic feature is also referred to as change
propagation in the QVT final adopted specification [222]. A target-incremental
transformation creates the target models if they are missing on the first execution.
A subsequent execution with the same source models as in the previous execu-
tion has to detect that the needed target elements already exist. When any of the
source models are modified and the transformation is executed again, the neces-
sary changes to the target are determined and applied. At the same time, the target
elements that can be preserved are preserved.

• Directionality: Transformations may be unidirectional or multidirectional. Unidi-
rectional transformations can be executed in one direction only, in which case a
target model is computed (or updated) based on a source model. Multidirectional
transformations can be executed in multiple directions, which is particularly use-
ful in the context of model synchronization. Multidirectional transformations can
be achieved using multidirectional rules or by defining several separate comple-
mentary unidirectional rules, one for each direction.

• Tracing: This is concerned with the mechanisms for recording different aspects
of transformation execution, such as creating and maintaining trace links between
source and target model elements. Traceability links can be established by recod-
ing the transformation rule and the source elements that were involved in creating
a given target element. Trace information can be useful in performing impact anal-
ysis (i.e. analyzing how changing one model would affect other related models),

50 Model Driven Software Development

determining the target of a transformation as in model synchronization, model-
based debugging (i.e. mapping the stepwise execution of an implementation back
to its high-level model), and in debugging model transformations themselves.

3.3.2 Classification of Model Transformation Approaches

After introducing a terminology for model transformations and the necessary concepts
for model transformations, we now provide a classification of model transformation ap-
proaches which is also based on [65]. We distinguish two broad categories of model
transformations: model-to-model and model-to-text transformations. While a model-to-
model transformation creates its target as an instance of the target metamodel, the target
of a model-to-text transformation is just strings [65]. Model-to-text transformation ap-
proaches are also often referred to as code generation approaches.

Model-to-model Approaches

Several model transformation approaches can be distinguished: direct-manipulation,
structure-driven, operational, template-based, relational, graph-transformation-based, and
hybrid approaches. In the description of each approach we also provide examples of con-
crete realizations.

• Direct manipulation approach: This category of approach offers an internal model
representation and some APIs to manipulate it, such as Java Metadata Interface
(JMI). It is usually implemented as an object-oriented framework, which may also
provide some minimal infrastructure to organise the transformations (e.g. abstract
class for transformations). However, users usually have to implement transforma-
tion rules, scheduling, tracing, and other facilities, mostly from the beginning, in
a programming language such as Java.

• Structure-driven approach: Approaches in this category have two distinct phases:
The first phase is concerned with creating the hierarchical structure of the target
model; whereas, the second phase sets the attributes and references in the target.
The overall framework determines the scheduling and application strategy; users
are only concerned with providing the transformation rules. An example of the
structure-driven approach is the model-to-model transformation framework pro-
vided by OptimalJ.

• Operational approach: Approaches that are similar to direct manipulation but of-
fer more dedicated support for model transformation are grouped in this category.
A typical solution in this category is to extend the utilized metamodelling formal-
ism with facilities for expressing computations. An example would be to extend
a query language such as OCL with imperative constructs. The combination of
MOF with such extended executable OCL becomes a fully-fledged object-oriented
programming system. Examples of systems in this category are QVT Operational
mappings, XMF-Mosaic’s executable MOF, MTL, C-SAW, and Kermeta. Spe-
cialized facilities such as tracing may be offered through dedicated libraries.

• Template-based approach: Model templates are models with embedded metacode
that compute the variable parts of the resulting template instances. Model tem-
plates are usually expressed in the concrete syntax of the target language, which

3.3 Model Transformation and Code Generation 51

helps the developer to predict the result of template instantiation. The metacode
can have the form of annotations on model elements. Typical annotations are
conditions, iterations, and expressions, all being part of the metalanguage. An ob-
vious choice for the expression language to be used in the metalanguage is OCL.
A concrete model-template approach is given by Czarnecki and Antkiewicz [63].

• Relational approach: This category groups declarative approaches in which the
main concept is mathematical relations. In general, relational approaches can be
seen as a form of constraint solving. Examples of relational approaches are QVT
Relations, MTF, Kent Model Transformation Language, Tefkat, AMW, and map-
pings in XMF-Mosaic. The basic idea is to specify the relations among source
and target element types using constraints. In its pure form, such a specification is
non-executable (e.g. relations [8, 215] and mapping rules [214]). However, declar-
ative constraints can be given an executable semantics, such as in logic program-
ming. All of the relational approaches are side-effect-free and, in contrast to the
imperative direct manipulation approaches, create target elements implicitly. Re-
lational approaches can naturally support multidirectional rules. They sometimes
also provide backtracking. Most relational approaches require strict separation
between source and target models; that is, they do not allow in-place update.

• Graph-transformation-based approach: This category of model transformation
approaches draws on the theoretical work on graph transformations. In particu-
lar, this category operates on typed, attributed, labeled graphs [12], which can be
thought of as formal representations of simplified class models. Examples include
AGG, AToM3, VIATRA, GReAT, UMLX, BOTL, MOLA, and Fujaba.

Graph transformation rules have an LHS and an RHS graph pattern. The LHS
pattern is matched in the model being transformed and replaced by the RHS pat-
tern in place. The LHS often contains conditions in addition to the LHS pattern.
Some additional logic, for example, in string and numeric domains, is needed to
compute target attribute values such as element names. Graph patterns can be ren-
dered in the concrete syntax of their respective source or target language (e.g. in
VIATRA) or in the MOF abstract syntax (e.g. in BOTL and AGG). The advantage
of the concrete syntax is that it is more familiar to developers working with a given
modelling language than the abstract syntax.

• Hybrid approach: Hybrid approaches combine different techniques from the pre-
vious categories. The different approaches can be combined as separate compo-
nents or, in a more fine-grained fashion, at the level of individual rules. QVT is an
example of a hybrid approach with three separate components, namely Relations,
Operational mappings, and Core. Examples of the fine-grained combination are
ATL and YATL.

A transformation rule in ATL may be fully declarative, hybrid, or fully imperative.
The LHS of a fully declarative rule (so-called source pattern) consists of a set of
syntactically typed variables with an optional OCL constraint as a filter or naviga-
tion logic. The RHS of a fully declarative rule (so-called target pattern) contains a
set of variables and some declarative logic to bind the values of the attributes in the
target elements. In a hybrid rule, the source or target patterns are complemented
with a block of imperative logic which is run after the application of the target

52 Model Driven Software Development

pattern. A fully imperative rule (so-called procedure) has a name, a set of formal
parameters, and an imperative block, but no patterns. Rules are unidirectional and
support rule inheritance.

• Other approaches: There are two more approaches which do not fit in the de-
scribed categories: transformation implemented using Extensible Stylesheet Lan-
guage Transformation (XSLT) [301] and the application of metaprogramming to
model transformation. Because models can be serialized as XML using the XMI
[221], model transformations could be implemented with Extensible Stylesheet
Language Transformation (XSLT), which is a standard technology for transform-
ing XML. Unfortunately, the use of XMI and XSLT has scalability limitations.
Manual implementation of model transformations in XSLT quickly leads to non-
maintainable implementations because of the verbosity and poor readability of
XMI and XSLT. A more promising direction in applying traditional metapro-
gramming techniques to model transformations is a domain-specific language for
model transformations embedded in a metaprogramming language [290].

Garnder et al. [103] made a recommendation about which model transformation ap-
proach to use. They based their statement on a quote of Adam Bosworth [48].

"Alan Kay is supposed to have said that simple things should be simple
and hard things should be possible. It has been my experience over 25
years of software development that for most software products, simple things
should be declarative and/or visual and hard things should be procedural.
Declarative languages have an unfortunate tendency to metastasize because
people need to do things that are hard."

In general, for simple transformations and for identifying relations between source
and target model elements a relational appoach approach should be used. An operational
approach is preferable for the definition of complex many-to-many transformations that
involve detailed model analysis. In practice, a number of transformation languages like
QVT offer the possibility to combine elements of both approaches in transformation
specifications.

Model-to-text Approaches

Model-to-text transformation corresponds to the concept of ’pretty printing’ in program
transformation. Model-to-text approaches are useful for generating both code and non-
code artifacts such as documents. If one provides a metamodel for the target program-
ming languages, one can view transforming models to code as a special case of model-
to-model transformations. However, for practical reasons of reusing existing compiler
technology and for simplicity, code is often generated simply as text, which is then fed
into a compiler [65].

• Visitor-based approach: A very basic code generation approach consists in pro-
viding some visitor mechanism to traverse the internal representation of a model
and write text to a text stream. An example of this approach is Jamda – an
object-oriented framework providing a set of classes to represent UML models,
an API for manipulating models, and a visitor mechanism (CodeWriters) to gen-
erate code. Jamda does not support the MOF standard to define new metamodels;

3.3 Model Transformation and Code Generation 53

however, new model element types can be introduced by subclassing the existing
Java classes that represent the predefined model element types.

• Template-based approach: The majority of currently available MDA tools support
template-based model-to-text generation (e.g. oAW, JET, Codagen Architect, An-
droMDA, ArcStyler, MetaEdit, and OptimalJ). AndroMDA reuses existing open-
source template-based generation technology: Velocity [297] and XDoclet [329].

A template usually consists of the target text containing slices of metacode to
access information from the source and to perform code selection and iterative
expansion. According to our terminology, the LHS uses executable logic to access
source, and the RHS combines untyped string patterns with executable logic for
code selection and iterative expansion. Furthermore, there is no clear syntactic
separation between the LHS and RHS. Template approaches usually offer user-
defined scheduling in the internal form of calling a template from within another
template.

The LHS logic accessing the source model may have different forms. The logic
could be simply Java code accessing the API provided by the internal represen-
tation of the source model such as JMI, or it could be declarative queries, for
example, in OCL or XML Path Language (XPath) [316]. The oAW Generator
Framework propagates the idea of separating more complex source access logic,
which might need to navigate and gather information from different places of the
source model, from templates by moving the logic into user-defined operations of
the source-model elements.

Compared with a visitor-based transformation, the structure of a template resembles
more closely the code to be generated. Templates lend themselves to iterative develop-
ment as they can be easily derived from examples.

3.3.3 OMG Standard: Query/View/Transformation

The OMG adopted the Meta Object Facility (MOF) 2.0 Query/View/Transformation Spec-
ification (QVT) [233] as standard for model transformations. The QVT specification de-
fines a hybrid transformation language. The three transformation languages Relations,
Core, and Operational Mappings provide declarative and imperative transformation con-
structs. As one can see in Figure 3.8, the declarative part is split into a two-level architec-
ture. The languages Relations and Core can be used to specify declarative transforma-
tions at different levels of abstraction. QVT provides two options to extend declarative
specifications with imperative transformation constructs, the Operational Mappings lan-
guage and Black Box operations.

The Relations language allows a declarative specification of the relationships be-
tween MOF models. The Relations language supports complex object pattern matching.
Relations can assert that other relations also hold between particular model elements
matched by their patterns. The pattern matching results are used to instantiate model
elements in new models and to apply changes to existing models. The semantics of
Relations is defined through a combination of English, first order predicate logic, and a
transformation RelationsToCore to the Core language. The Core language is a more ele-
mentary declarative language than the Relations language. Traceability links are treated
as ordinary model elements like the source and target model. The Core language is

54 Model Driven Software Development

extends

extends

extends

extends

RelationsToCore
Transformation

Figure 3.8: QVT languages architecture

equally powerful to the Relations language, and because of its relative simplicity, its
semantics can be defined more simply. One purpose of the Core language is to provide
a reference semantics of the Relations language. The Operational Mappings language
extends the Relations language with imperative constructs and OCL constructs with side
effects. Transformations can be defined purely in the Operational Mappings language
(operational transformations) or through a combination of Relations and Operational
Mappings constructs (hybrid approach). The Black Box mechanism allows the use of
code in model transformations. Complex algorithms can be coded in any programming
language and existing libraries can be reused.

QVT Relations

As the QVT Relations language is further important in this thesis, we provide more
detailed information. The examples and the description is based on the QVT standard
specification [233].

Transformations and Model Types In the Relations language a transformation (Trans-
formation) between models is specified as a set of relations (Relation) that must hold for
the transformation to be successful. A transformation can be applied to models that
conform to a model type (TypedModel), which is a specification what kind of model ele-
ments any conforming model can have, similar to a variable type specifying what kind of
values a conforming variable can have in a program. The types of elements these models
can have are restricted to those within a set of referenced packages which are in most
cases metamodels. The models for which a transformation is specified are parameters
(+modelParameter) of the transformation.

Figure 3.9: Relations metamodel: transformation and model types

3.3 Model Transformation and Code Generation 55

Listing 3.1 specifies a transformation named UmltoRdbms between the models uml
and rdbms. The model named uml declares the UmlMM package as its metamodel, and
the rdbms model declares the RdbmsMM package as its metamodel.

Listing 3.1: Transformation example
1 transformation UmlToRdbms(uml:UmlMM; rdbms:RdbmsMM) {
2 ...
}

Relations and Domains Relations (Relation) in a transformation declare constraints
that must be satisfied by the elements of the models referenced by the transformation.
A relation is defined by two or more domains (RelationDomain). A domain is a dis-
tinguished typed variable that can be matched in a model of a given model type. A
domain has a pattern (DomainPattern) which can be viewed as a graph of object nodes,
their properties, and association links originating from an instance of the domain’s type.
Alternatively, a pattern can be viewed as a set of variables and a set of constraints that
model elements bound to those variables must satisfy to qualify as a valid binding of the
pattern. Variables (Variable) are specified within the relations. A relation domain has a
distinguished typed variable called the root variable (+rootVariable) that can be matched
in a model of a given model type.

A transformation invoked for enforcement is executed in a particular direction by
selecting one of the models of the transformation as the target. The target model may
be empty or may contain existing model elements to be related by the transformation.
Whether or not the relationship is enforced is determined by the target domain, which
may be marked as checkonly or enforced.

Figure 3.10: Relations metamodel: relations and domains

56 Model Driven Software Development

In Listing 3.2 two domains are declared which will match elements in the uml and
rdbms models respectively. Each domain specifies a simple pattern - a Package with a
name and a Schema with a name. Both name properties are bound to the same variable
pn implying that they should have the same value. The domain for the uml model is
marked checkonly and the domain for the rdbms model is marked enforce.

Listing 3.2: Relation and domain example
1 top relation PackageToSchema {
2 pn : String;

checkonly domain uml p:Package {
4 name=pn

};
6 enforce domain rdbms s:Schema {

name=pn
8 };

}

A relation can also define a when clause, that specifies the conditions under which
the relationship needs to hold, and a where clause, that specifies the condition that must
be satisfied by the model elements that are being related. The when and where clauses are
patterns (Pattern). A pattern is a set of variable declarations (+bindsTo) and predicates
(Predicate), that must evaluate to true for a binding of the variables of the pattern (cp.
Figure 3.10).

Listing 3.3 specifies a mapping between a Class and a Table. The when clause
specifies that the relation ClassToTable needs to hold only when the PackageToSchema
relation holds between the Package containing the Class and the Schema containing the
Table. Whenever the ClassToTable relation holds, the relation AttributeToColumn must
also hold.

Listing 3.3: When and where clauses example
1 relation ClassToTable {
2 checkonly domain uml c:Class {

namespace = p:Package{},
4 ...

};
6 enforce domain rdbms t:Table {

schema = s:Schema{},
8 ...

};
10 when {

PackageToSchema(p,s);
12 }

where {
14 AttributeToColumn(c,t);

}
16 }

Patterns and Templates A domain pattern (DomainPattern) can specify an arbitrarily
complex pattern graph consisting of template expressions, Object Template Expressions
(OTEs) (ObjectTemplateExp), and Property Template Items (PTIs) (PropertyTemplate-
Item). A template expression specifies a pattern that matches model elements in a model
of a transformation. The matched model element may be bound to a variable and this
variable may be used in other parts of the expression. A template expression may match

3.3 Model Transformation and Code Generation 57

either a single model element or a collection of model elements depending on whether
it is an object template expression or a collection template expression. An OTE can
have other template expressions nested inside it to an arbitrary depth. An OTE specifies
a pattern that may match only single model elements. OTEs have a type specified by
the referred class. An OTE is specified by a collection of PTIs, each corresponding
to different attributes of the referred class. PTIs are used to specify constraints on the
values of the slots of the model element matching the container OTE. The constraining
expression is given by the value expression and the constraint is on the slot that is an
instance of the referred property. A relation call expression (RelationCallExp) specifies
the invocation of a relation. A relation may be invoked from the when or where clause
of another relation.

Figure 3.11: Relations metamodel: patterns and templates

The ClassToTable relation in Listing 3.4 defines several OTEs which are used to
match patterns in models. For example one OTE is associated with the domain of uml.
Pattern matching will bind all the variables in the expression (c, p, and cn), starting from
the domain’s root variable c of type Class. In this example the variable p would already
have a binding resulting from the evaluation of the when clause expression Package-
ToSchema(p,s). The matching proceeds by filtering all of the objects of type Class in the
uml model, eliminating any which do not have the same literal values for their properties
as the template expression. Any Class with its kind property not set to ’Persistent’ is
eliminated.

Listing 3.4: Pattern and template example

58 Model Driven Software Development

1 relation ClassToTable {
2 cn : String;

checkonly domain uml c:Class {
4 namespace = p:Package{},

kind='Persistent ',
6 name=cn

};
8 enforce domain rdbms t:Table {

schema = s:Schema{},
10 ...

};
12 when {

PackageToSchema(p,s);
14 }

}

For properties that are compared to variables, such as name=cn, two cases arise. If
the variable cn already has a value binding, then any class that does not have the same
value for its name property is eliminated. If the variable cn is free, as in the example,
then it will get a binding to the value of the name property for all classes that are not
filtered out due to a mismatch with other property comparisons. The value of cn will
be either used in another domain, or can have additional constraints placed on it in the
where expression of the domain or its owning relation.

The matching proceeds with properties whose values are compared to nested tem-
plate expressions. For example, the property pattern namespace = p:Package will match
only those classes whose namespace property has a non-null reference to a Package. At
the same time, the variable p will be bound to refer to the Package. Since in the example
p is already bound in the when clause, the pattern will only match those classes whose
namespace property has a reference to the same package that is bound to p.

Keys and Object Creation OTEs also serve as templates for creating objects in a
target model. When creating objects one wants to ensure that duplicate objects are not
created when the required objects already exist. In such cases the existing objects shall
just be updated. The Relations metamodel introduces the concept of Key, which defines
a set of properties of a class that uniquely identify an object instance of the class in a
model.

Figure 3.12: Relations metamodel: keys and object creation

Listing 3.5 depicts a key for the class Table. A Table is uniquely identified by the

3.4 Summary 59

properties schema and name. Keys are used at the time of object creation. If an OTE has
properties corresponding to a key of the associated class, then the key is used to locate a
matching object in the model; a new object is created only when a matching object does
not exist.

Listing 3.5: Keys and object creation example
1 key Table {schema, name};
2 relation ClassToTable {

cn : String;
4 checkonly domain uml c:Class { ... };

enforce domain rdbms t:Table {
6 schema = s:Schema{},

name = cn,
8 ...

};
10 }

Execution Semantics QVT Relations allows to specify model transformations in a
declarative way based on a powerful pattern matching mechanism and OCL constraints
on the models. This facilitates developing a consistent transformation for the user, but at
the same time involves complex execution semantics with nested loops of object tuples
for the execution engine [233]. QVT Relations uses implicit rule scheduling which is
based on the dependencies among the relations.

The execution semantics first conducts a checking step, where it is checked, whether
there exists a valid match in the target model that satisfies the relationship with the
source model. Second, the enforcement step modifies the target model so that it satisfies
the relationship to the source model. This is done on the basis of the checking results.

3.4 Summary

Up to now a wide range of concepts and sophisticated techniques have been developed,
that provide a good foundation for applying MDSD to real, industrial software develop-
ments projects. In practice however, (software development) projects not only depend
on production techniques, i.e. model and code generation. Other factors like the people
involved in these projects, the relationships between collaborating organisations, or mar-
ket barriers are at least equally important for the success of a software develop projects.

In larger software development projects it is necessary to guide people, define devel-
opment artifacts and their correlations, specify project control techniques, etc. MDSD
can be used to improve project quality and development time, but does not achieve these
goals on its own. Though some work has already been done to use MDSD techniques in
software development (e.g. the MOMOCS project), the study of the complementary no-
tion of MDSD and methodologies in software development projects is an open research
area.

MDSD development fosters the reuse of development artifacts and its solutions.
There will be whole libraries of MDSD artifacts from which IT architectures and de-
velopers can choose. However, the efficient selection of adequate artifacts, that are com-
bined to the best solution for a given problem, requires highly complex decisions. Today,
there is a lack of appropriate decision support for MDSD that helps IT architects and de-
velopers to make good choices on the basis of a variety of influence factors.

60 Model Driven Software Development

MDSD is not a single-user desktop application or applied in closed teams. When
organisations collaborate, also their IT departments have to collaborate to provide inte-
grated ICT solutions. Similar to the integration of systems at code level, there arise in-
teroperability issues in MDSD at higher abstraction levels. History shows, that standard-
ization of e.g. communication protocols or data exchange formats solve interoperability
problems only in small or very specific domains. Hence, MDSD has to be supported by
techniques that increase the interoperability of MDSD tools and artifacts.

Today, there still exist barriers to the application of MDSD. The combination and
integration of MDSD tools as well as the development of MDSD artifacts, like transfor-
mations and generators, are highly complex tasks. Organisations have to be supported
by existing, reusable, and adaptive solutions that can be easily adapted to their problems.

In the next chapters we describe such solutions, which are the main contributions of
this thesis. In Chapter 4 we facilitate the generation of executable code from high-level
business process descriptions by providing architecture patterns, model transformations,
and a code generation framework for model-driven CBP modelling and enactment. In
Chapter 5 we develop a new decision method and guidelines for selecting appropriate
ICT architectures. Chapter 6 introduces a solution the facilitates the exchange of models
between different enterprises as well as the reuse and evolution of model transformations.

Chapter 4

Enacting Cross-organisational
Business Processes with MDSD

Enterprises need to adapt their constantly evolving business relationships, cross-organi-
sational value chains and business systems in order to remain competitive. Since IT is
a key enabler of cross-organisational value chains, we apply MDSD to specify changes
of business processes at the business level and propagate them down to the level of ICT
systems.

In MDSD high-level models are refined to more detailed models via model trans-
formations. Like in the MDA, the ATHENA IP framework uses three abstraction levels
for modelling and executing CBPs (cp. Figure 1.1 and Figure 4.1). High-level CIMs are
used at business expert level to model and agree on CBPs. PIMs, that represent a model
of the ICT and contain information about architecture and technological paradigms, are
of interest to the IT expert. Finally, executable PSMs are generated for the IT system
abstraction level. From these PSMs code can be derived automatically.

However, additional information is needed to implement the model transformations
that narrow the gap between the different abstraction levels. Transformations between
CIMs and PIMs commonly encode knowledge about software architecture or best prac-
tices. The solutions implemented in these transformations also heavily depend on the
technological paradigms (service-orientation, monolithic, peer-to-peer, etc.) the ICT
systems under development is based on. PIM to PSM transformations are governed by
PMs, whereas the term platform is often interpreted in a way that is appropriate for the
software development context (see Section 3.1.1).

To facilitate an efficient and effective generation of executable code from high-level,
domain-specific models, there is a strong need for frameworks, tools, and model trans-
formations that support the application MDSD (cp. Challenge 1 in Chapter 1). In this
chapter we develop and apply MDSD concepts and techniques to provide end-to-end
support for the design and execution of CBPs. In Section 4.1 we refine CBPs to concrete
service-oriented implementations by largely automated model transformations that en-
code software architecture patterns. A second transformation is triggered by a platform
model that contains knowledge about the target process execution platform (WS-BPEL,
XPDL, etc.) and execution environment (see Section 4.2). This transformation addition-
ally encodes quite complex knowledge about graph and process flow transformations.

In this chapter we develop the following solutions that facilitate a model-driven de-
velopment and execution of CBPs by bridging the gap between the different abstraction

62 Enacting Cross-organisational Business Processes with MDSD

transformation

transformation

Best Practices,
Architecture Models,

...

 Platform Models,
...

Figure 4.1: MDSD steps

levels:

• Software architecture patterns that enable ICT system coordination in a service-
oriented environment.

• Implementation of a set of model transformations that are based on software ar-
chitecture patterns and allow automated generation of service-oriented PIMs from
computational independent CBP models.

• A model and code generation framework that facilitates the generation of exe-
cutable workflow code from higher-level process models.

• A case study in which the model and code generation framework is applied to
generate WS-BPEL code from arbitrary higher-level process descriptions.

4.1 Transforming CIM to PIM

To close the semantic gap between business level models (CIMs) and platform-indepen-
dent models of ICT systems (PIMs), knowledge about the software architecture and best
practices has to be encoded into the respective model transformation. Hence, we first de-
velop software architecture patterns for ICT system coordination in Section 4.1.2, before
we implement the respective model transformations (see Section 4.1.4). In Section 4.1.3
we introduce a case study, which we use to illustrate how service-oriented models of ICT
systems can be derived from business process descriptions via model transformations.

4.1.1 Problem Description

Enterprise Application Integration (EAI) projects serve the need of organisations to form
and work together in networks by coupling arbitrary ICT systems. These coupled sys-

4.1 Transforming CIM to PIM 63

tems for example facilitate cross-organisational business processes. EAI solutions face,
like the organisations themselves, the challenge to adapt their processes with increasing
speed and to respond quickly to changing requirements. The main objective of most
integration initiatives is to achieve a new level of interoperability while minimizing the
impact on existing ICT environments. According to Erl [84] this means:

• avoiding the creation of a fragmented environment through the introduction of
business logic that resides outside of established application boundaries.

• avoiding tightly bound integration channels between applications that are easily
broken if either application is modified.

• minimizing redevelopment of applications affected by the integration.

Business process level integration has been accomplished through a variety of point-
to-point integration models, most commonly facilitated by broker and orchestration com-
ponents. In recent years, a new generation of EAI solutions has been developed under the
service-oriented paradigm, which lends itself to develop highly adaptable solutions and
to reuse existing applications. In a service-oriented world, sets of services are assembled
and reused to quickly adapt to new business needs. However, service-orientation does
not provide an integration solution by itself. Service-oriented integration introduces the
concept of service to establish a platform-independent model with various integration
architectures.

To supporting EAI for service-oriented systems and the enactment of CBPs with
MDSD poses two main challenges:

• The development of appropriate software architecture coordination patterns, that
can be applied for the integration of cross-organisational systems and the coordi-
nation of CBPs.

• Implementation of model transformations encoding the developed software archi-
tecture coordination patterns. ICT system models that are based on the coordina-
tion patterns can be automatically derived from higher-level CBP descriptions.

4.1.2 Software Architectures for ICT System Coordination

Service-oriented integration solutions can be categorized by their topology (see Fig-
ure 4.2). In a purely decentralized peer-to-peer topology services of the participating
organisations implicitly establish the collaborative process through direct message ex-
change; this is a realization of choreography. In a hierarchical topology a controller
service defines the steps necessary to achieve the overall goal and maps these steps to
services provided by the contributing organisations; this is a realization of orchestration.
However, in many cases, a mixture of hierarchical and decentralized peer-to-peer topol-
ogy, i.e. a heterogeneous topology, is used to realize complex multipartner collaborations
[168].

Based on these abstract topologies for CBP enactment, we now have a closer look at
these coordination architectures and how they can be applied to realize service-oriented
integration solutions. These architectures are used to control the conversation flow be-
tween the participating organisations. For the description of the coordination architec-
ture we assume, that each organisation willing to participate in a cross-organisational

64 Enacting Cross-organisational Business Processes with MDSD

Figure 4.2: Coordination topologies

collaboration supported by ICT systems, has a set of Elementary Services (ESs). These
ES are application, business, or hybrid services. In our descriptions we also assume
without loss of generality, that the ESs are realized as process services, so that we can
use the distinction between executable and abstract process. Nevertheless, ESs could be
realized by arbitrary code fragments. An ES can only be a controller service with regard
to the organisations’ internal service composition, but not with regard to the collabora-
tion process. Cross-organisational Business Processes (CBPs) represent the conversation
flow and message exchange between the organisations participating in the collaboration
(in particular in an agent communication language).

• Brokerless architecture: A brokerless coordination architecture (see Figure 4.3)
can be used to realize the decentralized peer-to-peer topology, where messages are
exchanged directly between the ESs of the participants as usual in an agents world.
Due to the mutual exchange of messages the ESs depend on each other. Control
flow logic of CBPs is realized by the executable process of the participants’ ESs.
Changing the business protocol would result in changing multiple ESs, i.e. their
executable processes. Further, the abstract process of the ESs are directly exposed
to the collaboration space and therefore are directly accessible by entities outside
enterprise boundaries.

• Central broker architecture: Figure 4.4 depicts the central broker coordination ar-
chitecture. Messages are no longer exchanged directly between the ESs, but over a
central broker component, which is realized by a controller service. The controller
service is a process that orchestrates the ESs of the participating organisations. It
acts as a global observer process coordinating the partners as well as making de-
cisions on the basis of data used in the CBP. In the case of a change to the CBP
protocol’s messages and semantics, only the broker process needs to be modified.
Since the broker process is not necessarily owned by one of the participating part-
ners, organisations may hide their elementary services from their collaborators.
However, they have to reveal them to a third party instead.

• Decentral broker architecture: The decentral broker architecture introduces ele-

4.1 Transforming CIM to PIM 65

organisation 1

organisation 3

organisation 2

Figure 4.3: Brokerless architecture

organisation 1

organisation 3

organisation 2

Figure 4.4: Central broker architecture

66 Enacting Cross-organisational Business Processes with MDSD

ments of the decentralized peer-to-peer topology in the hierarchical topology of
the central broker architecture. It splits the single broker component into several
controller processes jointly providing the broker functionality (note the boundaries
in Figure 4.5). Each organisation provides one controller service, also called View
Processes (VPs) (cp. Section 2.2.3), which orchestrates the organisation’s internal
ESs. Messages across organisational boundaries are only exchanged by the VPs,
which encapsulate the ESs. In this architecture the elementary service can be seen
as kind of Private Processes (PPs).

organisation 1

organisation 3

organisation 2

executable
process

abstract process (organisational extern)

enterprise boundaries broker boundary

broker
executable process

abstract process (organisational intern)

Figure 4.5: Decentral broker architecture

4.1.3 Case Study

This case study shows an example of the automotive industry. In this industrial sector
it is unusual that automotive manufacturers change their component suppliers often or
in short terms1. In most cases contracts with suppliers have medium-term to long-term
contract periods and high contract volumes. For this reason the process of choosing
the suppliers has special significance. Admittedly, ICT systems cannot automate the
whole process yet, but enable a better coordination of the activities between the Original
Equipment Manufacturer (OEM), the Purchasing Organisation (PO), and the Suppliers
(SUs) in terms of resource and applications involved in this process. ICT systems can
also provide monitoring and coordination of the solicitation of quotations and check
constraints regarding the composition of the suppliers or the combination of suppliers’
components.

The example of this case study comprises the solicitation of quotations and the
choice of component suppliers by an automotive manufacturer. Although the processes
of the example are shortened compared to the reality, they reflect the essential activities

1Cp. ATHENA IP internal document: As-Is Automotive Scenario, WD.B4.4.1.

4.1 Transforming CIM to PIM 67

of the solicitation of quotations and the choice of suppliers quite well. Three roles are
involved in the CBP:

• Original Equipment Manufacturer (OEM): An OEM is the automotive manu-
facturer planning to produce a new automobile type.

• Purchasing Organisation (PO): The PO can be an independent company or de-
partment of the OEM conduction the solicitation of quotations and the final selec-
tion of the suppliers.

• Supplier (SU): The SU is a component supplier for the automotive industry aim-
ing to place contracts with the OEM and PO.

In Figure 4.6 we can see an overview of the process steps, which are conducted by
these three roles. The roles OEM, PO and SU are described by swimlanes. A process
step is modeled within the swimlane of the role conduction the step.

 PremliniarySOR

IF1

O
E

M
PO

SU

ENG

ENG/CRM

PU/SRM

Sourcing - CBP

IF5

IF4IF3

IF2

 SADistribute SACollect

 OfferGeneration

 POChoice

 OfferEval(OEM)

 OfferEval(PO) IF6XOR XOR

Figure 4.6: Case study: process overview

The CBP starts with the process PremiliarySOR conducted by the OEM. After the
construction of the new automobile type is finished the requirements for the produc-
tion are identified in PremiliarySOR. The result of PremiliarySOR is a Statement of
Requirements (SOR). The OEM makes the SOR available to the PO, which conducts
the process SourcingAction. SourcingAction consists of two subprocesses, SADistribute
and SACollect. In SADistribute an action plan is generated out of the SOR, containing
information about the parts which have to supplied be the suppliers (e.g. object descrip-
tions, types, maximal costs or the time, in which the parts have to be made available by
the supply chain). This is followed by the generation of offer requests out of an action
plan and the sending of the offer requests to appropriate SUs. A SU evaluates in the
process OfferGeneration to which price it can supply certain parts. The SU creates an
offer and sends it back to the PO. In the process SACollect the PO collects the incoming
offers and saves these in a uniform format in a database. After all offers have arrived,
the evaluation of these offers starts. The evaluation is conducted simultaneously by the
OEM and the PO. The OEM checks the offers in the process OfferEval(OEM) from
a technical point of view that is e.g. whether the quality of the supplied parts is suffi-
cient for the production. The PO analyzes the offers in the process OfferEval(PO) from
an economic point of view, like which combinations of suppliers are possible or from
where the supplier parts have to be procured. Finally the PO compares its results with

68 Enacting Cross-organisational Business Processes with MDSD

the results of the OEM and starts the process POChoice. In POChoice those SUs are
chosen with which contracts shall be placed.

The example of this case study is used in the next section to illustrate the transfor-
mation of high-level CBP descriptions modelled in CIMs to service-oriented PIMs.

4.1.4 Implementation and Execution CIM to PIM Model Transformations

This section presents the implementation of the software architectures coordination pat-
ters, which we introduced in Section 4.1.2, in model transformations. These model
transformations take EPCs as input and produce service-oriented models (PIM4SOA) as
output.

Brokerless Architecture

Using the brokerless architecture (see Section 4.1.2 and Figure 4.3), ESs are derived
from the CBP descriptions that interact through collaborations. These binary collab-
orations are composed to more sophisticated collaborations and protocols. We have
described and implemented the transformations rules for the brokerless architecture in
[248] for EPC to BPDM model transformations. This version of BPDM [98, 218] is
a predecessor of PIM4SOA. Hence, we will describe the transformation process for
PIM4SOA via the Sourcing process of the case study’s example.

Figure 4.7: PIM4SOA model for brokerless architecture

From each PP of the Sourcing-CBP description, one ES is derived. As one can
see in Figure 4.7 two service provider instances for PreliminarySOR and SADistribute
are generated. For each pair of service providers that communicate, a collaboration is
instantiated (PreSOR-SADist). The service providers participate in this collaboration via
collaboration uses.

The collaborations of the ESs are realized via multiple binary collaborations. To
avoid loss of information (especially about the complete Sourcing CBP description),
these collaborations are grouped to composite collaborations (see Figure 4.8). In the
example, the Sourcing composite collaboration is composed of the binary collaboration
patterns between the ESs.

4.1 Transforming CIM to PIM 69

Collaborative Process

Collaborative Process

Composite Collaboration

Figure 4.8: PIM4SOA model using composite collaboration

Central Broker Architecture

Like for the brokerless architecture, we encoded the central broker architecture in trans-
formations (cp. Section 4.1.2) from EPC to BPDM models (see [24, 25]). In this section
we illustrate the transformation process via a PIM4SOA model that is generated from
the Sourcing CBP model of the case study’s example.

The central broker architecture (see Figure 4.4) is realized by a coordinating exe-
cutable broker process and several ESs in PIM4SOA. Like in the brokerless architec-
ture, for each PP of the Sourcing CBP description one ES is generated, e.g. for the pro-
cesses PremliniarySOR and SADistribute. These ESs do not directly communicate but
exchange messages with a central broker component. The ESs communicate with a bro-
ker service provider via separate collaborations (PreSOR-Borker and SADist-Broker).
For the Sourcing CBP one executable service provider is instantiated that fulfils the
centralised broker’s functionality (see the SourcingBroker in Figure 4.4). This broker
service provider implements the coordination of the message exchange described by the
Sourcing CBP description.

Decentral Broker Architecture

To represent the decentral broker architecture (see Figure 4.5) with PIM4SOA models,
one has to make use of the CBP extension of PIM4SOA described in Section 2.2.3.
We present a model transformation from EPC cross-organisational business process de-
scription to PIM4SOA. This model transformation realizes and implements the decentral
broker architecture [26]. It is described by rules consisting of source and target patterns.

Transforming the CBP Structure The following rules (Rule 1.1-1.3) describe the
procedure that transforms the structural part of the CBP description to PIM4SOA mod-
els, e.g. the definitions of the ESs.

70 Enacting Cross-organisational Business Processes with MDSD

Collaborative Process Coll. Process

PPPP

Central Broker

Figure 4.9: PIM4SOA instance central broker

Rule 1.1
Src: A CBP is modelled in an EPC with row display containing a swimlane concept.
Trg: A collaboration process, which is an abstract service provider, is instantiated.

Rule 1.2
Src: The EPC describing the CBP is structured by swimlanes separating the process

modules of the different participants.
Trg: For each swimlane a VP is instantiated and connected to the collaboration process

it participates in. The name of the VP, i.e. of the service provider, is the name of
the department participating in the CBP and realizing roles of the collaboration.

Rule 1.3
Src: In the case the source and target process module of a control flow edge lie in

different swimlanes, there is a collaboration between the two roles represented by
swimlanes.

Trg:
(a) For each pair of roles that collaborates according to the source pattern, one
collaboration and the two collaborating roles are instantiated. The two roles are
assigned to the collaboration. For each pair of role that collaborates, one and only
one collaboration is instantiated.
(b) Two VPs, which were derived from the swimlanes (Rule1.2), belong to the two
roles participating in the collaboration. For each of the two VPs a collaboration
use is instantiated referencing the collaboration.
(c) Bindings are instantiated that specify for the collaboration uses, which roles of
VPs (boundRole) realize the roles of the collaboration (role).

In Figure 4.10 one can see the target PIM4SOA model that is generated by apply-
ing the transformation rules 1.1-1.3 to the EPC model of the case study example (cp.
Section 4.1.3). A collaboration process is instantiated for the Sourcing CBP modelled
in Figure 4.6. The collaboration process is an abstract service provider. By apply-
ing Rule 1.2 three VPs are generated, one for each organisation that takes part in the
CBP, i.e. the engineering department of the OEM (Org1-ENG), the supplier relation-
ship management of the PO, which is often the OEM (Org2-PU/SRM), and the customer
relationship management of the SU (Org3-ENG/CRM).

An association connects the view process (+views) to the collaboration process (+col-
laboration). For each pair of roles that collaborate in the Sourcing CBP, one collabora-
tion and one role for each of the collaborating roles are instantiated for the PIM4SOA
model (Rule 1.3a); in Figure 4.10 these are the roles OEM and PO. The participation of

4.1 Transforming CIM to PIM 71

VP

VPVP

CBP

Collaborative Process

Figure 4.10: Application of transformation rules 1.1-1.3

the organisations’ departments in the collaboration is represented by collaboration uses
that connect the VPs with the collaboration (Rule 1.3b). A binding (Rule 1.3c) is used
to specify by which role (+boundRole) a service provider realizes a role (+role) (OEM)
in collaboration.

Considering the decentral broker architecture depicted in Figure 4.5 the collabora-
tion process of the PIM4SOA CBP-extension is a collaborative process as defined in
Section 2.2.2. It represents the protocol description (message exchange) between the
publicly visible abstract processes. These abstract processes are realized by the VPs
that are executable service providers. The collaboration process is an abstract service
provider and groups the VPs that belong to one CBP.

Transforming the CBP Behaviour Rule 2 describes the transformation of the be-
havioural part of the CBP description to PIM4SOA models, i.e. the process flow of the
CBP.

Rule 2
Src: A CBP is modelled in an EPC with row display based on a swimlane concept.
Trg: For each VP, which has been derived from the CBP, a process is instantiated

describing the VPs behaviour. The control flow of the CBP description can be
taken over with a few modifications to the VP’s behaviour description:
1. Each process module, belonging to the swimlane of the VP, is replaced by a
view task.
2. ’Send’ and ’receive’ tasks are added to the control flow of the VP at the points,
where the VP interacts with other VPs (i.e. where the source and the target pro-
cess module of a control flow edge lie in different swimlanes).
3. The ’send’ and ’receive’ tasks reference the appropriate collaboration use with
their collaborationUsePath. With the interactions represented by the tasks the VP
takes apart in the collaboration.
4. All process modules which do not belong to the swimlane of the VP are removed
from the process flow.
5. All interfaces are removed from the process flow.

72 Enacting Cross-organisational Business Processes with MDSD

VP

abstract process the VP provides to the CBP

Figure 4.11: Application of transformation rule 2

Figure 4.11 shows the generation of VPs’ behaviour description at the example of the
Org1-ENG view process. The behaviour of the view process, i.e. the service provider,
is described by a process. This process consists of steps which are derived from the
Sourcing CBP according to the algorithm described in Rule 2. Two view tasks Pre-
liminarySOR and OfferEvaluation(OEM) are instantiated for the corresponding process
modules of the Sourcing CBP. Since the Org1-ENG VP has three interactions with other
VPs, two times it invokes another process and one time it is invoked, two send and one
receive tasks are added to the control flow of the VP that participates in the collabora-
tions. In case of the Org1-ENG VP all tasks reference the same collaboration use, since
the VP only participates in the OEM-PO collaboration. In Figure 4.11 the control flow is
depicted in a simplified version for clarity reasons as arrows with dashed lines. It shows
the complete description of the VP’s executable process. Those parts of the executable
process that are relevant for publicly visible abstract process, are bound to the respective
collaborative process (see Figure 4.10).

Connecting Private Processes to View Processes Rule 3.1 and Rule 3.2 connect the
PPs and the VPs that are generated from ESs. This has to be done both for the structural
and the behavioural part of the PIM4SOA model.

Rule 3.1
Src: VPs abstract from PPs and PP offer functionality to cross-organisational collabora-

tions with the help of VPs.
Trg: A VP references all PPs it abstracts. A PP references all VP over which it offers

func-tionality to cross-organisational collaborations.

Rule 3.2
Src: View tasks are used to describe the behaviour of a VP. They encapsulate tasks,

which describe the more detailed behaviour of PPs.
Trg: For each view tasks all tasks are reference the view task encapsulates.

The Org1-ENG VP is bound to two processes, PreliminarySOR and OfferEvalua-
tion(OEM), by applying Rule 3.1 (see Figure 4.12). In addition the view tasks of the
VP’s behaviour description reference the tasks of the PPs they abstract from (abstract-

4.2 Transforming PIM to PSM 73

VP

PP

PP

Figure 4.12: Application of transformation rules 3.1-3.2

edSteps). For example the PreliminarySOR view tasks abstracts from the EstablishRe-
quirements and TargetSetting tasks.

4.1.5 Discussion

In this section we have developed and compared potential target architectures of a model-
driven transformation of CBPs from the computational independent down to the platform
independent level. We showed how the information necessary to automatically create
platform independent ICT-level models for a service-oriented environment can be de-
rived from high-level business process models. We identified a number of modelling
constructs allowing us to derive platform-independent architectures that can be mapped
to different ICT architectures.

Having implemented both central, decentral and brokerless approaches, the major
insights we gained are as follows: While all three approaches can be derived from a
CIM description without an explicit description of the CBP, we found it important that
CBPs be explicitly modelled; otherwise, model transformation results are likely to be of
poor quality. The decentral broker architecture relies on the existence of a CBP model
to a higher degree than the central broker architecture and the brokerless architecture do:
the latter can be derived more easily from the process flow; in the former, the appro-
priate grouping of processes to view processes in a decentral broker must be specified
explicitly.

4.2 Transforming PIM to PSM

In MDSD platform knowledge is encoded in PIM to PSM transformations. In the con-
text of business process development and enactment the platform is given through the
respective process execution environment. In this section we present a model and code
generation framework, that fosters the generation of executable workflow code from

74 Enacting Cross-organisational Business Processes with MDSD

higher-level processes. Its main achievements are to improve the reuse and composi-
tion of parts of generation solutions and to decouple domain aspects from computational
aspects in workflow code generation. The generation framework aims to enable peo-
ple with no or little experience in code generation and workflow technology to generate
workflow code from higher-level models in reasonable time.

After the introduction of an example and context information in Section 4.2.1, we
describe the main problems one meets by generating executable workflow code from
higher-level process models (see Section 4.2.2). The model and code generation frame-
work solves these problems separately and integrates the respective solutions in a single
framework (see Section 4.2.3). The case study in Section 4.2.4 shows the application of
the workflow code generation to the example introduce in Section 4.2.1.

4.2.1 Context and Example

Before we provide the concrete problem description in Section 4.2.2, we present an
example for the integrated application of process modelling and workflow execution
techniques. In the AgilPro project we applied process modelling, workflow execution,
and service-oriented concepts to support agile business process through flexible, service-
oriented IT systems.

During the last decade in the Enterprise Resource Planning (ERP) domain agile pro-
cesses got more and more important. In order to improve existing products or customize
them to the needs of the end-user, most changes need to be done on the flow of services
but not on the offered services. This results from changes in jurisdiction, new products,
standards, or requirements of the customers. In most organisations there is a need for
loosely-coupled components. SOA and Web service technology as an implementation
of SOA are one way for achieving this. AgilPro is a tool-suite and process integration
framework based on SOA. It allows the user to model their business processes, preview
and execute them on a process engine.

The core of the AgilPro solution is a Domain Specific Model (DSM) that conforms to
a DSL for process modelling and contains predefined model elements (e.g. applications,
services, etc.) for a particular domain. The AgilPro modelling tool further provides the
possibility to define multiple concrete syntaxes, for example one that especially suits the
ERP domain. The AgilPro modelling tool offers (at least) two views on the DSM, a busi-
ness view and a technical view. The business view abstracts from technical details such
as which web services are invoked, how the data mapping between different applications
works, etc. This is part of the technical view where an IT expert can specify the relevant
data for an execution of the process - if not already predefined in the DSM. The model
and code generation framework is used to generate executable workflow code.

The AgilPro metamodel is graph-based as most business process languages and
rests upon the UML 2 metamodel for activity diagrams. It extends it with informa-
tion about responsibilities or functions like in Architecture of Integrated Information
Systems (ARIS) [261] or data and events similar to BPMN [226]. Henceforth, it tries
to combine the best practices of the currently existing process modelling languages. To
enable domain-specific modelling for e.g. ERP, CRM, or financial service applications,
the metamodel and the AgilPro modelling tool allows to define model templates. These
model templates contain predefined elements of and information about the application
domain, but also syntactical information. These are for example data types or applica-
tions with specific (execution) information or icons from the ERP domain. These prede-

4.2 Transforming PIM to PSM 75

fined elements become automatically part of AgilPro modeller’s modelling palette and
complete together with the AgilPro metamodel the specific DSL. Since such DSLs can-
not be executed on current process engines directly, one needs to transform them to an
executable language. We use BPEL4WS [129], which is the quasi standard for orches-
trating web services and supported by several process engines, for illustration purposes
in the rest of this section.

Figure 4.13: Create offer process modelled with AgilPro Light Modeller

Figure 4.13 shows a Create Offer process that is modelled with the AgilPro Light
Modeler (LiMo). A complete process model comprises processing steps, input and out-
put data, applications that are used to execute the processing steps, and roles that perform
the processing steps. In the Create Offer process the processing step Create Offer has
an OfferID and Offer header as input data and produces an Offer as output. Create Offer
is performed by the Sales Assistant and makes use of the Offer Management system for
execution. If the offer has a value that is greater than or equal to 1,000, the head of
the sales department has to check the offer. Finally, the offer is added to a Business-To-
Business (B2B) portal by the sales assistant. What is not shown in the process diagram is
the additional information of the predefined elements that complete the DSL. In the Cre-
ate Offer process, these are for example the attributes of the data types like ’dioParam-
eter’ for OfferID or information about the AgilPro integration framework Java adapters,
which are called for the applications like ’eu.emundo.agilpro.fw.fe.intf.GenericUi’ for
Offer Management. This additional information is used by the code generation to di-
rectly generate executable BPEL4WS code.

4.2.2 Problem Description

To develop a code generation that generates executable workflow code directly from
processes described at a higher abstraction level like in PIMs, one has to deal with a
variety of requirements and challenges.

Process (Graph) Transformation

An important challenge is the translation of the higher-level processes into constructs
that are provided through the target process execution language. WS-BPEL for example
is a so-called block-structured language. There, language elements that represent the
control flow are composed in a cycle-free tree-structure without goto-statements. [181,
241] describe approaches of how to translate process graphs into block-structured WS-
BPEL code. The process graph has to be analyzed and even restructured in order to map

76 Enacting Cross-organisational Business Processes with MDSD

the graph to the WS-BPEL elements. These approaches are based on the identification
of Single-Entry-Single-Exit Component (SESE) components in the control flow. To
identify SESEs, algorithms like [142] from compiler theory or the token flow algorithm
[112, 226] can be used.

As a result, one has to implement quite complex graph transformation algorithms to
realize (e.g. WS-BPEL) workflow generation from higher-level process graphs. It is cer-
tainly possible to implement these transformations (some good examples can be found
in [241]) with nearly any model-to-model or model-to-code transformation approach.
However, most model-to-model and model-to-code transformation approaches qualify
themselves a lot better for describing relationships between elements and implementing
generation patterns than for implementing complex graph transformation algorithms. To
realize preprocessing and graph transformation algorithms like [112, 142, 241] common
programming languages like Java or C are better suited.

Usage of Process Execution Environments and Engines

Though process execution languages have a well-defined syntax and semantics, different
process execution programs can be used to achieve the same external behaviour (effects)
of a process (execution) engine. Hence, code generation templates have to be adjusted
in the way process engines are used and implement the particular execution patterns.
Moreover, code generation templates also encode domain knowledge, like the specific
data types. The following examples illustrate two different ways of using BPEL4WS
to execute the invocation of a CreateOffer service. While the first example represents
code generation from process models whose semantics is similar to BPEL4WS code,
the second example demonstrates code generation from higher-level process models.
The second example demonstrates quite well, that for a range of realistic application
scenarios sophisticated execution and invocation patterns have to be encoded into code
generations.

Example 1 The BPEL4WS generation developed in the Service Modeling Language
for MID innovatorAOX (SPL4AOX) project [235, p.78ff] was based on the action se-
mantics of UML. Similar BPEL4WS code generations have been described for exam-
ple in [129]. Listing 4.1 depicts the BPEL4WS code that is generated to invoke the
CreateOffer service, that gets an OfferID as input and provides an Offer as output (see
Figure 4.13 in Section 4.2.1).

Listing 4.1: BPEL code generated in SPL4AOX
1 <invoke name="CreateOffer"
2 partnerLink="CreateOffer_Prov" portType="CreateOffer"

operation="in" inputVariable="OfferID" outputVariable="Offer">
4 </invoke>

Example 2 For our usage of the JBoss workflow engine in the AgilPro project multiple
BPEL4WS instructions are necessary to obtain the same computational result as in ex-
ample 1. Listing 4.2 depicts the sample code that is necessary to invoke the CreateOffer
service depicted in Figure 4.13. The full version of the BPEL4WS code can be found in
Appendix A. One important issue to recognize is, that the process execution engine has
an execution context in which information about the process execution can transiently

4.2 Transforming PIM to PSM 77

be stored. Variables like nextActionReq are containers in this execution context which
consist of attributes (parts) like ticketnumber or NameIN. We use the ticketnumber for
correlation in the JBoss engine. DataTypeIN, ValueIN, and NameIN contain the infor-
mation that is also used by the data object of the AgilPro integration framework. The
code of Listing 4.2 is generated as follows:

1. Before the processing step CreateOffer is started, the input data OfferID is copied
to the execution context. This is done by an assign and an invoke for each input
data (line 193-226).

2. In the lines 227-240 the execution of the processing step CreateOffer is started.

3. The receive statement (line 241-246) waits for the completion of the processing
step, which can also be human interaction input. Line 247-259 stops the task
execution in the process engine.

4. Finally, the result data Offer (line 260-290) is fetched from the process execution
context.

Listing 4.2: BPEL code generated in AgilPro
196 <assign name="set_DTO_OfferID">

<copy>
198 <from part="Ticketnumber" variable="nextActionReq"/>

<to part="Ticketnumber" variable="setValueToObjectReq"/>
200 </copy>

<copy>
202 <from expression="string('ID')"/>

<to part="DataTypeIN" variable="setValueToObjectReq"/>
204 </copy>

<copy>
206 <from expression="string('0')"/>

<to part="ValueIN" variable="setValueToObjectReq"/>
208 </copy>

<copy>
210 <from expression="string('OfferID ')"/>

<to part="NameIN" variable="setValueToObjectReq"/>
212 </copy>

<copy>
214 <from expression="number('-1')"/>

<to part="HashCodeIN" variable="setValueToObjectReq"/>
216 </copy>

</assign>
218 <invoke name="setValueToObject_OfferID"

portType="agi:AgilproIssuer"
220 operation="setValueToObject"

partnerLink="agilpro"
222 nputVariable="setValueToObjectReq">

<correlations >
224 <correlation pattern="out" set="atmInteraction"/>

</correlations >
226 </invoke>

<assign name="startAction_CreateOffer">

78 Enacting Cross-organisational Business Processes with MDSD

231 ...
232 </assign>

<invoke name="startAction_CreateOffer"
234 portType="agi:AgilproIssuer" operation="startAction"

partnerLink="agilpro" inputVariable="startActionReq">
236 <correlations >

<correlation pattern="out" set="atmInteraction"/>
238 </correlations >

</invoke>
240 <receive>

partnerLink="atm" variable="nextActionReq"
242 portType="atm:FrontEnd" operation="nextAction">

<correlations >
244 <correlation set="atmInteraction"/>

</correlations >
246 </receive>

<assign name="endAction_CreateOffer">

251 ...
252 </assign>

<invoke name="endAction_CreateOffer"
254 portType="agi:AgilproIssuer" operation="endAction"

partnerLink="agilpro" inputVariable="endActionReq">
256 <correlations >

<correlation pattern="out" set="atmInteraction"/>
258 </correlations >

</invoke>
260 <assign name="get_DTO_Offer">

279 ...
280 </assign>

<invoke name="getValueFromObject_Offer"
282 portType="agi:AgilproIssuer"

operation="getValueFromObject"
284 partnerLink="agilpro"

inputVariable="getValueFromObjectReq"
286 outputVariable="getValueFromObjectRes">

<correlations >
288 <correlation pattern="out" set="atmInteraction"/>

</correlations >
290 </invoke>

Requirements and Challenges Summary

Most people and organisations aiming to develop model or code transformations only
want to be concerned with those parts of their solution that are really specific to their
usage scenario. They want to be able to reuse parts of existing solutions and compose
them with minimal effort. As described in the previous sections, there arise a variety of
challenges when people want to derive executable process descriptions (code or mod-
els) from higher-level process models. In Section 4.2.3 we present a model and code
generation framework that allows us as far as possible to address the various challenges
separately. The following list summarizes the requirements for the framework.

• Since there exists a huge diversity of modelling languages and projects providing
means to model processes (like UML activities, BPDM, PIM4SOA [235, p.51ff],

4.2 Transforming PIM to PSM 79

AgilPro, etc.), the framework shall allow to decouple code generation from the
format of the input models.

• It is necessary to apply more or less complex graph transformation algorithms to
translate higher-level process models to workflow executable code like WS-BPEL
or XPDL [319].

• Depending on the process execution environment the code generation has to en-
code complex invocation patterns that include knowledge about the respective
workflow execution engine. The framework has to provide means to easily de-
scribe, maintain and reuse these generation patterns independent of other infor-
mation that is necessary for the code generation.

4.2.3 Model and Code Generation Framework

To deal with the challenges described in Section 4.2.2 we applied the separation of con-
cerns paradigm to the model and code generation framework. Solutions of the described
challenges can be integrated in the framework from separate components, which overlap
as little as possible. This allows flexible reuse and combination of components in the
model and code generation framework.

We made the observation that solutions for some of the described challenges highly
depend on the application domain, the modelling context, and the execution environ-
ment, while others are independent of the application domain. Hence, we introduced
a common process modelling format and divided the framework into a domain-specific
and a domain independent part like in compiler theory [6], where an intermediate lan-
guage is used to allow language independent code optimization. However, it is not totally
correct to identify a front end and a back end like in compiler construction, since the front
end (the adapter for DSL model (I)) and the code generator (the generation templates
(IV)) both depend on the DSL specific process format and thus are not independent from
each other. Figure 4.14 depicts a structural view on the generation framework.

common process modelling format

DSL specific process format

Figure 4.14: Model and code generation framework

• The process transformer and optimiser (II) and the process visitor (III) are do-
main independent. They address general graph transformation problems and graph
traversing independent to any concrete process modelling languages. These com-
ponents access process descriptions that are represented in a common process

80 Enacting Cross-organisational Business Processes with MDSD

modelling format. The framework makes use of a process modelling format that
was derived from the Standard Workflow Models [156]. For block-structured
graphs it provides a common process modelling format that is based on WS-BPEL.

• The other two components of the framework, the adapter for DSL process models
(I) and the code and model generation templates (IV), directly access the process
modelling format of the DSL that is used for modelling the input model. Hence,
adapters and generation templates have always to be used in combination, i.e. they
must use the same DSL specific process format.

The model and code generation framework not only allows to plug together compo-
nents via common interfaces, but also provides a workflow that composes these compo-
nents. Once the framework is configured, i.e. the components are registered and plugged
in, the user only has to provide the input model and start the generation workflow of the
framework. Figure 4.15 shows this generation workflow. It depicts the four states of the
workflow execution (a)-(d) and the transitions.

1

2

1

2

transform common process graph

1

create common process model traverse standard process graph &
apply code generation templates

1 DSL specific process format 2 Common process modelling format

<assign>
 <copy>
 <from part=“ticketnumber” variable=“nextActionReq”/>
 <to part=“ticketnumber” variable=“setValueToObjectReq”/>
 </copy>
</assign>
<invoke name=“setValueToObject_SOR” partnerLink=“agilpro”
 portType=“agi:AgilproIssuer” operation=“setValueToObject”
 inputVariable=“setValueToObjectReq”>
</invoke>
...

II

I III
& VI

(a)

(b)

(d)

(c)

Figure 4.15: Code generation

(a) The first state of the workflow comprises the input process model that is repre-
sented in a format specific to the DSL used for modelling the input process.

(b) The second state is reached by applying the adapter on the input model. The
adapter creates a representation of the input process in the common process mod-
elling format. To ensure traceability between the processing steps of the two pro-
cess models, it further links the processing steps in the common representation
format to the processing steps of the input model.

(c) The process transformer restructures and optimizes the process represented in the
common process modelling format. For example it generates a block-structured
graph. Though in state (c) the control flow of the two process representations
differs, their processing steps are still linked to the respective processing steps of
the other representation format.

4.2 Transforming PIM to PSM 81

(d) The last transition is used for model and code generation and ends in the final state
(d) of the framework’s workflow. Therefore the process visitor traverses the pro-
cess of state (c) that is represented in the common process modelling format. The
code or model generation templates are called via a notification mechanism pro-
vided by the framework.2 Like we can see in Figure 4.15 the workflow terminates
with state (d) when the code or a new model was generated.

The main power of the model and code generation framework lies in the process
transformer and optimiser (II) and the combination of a visitor-based and a template-
based code generation approach ((III) and (IV)). (II) identifies SESEs in the process
descriptions [112, 142]. SESEs are the basis for graph transformations that allow to gen-
erated block-structured (WS-BPEL) code [241]. SESEs are also used to test the sound-
ness of the process’s control flow in reasonable time [294]. (III) and (IV) combine the
advantages of visitor-based and template-based code generation approaches (see also
Section 3.3.2). The process visitor traverses the process flow of the input model and
calls templates for workflow code generation. The visitor allows to generate the work-
flow code in the sequence that is given be the process’s control flow. This is especially
important for e.g. Sequences in WS-BPEL, where the process steps are performed ac-
cording to the order they have in the WS-BPEL text file. The template mechanism has
the advantage that generation templates can easily be derived from examples [65].

The framework allows graph transformation from flexible higher-level process de-
scriptions into constructs that are provided through the target process execution language
and supports users to easily implement code generation for process execution via com-
plex invocation patterns.

4.2.4 Case Study

This section presents a case study that illustrates the code generation for the Create Offer
process introduced in Figure 4.13 of Section 4.2.1.

Configuration of the Generation Framework

To generate BPEL4WS code the generation framework has to be configured first. Hence,
the process transformer that transforms arbitrary processes into BPEL4WS and the pro-
cess traverser that can process common block-structured process models are registered
at the framework. While the process traverser is already provided by the framework,
we use the Token Analysis component [274] as a process transformer. The adapter for
AgilPro LiMo models and the respective BPEL4WS code generation templates for the
AgilPro JBoss workflow engine (jBPM) are also registered at the framework. Now, the
workflow of the generation framework can be executed as shown in Figure 4.15.

Creation of Common Process Model

In the first step of the framework’s workflow, the adapter for AgilPro LiMo process
models generates a representation of the input process in the common process modelling
format. The resulting process is depicted in Figure 4.16 in UML concrete syntax (the
common process modelling format itself has no concrete syntax representation). Further
the adapter connects the respective processing steps of the two process representations.

2The framework implements the notification mechanism with the publish-subscribe pattern [101].

82 Enacting Cross-organisational Business Processes with MDSD

Figure 4.16: Create offer process as common process model

Transformation of Common Process Graph

The process transformer transforms the process generated by the adapter into a block-
structured process. It implements the algorithm described in [112]. Figure 4.17 depicts
this block-structured process. As we can see, an alternative block was generated from
the decision and merge gateways.

Figure 4.17: Block-structured create offer process as standard process model in UML
syntax

Generating the BPEL Code

In a last step, the block structured process is traversed and the BPEL4WS code gener-
ation templates are applied. In the following we present some code excerpts generated
by the code generation for the Create Offer process. The full version of the generated
BPEL4WS code can be found in Appendix A.

Before the process visitor starts, statical information like partnerLinks, variables,
and correlationSets is generated for the BPEL4WS process. Further, some initial in-
vocations on the process engine are made (see line 1-129 in the BPEL4WS process in
Listing A.1). Then the visitor starts to traverse the block-structured process description.
For each node a scope is generated that gets the name of the node and contains the further
processing instructions that are necessary for this node.

The first node the visitor accesses is the start node. For this node an empty process
instruction is generated within a scope. Since the start node has no name the scope gets
the default name (see code excerpt in Listing 4.3).

Listing 4.3: Generated BPEL code for start node
130 <scope name="Defaultname">

<sequence >
132 <empty/>

</sequence >
134 </scope>

Next, a scope that contains the further processing instructions for the Create Offer
node is generated in the BPEL4WS code (see line 135-292 in Listing A.1). The process
execution engine has an execution context in which information about the process exe-
cution can transiently be stored. The input data of each process node has to be copied

4.2 Transforming PIM to PSM 83

to the execution context. Listing 4.4 depicts respective BPEL4WS code for the OfferID
input of the Create Offer step.

Listing 4.4: BPEL instructions for OfferID input data of Create Offer node
196 <assign name="set_DTO_OfferID">

<copy>
198 <from part="Ticketnumber" variable="nextActionReq"/>

<to part="Ticketnumber" variable="setValueToObjectReq"/>
200 </copy>

<copy>
202 <from expression="string('ID')"/>

<to part="DataTypeIN" variable="setValueToObjectReq"/>
204 </copy>

<copy>
206 <from expression="string('0')"/>

<to part="ValueIN" variable="setValueToObjectReq"/>
208 </copy>

<copy>
210 <from expression="string('OfferID ')"/>

<to part="NameIN" variable="setValueToObjectReq"/>
212 </copy>

<copy>
214 <from expression="number('-1')"/>

<to part="HashCodeIN" variable="setValueToObjectReq"/>
216 </copy>

</assign>
218 <invoke name="setValueToObject_OfferID"

portType="agi:AgilproIssuer"
220 operation="setValueToObject"

partnerLink="agilpro"
222 inputVariable="setValueToObjectReq">

<correlations >
224 <correlation pattern="out" set="atmInteraction"/>

</correlations >
226 </invoke>

To process the Create Offer step, again several BPEL4WS instructions are necessary.
In line 227-239 the execution of Create Offer is started and the receive statement in
line 240-246 waits for a notification that the processing step is completed. Finally the
execution of Create Offer is stopped (line 247-259). Listing 4.5 shows some excerpts
of the necessary processing instructions. Finally the result data Offer (line 260-290) is
fetched from the process execution context.

Listing 4.5: BPEL instructions for execution of Create Offer node
233 <invoke name="startAction_CreateOffer"
234 portType="agi:AgilproIssuer" operation="startAction"

partnerLink="agilpro" inputVariable="startActionReq">
236 <correlations >

<correlation pattern="out" set="atmInteraction"/>
238 </correlations >

</invoke>
240 <receive

partnerLink="atm" variable="nextActionReq"
242 portType="atm:FrontEnd" operation="nextAction">

<correlations >
244 <correlation set="atmInteraction"/>

</correlations >

84 Enacting Cross-organisational Business Processes with MDSD

246 </receive>
...

252 ...
<invoke name="endAction_CreateOffer"

254 portType="agi:AgilproIssuer" operation="endAction"
partnerLink="agilpro" inputVariable="endActionReq">

256 <correlations >
<correlation pattern="out" set="atmInteraction"/>

258 </correlations >
</invoke>

Another interesting part of the generated code is how the alternative is translated into
BPEL4WS code. The block-structure that represents this alternative in the process flow
is mapped onto a switch-statement in the process code. Listing 4.6 depicts the respective
BPEL4WS code.

Listing 4.6: BPEL instructions generated for processing alternative
458 <switch name="Defaultname">

<case condition="bpel:getVariableData('checkGuardRes ',
460 'ValueOUT ')=1">

<sequence >
462 <scope name="CheckOfferConditions">

...

607 ...
608 </scope>

<empty/>
610 </sequence >

</case>
612 <case condition="bpel:getVariableData('checkGuardRes ',

'ValueOUT ')=0">
614 <sequence >

<empty/>
616 </sequence >

</case>
618 </switch>

4.2.5 Discussion

In the context of executable WS-BPEL workflow code, there exist a variety of solu-
tions that provide hardly more than another concrete syntax (graphical instead of tex-
tual) for WS-BPEL (cp. UML profile for BPEL [11], Oracle BPEL Process Manager
[240], or the ActiveBPEL designer [179]). These solutions do not narrow the gap be-
tween higher-level process descriptions and workflow execution. Tool chains that allow
model-driven development and the generation of WS-BPEL code like the IBM WebSh-
pere Tool Suite [128], still have restrictions that prevent all process models from being
fully transformed [317, p.109]. To ensure the execution through workflow engines they
impose restrictions on the types of modelling elements that can be used, such as loops
[320, p.18]. These approaches further require manual model refinement at multiple ab-
straction levels. [147] describes a generic mapping approach of business process models
to other process-oriented representations by the means of XPDL. To our experience a
generation of XPDL from higher-level process models does not have to deal with the

4.3 Conclusions 85

same challenges than a generation of WS-BPEL, since the sequence of model elements
in a XPDL model does not determine the process’s control flow and XPDL does not
require block-structured processes.

We have implemented workflow code generations in various projects. In the SPL4-
AOX project (see Example 1 in Section 4.2.2) we had an effort of about 2.5 man month
to specify and implement BPEL4WS code generation with the oAW Xpand [81, p.87ff]
and the oAW Xtend language [81, p.77ff]. The input models for this transformation are
constrained to block-structured process models. Our second implementation was done
for a prototype of the AgilPro project (see Example 2 in Section 4.2.2). We used JET
templates combined with Java code. The solution is able to deal with a limited set of
cycles in the control flow. The effort was approximately 1 man month, where most of
the time was spent on constraining and transforming the control flow of the input mod-
els. However, the parts of this implementation did not lend themselves for reuse, since
graph transformation and code generation was combined. Based on these experiences
we developed the generation framework and a graph transformation component with an
effort of 4 man months3. Finally, another person, which had no experience with code
generation and workflows, implemented the code generation for AgilPro in 3 days with
our generation framework. This person simply had to copy the process graph of the input
model in the AgilPro adapter and derive the generation templates from examples.

The model and code generation framework allows to achieve time savings compared
to other approaches. However, these time savings depend on the complexity of the input
graphs (e.g. with or without cycles) and on the experience of the generation developer.
Our model and code generation framework makes it possible for people with no or little
experience in code generation and graph transformation to produce workflow code at
reasonable time. In [253] we describe more experiences about the application of this
framework.

4.3 Conclusions

In this chapter we applied MDSD to the development of concrete service-oriented imple-
mentations via largely automated model transformations. We refined high-level cross-
organisational business process descriptions to code that is executable by workflow en-
gines. Model transformations that refine models of three abstraction levels of MDSD
have to encode additional information (see Figure 4.1). We identified crucial informa-
tion for this transformation process and developed solutions that facilitate the genera-
tion of executable workflow code from abstract cross-organisational business process
descriptions.

For the CIM to PIM transformation we developed software architecture patterns
for ICT system generation that can be applied to enact cross-organisational business
processes. We implemented these patterns in the CIM to PIM transformations that al-
low automated generation of service-oriented, platform independent models (PIM4SOA)
from computational independent CBP models. Though capturing knowledge about ar-
chitecture in separate models or implementing them directly in model transformations -
a model transformation itself is a model (see Section 3.3) - our solutions stands out from
other solutions presented under the MDSD label. It not only converts the representation
format of cross-organisational business process from EPC to PIM4SOA and leaves the

3The implementation is part of the Workflow Generation Framework [275].

86 Enacting Cross-organisational Business Processes with MDSD

implementation of the software architecture as a manual task to the system architect.
Our solutions narrow the gap between high-level business models and ICT system mod-
els significantly by encoding software architecture patterns in the model transformations.
We develop and implemented such patterns for three different ICT system coordination
architectures to enact cross-organisational business processes.

Our solutions of PIM to PSM transformations and code generations also have the
principal objective to narrow the gap between the different abstraction levels - executable
workflow code is directly generated from higher-level process descriptions. The pre-
sented generation framework decouples components that depend on the domain and the
execution environment from components that deal with computational aspects like con-
trol flow analysis and transformation. This allows better reuse of the knowledge encoded
into adapters, graph-transformation algorithms and code generation templates. If e.g.
WS-BPEL code in another version (2.0 instead of 1.1) shall be generated from a model,
only the respective code generation templates have to be adjusted. The generation frame-
work can be applied to any process modelling language or DSL that is concerned with
process description. For the respective models only the respective adapter(s) have to be
implemented. The generation framework can even be applied, when the source model
does not contain all necessary information to generate executable workflow code. In this
case the generation templates are replaced with code that constructs a refined model.

Chapter 5

ICT Architectures for CBP
Enactment: Applicability Criteria
and Evaluation

Peer-to-peer systems, like Multi-agent Systems (MAS) [139], have been proposed in the
literature as a suitable architectural and implementation approach for cross-enterprise
collaboration [140, 141], due to their support for decentral decision-making and peer-
to-peer coordination, loosely coupled coordination, modelling support for the notion of
electronic institutions [102], and built-in adaptability. However, different application do-
mains and different market constellations require different types of system architecture.

In MDSD IT architects have to be able to reuse knowledge about ICT solutions
by understanding and selecting adequate ICT system architectures in a timely manner.
We have made the observation that making the right decision about ICT architecture de-
pends, like organisational structure, on a number of environmental characteristics (called
contingencies in [72]).

In this chapter we present our investigations about how these environmental charac-
teristics influence the selection of a most efficient and effective software architecture for
ICT system coordination. The contributions of this chapter are as follows:

• A model for decision support suitable for IT architects to derive an appropriate
architecture paradigm for a given use case or application domain. The decision
model combines the AHP with scenario-based architecture evaluation techniques.

• Scenario descriptions that allow the evaluation and selection of appropriate ICT
system coordination architecture paradigms for CBP enactment.

• A set of guidelines of how contingencies influence ICT system coordination archi-
tecture based on our experiences in model-driven CBP modelling and enactment.

• We validate our observations (the guidelines) by applying our decision support
method, the scenario descriptions for CBP enactment, and the guidelines about
contingency influence to application scenarios with differing characteristics.

In Section 5.1 of this chapter we provide an example and problem description for
the selection of appropriate ICT system architectures. Section 5.2 presents a method for
the evaluation of ICT architecture applicability. In Section 5.3 we apply this method to

88 ICT Architectures for CBP Enactment: Applicability Criteria and Evaluation

the application scenario introduced in Section 5.1. Section 5.4 provides discussion and
conclusions.

5.1 Example and Problem Description

Let us look at the following scenario of collaborative product development in the auto-
motive sector (see [277]). In Section 4.1.3 we already introduced the Sourcing process
for this scenario. To choose an appropriate IT architecture, we will have to have a look
at the collaboration topology. The scenario (see Figure 5.1) describes the interaction be-
tween an Automotive Original Equipment Manufacturer (OEM) and its supplier network
consisting of multiple tiers of suppliers, during the process of Strategic Sourcing. Strate-
gic Sourcing is an early step within cooperative product development, where OEMs set
up strategic partnerships with the larger (so-called first-tier) suppliers with the aim of
producing specific subsystems (e.g. powertrain, safety electronics) of a planned car se-
ries. In the use case considered for this chapter, the OEM shares Requests for Quotations
with its first-tier suppliers (1). First-tier suppliers serve as gateways to the supplier net-
work; specifications are reviewed and conditions negotiated with second-tier suppliers
(2), and feasibility of the requests are checked. First-tier suppliers then issue quotes
or suggest changes to the OEM (3). This cycle is repeated until all parties agree on a
feasible specification. Finally, first-tier suppliers submit quotes to the OEM.

Figure 5.1: Application example: collaborative product development

Figure 5.1 gives a high-level (business-level) model of the CBPs involved in this
scenario. Trying to map this model into an executable ICT model, several non-trivial
questions need to be answered regarding the ICT architecture. In particular, the question
that we address in this chapter is the following: What is the most appropriate architec-
tural choice to model the interactions between the OEM and the 1st tier suppliers? A
decentral, peer-to-peer messaging architecture where each role in each process instance
is mapped into an agent-like entity to run and control it? An architecture with a central
broker (e.g. located at the OEM) that centrally enacts and controls the CBP? Or a mix-
ture of both, a decentral broker architecture where each enterprise provides a publicly
visible instance to control and coordinate their business process roles while hiding other,
private, elements.

Thus, we can see that there are different architectural choices / paradigms possible
for underlying ICT system design. Intuitively, none of these choices is per se better than
any other; making the right decision depends on a number of environmental characteris-
tics, i.e. contingencies.

5.2 A Method for Evaluation of ICT Architecture Applicability 89

5.2 A Method for Evaluation of ICT Architecture
Applicability

This section presents an evaluation and decision method that helps to select appropri-
ate ICT architectures for CBP enactment. The evaluation method takes into account the
trade-offs between coordination structures, which are implemented by the ICT system
architectures in terms of coordination costs and vulnerability costs (see [174]). As vi-
sualized in Figure 5.2 the evaluation model distinguishes between quantitative factors,
that are measurable by concrete figures (objective factors), and qualitative (subjective
factors), which are difficult or impossible to measure. Coordination costs to establish
and maintain communication links between collaborating patterns are included as quan-
titative factors in terms of software, hardware, and labor in the evaluation model. Co-
ordination costs like costs for exchanging messages between collaborating partners are
taken into account by qualitative factors. Vulnerability costs, which are "the unavoidable
costs of a changed situation that are incurred before the organisation can adapt to a new
situation" [174], are qualitative factors in the evaluation model.

Figure 5.2: Multi-criteria decision model for ICT architectures

To be able to compare the architectural CBP approaches in the face of architectural
decisions, it is necessary to get a quantitative measure from qualitative factors. Thus, we
apply, extend and customize the multi-criteria decision model of Ghand-foroush et al.
[108], which is a modified version of Brown and Gibson’s model [53]. As it is a quan-
titative model, it is useful for selecting one alternative from a given set of alternatives
based on quantitative and qualitative factors. Figure 5.2 depicts the design of our multi-
criteria decision model developed to evaluate ICT architectures for CBP enactment. The
rating of the quantitative factors is determined by the means of cash-flow analysis of the
predicted costs. For rating the qualitative factors we combine AHP and scenario-based
software architecture evaluation methods. First, based on the AHP, the factors, which
have to be considered in the evaluation, are determined by decomposing the evaluation
problem and arranged in a hierarchy decomposition tree. The factors are described by
the means of quality attributes and scenarios. Rating the scenarios and the alternatives
is done by pairwise comparison. The ratings, i.e. the pairwise comparisons, are based
upon how good the alternatives realize tactics supporting the respective scenarios.

5.2.1 Methodological Issues

Evaluations conducted with the proposed decision method follow a nine step procedure
(see Figure 5.3). The first three steps are necessary to set up the decision model for the

90 ICT Architectures for CBP Enactment: Applicability Criteria and Evaluation

specific decision problem, e.g. for CBP architecture evaluation. The selection (Step 1
and Step 2) of the quantitative and qualitative factors is optional, since the predefined
factors for CBP architecture evaluation described in this thesis can be used. In Step 3 the
prioritization of the subjective factors is determined by pairwise comparisons; this step
is specific to the collaboration and organisation(s) for which the evaluation is performed.
Steps 4 through Step 7 are used for rating the possible alternatives. In Step 4 one chooses
the alternatives that shall be evaluated. The quantitative factors are rated in terms of
money and person months in Step 5. The qualitative factor ratings are determined by
pairwise comparison of the alternatives (Step 6). Step 7 aggregates the factor ratings
quantitative and qualitative factor measures. Before one alternative is chosen in the last
step, a sensitivity analysis is performed by varying the importance of the quantitative
and the qualitative factor measure (Step 8).

Figure 5.3: Methodology for evaluation and decision model

5.2.2 Multi-criteria Evaluation and Decision Model

The multi-criteria evaluation and decision distinguishes between objective (quantitative)
factors and subjective (qualitative) factors.

• Objective factors are evaluated in monetary terms, and as such are easily quan-
tifiable. Our quantification is based on the cash flow approach and therefore on
the discounted present value. The evaluation model considers costs for software,
hardware and labor.1

1The focus of the evaluation model is on the viewpoint of an integrator. The integrator takes into account
purchase, licensing, set up, and maintenance costs for hardware and integration and maintenance costs for
software. Development of software itself plays a secondary role, since the service or agent software has to
be developed independent of the chosen architecture.

5.2 A Method for Evaluation of ICT Architecture Applicability 91

• Subjective factors are characterized by the fact that they are qualitative measures
that typically cannot be quantified. When evaluating software architecture, quality
attributes and scenarios are measured in qualitative terms.

The underlying principle of the model is to combine the two evaluation factors into
a common evaluation measure. This requires that quantitative considerations and qual-
itative considerations, where the latter have to be transformed in common measurable
units. The model allows to select one software architecture pattern from a given set of
alternatives. Following [108], for each software architecture pattern i an architecture
evaluation measure AEMi is defined:

AEMi � X � OFMi � p1� Xq � S FMi (5.1)

where

AEMi � architecture evaluation measure, 0 ¤ AEMi ¤ 1

OFMi � objective factor measure, 0 ¤ OFMi ¤ 1 and
ņ

i�1

OFMi � 1

S FMi � subjective factor measure, 0 ¤ S FMi ¤ 1 and
ņ

i�1

S FMi � 1

X � weight assigned to the objective factor, 0 ¤ X ¤ 1

n � total number of software architecture patterns evaluated, 1 ¤ i ¤ n

AEMi is a measure between 0 and 1 for a particular software architecture pattern,
where software architecture patterns with a higher measure score better than patterns
with a lower measure. The measure depends to a large extent on the choice of the
weight X assigned to the objective factors OFMi and the subjective factors S FMi. This
parameter can be used for sensitivity analysis.

Objective factors are quantified in terms of monetary units. In order to make them
comparable to subjective factors, the objective factors have to be converted to a dimen-
sionless index, i.e. an index with the dimension of one:

OFMi �
1

OFCi �
°n

i�1

�
1

OFCi

	 , i � 1, 2, . . . , n (5.2)

where

OFCi � total objective factor costs for software architecture pattern i

Brown and Gibson [53] ensure through three principles that the objective factor mea-
sure is compatible with the subjective factor measure: the software architecture pattern
with the highest cost will have the minimum OFMi, the relationship of OFCi for each
pattern relative to all other patterns is preserved, and the sum of all OFMi is equal to 1.

The subjective factor measure S FMi is defined as follows:

S FMi �
m̧

j�1

�
S FW j �

o j̧

k�1

�
S S Wk j � S AWik j

��
(5.3)

92 ICT Architectures for CBP Enactment: Applicability Criteria and Evaluation

S FW j �
S FW 1

j°m
j�1 S FW 1

j
(5.4)

S S Wk j �
S S W 1

k j°o j

k�1 S S W 1
k j

(5.5)

S AWik j �
S AW 1

ik j°n
i�1 S AW 1

ik j

(5.6)

where

S FW j � normalized weight value of first level factor j

S FW 1
j � weight of first level factor j to each first level factor

S S Wk j � normalized weight value of 2nd level factor k j for one 1st level factor j

S S W 1
k j
� weight of second level factor k j to all second level factors

in first level factor j

S AWik j � normalized rating of architecture variant i for subjective factor k j

S AW 1
ik j
� rating of architecture variant i for subjective factor k j

m � total number of first level factors among the subjective factors

o j � total number of second level factors in a specific first level factor j

The subjective factors can be grouped into a hierarchy of factors. A first level factor
is an aggregation of a set of second levels factors. Within one first level factor the
relative importance of a second level factor is rated by assigning a weight S S Wk j to each
of the second level factors. Similar the weight S FW j specifies the relative importance of
one first level factor to the other first level factors. Both factors weights depend on the
organisational context and the collaboration for which the software architecture patterns
are evaluated. The factor weights are independent of software architecture patterns, and
can also be used for sensitivity analysis.

All, the first level factor weight S FW j, the second level factor weight S S Wk j , and
the architecture variant rating S AWik j are normalized measures and sum up to one. Thus
also the subjective factor measure S FMi sums up to one and is represented in the same
numerical scale as the objective factors.

5.2.3 Measuring Qualitative Factors

The part of the evaluation and decision model concerned with measuring qualitative
factors is supposed to deal with two main challenges. First it has to provide concepts to
evaluate software architecture patterns with respect to organisations’ demands. Second
the model has to provide means to support people using the model by rating factors and
alternatives in order to achieve reasonable and consistent measurements throughout the
evaluation process.

We use scenario-based evaluation for software architecture patterns, which is a good
way to determine quality attributes of software architecture. The AHP first decomposes
a decision problem into a hierarchical network of factors and subfactors before it aggre-
gates second level factors to first level factors. In scenario-based evaluation, first level

5.2 A Method for Evaluation of ICT Architecture Applicability 93

factors are represented by quality attributes and second level factors are represented by
scenario descriptions.

Since it is problematic to provide sensible scales for measuring the response value of
our high level software architectural patterns, we make use of pairwise comparison (see
AHP) to rate the qualitative factors and the evaluated software architecture patterns. The
decisions for the comparisons are made on the basis of which tactics the evaluated soft-
ware architecture patterns support and the contingency factors influencing organisations
and the collaboration.

Scenario-based ICT Architecture Evaluation

Scenario-based ICT architecture evaluation (cp. Section 2.3.1) is used to determine qual-
ity of software architecture. Hence desired architectural quality attributes are refined by
general usage scenarios. These allow a detailed rating of how good quality attributes are
supported by software architecture pattern. Quality attributes and scenarios descriptions
are used to determine the qualitative factors measure.

Quality Attributes Our evaluation model considers the strategic quality attributes
modifiability, privacy, reusability and interoperability. For the quality attribute privacy
we evaluate the privacy of corporate data and knowledge, which has to be exposed by
the enterprises due to the applied software architecture pattern. We do not consider
execution related topics like intrusion, denial of service attacks, etc. In the case of inter-
operability, which can be observed both at execution and build time, we only consider
strategic issues like change and reuse of functionality or interaction protocols; we do
not consider e.g. conversion of message data at runtime. Furthermore, the evaluation
model addresses some more run-time related issues like efficiency and manageability of
process execution.

Scenario Descriptions The evaluation model is supposed to be suitable for a diversity
of systems supporting businesses collaborations. Thus, general scenarios have to be de-
veloped, which can be applied to classes of systems rather than to one concrete system.
Scenarios represent the characteristics of quality attributes and are used to determine
how good quality attributes can be satisfied by systems realizing certain software archi-
tecture patterns. The following list gives an overview of the quality attributes (printed in
boldface) and the associated scenarios defined for our evaluation and decision model.

• Modifiability

• Scenario 1: Modification of CBPs
• Scenario 2: Change of partners in CBP
• Scenario 3: Incremental development of CBPs
• Scenario 4: Change of elementary services
• Scenario 5: Development of CBP variants

• Privacy

• Scenario 6: Privacy of internal ESs related data
• Scenario 7: Privacy of internal CBPs realizations

94 ICT Architectures for CBP Enactment: Applicability Criteria and Evaluation

• Reusability

• Scenario 8: Reuse of CBPs
• Scenario 9: Reuse of elementary services

• Interoperability

• Scenario 10: Change of CBP protocol specification
• Scenario 11: Change of ES’s interfaces

• Efficiency

• Scenario 12: Bottle-neck
• Scenario 13: Security overhead

• Manageability

• Scenario 14: Versioning
• Scenario 15: Monitoring

Table 5.1 depicts the description of the ’Modification of CBPs’ scenario. Descrip-
tions of the other scenarios can be found in Appendix B.1.

Scenario 1 – Modification of CBPs
Source Management
Stimulus Due to the constant and rapid change in business existing CBPs have

to be adapted to the new business models.
Environment Design-time
Artifact Cross-organisational business process
Response The necessary changes in order to enact the new CBP affect a min-

imal number of existing modules. Necessary change of existing
modules should have no side-effects on other processes (e.g CBPs).

Response
Measure

Brokerless: up to n ESs of the partners are affected
Central broker: the central broker is affected
Decentral broker: VPs of the respective partner(s) are affected

Table 5.1: Scenario 1: modification of CBPs

Factor Decomposition and Pairwise Comparisons

Factor decomposition and pairwise comparisons of our evaluation model are based on
the AHP.

Factor Decomposition Factor decomposition establishes a hierarchy of first level and
second level factors cascading from the decision objective or goal. The hierarchy for
our decision method is structured as follows (see Figure 5.4): At the top level one can
find the overall goal to have the best architecture quality. At the first level contains
quality attributes like modifiability, privacy, reuse, etc., which contribute to the quality
of an architecture. The scenarios are used at the second level to give a more detailed
description of how the quality attributes have to be established. At the bottom level we
can find the architectural variants which have to support the scenarios.

5.2 A Method for Evaluation of ICT Architecture Applicability 95

Sx=Scenario x

Figure 5.4: AHP decomposition tree for CBP evaluation model

Pairwise Comparisons AHP uses pairwise comparison for both determining the pri-
ority for the subjective factors and rating the architectural alternatives.

Weighting the Subjective Factors To determine the weights for subjective fac-
tors, i.e. which scenarios or quality attribute is more important than another, pairwise
comparisons are conducted between the first-level factors and the second-level factors.
Therefore the factors are arranged in a matrix a and the evaluators have to determine the
ratings ai j of the factors by pairwise comparisons. They use a scale to measure relative
importance ranging from one to nine (one means that both factors are equally important;
nine means that one factor is extremely more important than another). To calculate the
ratios of the factors vi, the entries of the matrix ai j have to be normalized to ai j. Then
the normalized matrix entries ai j of each row are summed up and divided through the
number factors, i.e. the average value of the normalized matrix entries for each row is
determined.

vi �

°n
j�1 ai j

n
�

°n
j�1

ai j°n
i�1 ai j

n
(5.7)

As a result, vi is the weight for the respective S FW 1
j or S S W 1

k j
for the first and second

level factors. It holds that S FW 1
j � S FW j and S S W 1

k j
� S S Wk j since the weights of the

factors vi are already normalized. The aggregation of the factor weights is achieved by
multiplying the second level factor weight with the respective first level factor weight.

Rating the Scenarios To rate the scenarios, our decision method applies a rela-
tive measurement, which is based on a scale (see above) to express preference of one
alternative over another. For example, one can say that to support a scenario under cer-
tain contingencies, alternative a1 is strongly favoured instead of alternative a2. For each
scenario an evaluation matrix is established, in which the alternatives are compared.
To determine the rating of the alternatives (i.e. the priority vector), we apply the ’ideal
mode’ which should be used in cases where one alternative shall be chosen [258, 259].
The ’ideal mode’ solves the rank reversal problem, where the number and kind of alter-
natives might influence the decision. The matrix is constructed analogous to the matrix
for weighting the scenarios. Only the calculation of the priority vector’s values differs,

96 ICT Architectures for CBP Enactment: Applicability Criteria and Evaluation

since we apply the ’ideal mode’ and not the ’distributive mode’. One obtains the val-
ues of the priority vector in ideal mode vid

i by dividing vi by the maximal value of v:
vid

i �
vi

maxpviq
; vid

i corresponds to the rating of the architecture variant S AW 1
ik j

.
The measurement values of how good ICT coordination architectures support the

scenarios is specific to organisational and collaboration context, i.e. the contingencies.
It is possible that under certain contingencies one alternative is the best for supporting a
scenario, while under different contingencies this alternative may be less appropriate to
support the same scenario.

Consistency and Plausibility of Pairwise Comparisons The AHP method in-
volves also redundant comparisons to improve validity, recognizing that participants may
be uncertain or make poor judgements in some of the comparisons. This redundancy
leads to multiple comparisons that may lead to numerical inconsistencies. A consistency
ratio (CR) is used to estimate accuracy of data. The consistency ratio can be calculated
on the basis of the maximum eigenvalue λmax of the comparison matrix and a coefficient
RI2: CR � CI{RI � λmax�n

n�1 {RI. Saaty suggested that errors in the measurements are
tolerable when CR ¤ 10% [259].

For example, if alternative a1 is better than alternative a2 by the factor 3, and alter-
native a2 is better than alternative a3 also by the factor 3, than alternative a1 has also
to be better than alternative a3. For example, the factor 3 for the pairwise comparison
between a1 and a3 would not be sufficient, since this would imply that a1 is equal to a2
(CR � 13%).

Rating the ICT Architecture Alternatives

To compare the ICT coordination architectures one needs to know how good these archi-
tectures support architecture quality attributes and scenarios. Therefore it is necessary
to understand by which means an architect influences the quality attributes of an archi-
tecture. As described in [21], software architects use so-called tactics to achieve quality
attributes (see Section 2.3.1).

In the case of scenario 1 the architect applies tactics that reduce the number of mod-
ules and processes (response of scenario 1) that are affected by changes to processes
(stimulus of scenario 1). Through the maintenance of semantic coherence the archi-
tect ensures that the responsibilities among the services in a CBP work together without
excessive reliance on each other. The tactic anticipate expected changes reduces the ser-
vices that need to be modified in case of certain changes. Generalized services allow to
compute a broader range of functions based on the same input. An architect can apply
these three tactics to CBP architectures by using the patterns abstraction, loose coupling,
and orchestration.

With this information it is, in general, possible to decide whether one architecture
variant supports a scenario better than another one. Having a look at scenario 1 (cp.
Table 5.1), the decentral broker architecture incorporates the patterns abstraction, loose
coupling, and orchestration for CBPs, which is the artifact of the scenario description.
Thus it realizes the tactics maintain semantic coherence, anticipate expected changes,
and generalize module. The brokerless architecture instead, realizes none of these pat-
terns and tactics for the artifact CBPs of scenario 1. Thus we can infer that the decentral

2The author of [259] suggests to use the following values for RI: n � 3, RI � 0.52; for n � 4,
RI � 0.89; for n � 5, RI � 1.11; for n � 6, RI � 1.25.

5.2 A Method for Evaluation of ICT Architecture Applicability 97

broker architecture better supports scenario 1 than the brokerless architecture. The re-
maining question is, how contingencies influence the ratings and the distance between
the ratings of the evaluated architectures?

Influences on the Ratings

The ratings of the architecture alternatives are influenced by various factors. In the fol-
lowing, we discuss for CBPs how tactics and patterns, that are used to achieve architec-
tural quality, as well as contingencies, i.e. internal and external factors of the application
scenario, influence the ratings.

Tactics and Patterns To compare the software architectures in the Rating of Quali-
tative Factors step of the evaluation methodology (see Section 5.2.1), it is necessary to
understand by which means an architect influences the quality attributes of an architec-
ture. As described in Section 2.3.1, software architects use so-called tactics to achieve
quality attributes.

Table 5.2 provides an overview about which tactics and patterns are most sensibly
applied in an ICT coordination architecture for CBPs. In the case of scenario 1 the
architect applies tactics that reduce the number of modules and processes (response of
scenario 1) that are affected by changes to processes (stimulus of scenario 1). Through
the maintenance of semantic coherence the architect ensures that the responsibilities
among the services in a CBP work together without excessive reliance on each other.
The tactic anticipate expected changes reduces the services that need to be modified
in case of certain changes. Generalized services allow to compute a broader range of
functions based on the same input. An architect can apply these three tactics to CBP
architectures by using the patterns abstraction, loose coupling, and orchestration.

With this information it is, in general, possible to decide whether one architecture
variant supports a scenario better than another or not. Having a look at scenario 1 (cp.
Table 5.1), the decentral broker architecture incorporates the patterns abstraction, loose
coupling, and orchestration for CBPs, which is the artifact of the scenario description.
Thus it realizes the tactics maintain semantic coherence, anticipate expected changes,
and generalize module. The brokerless architecture instead, does realize none of the
these patterns and tactics for the artifact (CBPs) of scenario 1. Thus, we can infer that the
decentral broker architecture better supports scenario 1 than the brokerless architecture.

Contingencies The ratings of architectures depend to a high degree on the organisa-
tional, the collaboration, and the external context for which the architectures are evalu-
ated. Like in contingency theory [72] (see 2.3.3), where the performance and efficiency
of an organisational structure depends on internal and external contingencies, the rating
of the evaluated architectures also depends on such contingencies.

In our decision method we consider contingencies within the collaboration network
(internal contingencies) and outside the collaboration network (external contingencies).
Internal contingencies characterize the collaboration model and the organisations par-
ticipating in the collaborations. These are: the collaboration topology, that takes into
account the distribution of influence and power among the partners; the complexity and
specificity of the products developed by the collaborating organisations; the service flow
that is characterized by the amount of data and the number of messages exchanged; as-
pects related with the process itself like length of the process, defined through the num-

98 ICT Architectures for CBP Enactment: Applicability Criteria and Evaluation

Patterns Tactics

W
ra

pp
er

B
ro

ke
r

A
bs

tr
ac

tio
n

L
oo

se
co

up
lin

g

O
rc

he
st

ra
tio

n

M
ai

nt
ai

n
se

m
an

tic
co

he
re

nc
e

A
nt

ic
ip

at
e

ex
pe

ct
ed

ch
an

ge
s

G
en

er
al

iz
e

m
od

ul
e

R
es

tr
ic

tc
om

m
un

ic
at

io
n

pa
th

s

U
se

an
in

te
rm

ed
ia

ry

M
ai

nt
ai

n
ex

is
tin

g
in

te
rf

ac
es

H
id

e
in

fo
rm

at
io

n

Scenario 1 - - x x x x x x - - - -

Scenario 2 - x - x x - x - - - x -

Scenario 3 - x x x x x x - x - - -

Scenario 4 - x - - x x - x - x - x

Scenario 5 - x x - x - x - - x x x

Scenario 6 x x - - - - x - - x x x

Scenario 7 x x x - - - - - - x x x

Scenario 8 - x x - x - - x - - x x

Scenario 9 - x x - x - - x - x x -

Scenario 10 - x x - x - x - x x - -

Scenario 11 - - x x x x x - - x - -

Table 5.2: Patterns and tactics that can be used to support scenario 1 to 11

5.2 A Method for Evaluation of ICT Architecture Applicability 99

ber of processing steps, or the estimated number of process instances during execution.
External contingencies are external factors that highly influence organisations’ decision
and strategies, and therefore impact also the choice of an ICT coordination architecture:
standardization considers the existence of industry-specific, national, or international
standards; maturity takes the existence of commonly accepted processes, protocols, etc.,
into account; business semantics considers the availability of standards and their ma-
turity with regard to defining semantics of a specific domain; legislation comprises the
regulations which impose special requirements regarding security, monitoring, and other
aspects of the collaboration. [165]

Table 5.3 illustrates how contingencies influence the scenario ratings (for a complete
overview see Appendix B.2). Depending on the contingencies the importance of realiz-
ing tactics to best support scenarios varies. In the case this is directly proportional (�),
we can say that the stronger the influence of contingencies (e.g. higher product complex-
ity), the higher is the difference between two architecture ratings, where one architecture
supports and the other architecture does not support the scenario by tactics. Inversely
proportional (Ö) represents the fact that a higher influence of contingencies (e.g. high
degree of standardization) results in a lower difference between the architectures in the
scenario ratings.

Sc
en

ar
io

1

Sc
en

ar
io

2

Sc
en

ar
io

3

Sc
en

ar
io

4

Sc
en

ar
io

5

In
te

rn
al

C
on

tin
ge

nc
ie

s Coll. topology initiator�
power of
players� n/a n/a n/a

Product complexity� complexity� n/a
complexity/
specifityÖ n/a

Service flow n/a n/a n/a n/a �

Process n/a length� # process
instances� length� length�

E
xt

er
na

l
C

on
tin

ge
nc

ie
s Standardization Ö Ö Ö Ö Ö

Maturity Ö Ö Ö Ö Ö

Bus. semantics n/a Ö Ö Ö Ö

Legislation n/a n/a n/a n/a n/a

Table 5.3: Influence of contingencies on scenario ratings

If we assume for example a high degree of standardization to rate scenario 1, the
decentral broker architecture is not much better than or even equal to the brokerless
architecture. Standardized parts of the CBP and the ESs can be reused and combined in
arbitrary ways adapting to the change in business (stimulus of scenario 1). Necessary
changes affect about the same number of modules (cp. response and response measure
of scenario 1 in Table 5.1) in both coordination architectures.

Of course there exist other contingencies, which are also relevant for the decision
about an ICT coordination architecture. For example, the dynamics of the collaboration
(internal contingency) and the industry dynamics (external contingency) both address
the aspect of change. Since change is already covered by the scenario descriptions, this
aspect has to be considered by weighting scenarios and quality attributes. Change is not
addressed a second time in rating the scenarios.

100 ICT Architectures for CBP Enactment: Applicability Criteria and Evaluation

5.2.4 Measuring Quantitative Factors

In the decision method quantitative factors are evaluated in monetary terms on the basis
of the discounted cash flow approach. The discounted present value of the future cash
flows FVD

i , which corresponds to the objective factor measure OFCi for a software
architecture pattern i, is defined as follows:

OFCi �
m̧

j�1

FVD
i j
�

N�1̧

t�0

FVi jt

p1� dqt
(5.8)

where

FVD
i j
� discounted present value of the future cash flow (FV) for factor j

FVi jt
� nominal value of a cash flow amount in a future period t for factor j

d � discount rate

N � number of discounting periods

m � total number of objective factors

For simplicity reasons we assume that all expenses necessary to set up an ICT system
occur at present time (FVi0 ; t � 0). Running costs like for maintenance of the system or
changes to the systems are considered annually (FVit ; t ¡ 0). The decision model con-
siders costs for software (purchasing costs and annual licences), hardware (purchasing
costs and annual leasing fees) and labor (costs to set up the systems, maintenance costs,
and costs to develop and deploy new and modified processes).

Software

For software costs FVD
i1

the model considers purchasing costs FVD
i11

, which are ac-
counted at t � 0, and annual licence fees FVD

i12
.

FVD
i1 � FVD

i11
� FVD

i12
� FVi110

�
N�1̧

t�0

FVi12t

p1� dqt
(5.9)

Purchasing To calculate purchasing costs FVi110
the average software costs of one

broker component CpurchaseS WBr, the average software costs of one elementary service
CpurchaseS WES , the total number of broker processes npurchaseS WBri , and total number of
elementary services npurchaseS WES i have to be determined.

FVi11o
� npurchaseS WBri �CpurchaseS WBr � npurchaseS WES i �CpurchaseS WES (5.10)

Licencing To calculate annual licence costs FVi12t
with 0 ¤ t N, the average annual

licence costs of one broker component CannualS WBr, the average annual licence costs of
one elementary service CannualS WES , the total number of broker processes nannualS WBri ,
and the total number of elementary services nannualS WES i have to be determined.

FVi12t
� nannualS WBri �CannualS WBr � nannualS WES i �CannualS WES (5.11)

5.2 A Method for Evaluation of ICT Architecture Applicability 101

Hardware

For hardware costs FVD
i2

the model considers purchasing costs FVD
i21

, which are ac-
counted at t � 0, and leasing fees FVD

i22
, which are accounted annually for 0 ¤ t N.

FVD
i2 � FVD

i21
� FVD

i22
� FVi210

�
N�1̧

t�0

FVi22t

p1� dqt
(5.12)

Purchasing To calculate purchasing costs FVi110
the average hardware costs for com-

puter machines hosting broker components CpurchaseHWBr, the average hardware costs
for computer machines hosting elementary services CpurchaseHWES , the total number
of computer machines hosting broker processes npurchaseHWBri , and the total number of
computer machines hosting elementary services npurchaseHWES i have to be determined.

FVi210
� npurchaseHWBri �CpurchaseHWBr � npurchaseHWES i �CpurchaseHWES (5.13)

Leasing To calculate annual leasing fees FVi12t
with 0 ¤ t N the average annual

leasing costs for computer machines hosting broker components CleasingHWBr, the aver-
age annual costs for computer machines hosting elementary services CleasingHWES , the
total number of computer machines hosting broker processes nleasingHWBri , and the to-
tal number of computer machines hosting elementary services nleasingHWES i have to be
determined.

FVi22t
� nleasingHWBRi �CleasingHWBR � nleasingHWES i �CleasingHWES (5.14)

Labor

For the factor labor costs FVD
i3

the model distinguishes between costs to set up systems
FVD

i31
, system maintenance costs FVD

i32
, and costs to develop and deploy new and modi-

fied processes FVD
i33

.

FVD
i3 � FVD

i31
� FVD

i32
� FVD

i33
� FVi310

�
N�1̧

t�0

FVi32t

p1� dqt
�

N�1̧

t�0

FVi33t

p1� dqt
(5.15)

Setup Costs to set up the system FVi31t
are accounted at t � 0 and aggregate costs for

development, integration, customization, and deployment of the system but also costs
for consulting, training, etc. Therefore the average costs to set up the system Csetupi have
to be accounted.

FVi310
� Csetupi (5.16)

Maintenance Maintenance costs FVi32t
are accounted annually 0 ¤ t N. This factor

also comprises costs for various tasks. Therefore the average costs for maintaining the
system Cmaintenancei have to be accounted.

FVi32t
� Cmaintenancei (5.17)

102 ICT Architectures for CBP Enactment: Applicability Criteria and Evaluation

Change Costs to develop and deploy new and modified processes are accounted an-
nually 0 ¤ t N. The average number of broker processes that have to be changed
nchangeBri , the average number of elementary services that have to be changed nchangeES i ,
the average costs for changing a broker process CchangeBri , the average costs for chang-
ing an elementary service CchangeES i , and the average number of changes per year nchange

have to be determined.

FVi33t
� nchange �

�
nchangeBri �CchangeBri � nchangeES i �CchangeES i

�
(5.18)

5.3 Applying the Evaluation Method

As described in the introduction of this chapter, companies organise themselves into
global networks and outsource those activities that can be performed more quickly and
effectively or at lower cost, by others [270]. However, outsourcing and interacting in
global networks also increases overhead costs for collaboration, coordination, and inter-
mediation. One approach to describe the influence of organisational structure on these
overhead costs is the transaction cost model [322, 323]. In today’s economies, trans-
actions for example make up more than 30% of the total costs of an automobile [280].
Transaction costs heavily depend on the capabilities of business systems to keep up with
constantly evolving business relationships and cross-organisational value chains. How-
ever, in the comparison to transaction costs, IT costs are much less than transaction costs
(in the Automotive example this is about 6% of the overall costs [280]).

In this section, we apply the evaluation method to two scenarios: a virtual enter-
prise scenario (Section 5.3.1) and to a scenario with collaborating Small and Medium
Enterprises (SMEs) (Section 5.3.2). In doing so, the goal is to identify the collaboration
architecture which best supports the cross-organisational value chain and helps to reduce
transaction costs. The trade-off between reducing transaction costs (qualitative factors)
and reducing of IT costs (quantitative factors) through the choice of a collaboration ar-
chitecture is discussed in a sensitivity analysis.

5.3.1 Virtual Enterprise Scenario

This scenario deals with virtual enterprises that collaborate in big, long-running CBPs
(approx. 90 processing steps). The OEM and the big first-tier suppliers introduced in
the automotive scenario in Section 5.1 together form a virtual enterprise, which builds a
temporary network of independent companies, suppliers, customers. They are linked by
information technology to share costs, skills, and access to one another’s markets. The
services the partners provide to the CBP are to 50% legacy applications, which will be
replaced within the next five years. The services, their interfaces, and data types are not
standardized, so that interoperability is an important issue. About 30% of the CBP are
standardized and it may be necessary to provide variants of the CBP. The privacy of the
enterprises’ services is only medium important, since the enterprises make their profit
through economy of scale. Hence, they also participate with their elementary services in
other CBPs.

In the next paragraphs we will present the results of applying our evaluation method
to the virtual enterprise scenario. The complete data relevant for the evaluation can be
found in Appendix B.3.

5.3 Applying the Evaluation Method 103

Determining the Qualitative Measure

Weighting the Subjective Factors To determine the weight of the quality attributes
and the scenarios pairwise comparison are applied like described in Section 5.2.3.

mod. pri. reuse int. eff. man. vi

modifiability 1 7 3 1
3 3 3 0.21

privacy 1
7 1 1

4
1
9

1
5

1
5 0.03

reuse 1
3 4 1 1

5 1 1 0.10
interoperability 3 9 5 1 5 5 0.45

efficiency 1
3 5 1 1

5 1 1 0.10
managability 1

3 5 1 1
5 1 1 0.10

Table 5.4: Priority comparison matrix for the first level factors

Table 5.4 depicts the weighting of the first level factors, i.e. the quality attributes, for
the virtual enterprise scenario. Modifiability is considered more important than privacy
and reuse but less important than interoperability. The column of the priority vector vi

depicts the weighting of the quality attributes.

modifiability sc.1 sc.2 sc.3 sc.6 sc.11 vi

scenario 1 1 3 7 1
5

1
3 0.14

scenario 2 1
3 1 5 1

5
1
5 0.08

scenario 3 1
5

1
7 1 1

9
1
9 0.03

scenario 6 5 5 9 1 3 0.47
scenario 11 3 5 9 1

3 1 0.27

Table 5.5: Priority comparison matrix for the second level factor modifiability

Table 5.5 depicts the weighting of the scenarios are used to describe the modifiability
attribute in the virtual enterprise scenario. The scenarios are analogously compared as
the other quality attributes in Table 5.4. The column of the priority vector vi depicts the
weighting of the scenarios.

Rating the Scenarios The scenarios are rated by pairwise comparing the architecture
alternatives. The decisions are based on how good the architectures support the scenarios
via tactics and patterns). The rating, i.e. the values decision, also depend on the charac-
teristics of the contingency factors of the application scenario for which the evaluation
is performed.

scenario 1 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
7

1
7 0.14

Cen-Br. 7 1 1 1.00
Dec-Br. 7 1 1 1.00

Table 5.6: Rating scenario 1

Table 5.6 depicts the rating matrix for scenario 1. As described in Section 5.2.3
the central broker alternative supports scenario 1 better than the brokerless alternative.
Relevant contingencies for scenario 1 are the grade of standardization and the maturity
of the CBP and the services. Since both contingencies are rather low in the virtual en-
terprise scenario, the architectural quality is important for the support of this scenario,

104 ICT Architectures for CBP Enactment: Applicability Criteria and Evaluation

which leads to the comparison value 7 between the central broker and brokerless archi-
tecture. The central and decentral broker architecture a rated equally important, i.e. 1.
The column of the priority vector vid

i depicts the weighting of the scenarios.

Overall Subjective Measure The overall subjective measure is computed on the basis
of the factor weights and the scenario ratings. Table 5.7 depicts the relevant data. In row
two one can find the weighting of the quality attributes from Table 5.4. The weighting of
the scenarios that describe the quality attributes are specified in row four. The scenario
ratings can be found in the columns of the respective scenarios. For example the rating,
i.e. priority vector values vid

i , for scenario 1 can be found in column 2 row 5-7. The
overall subjective measure is calculated with the formula (5.3) and can be found in the
last column.

Modifiability Sec. Reuse Int.op. Eff. Man.

S
F

M
id i

S
F

M
i

0.21 0.03 0.10 0.45 0.10 0.10
S1 S2 S3 S6 S11 S7 S8 S4 S9 S11 S5 S10 S12 S13 S14 S15

0.14 0.08 0.03 0.47 0.27 0.17 0.83 0.43 0.43 0.14 0.17 0.83 0.25 0.75 0.67 0.33
Wo-Br. 0.14 0.11 0.08 0.16 0.08 0.24 0.20 0.25 0.17 0.08 0.14 0.17 1.00 0.17 0.12 0.11 0.178 0.108
Cen-Br. 1.00 0.44 0.30 0.46 0.30 0.14 0.20 0.25 0.59 0.30 1.00 0.41 0.33 1.00 1.00 1.00 0.568 0.343
Dec-Br. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.41 0.60 0.44 0.908 0.549

Table 5.7: Overall subjective measure

Determining the Quantitative Measure

Overall Objective Measure The objective measure is calculated on the basis of the
cash flow of the costs for software, labor, hardware. For the virtual enterprise scenario
with four collaborating enterprises we have estimated the following costs. It is important
to understand, that the scale (euro, dollar, etc.) is not important for the overall objective
measure, since the scale is transformed into an dimensionless index. In Table 5.8 one can
see that for the brokerless architecture 5075 thousand cost units were estimated (OFCi).
The overall objective measure OFMi can be found in the last column.

Software Hardware Labour O
F

C
i

O
F

M
i

Wo-Br. 45K 75K 4955K 5075K 0.127
Cen-Br. 69K 95K 1200K 1364K 0.474
Dec-Br. 118K 135K 1367K 1620K 0.399

Table 5.8: Overall objective measure

Sensitivity Analysis and Interpretation

The architectural evaluation measure AEMi for each architecture variant is determined
on the basis on the objective factor measure OFMi and the subjective factor measure
S FMi (see formula (5.1)). The measure depends on the weight X assigned to the objec-
tive and subjective factor. This weight lends itself also for sensitivity analysis.

Figure 5.5 depicts the sensitivity analysis chart for the virtual enterprise scenario.
The x-axis represents the importance of the objective factors measure and the y-axis the
architecture evaluation measure for the respective architecture variant.

5.3 Applying the Evaluation Method 105

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

X

A
E
M

_i Wo-Br.

Cen-Br.

Dec-Br.

Figure 5.5: Sensitivity analysis chart

On the basis of this evaluation result we can conclude, that either the central broker
or the decentral broker architecture variant should be selected. The brokerless variant
gets significantly lower rating values for all X than the other ones. The decentral broker
architecture scores better for the qualitative measurement (especially for X � 0), while
the central broker architecture is better in terms of IT costs. A feasible estimation of X
is to consider the relationship between the percentage of transaction costs and IT costs
of the total costs. In the automotive industry IT costs (6%) are low in comparison to the
transaction costs (30%) (cp. [280]). This leads to an estimation of X � 0.2 for the virtual
enterprise scenario applied to the automotive industry. Thus, we would suggest to select
the decentral broker architecture in the virtual enterprise scenario. Even if transaction
costs and IT costs got equally important (X � 0.5), the architecture evaluation measure
of the decentral broker variant would be still be a bit better than the central broker variant.

5.3.2 SME Scenario

This scenario represents the CBPs between the second-tier (or even third- and fourth-tier
suppliers) of the automotive scenario from Section 5.1. The second-tier suppliers are
SMEs that manufacture parts, which can be largely standardized and can be reused in
many cars or other application domains. The SMEs produce for example screws, fuses,
circuit boards, etc. They support rather short processes with approx. 20 processing steps.
The specificity of the service is low. Smaller and equal partners (SMEs) frequently join
and leave the collaborations and most SMEs also participate in other similar collabo-
rations. Participating partners have similar interfaces, data types, etc., and the services
and CBPs are de-facto standardized (e.g. already formulated in ebXML BPSS [203]).
Hence, interoperability is not so an important issue to these organisations. Also changes
to the existing CBPs are rare (up to three times a year). However, about 50% of the ser-
vice offer by the SMEs are legacy applications, which will be partially replaced within
the next five years.

In the next paragraphs we will present the results of applying our evaluation method
to the SME scenario. The complete data relevant for the evaluation can be found in
Appendix B.4.

106 ICT Architectures for CBP Enactment: Applicability Criteria and Evaluation

Determining the Qualitative Measure

The overall subjective measure can be found in Table 5.9.

Modifiability Sec. Reuse Int.op. Eff. Man.

S
F

M
id i

S
F

M
i

0.16 0.04 0.25 0.06 0.25 0.25
S1 S2 S3 S6 S11 S7 S8 S4 S9 S11 S5 S10 S12 S13 S14 S15

0.05 0.59 0.05 0.21 0.11 0.50 0.50 0.45 0.45 0.09 0.20 0.80 0.83 0.17 0.17 0.83
Wo-Br. 0.50 0.36 0.50 0.20 0.40 1.00 1.00 1.00 0.17 0.40 0.17 0.40 1.00 0.50 0.30 0.17 0.530 0.293
Cen-Br. 1.00 0.50 1.00 1.00 0.64 1.00 1.00 0.30 0.41 0.64 0.41 0.64 0.12 1.00 1.00 1.00 0.589 0.326
Dec-Br. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.55 1.00 1.00 1.00 1.00 0.40 1.00 0.55 0.41 0.688 0.381

Table 5.9: Overall subjective measure

Determining the Quantitative Measure

The overall objective measure can be found in Table 5.10.

Software Hardware Labour O
F

C
i

O
F

M
i

Wo-Br. 100K 100K 100K 300K 0.453
Cen-Br. 124K 120K 195K 439K 0.310
Dec-Br. 197K 180K 198K 575K 0.237

Table 5.10: Overall objective measure

Sensitivity Analysis and Interpretation

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

0,450

0,500

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

X

A
E
M

_i Wo-Br.

Cen-Br.

Dec-Br.

Figure 5.6: Sensitivity analysis chart

Figure 5.6 depicts the sensitivity analysis chart for the SME. One can clearly see how
the contingencies standardization and short processes influence the architecture evalua-
tion measure. Although the partners in the collaboration frequently change the broker-
less architecture variant scores very well. For most X, the brokerless architecture has
the highest evaluation measure and even four low X its measure is hardly lower than the

5.4 Discussion and Conclusions 107

measure for the broker architecture. However, if contingencies change, like new moni-
toring requirements from the government, the intersection point of the curves would be
at a higher X (it would move to the right). This would make the broker architectures
more interesting to realize the SMEs scenario.

5.4 Discussion and Conclusions

The contribution of the work presented in this chapter is fourfold: First, we developed
a model for decision support suitable for IT architects to derive an appropriate archi-
tecture paradigm for a given use case or application domain. The decision model com-
bines the Analytic Hierarchy Process (AHP) with scenario-based architecture evaluation
techniques. Second, we specified scenario descriptions that allow the evaluation and
selection of appropriate ICT system coordination architecture paradigms for CBP en-
actment. Third, we developed a set of guidelines of how contingencies influence ICT
system coordination architecture based on our experiences in model-driven CBP mod-
elling and enactment. Finally, we validated our observations by applying our decision
support method, the scenario descriptions for CBP enactment, and the guidelines about
contingency influence to application scenarios with differing characteristics.

The evaluation and decision model can be used to validate guidelines like "Stan-
dardization for brokerless approach is very important ...", "The hierarchical structure is
typically used in traditional business relationships where interactions between cooper-
ating partners are agreed to in advance.", or "Process management and monitoring of
the overall process status is generally easier in hierarchical structures ..." described in
[168, p.204f]. We further used the model to develop new guidelines for ICT architecture
selection based on the influence on contingencies (cp. Section 5.2.3).

The evaluation enables people to get a better understanding of the influence of con-
tingencies on the overall decisions and to apply these guidelines. Our experience so far
indicates that pairwise comparisons reduce the amount of information that is necessary
for decisions. Since people can only deal with information involving simultaneously a
small number of facts (seven plus or minus two) [188], pairwise comparisons help eval-
uators to make better judgements compared to methods where more information needs
to be considered. Though pairwise comparisons require more complex calculations than
other rating approaches, they promise to provide more exact results. The AHP method
involves also redundant comparisons to improve validity, recognizing that participants
may be uncertain or make poor judgements in some of the comparisons.

Future work is the question how decision methods as the one described in this sec-
tion can be built into existing enterprise modelling frameworks and model-driven IDEs,
to support process modelers and ICT architects in their task of creating and manag-
ing executable CBP specifications from business level models. A second area concerns
the specification of further scenarios to extend the scope of the evaluation and decision
method’s application. More fine-grained models and extensions of our decision method
need to be developed to support the process down to the platform-specific and code
levels.

Chapter 6

Ontology-based Model
Transformation

MDSD is getting more sophisticated by using more powerful tools and languages for
modelling enterprises and developing ICT systems. As a natural course of things a huge
diversity of often specialized methodologies, modelling languages, and representation
formats has evolved, serving the purposes of the particular application domains. Espe-
cially in the context of automated system and code generation there is a strong trend
towards the application and usage of DSLs. An exact representation of application do-
main concepts through DSLs (for more details see Chapter 3.2.3) is a key enabler of
efficient and automated generation solutions.

Applying DSLs and specialized metamodels (different metamodels for the same lan-
guage) in MDSD scenarios also brings certain restrictions and limitations. With the
use of different metamodels, models cannot be simply exchanged. One has to specify
model transformations that transform models of one metamodel into models of another
metamodel. Moreover, with the evolution of metamodels, i.e. new versions like in UML
are released, it is necessary to adjust existing generators and model transformations that
were built for the old metamodel version.

Syntactic and semantic differences in representation formats, caused through the
evolution and use of different metamodels, hinder the efficient exchange and reuse of
models and model transformations. This causes interoperability problems, where in-
teroperability can broadly be characterized as the ability of enterprises or systems to
cooperate seamlessly with each other. Interoperability is not only an issue of ICT sys-
tems collaborating at runtime. It is also a matter of communicating both with internal
and external organisation units in order to develop new models for collaboration and sup-
porting ICT systems. Information and knowledge about enterprises, their organisational
structure, processes, collaboration with external organisations but also ICT systems is
commonly captured in models. To enable seamless collaboration in enterprise and sys-
tems modelling, enterprises have to be supported by interoperability solutions for model
sharing, model transformation reuse, and model transformation evolution, independent
of modelling languages and tools.

Summing up, to cope with the evolution of metamodels and the use of different
metamodel versions it has to be possible to generate new model transformations and
adjust and reuse existing ones. However, developing model transformations is a kind of
metaprogramming and model transformations have to be specified between metamodels

110 Ontology-based Model Transformation

[65]. This is an error-prone and long lasting task, that implies a deep knowledge of all
the underlying modelling technology, which in most cases is quite hard to learn.

In this chapter we develop the approach of Ontology-based Model Transforma-
tion (OntMT), that provides a solution for (semi-)automated development, reuse, and
adjustment of model transformations. OntMT fosters the exchange of models and the
reuse and evolution model of transformations. In detail, this chapter provides the fol-
lowing contributions:

• We develop the Ontology-based Model Transformation (OntMT) approach, which
provides means to automatically deal with model and model transformation evo-
lution scenarios. We implement OntMT and apply OntMT to two real world case
studies.

• We introduce and describe an architecture for a semantic-enabled modelling and
development suite. Semantic-enabled tools support developers and modellers in a
sophisticated manner by making use of reasoning results. We implement OntMT
as such a semantic-enabled tool.

• We develop concepts and techniques to realize and implement the OntMT ap-
proach. These are bootstrapping rules to generate QVT Relations model transfor-
mations, a higher-order model transformation language for QVT Relations model
transformations as well as representation and reasoning techniques to infer rela-
tionships between metamodels. We develop a correlation algorithm and a rating
that allow to generate and choose applicable model transformations.

• We develop a higher-order model transformation language that allows to modify
model transformations and lends itself for automating reuse of model transforma-
tions.

This chapter is structured as follows: In Section 6.1 we illustrate problems that oc-
cur in collaborative MDSD and provide a concise problem statement. Next, we present
the foundations of the OntMT approach and illustrate the mechanisms of OntMT for
automated generation and reuse of model transformations (Section 6.2). Section 6.3 in-
troduces the architecture of a semantic-enabled modelling and development suite, and
presents how OntMT is realized as a part of this suite. In Section 6.4 we develop con-
cepts and techniques to realize and implement the OntMT approach. Before we discuss
the potential impact of applying OntMT in Section 6.6, we present two cases studies
in which we applied OntMT to real world scenarios (Section 6.5). Section 6.7 presents
related work and provides a comparison of approaches dealing with (meta)model evolu-
tion. Section 6.8 provides a summary and conclusions.

6.1 Problem Description

To enable collaboration in enterprise and systems modelling, enterprises have to be sup-
ported by interoperability solutions for model sharing and model exchange independent
of modelling languages and tools. Also the evolution of model transformations has to
be considered. To maintain and reuse existing model transformations, these transforma-
tions have to be adjusted to new modelling languages or styles. This section illustrates
these challenges via a MDSD scenario. It further discusses the problems that possible
automation solutions face.

6.1 Problem Description 111

6.1.1 A MDSD Scenario

In the field of CBP development and enactment, one can find a huge diversity of DSLs
and metamodels like PIM4SOA, BPDM, UML activities or the AgilPro metamodel.
In Figure 1.1 of Chapter 1 we illustrated the application of MDSD to CBP develop-
ment. The vertical dimension distinguishes the different layers of abstraction applied
in MDSD, and the horizontal dimension represents the collaborative modelling between
two enterprises A and B. Models of enterprises A and B have to be shared at different
levels of abstraction in order to agree on and develop CBPs.

mapping

transformation

transformation

transformation

transformation

PPs VPs PPsVPsCBP
VPs VPs

mapping

mappingPPs VPs PPsVPsCBP
VPs VPs

mapping

PPs VPs PPsVPs

ARIS(EPC)

PIM4SOA

BPEL

MO2GO(IEM)

Maestro

BPEL
PP = private process
VP = view process
CBP = cross-organisational business process

Figure 6.1: Scenario realizing CBP modelling and execution

Figure 6.1 depicts a concrete scenario that implements CBP modelling and execu-
tion. We contributed to its realization in the ATHENA IP project (more details can
be found in [117]). Enterprises A and B develop models for their processes (Private
Processes (PPs), View Processes (VPs), and Cross-organisational Business Processes
(CBPs)) at three levels of abstraction, i.e. business expert, IT expert, and IT system
level. Vertical transformations, like presented in [26, 27], encode knowledge about the
architecture and the platform in order to transform models from higher to lower abstrac-
tion level. For example ARIS models (extended Event-driven Process Chains (eEPCs)
[157]) are transformed to models conforming to PIM4SOA [30]. Finally BPEL4WS
code is generated from the PIM4SOA models. Enterprises A and B use different mod-
elling tools and languages at the various abstraction levels. To develop CBPs, both
enterprises have to provide public parts of their models as a basis for discussion during
collaborative modelling. Hence, mappings between the different representation formats
like ARIS and Integrated Enterprise Modelling (IEM)[184, 276] or PIM4SOA and Mae-

112 Ontology-based Model Transformation

stro [260] have to be developed.
To summarize, there are two main issues that prevent a smooth realization of such a

MDSD scenario:

• Exchange of models: Models are shared across inter-organisational relationships.
Hence, mappings have to be developed between the various enterprises’ modelling
languages and tools. This is necessary to achieve a shared understanding of CBP
and to enable collaborative MDSD.

• Evolution of model transformations: Over a period of time enterprises will apply
new (versions) of modelling languages, metamodels, and modelling styles. There-
fore, existing transformations have to be maintained, adjusted, or redeveloped.

6.1.2 Problem Statement

Managing and developing model transformations are error-prone and long lasting tasks.
Since model transformations are a kind of metaprogramming, they require a deep know-
ledge of all the underlying modelling technology. It is beneficial to provide support
with a solution that automates model transformation development and adjustment tasks.
However, the core principles of modelling (i.e. representing information about real world
things in models) and problems of such automation solutions remain the same. The
core barriers to model exchange and maintenance of model transformations are multiple
representation formats and different modelling styles, serving the particular application.

• Different representation format: The trend towards the use of Domain Specific
Languages (DSLs) leads more and more people to create their own Domain Spe-
cific Models (DSMs). This naturally results in a variety of different languages
and metamodels. To exchange models that conform to these various metamod-
els (abstract syntax), model transformations have to be developed. Often there
are multiple metamodels for the same modelling language. Also time and again
new versions of metamodels, e.g. the metamodels for UML 1.x and UML 2.x,
are released. Whenever new versions replace the old ones, new model transforma-
tions have to be developed and existing model transformations have to be adjusted.
Though visual representations (concrete syntax) should be decoupled from inter-
nal representation (abstract syntax), different concrete syntax is often considered
in model transformations to provide e.g. views on models.

• Different semantics: Since the semantics of modelling languages’ concepts is
rarely formally specified (in the UML specification this is plain English), different
people and organisations can associate different semantics with the same concepts
used in the metamodel. This is often done by applying special modelling styles
and representation guidelines. Again, model transformations have to be specified
enabling sensible exchange of models according to the respective interpretations.

6.2 The Ontology-based Model Transformation Approach

To address these issues we have developed the Ontology-based Model Transforma-
tion (OntMT) approach. OntMT facilitates methods to generate and adjust model trans-
formations despite of structural and semantic differences of metamodels. Different repre-
sentation formats and different semantics are overcome by applying semantic technology

6.2 The Ontology-based Model Transformation Approach 113

of the Ontologyware and Ontology Engineering TS (Ontology TS). In OntMT metamod-
els are annotated through the elements of a Reference Ontology (RO) and reasoning is
applied to the RO and the annotations. OntMT allows to generate and adjust common
model transformations automatically in order to apply MDSD in the Modelware and
Model-based Technology TS (MDA TS).

Reference Ontology

Ontology-based Model Transformation

Metamodels

Target

Metamodels

Source

Initial Model
Transformation

Binding
(sem. Annotation)

Binding
(sem. Annotation)

Model Transformations

Figure 6.2: Ontology-based model transformation: overall approach

Figure 6.2 depicts the overall approach of OntMT. Different versions of metamodels
are bound to a RO of a certain domain. Bindings (semantic annotations) specify the
semantic mapping of metamodels to the semantics of their concepts, i.e. to the RO.
To generate model transformations for various model transformation languages and to
adjust existing model transformations, OntMT makes use of reasoning mechanisms. The
metamodels and the RO are given, while the bindings of the metamodels to the RO have
to be specified. Finally, an initial model transformation is needed. For the evolution
of model transformations the initial model transformation is the model transformation
that shall be reused or adjusted (see Section 6.2.2). The initial model transformation
(e.g. from metamodel v1.5 to metamodel v2.0) encodes transformation rules and the
semantics of the model transformation. If for example the metamodel v2.0 is replaced
with a version 2.1, only the delta between these metamodels has to be considered to
adjust the existing model transformation. The new model transformation is generated
by substituting the concepts of metamodel v2.0 with the concepts of metamodel v2.1
in the initial model transformation. In the case of automated mapping generation, a
bootstrapping algorithm generates an initial model transformation (see Section 6.2.1).

6.2.1 Automated Generation of Model Transformations

Model transformations between various modelling languages can be automatically de-
rived and generated with the OntMT approach. In this section we describe the proce-
dure to generate mappings, i.e. semantically identical model transformations, between

114 Ontology-based Model Transformation

two modelling languages A and B. We illustrate the procedure via a strongly simpli-
fied example, where A and B both consist of two concepts: A � tProcess,Tasku and
B � tEPC, EPCElementu.

For both languages there exists an abstract syntax NA{NB in various Technological
Spaces (TSs): A has (like B) an abstract syntax in the MDA TS NA�mda and the On-
tology TS NA�ont which are synchronized. Thus, one can work with the syntax and
the capability of that TS, that is better suited for solving a problem (see Figure 6.3).
The semantics of the concepts is described by the means of the semantic domain S D
and its notation in a RO NRO (e.g. OWL) respectively. The semantics of the languages
is defined by semantic mappings from the languages to the semantic domain: MA :
A Ñ S D and MB : B Ñ S D. In this example, the semantic domain is given as
S D � tActivity, Actionu, while the semantic mappings are MApProcessq � Activity,
MApTaskq � Action, MBpEPCq � Activity, and MBpEPCElementq � Action.

A

A

MDA TS Ontology TS

Figure 6.3: Modelling language, semantic mapping, semantic domain and their repre-
sentations

The ontological grounding1 is a notation of the semantic mapping from NA�ont to
NRO. The goal of the transformation to be generated is to define ’identity’ relationships
between the concepts of A and B. The bi-directional model transformation MTmapAB :
A Ø B between A and B has the following semantics: MMTmapABpMTmapABq � id, i.e.
@pa, bq P MTmapAB : MApaq � MBpbq.

The generation procedure works on the model of the model transformation and the
models of the modelling languages. It exploits the ontological grounding to the reference
ontology. On the basis of reasoning results gained in the Ontology TS (tProcess � EPC,
Task � EPCElementu), modification operations are called to obtain the new model
transformation working solely on the model of the model transformation. To generate
the model transformation MTmapAB, the following steps are performed (see Figure 6.4):

1. A bootstrapping algorithm generates the model transformation MTmapAA, with
@pa, a1q P MTmapAA : a � a1. This bootstrapping step is necessary to obtain a
first model of the model transformation NA to N1A

2, which only has to be adjusted
by modification operations. Assuming the same ontological grounding MA for NA

and N1A, the bootstrapping model transformation is an id : MMTmapAApMTmapAAq �
id. In our example the model transformation relations identified by the bootstrap-
ping are MTmapAA � tpProcess, Processq, pTask,Taskqu.

1The definition of the ontological grounding is a semantic annotation comprising static semantics of the
metamodels, i.e. the semantics of the concepts and an ontology respectively.

2Such a mapping can be generated on the basis of a metamodel in the MDA TS. The appropriate map-
ping rules are generated by traversing the metamodel via its composite aggregation (in short composition)
relationships.

6.2 The Ontology-based Model Transformation Approach 115

2. The inference derives relationships between N1A and NB in the Ontology TS. This
is possible, since both N1A and NB are mapped to the same reference ontology
NRO. It is automatically computed, how the concepts of N1A can be substituted
by semantically identical concepts of NB (σ : MT Ñ MT , where MT is the
set of all model transformations). Those relationships can be transferred to the
MDA TS as the modelling languages A and B have synchronous representations
in both MDA TS and Ontology TS. The substitutions computed for our example
are rEPC{Processs and rEPCElement{Tasks.

3. Finally, the concepts of N1A are substituted with the concepts of NB (σpMTmapAAq �
MTmapAB) in the model of MTmapAA and we obtain a model of the model transfor-
mation MTmapAB with MMTmapABpMTmapABq � id. The substitution is performed
via modification operations on the model of the model transformation MTmapAA

in MDA TS. In the example the following model transformation relations are
generated: MTmapABtpProcess, EPCq, pTask, EPCElementqu.

Figure 6.4: Procedure of automated mapping generation

6.2.2 Evolution of Model Transformations

OntMT also fosters the evolution and reuse of existing model transformations. Instead
of performing the bootstrapping step, the procedure for model transformation evolution
takes the model transformation that shall be reused as input (see Figure 6.5). This ini-
tial model transformation MTmapAB : A Ø B encodes knowledge about how modelling
language A is translated into B. The steps and ® are the same as for automated map-
ping generation. In step , a substitution σpMTmapABq � MTmapAC is computed on the
basis of inference results. Step ® applies this substitution and generates a new version
of the initial model transformation MTmapAC : A Ø C. The bootstrapping step helps to
extend OntMT to scenarios where existing model transformations are adjusted. Avoid-
ing to derive model transformations directly from ontologies results in a more flexible
and well-structured architecture. OntMT can both generate new model transformations
and reuse knowledge encoded in existing transformations. Issues concerning the model
transformation, like checking if its model conforms to the QVT metamodel or consider-
ing the cardinality of associations’ ends, are all dealt within the MDA TS. The modifi-
cation operations are invoked on the basis of the reasoning results and the application of
heuristics.

116 Ontology-based Model Transformation

Figure 6.5: Procedure of model transformation evolution

6.3 Components of Ontology-based Model Transformation

This section presents the components and concepts of OntMT realized as a tool for a
semantic-enabled modelling and development suite, its parts, and its functionality.

6.3.1 Components of a Sem-MT-Tool

OntMT, as part of our vision of a semantic-enabled modelling and development suite, is
realized as Sem-X-Tool (see Figure 6.6) [29]. The infrastructure provides basic function-
ality including a bridge ± between models of the MDA TS and application ontologies
of the Ontology TS (like it is described in [39]) and an inference component, which
can be individually configured and used by Sem-X-Tools registered at the infrastruc-
ture. Sem-X-Tools, like the Sem-MT-Tool presented in this paper, are built on top of the
infrastructure. They consist of a model manipulator, a Sem-X-Component, and a rule
set. The model manipulator reads, creates, modifies and deletes models of the model
repository ¬. It delivers information about models to the Sem-X-Component and
provides interfaces for model manipulation ®. The Sem-X-Component implements the
core functionality of a Sem-X-Tool. It makes use of the reasoning results gained by infer-
ring ontologies and computes the respective model manipulation ¯. Since Sem-X-Tools
are based on different relationships between the ontologies’ elements, each Sem-X-Tool
has its own set of reasoning rules.

Figure 6.7 shows the architecture of the components building the Sem-MT-Tool
which is an instantiation of the Sem-X-Tool. The model manipulator provides function-
ality via three interfaces: one that identifies the concepts of a metamodel that have to be
substituted in a model transformation, one that performs a substitution of a metamodel’s
concepts in the model transformation, and one that provides validation functionality for
the generated model transformation. The inference component provides an interface for
accessing the reasoning results, i.e. the relationships between the metamodel elements.
The Sem-MT-Component is the component of the Sem-MT-Tool, which connects the
inference results of the Ontology TS to concrete modification actions on the models of
the model transformation in the MDA TS.

6.3 Components of Ontology-based Model Transformation 117

Semantic-enabled Modelling and Development Suite
Sem-X-Tools

Infrastructure

x x x

Figure 6.6: OntMT as part of a semantic-enabled modelling and development suite

Sem-MT-Tools

Figure 6.7: Sem-MT-Tool component architecture

6.3.2 Architecture of Ontology-based Model Transformation

To validate our approach we have implemented a prototype that realizes OntMT. The
following section provides more details about the used techniques, the architecture, and
the implementation. Therefore the architectural figures depict the technologies we have
used to implement our prototype.

Inference Component

Figure 6.8 depicts an architectural view on the inference component of OntMT. The in-
ference component consists of a knowledge base and a reasoner. The base graph contains
all facts of the knowledge base before the reasoning, i.e. the RO, application ontologies3,
and the ontological groundings. The reasoner is triggered by rules specific to the Sem-
MT-Tool, and computes the inference graph on the basis of the base graph. As the result
of the reasoning, the knowledge base contains information about all relationships that are
important for OntMT. These are the relationships between the application ontologies.

In [51, 191, 267], equivalence, containment, and overlap are described as the main
relationships for mapping ontologies. The inference component identifies (for OntMT)
these relationships between the ontology elements.

• Equivalence (�) means that the connected elements represent the same aspect of
the real world. An element of an application ontology corresponds to an element in
the reference ontology or can be precisely expressed by a composition of elements.
We will refer to this relationship by the relationship type <equal>.

3An application ontology corresponds to a metamodel in the Ontology TS.

118 Ontology-based Model Transformation

Inference Component

(Reference Ontology,
Application Ontologies)

Sem-MT-Component

query
SPARQL

Jena Reasoner

Jena OWL API

Figure 6.8: Inference component

• Containment (�,�) states that the element in one ontology represents a more spe-
cific aspect of the world than the element in the other ontology. The relationship
can be defined in one or the other direction, depending on which concept is more
specific. When an element is not sufficiently refined we use the relationship <gen-
eral>. When an element is described at a level of refinement that does not match
the level of refinement of the other ontology we use the relationship <special>.

• Overlap (o) states that the connected elements represent different aspects of the
world, but have an overlap in some respect. This relationship is of the type <over-
lap>.

The relationships are also used for the ontological groundings by specifying map-
pings between the application ontologies and reference ontologies. This is possible,
since the model elements are represented in application ontologies via the UML to OWL
mapping described in the ODM standard [230, p.201ff]. More details can be found in
Section 6.4.3.

Implementation In our current prototype we use the Jena ontology API4 to create and
handle ontologies. The inference is realized through rules deployed to the rule engine
included in Jena [138]. Jena also uses this rule engine to provide (partial) RDF(S) and
OWL reasoning5. The rule 2 in Listing 6.1 for example states, that if A overlaps with
B and B is an intersection of C and D then A overlaps with C and D. The inference re-
sults are obtained with SPARQL Protocol and RDF Query Language (SPARQL), which
queries the knowledge base for the relationships between the application ontologies.

Listing 6.1: Sample reasoning rules
r u l e 1 : A o B^ B � C Ñ A o C
r u l e 2 : A o B^ B � C [D Ñ A o C ^ A o D

The decision to use the Jena framework and its rule based reasoning support for the
prototype implementation was mainly based on two arguments. First, it better met our
requirements, which were mainly a combination of TBox reasoning, rule support, and

4http://jena.sourceforge.net/tutorial/RDF_API
5http://jena.sourceforge.net/inference

http://jena.sourceforge.net/tutorial/RDF_API
http://jena.sourceforge.net/inference

6.3 Components of Ontology-based Model Transformation 119

good documentation, than other open source projects. Second, the Jena framework pro-
vides the possibility to integrate other reasoners like Pellet [245] or future implementa-
tions of ontology mapping approaches using local domains like Context OWL (C-OWL)
[49].

Model Manipulator

The model manipulator provides modification operations on model transformations. It
implements a language for model transformation modification that is used by the Sem-
MT-Component to trigger the modification of the model transformations via modifica-
tion programs. The semantics of this model transformation modification language treats
model transformations as models. The facts that model transformation languages like
QVT are represented through metamodels and model transformation programs are mod-
els allow higher-order transformations, like transformations taking other transformations
as input and producing transformations as output [37].

Due to the gap between the concepts of DSLs and metamodels implementing these
DSLs, the semantics of the model transformation modification language needs to provide
mechanisms to allow the Sem-MT-Component to adapt a modification program to the
best possible solution. Hence the semantics is divided into a modification semantics and
a checking semantics (see Figure 6.9).

Mt

Mt’

MtMt

Mt’
Mt’

MT modification
program

Modif. Semantics Checking Semantics

OCL checks

+
Checking Results

Figure 6.9: Semantics of model transformation modification

Modification semantics The modification semantics defines how the modification of
model transformations, which is specified in modification programs, is executed. A
simplified picture, that helps to work with the model transformation modification lan-
guage, is to imagine the modification program as a substitution. The elements of the
modification program’s source metamodel are substituted with the elements of the tar-
get metamodel. The detailed implementation realizing the semantics is encapsulated in
a separate component of the model manipulator. Currently realized substitution opera-
tors provide functionality for one-to-one, one-to-many, and removal substitutions of both
classes and properties. In the following we give an outline of the substitution operators’
functionality via short examples.

120 Ontology-based Model Transformation

Figure 6.10: Two example metamodels

Listing 6.2: Example model transformation specification (notation similar to QVT)
1 relation rule {
2 checkonly domain l_mm var1:Task { };

enforce domain r_mm var1':Task { };
4 }

• One-to-one substitution: If the Task in the sample model transformation rule shall
be substituted by EPCElement in the right-hand model, then the one-to-one substi-
tution for classes has to be applied: rEPCElement{Tasks. The result of applying
this one-to-one substitution to the transformation rule of Listing 6.2 is as follows:

Listing 6.3: Model transformation after applying one-to-one substitution
1 relation rule' {
2 checkonly domain l_mm var1:Task { };

enforce domain r_mm var1':EPCElement { };
4 }

• One-to-many substitution: If the Task in the sample model transformation rule
(see Listing 6.2) shall be substituted by Function and Event, then the one-to-many
substitution for classes has to be applied: rtFunction, Eventu{Tasks. The result
of the one-to-many substitution is not so obvious like the result of the one-to-one
substitution, since the model transformation rule has to be duplicated. Details
about one-to-many substitutions can be found in Section 6.4.2.

Listing 6.4: Model transformation after applying one-to-many substitution
1 relation rule'_a {
2 checkonly domain l_mm var1:Task { };

enforce domain r_mm var1':Function { };
4 }

6 relation rule'_b {
checkonly domain l_mm var1:Task { };

8 enforce domain r_mm var1':Event { };
}

• Removal substitution: A removal substitution is sensibly applied when an element
of the source metamodel cannot be substituted by any element of the target meta-
model. If e.g. a removal substitution r�{Tasks is applied to the Task, the whole
transformation rule of Listing 6.2 would be removed from the model transforma-
tion.

6.3 Components of Ontology-based Model Transformation 121

Checking semantics The checking semantics tests the generated model transforma-
tions for so-called problems, which can occur by applying the modification semantics.
This is necessary, since the application of the modification semantics substitutes prop-
erties and classes in the model transformation separately and may perform substitutions
that change the semantics of the model transformation.

One set of problems affects the consistency of model transformation programs with
respect to the model transformation language, i.e. the generated model transformations
are not valid and cannot be executed. Another kind of problems is caused, when knowl-
edge encoded into the original model transformation is not preserved or lost. In general,
problems are detected via OCL [229] constraints. Only for a few problems, where ad-
ditional information about the execution of the modification is needed, we extend this
mechanism with information from the modification execution. The following list gives
an overview of problems that can occur:

• Substitution of property failed: This problem occurs, when the model transforma-
tion modification program did not specify a substitution for a property that is used
in the model transformation.

• Property is not part of class: The generated model transformation would require
a property to be part of a class, what is not the case in the respective metamodel
(model types as described in [279] do not match).

• Further checks: The checking semantics comprises further OCL constraints to
check the validity of generated model transformations. E.g. it is checked if classes
referenced by OTEs belong to the metamodel of the respective domain. Another
problem occurs when the type of a PTI’s value does not conform to the type of the
PTI’s referred class. For more details see Section 6.4.2.

Architecture and Implementation The model manipulator component is divided in
a front end and a back end (see Figure 6.11). The front end primarily conducts tasks
that depend on the source language, while the back end deals with all issues specific
to the target language. The metamodels and the bootstrap model transformation are
brought into an intermediate representation format by the scanner and the parser. The
substitution algorithm performs the substitutions proposed by the Sem-MT-Component.
The validator checks whether any performed substitution leads to problems in the new
model transformation.

Our prototypical implementation of the model manipulator is based on Eclipse. It
uses the Eclipse Modeling Framework (EMF) [75]. EMF allows the model manipulator
to treat the metamodels and the model transformations with a single model manipulation
API. This reflective API allows to handle EMF objects generically, regardless of which
metamodel they belong to (EMOF, QVT, OCL, etc.). The metamodels are instantiations
of the EMF EMOF implementation and the model transformation models are treated as
instantiations of the EMF QVT relational implementation. Since the first final adopted
version of the QVT standard [233] contains some inconsistencies we had to make some
adjustments which are documented in our implementation.

• Parser: The implementation of the parser makes use of the ANother Tool for Lan-
guage Recognition (ANTLR) parser generator [242, 243] and parses a QVT rela-
tional textual syntax into EMF QVT relational models. It has been made available
under General Public License (GPL) via the QVT Parser project [273].

122 Ontology-based Model Transformation

Model Manipulator
Front-End

Substitution Algorithm
&

Validator

Inference Component

query

EMF
Scanner & Parser

EMF validation
ANTLR

Inference-Graph

Sem-MT-Component

report substitution problems propose substitutions

Back-End

Transformation
Optimiser

Transformation
Generator

Metamodels
v1.6v1.5

oAW

Bootstrap
Transformation

Model Transformation

Figure 6.11: Model manipulator

• A prototype of the model manipulator implementation is part of the OntMT project
[272]. The substitution algorithm is totally based on the EMF API. The valida-
tion component uses the EMF validation framework to check the EMF model of
the generated QVT relational transformation with OCL constraints. Since we use
EMF, the Eclipse Validation Framework [76] is a consequent choice for imple-
menting and performing the OCL checks. The results of EMF validation lend
themselves very well to determine the exact position of problems or inconsis-
tencies in a model transformation. OCL constraints, checking whether a model
transformation is syntactically correct, can be automatically generated from the
QVT metamodel. It is checked whether the model transformation conforms to the
grammar that the QVT metamodel was generated from. With further manually
implemented OCL constraints the model manipulator checks whether the gener-
ated model transformation is valid and can be executed or whether knowledge has
been lost through the substitution.

• The bootstrapping generates a QVT relational model transformation from a meta-
model expressed in MOF. It is implemented with templates expressed in the oAW
Xpand language [81, p.87ff] and available via the OntMT project. The bootstrap-
ping is well integrated in the model manipulator, since EMF models can be used
for oAW code generation. In fact the same metamodels that are used by the QVT
Parser and the model manipulator are also used for the bootstrapping.

6.3 Components of Ontology-based Model Transformation 123

Sem-MT-Component

The Sem-MT-Component implements the core part of the OntMT approach. It provides
the main functionality of the Sem-MT-Tool. It makes use of the inference results of
the Ontology TS and computes modifications programs for the generation and evolu-
tion of model transformations in the MDA TS. Algorithm 6.1 illustrates the correlation
algorithm implemented by the Sem-MT-Component to generate the new model transfor-
mations.

Table 6.1: Correlation algorithm

1: function C(initialMT, oldMM, oldMM) : ModelTransformation
2: CsÐ C(initialMT, oldMM) � concepts to substitute
3: CSssÐH � concepts and possible substitutions
4: SPÐK � substitution proposal
5: SPsÐH � set of substitution proposals
6: tempMT ÐK � last generated model transformation
7: newMT ÐK � generated model transformation
8:
9: for all c P Cs do

10: CSssÐ CSss Y S(c, oldMM, newMM)
11: end for
12:
13: repeat
14: SPÐ SP(SP, SPs, Cs, CSss)
15: tempMT Ð S(initialMT, SP)
16: SPÐ S(tempMT, SP)
17: SPÐ S(SP)
18: SPsÐ { SP } Y SPs
19: until SP �K _ SP.problems � H
20:
21: SPÐ SP(SPs)
22: newMT Ð S(SP)
23:
24: return newMT
25: end function

The Sem-MT-Component takes as input an initial model transformation, the meta-
model which has to be substituted in the model transformation, and the new metamodel.
In a first step (line 2) it requests the model manipulator to compute a set of all classes
and properties Cs that have to be substituted in the initial model transformation. Second,
it invokes the inference component to obtain possible substitutions for all classes and
properties to substitute CSss (line 10). Next, the computation of a substitution proposal
SP begins. A substitution proposal contains the model transformation modification pro-
gram, the problems that occur by applying the substitutions to a model transformation,
and a rating of the performed substitutions. After a substitution proposal is calculated
by the Sem-MT-Component (line 14), the model manipulator performs the substitution
(line 15) and validates (line 16) the generated model transformation. Then the substitu-
tion proposal is rated by the Sem-MT-Component (line 17). The Sem-MT-Component
tries to compute alternative substitution proposals until the application of a substitu-
tion proposal does not lead to any problems, or no further substitution proposals can
be found. Finally, the Sem-MT-Component chooses the substitution proposal with the

124 Ontology-based Model Transformation

best rating from all computed substitution proposals SPs (line 21) and the new model
transformation is generated on the basis of this substitution proposal (line 22).

The choice of the substitution proposal, which is used to generate the new model
transformation, is based on the ratings of the substitution proposals. A rating of a substi-
tution proposal is a measure of the generated model transformation’s quality. The rating
is based on factors that are measured for each substitution proposal like the problems
occurring in the substitution proposal, number of concepts that could be substituted, re-
lationships used for substitution, and the position of the problems and used relationships
in the model transformation.

Concrete ratings always depend on the purpose OntMT is used for. For the different
application scenarios separate metrics are defined. A metric, which was developed for
automated mapping generation, will put more emphasis on an executable model trans-
formation than on the relationships used for substitution. If OntMT is used to support
developers in adjusting their model transformations, OntMT will only make suggestions
to the developer. Hence, the metric puts more emphasis on exact substitutions of meta-
model elements than on the execution of the new model transformation.

Implementation The OntMT project currently provides a simple implementation of
the correlation algorithm, which is described in Algorithm 6.1. However, an automated
synchronisation of the modelling and the reasoning world (see ± in Figure 6.6) is not yet
fully integrated. We are developing a prototype that synchronizes EMF and Jena OWL
models and allows to answer SPARQL like queries on EMF models with reasoning sup-
port. The synchronization mechanism makes use of the UML to OWL mapping de-
scribed in the ODM standard [230, p.201ff]. However, we plan to replace our prototype
with an implementation of the Eclipse EMF Ontology Definition Metamodel (EODM)
project [77]. This project aims to provide inference capabilities for OWL models imple-
mented in EMF and model transformations of RDF/OWL to other modelling languages
such as UML.

6.4 Realization of Ontology-based Model Transformation

In this section we present concepts and techniques to realize the components described
in Section 6.3. These are bootstrapping rules to generate initial model transformations
(Section 6.4.1), a higher-order model transformation language for QVT Relations model
transformations (Section 6.4.2), representation and reasoning techniques to infer rela-
tionships between metamodels (Section 6.4.3), and the correlation and rating to realize
the Sem-MT-Component (Section 6.4.4).

6.4.1 Model Transformation Bootstrapping

The model transformation bootstrapping generates endogenous QVT Relations model
transformations that map metamodels on themselves. Therefore the bootstrapping ex-
ploits the composite aggregation hierarchy in the metamodel and maps classes, attributes,
and associations. In this section we present the mapping rules that we developed for the
model transformation bootstrapping.

6.4 Realization of Ontology-based Model Transformation 125

Bootstrapping Rules

[Rule 1] – Mapping Classes For each class C in the metamodel one top relation is
generated in the bootstrapped model transformation. This relation CtoC maps the class
C on itself. Further, a key is generated for the class C. Listing 6.5 depicts the code that
is generated with rule 1.6

Listing 6.5: Bootstrapping: mapping classes

1 key MM:C { };
2

top relation CtoC {
4 checkonly domain mm c:C { } ;

enforce domain mm_ c_:C { } ;
6 }

[Rule 2.1] – Mapping Mandatory Attributes Each mandatory attribute C.man is di-
rectly added as an attribute to the top relation generated for the class C. More exactly,
C.man is added to all OTEs that map C as a PTI. The value of the PTI is a Variable or
an OclExpression. The Variable and its type <typeOf(C.man)> have to be declared in
the relation. Since C.man is a mandatory attribute, it is also added to the key generated
for C. This rule takes into account all attributes of a class, including the attributes a class
inherits from its superclasses. Listing 6.6 shows the code that is generated with rule 2.1.

Listing 6.6: Bootstrapping: mapping mandatory attributes

1 key MM::C { man };
2

top relation CtoC {
4 man_var : <typeOf(man)>;

checkonly domain mm c:C { man = man_var };
6 enforce domain mm_ c_:C { man = man_var };

}

[Rule 2.2] – Mapping Optional Attributes For an optional attribute C.opt of a class
C the bootstrapping generates a new relation, which is not a top relation. This relation is
constructed analogously to the relation, to which a mandatory attribute was added. The
new relation is referenced by the where-clause of the top relation, that was generated
from C. Listing 6.7 shows the code that is generated with rule 2.2.

Relations for optional attributes are only generated for the classes where these op-
tional attributes are defined. Relations are not generated for classes that inherit these
optional attributes. However, classes inheriting an optional attribute reference the rela-
tion that was generated for the optional attribute via a where-clause.

6The QVT Relations code that is generated by generation templates is depicted in italics.

126 Ontology-based Model Transformation

Listing 6.7: Bootstrapping: mapping optional attributes
1 top relation CtoC {
2 checkonly domain mm c:C { } ;

enforce domain mm_ c_:C { } ;
4 where

{
6 CtoC_opt(c,c_);

}
8 }

10 relation CtoC_opt {
opt_var : <typeOf(opt)>;

12 checkonly domain mm c:C { opt = opt_var } ;
enforce domain mm_ c_:C { opt = opt_var } ;

14 }

[Rule 3.1] – Mapping Mandatory Composition Associations From this kind of as-
sociation at most one is allowed to exist for one class. If there exist more than one
mandatory composition associations in one class, the metamodel is inconsistent and the
generated model transformation will not be able to produce usable results.

Figure 6.12: Bootstrapping patterns for rules 3.1-3.4

Let us consider an association (cp. Figure 6.12) between a containing class C and
a contained class P as two directed associations C.p (from C to P) and P.c (from P to
C). The association C.p is handled like a normal association (see later rule 3.3 and rule
3.4). P.c is added like a mandatory attribute to the top relation, which was generated
for P. Additionally the when-clause of the P relation references all top relations that are
used for mapping C. If the when-clause of the P relation has to reference more than
one top relation of C7, then the references are combined by the boolean operator or.
In Listing 6.8 the second top relation that was generated for C is CtoC_example. This
rule takes into account all mandatory composition associations of classes, including the
associations the class inherits from its superclasses.

7This case can occur, when rule 3.2 was applied to the superclass C.

6.4 Realization of Ontology-based Model Transformation 127

Listing 6.8: Bootstrapping: mapping mandatory composition associations
1 top relation CtoC {
2 checkonly domain mm c:C { } ;

enforce domain mm_ c_:C { } ;
4 }

6 top relation CtoC_example {
...

8 }

10 top relation PtoP {
checkonly domain mm p:P { c = c_var:C { } } ;

12 enforce domain mm_ p_:P { c = c_var_:C { } } ;
when

14 {
C2C(c_var,c_var_) or C2C_example(c_var,c_var_);

16 }
}

[Rule 3.2] – Mapping Optional Composition Associations It is possible that for one
class multiple optional containment associations exist. Let us consider an association
(cp. Figure 6.12) between a containing class C and a contained class P as two directed
associations C.p (from C to P) and P.c (from P to C). The association C.p is handled like
a normal association (see later rule 3.3 and rule 3.4).

For P.c a new top relation is constructed. The when-clause references the top relation,
which was generated from P. Additionally the when-clause of the new relation references
all top relations that are used for mapping C. If the when-clause of the new relation has
to reference more than one top relation of C, then the references are combined by the
boolean operator or. This rule takes into account all optional composition associations
of classes, including the associations the class inherits from its superclasses.

Listing 6.9: Bootstrapping: mapping optional composition associations
1 top relation CtoC {
2 checkonly domain mm c:C { } ;

enforce domain mm_ c_:C { } ;
4 }

top relation CtoC_example {
6 ...

}
8 top relation PtoP {

checkonly domain mm p:P { } ;
10 enforce domain mm_ p_:P { } ;

}
12 top relation PtoP_c {

checkonly domain mm p:P { c = c_var:C { } } ;
14 enforce domain mm_ p_:P { c = c_var_:C { } } ;

when
16 {

PtoP(p,p_);
18 CtoC(c_var,c_var_) or C2C_example(c_var,c_var_);

}
20 }

128 Ontology-based Model Transformation

[Rule 3.3] – Mapping Mandatory Associations For bootstrapping mechanism bidi-
rectional normal associations can be reduced to two directed associations. Hence, we
present a pattern of how to generate QVT Relations model transformation code for di-
rected associations. For bootstrapping mechanism bidirectional normal associations can
be reduced to (two) directed associations. Thus we will present a pattern of how to
generate QVT model transformation code for a directed association.

If we consider a mandatory directed association C1.c2 from class C1 to C2 (cp. Fig-
ure 6.12), C1.c2 is added as a mandatory attribute to the top relation generated for C1.
The OTE that maps C2 has to contain all mandatory attributes as PTIs (i.e. the attributes
occurring in the key of C2). This rule takes into account all optional composition asso-
ciations of classes, including the associations the class inherits from its superclasses.

Listing 6.10: Bootstrapping: mapping mandatory associations
1 key MM::C2 { man };
2

top relation C1toC1 {
4 man_var : <typeOf(man)>;

checkonly domain mm c1:C1 {
6 c2 = c2_var:C2 { man = man_var }

} ;
8 enforce domain mm_ c1_:C1 {

c2 = c2_var_:C2 { man = man_var }
10 } ;

}

[Rule 3.4] – Mapping Optional Associations Like for mandatory associations we
present a pattern of how to generate QVT Relations model transformation code for di-
rected optional associations (cp. Figure 6.12). If we consider an optional directed as-
sociation C1.c2 from class C1 to C2, for C1.c2 a new relation is generated like for an
optional attribute. The OTE that maps C2 has to contain all mandatory attributes as PTIs
(i.e. the attributes occurring in the key of C2). The new relation is referenced by the
where-clause of the top relation, which was generated from C1.

This rule generates only relations for classes where these optional associations are
defined. However, the generated relation is referenced by the top relations of all classes,
that contain the respective optional association.

Listing 6.11: Bootstrapping: mapping optional associations
1 key MM::C2 { man };
2

top relation C1toC1 {
4 checkonly domain mm c1:C1 { } ;

enforce domain mm_ c1_:C1 { } ;
6 where

{
8 C1toC1_opt(c1,c1_);

}
10 }

12 relation C1toC1_c2 {
man_var : <typeOf(man)>;

14 checkonly domain mm c1:C1 {
c2 = c2_var:C2 { man = man_var }

6.4 Realization of Ontology-based Model Transformation 129

16 } ;
enforce domain mm_ c1_:C1 {

18 c2 = c2_var_:C2 { man = man_var }
} ;

20 }

Summary

In our approach of OntMT we use the bootstrapping rules to generate initial model trans-
formations. This bootstrapping is a prerequisite to realize the automated generation of
model transformations scenario. We have implemented the bootstrapping rules as de-
scribed in this section in the OntMT project [272].

6.4.2 Higher-order Model Transformation Language

OntMT fosters reuse of knowledge encoded into model transformations and reuse of
models through automated mapping generation. Beneath reasoning techniques used in
the inference component, OntMT is based on a model manipulator implementing model
transformation modification techniques. In order to successfully trigger the modification
mechanisms on the basis of inference results (this is done by the Sem-MT-Component),
it is necessary to provide a language for model transformation modification at an ap-
propriate level of abstraction. This language has to lend itself for automating reuse. In
this section we present a syntax to specify those modifications as dependencies between
metamodels and a semantics to execute those model transformation modifications.

Problem Description

Model transformations encode patterns about how to transform concepts of one mod-
elling language into concepts of another modelling language. Model transformations
are a kind of metaprogramming, since their specification uses the meta-information of
modelling language definitions. So, if we want to reuse model transformations, these
model transformations have to be adjusted to the various software development con-
texts, each with its own particular DSLs and metamodels representing the DSLs. As
developing model transformations is a demanding and time consuming task and model
transformations can be very complex programs, there is a need for techniques which
provide abstraction mechanisms for model transformation modification and adjustment
problems. However, when considering models and model transformations (which are
often also treated as models in MDSD) as assets, reuse and evolution is a very important
issue.

Reuse of Models Reuse of models addresses challenges that occur in model integra-
tion and migration scenarios. The trend towards more and more people using DSLs
and creating their own domain-specific models is a main driver for model integration
projects. In cross-organisational development projects, different enterprise model for-
malisms have to be mapped on each other to achieve a shared understanding of the
enterprise domain. One may also use different DSLs to model the various aspects of a
system. In order to achieve a complete solution such domain-specific models also have
to be integrated. This is commonly done by mapping the various metamodels (abstract
syntax representation of the DSLs) on each other via model trasformations. Also time

130 Ontology-based Model Transformation

and again new versions of metamodels, e.g. the metamodels for UML 1.x and UML 2.x,
are released. This evolution of (meta)models can be supported by migrating models con-
forming to the old metamodel to models that conform to the new metamodel. Whenever
new versions replace the old ones, new model transformations have to be developed.

Reuse of Model Transformations In MDSD knowledge about IT solutions and plat-
forms is encoded in model transformations. Organisations naturally want to treat this
knowledge as assets and therefore reuse model transformations. In a common MDSD
scenario one needs to model at different levels of abstraction to develop a certain kind
of application. The models of the higher abstraction layers need to be transformed into
models of the lower abstraction layers by transformation.

Example

Figure 6.13 illustrates an abstract scenario. Two DSLs are used for modelling, and a
set of implementation patterns S is used to transform models from higher to lower ab-
straction level. One organisation chooses the metamodels MMa and MMc representing
the two DSLs used for modelling at the two levels of abstraction. Further it discovers a
model transformation Mt in a library, that implements the set of implementation patterns
S. Unfortunately, this model transformation Mt:MaÑMb transforms models Ma con-
forming to metamodel MMa into models Mb conforming to metamodel MMb. In order
to reuse the transformation patterns encoded in Mt and to obtain models Mc, that corre-
spond to the metamodel MMc, mechanisms that help to reuse the model transformation
Mt are needed.

Figure 6.13: Reuse scenario

For more comprehensive descriptions throughout this section we use a concrete ex-
ample. Figure 6.14 and Figure 6.15 depict the three metamodels MMa, MMb, and MMc
of the above described application scenario. The structure of MMa is similar to MMb.
Real world examples in which the higher-order model transformation language is used
can be found in Chapter 6.5.

All three metamodels are models that represent libraries. In each Library one can
find Novels and Journals. Both are Books and have a name. A journal has also a topic.
Each book has Authors. In metamodel MMa and MMb the profession of authors is rep-
resented through the profession attribute. In metamodel MMc different professions are
realized through an inheritance hierarchy. For each profession exists a class (StoryWriter
and Scientist), which inherits from the abstract class Author.

6.4 Realization of Ontology-based Model Transformation 131

Figure 6.14: Metamodels MMa and MMb

Figure 6.15: Metamodel MMc

132 Ontology-based Model Transformation

There also exists a model transformation Mt:MaÑMb from MMa to MMb. List-
ing 6.12 depicts this model transformation in QVT relational syntax [233]. QVT is an
OMG’s standard for model transformations (for more details see Section 3.3.3). This
transformation, which is specified in QVT relational syntax, has been executed with the
ModelMorf tool [291].

Listing 6.12: QVT specification of Mt:MaÑMb
1 transformation MMa2MMb(ma:MMa; mb:MMb) {
2

key MMb::Library{name};
4 key MMb::Book{name};

key MMb::Novel{name};
6 key MMb::Journal{name};

key MMb::Author{name};
8

top relation LibraryToLibrary {
10 n: String;

checkonly domain ma c:Library {name=n};
12 enforce domain mb c_:Library {name=n};

}
14

top relation NovelToNovel {
16 i, n: String;

checkonly domain ma c:Novel {ns=l:Library{},name=n,index=i} ;
18 enforce domain mb c_:Novel {ns=l_:Library{},name=n,index=i} ;

when {
20 LibraryToLibrary(l,l_);

}
22 where {

AuthorsToAuthors(c,c_);
24 }

}
26

top relation JournalToJournal {
28 i, n, t: String;

checkonly domain ma c:Journal {ns=l:Library{},name=n,
30 topic=t,index=i} ;

enforce domain mb c_:Journal {ns=l_:Library{},name=n,
32 topic=t,index=i} ;

when {
34 LibraryToLibrary(l,l_);

}
36 where {

AuthorsToAuthors(c,c_);
38 }

}
40

top relation AuthorToAuthor_StoryWriter {
42 n: String;

checkonly domain ma c:Author {ns=l:Library{}, name=n,
44 profession='StoryWriter '} ;

enforce domain mb c_:Author {ns=l_:Library{}, name=n,
46 profession='StoryWriter '} ;

when {
48 LibraryToLibrary(l,l_);

}
50 }

6.4 Realization of Ontology-based Model Transformation 133

52 top relation AuthorToAuthor_Scientist {
n: String;

54 checkonly domain ma c:Author {ns=l:Library{}, name=n,
profession='Scientist '} ;

56 enforce domain mb c_:Author {ns=l_:Library{}, name=n,
profession='Scientist '} ;

58 when {
LibraryToLibrary(l,l_);

60 }
}

62
relation AuthorsToAuthors {

64 n: String;
checkonly domain ma c:Book {authors=a:Author{name=n}} ;

66 enforce domain mb c_:Book {authors=a_:Author{name=n}} ;
}

68 }

The Approach

For the design and specification of the semantics of our model transformation modifica-
tion language, there arise requirements from the OntMT approach. These are require-
ments fostering the compatibility with other existing approaches, and other requirements
concerning general model integration and evolution scenarios. The following list cov-
ers the most important implementation directives, what may make it easier to grasp our
intentions behind the design of the approach and the semantics specification.

• The model transformation modification language shall lend itself for the integra-
tion with existing model matching, mapping, and linking approaches like model
weaving [44] and Semaphore [169]. It should be possible to easily integrate map-
ping specifications developed with these approaches with our model transforma-
tion modification language.

• One challenge of OntMT is to foster direct reuse of model transformations. Di-
rect reuse of a transformation means to provide a new or adjusted transformation
instead of chains of transformations and adapters.

• To solve the automation challenge, OntMT uses inference results from the Ontol-
ogy TS to generate transformations between models conforming to different meta-
models. Due to the enormous gap between the conceptual level and the implemen-
tation of DSLs’ concepts through metamodels [91, 151], it has to be possible for
the computer to ’learn’ an appropriate solution. The modification language has to
permit modification programs that might lead to incorrect model transformations
and provide sensible, computer-processible feedback by checking programs’ re-
sults.

The semantics of the model transformation modification language treats model trans-
formations as models. The fact that model transformation languages like QVT [233] are
represented through metamodels and model transformation programs are models, al-
lows higher-order transformations like transformations taking other transformations as
input and producing transformations as output [37]. Other higher-order transformations

134 Ontology-based Model Transformation

[38, 295] are for example applied to refactor a given set of transformations (e.g. a family
of code generators) to reduce the amount of code duplication in these transformations.

Like one can see in Figure 6.16 a mapping specification between two metamodels
is used as a model transformation modification program. Taking up the application sce-
nario from Section 6.4.2, the modification program is a mapping specification between
the metamodels MMb and MMc. A higher-order model transformation engine takes the
model transformation Mt:MaÑMb, executes the modification program and produces a
new model transformation Mt’:MaÑMc as output. This technique enables direct reuse
of model transformations and lends itself for the generation of totally new model trans-
formations8.

MT modification
program

M
b

Mt

M
a

M
c

Mt’

M
a

Figure 6.16: External view on higher-order model transformation

The definition of the semantics has mainly to deal with the challenges of automated
generation and modification of model transformations. Due to the gap between the con-
cepts of DSLs and metamodels implementing these DSLs, the semantics needs to pro-
vide mechanisms to allow the computer to adapt a modification program to the best
possible solution. Hence the semantics is divided into a modification semantics and
a checking semantics (see Figure 6.17). The modification semantics defines how the
modification of model transformations, which is specified in modification programs, is
executed. We use UML action semantics to specify the modification semantics.

In a second step, the checking semantics is applied to test the model transforma-
tion Mt’ generated by the modification semantics. One set of OCL constraints is used to
check whether wellformedness rules for model transformations are violated, i.e. whether
the model transformation is valid and can be executed. Another set of OCL constraints
is used to compare the generated model transformation with the original model trans-
formation. It checks for example whether knowledge encoded into the original model
transformation has been lost and whether the relations of the original model transforma-
tion have been modified in a correct manner. The checking semantics produces a set of
checking results containing information about the kind of the detected problem, which
part of the modification program caused the problem, and at which point in the model
transformation the problems occurred.

8For the generation of mappings between metamodels, a bootstrapping of model transformations is
conducted before the modification is applied. For more details see Section 6.4.1.

6.4 Realization of Ontology-based Model Transformation 135

Mt

Mt’

MtMt

Mt’
Mt’

MT modification
program

Modif. Semantics Checking Semantics

OCL checks

+
Checking Results

Figure 6.17: Internal view on higher-order model transformation

Model Transformation Modification Language

The requirements presented at the beginning of Section 6.4.2 do not only influence the
choice to use higher-order transformations, but also the design and implementation of
the model transformation modification language. This section presents the syntax and
the semantics of our model transformation modification language in detail.

Syntax Figure 6.18 depicts the metamodel, which represents the abstract syntax of the
model transformation modification language. Though relatively simple, this syntax is
sufficient to express non-trivial mapping between (meta)models. The abstract syntax is
also based on the abstract syntax of other languages for model mapping and linking. A
Mapping represents a modification program and can have a name. A mapping refer-
ences (+source_model, +target_model) the metamodels between which the mapping is
specified. A mapping consists of Links which can be nested (+nested). Links either map
classes (emof::Class) or properties (emof::Property). A link has one mandatory source
element (+source) and an arbitrary number of target elements (+target). Property Tem-
plate Items (PTIs) (qvttemplate::PropertyTemplateItem) are used to specify constraints
(+constraint) on the values of the properties of classes. The constraint is on the prop-
erty that is an instance of the referred property (+referredProperty) and the constraining
expression is given by the value expression (+value). A PTI has a valid match when the
value of the referred property (emof::Property) matches the value specified by the value
expression (essentialocl::OclExpression). For more details see the QVT specification
[233, p.31f].

The grammar G :� N,T, P,Σ ¡ defines a concrete syntax of the model transfor-
mation modification language:9

N := {map, cLink, pLink, class, property, name, letter}
T := {a, b, ..., z, A, B, ..., Z, :, _, (,), ,, ;, { , } ,Ñ}
Σ := map
P :=
<map> ::= <name>(<name>;<name>) { [<cLink> | <pLink>]�}
<cLink> ::= <name>(<class> [{<constraint>}]Ñ [<class>])

9The definition of the nonterminal <propertyTemplate> can be found in the QVT specification [233,
p.39].

136 Ontology-based Model Transformation

Figure 6.18: Abstract syntax of the higher-level model transformation language

{<pLink>� <cLink>� };
<pLink> ::= <name>(<property>Ñ [<property>]);
<class> ::= <name> [, <class>]
<property> ::= <name> [, <property>]
<constraint> ::= <propertyTemplate> [, <constraint>]
<name> ::= <letter> �

<letter> ::= a | b | ... | z | A | B | ... | Z | : | _

Example Applying this concrete syntax to the example introduced above, we can
now specify the dependencies between the metamodels MMb and MMc (cp. Listing 6.14
and Listing 6.15). The fact, that the concept library is represented in both metamodels
as a class Library, is expressed by the CL_lib. The properties name, books, and authors
are mapped via property links.

CL_book maps the class Book, while CL_nov and CL_jour map Novel and Jour-
nal. The properties ns and name of class Book are mapped in so-called global property
links. These are property links that can be used for all class mappings where the mapped
class owns or inherits the mapped property. In the example these are the property links
PL_name and PL_ns.

The mapping of the authors property depends on the class that is mapped. For books
the mapping of authors on novelAuthors and journalAuthors represents a choice; the
source property is mapped on one of the properties in the target list. For novels and
journals the authors property is mapped on a distinct target property, novelAuthors and
journalAuthors respectively.

For the mapping of the author concept we specify three mapping rules. First, author
is mapped on the classes StoryWriter and Scientist. However, we also want to specify
mappings for the concepts story writer and scientist. Both concepts are represented
through the same class (Author) in MMb, where only the values of the property instances
differ. Hence, we specify additional mappings for the class Author and constrain these
mappings with PTIs. For example, class_link6 specifies the mapping of the class Author
with the profession ’StoryWriter’ from MMb on the class StoryWriter from MMc.

Finally, the property profession has no direct representation in the target metamodel

6.4 Realization of Ontology-based Model Transformation 137

MMc. This is expressed in PL_auth_prof, which is a removal mapping.
The model transformation that is generated by applying the modification program

(Listing 6.13) to the model transformation of the library example (Listing 6.12) can be
found in Appendix C.1.

Listing 6.13: Example modification program
1 modification_mapping (MMb ; MMc) {
2 CL_lib(Libary Ñ Libary) {
3 PL_lib_name (Libary:name Ñ Libary:name);
4 PL_lib_book (Libary:books Ñ Libary:books);
5 PL_lib_auth (Libary:authors Ñ Libary:authors);
6 } ;

CL_book (Book Ñ Book) {
8 PL_book_auth (Book:authors Ñ
9 Novel:novelAuthors ,Journal:journalAuthors);

10 } ;
PL_book_name (Book:name Ñ Book:name);

12 PL_book_ns (Book:ns Ñ Book:ns);
13 CL_nov (Novel Ñ Novel) {
14 PL_nov_auth (Book:authors Ñ Novel:novelAuthors);
15 } ;
16 CL_jour (Journal Ñ Journal) {
17 PL_jour_auth (Book:authors Ñ Journal:journalAuthors);
18 PL_jour_top (Journal:topic Ñ Journal:topic);
19 } ;
20 CL_auth_1 (Author Ñ StoryWriter ,Scientist) { };
21 PL_auth_name (Author:name Ñ Author:name);
22 PL_auth_prof (Author:profession Ñ);
23 CL_auth_2 (Author {profession='StoryWriter '} Ñ
24 StoryWriter) { };

CL_auth_3 (Author {profession='Scientist '} Ñ
26 Scientist) { };

};
28 }

Semantics A simplified picture that helps to work with the model transformation modi-
fication language is to imagine the modification program as a substitution. The elements
of the modification program’s source metamodel are substituted by the elements of the
target metamodel. The detailed implementation realizing the semantics is encapsulated
in a separate component. In the following we present the semantics of the model trans-
formation modification language and illustrate it via the library example.

Interpretation of the Modification Program The semantics distinguishes be-
tween three kinds of substitutions:

One-to-one substitution. The semantics of an one-to-one substitution is applied when
a Link has exact one target. This is the case when a link does reference (+target)
exactly one NamedElement. In the example this is the case for the CL_lib, where
MMb:Library is substituted with MMc:Library.

One-to-many substitution. The semantics of an one-to-many substitution is applied
when a Link has multiple targets. This is the case when a link does reference
multiple NamedElements. In the example this is the case for the CL_book, where
MMb:Book is substituted with MMc:Novel and MMc:Journal.

138 Ontology-based Model Transformation

Removal substitution. The semantics of a removal substitution is applied when a Link
has no targets. This is the case when a link does not reference any NamedEle-
ment as target. In the example this is the case for the PL_auth_prof, where
MMb:Author:profession cannot be substituted with an element from metamodel
MMc.

Beneath these substitutions the model transformation modification language offers
two further techniques, nesting and constraining, to specify modification programs. It is
possible and often sensible to use both techniques in combination.

Constraining. Constraining is used when different concepts are represented in a meta-
model through the same class and can only be distinguished by the values of the
class instances’ properties. Constraints can be specified on the values of the prop-
erties. A constraint for class C of the modification program is satisfied, when a
template for the class C of the QVT model transformation also specificies this
constraint through a PTI. A constrained class link CL can be applied as a sub-
stitution for a template T in the model transformation, when T satisfies all con-
straints of CL. In the example, the template that maps Author in the AuthorToAu-
thor_Scientist relation in Listing 6.12 satisfies CL_auth_1 and CL_auth_3 of the
modification program in Listing 6.13. The semantics always chooses the class
link, that satisfies the most constraints, i.e. in the example CL_auth_3.10

Nesting. Nesting determines the scope of propery links. A property link is only visi-
ble in class links that are siblings or children of the siblings of the property link.
For example the mappings of the Book:authors property are only visible within the
respective class link (PL_book_auth within CL_book, etc.). When there exist mul-
tiple property links for a certain property that are visible within a class link, then
the most local one is chosen. However, global property links like PL_book_name
in Listing 6.13 are an elegant way to specify modification programs with only few
property links.

As described above, the semantics of the model transformation modification lan-
guage consists of a modification semantics and a checking semantics. The modification
semantics is used to execute the modification and produces adjusted model transforma-
tions as output. The checking semantics tests the modified model transformation and
produces computer processible checking results. The interrelation between modifica-
tion and checking semantics allows the computers (and humans) to develop and adapt
appropriate model transformation modification programs in an incremental procedure.

Modification Semantics The modification semantics describes how model trans-
formation modification programs are executed and new model transformations are gen-
erated. To describe the modification execution mechanisms we use the UML action
semantics.

Action semantics [198] is a framework for the formal specification of programming
languages that directly reflects ordinary computational concepts and is easy to read and
understand. With the UML action semantics the OMG has integrated a specification
of actions in UML. UML action semantics lends itself for manipulation of UML ele-
ments, that includes to transform model transformations which themselves are models.

10When there exist multiple class links with max#(satisfied constraints), the first class link is chosen.

6.4 Realization of Ontology-based Model Transformation 139

The UML action semantics is not a concrete action language and does not enforce any
notation. Action languages are free to provide more sophisticated constructs, as long
as these constructs can be translated into the basic concepts defined by the Action Se-
mantics. The details of concrete syntaxes are left to so-called surface languages, which
have to comply with the Action Semantics. All such languages have the Action Seman-
tics as their abstract syntax [200]. For our specifications we use the concrete syntax of
Action Specification Language (ASL) [321] that is also used for specifying processing
behaviour in the context of Executable UML.

Modification Semantics – Data The specification of the modification semantics
uses three data structures: the QVT relational metamodel (see Section 3.3.3), the ab-
stract syntax of model transformation modification language (see Figure 6.18), and an
internal data structure for processing the substitutions on the model transformation (see
Figure 6.19).

The internal data structure contains SubstitutionItems that represent one-to-one, one-
to-many, and removal substitutions. Substitution items are computing instructions that
represent concrete substitutions (like substitution for TypedModel, Key, OTE, PTI, Vari-
able and VariableExp) on QVT relational model transformations. Multiple substitution
items are necessary to realize substitutions represented by the links of modification pro-
grams. Substitution items are stored in an ordered list (+siList) that is contained in
a substitution proposal. The source element (+srcEl) is the element of a metamodel,
that shall be substituted through one or more other metamodel elements (i.e. +trgEl and
+trgEls). The containing element (+contEl) is the element of the QVT model for which
the substitution is applied (e.g. an OTE) and which references the metamodel (source
and target) elements.

Figure 6.19: Modification semantics internal data

Modification Semantics – Actions The modification semantics has two main pro-
cessing steps. First, a list of substitution items (+siList) is generated on the basis of the
input model transformation and links in the modification program. Second, the substitu-
tion items stored in this list are processed.

Computing substitution items. To generate the list of substitution items, the input
model transformation is traversed via its composite aggregation and its implicit template
hierarchy starting with the transformation element. Substitution items are generated

140 Ontology-based Model Transformation

for TypedModel, Key, OTE, PTI, Variable and VariableExp. Listing 6.14 describes the
processing steps that are necessary to generate substitution proposals for an OTE and
one-to-one substitutions in the modification program. First, the respective link in the
modification program is obtained, whose source class matches the class that is referenced
by the OTE instance ¬. If the link refers exactly to one target, one-to-one substitutions
are generated for the OTE. Otherwise removal or one-to-many substitution items are
generated . In the listing one-to-one substitution items are generated for the class
referenced by the OTE (+referredClass) ®, the type referenced by the OTE (+type) ¯,
the variable the OTE binds to (+bindsTo) ±, and all variable expressions that reference
this variable (+referredVariable) °.

For the OTE that refers to MMb:Novel in the relation NovelToNovel in Listing 6.12,
the modification semantics generates five substitution items: one for the referred class
of the OTE, one for the type of the OTE, one for the type of the bound variable, and two
for the type of the respective variable expressions c_.

Listing 6.14: Compute substitution items for OTE
1 define instance function ObjectTemplateExp::computeSIs
2 input classLink:Link, subProp:SubstitutionProposal
output ---

4
switch countof{classLinkÑtarget} # (2)

6 case 0
compute substitution items for removal

8
case 1

10 # (3) substitute class of OTE
sItemClass = create One2OneSI

12 with srcEl = thisÑreferredClass
13 & trgEl = classLinkÑtarget
14 & contEl = this

append sItemClass to subProp.siList;
16

(4) substitute type of OTE
18 sItemType = create One2OneSI

with srcEl = thisÑtype
20 & trgEl = classLinkÑtarget
21 & contEl = this
22 append sItemType to subProp.siList;

24 boundVar = this-> bindsTo
varExps = find VariableExp

26 where referredVariable = boundVar
if boundVar != UNDEFINED then

28 for varExp in varExps do
(5) substitute type of variable expressions

30 sItemVE = create One2OneSI
with srcEl = varExpÑtype

32 & trgEl = classLinkÑtarget
33 & contEl = varExp;
34 append sItemVE to subProp.siList;

endfor
36 # (6) substitute type of variable

sItemVar = create One2OneSI
38 with srcEl = boundVarÑtype
39 & trgEl = classLinkÑtarget
40 & contEl = boundVar;

6.4 Realization of Ontology-based Model Transformation 141

append sItemVar to subProp.siList;
42
default # =2

44 # compute substitution items for one-to-many
endif

46 endswitch

48 enddefine

Processing the substitution items. The substitution items, which are stored in the list
(+siList) of the substitution proposal, are processed one after another, starting with the
first substitution item and proceeding with its successor. In the following we describe
how the three different substitution item types One2OneSI, One2ManySI, and RemovalSI
are processed.

Listing 6.15 depicts the computing instructions that are performed for the One2OneSI
substitution item. First, the association between the containing element contEl and the
source element srcEl is deleted. Then an association of the same kind is created between
the containing element and the target element trgEl.

Listing 6.15: Execution of one-to-one substitution

1 define instance function One2OneSI::execute
2 input ---
output ---

4 unlink selfÑcontEl <Association > selfÑsrcEl
5 link selfÑcontEl <Association > selfÑtrgEl
6 enddefine

In the code extract of Listing 6.16 one can find, that multiple One2OneSI substitu-
tion items have been applied to the MMa2MMb model transformation. First the meta-
model MMb has been replaced with MMc for the respective TypedModel. The class
MMb:Library has been substituted with MMc:Library in a Key and an OTE of the Au-
thorToAuthor_Scientist rule. The class MMb:Author has been replaced with MMc:Sci-
entist in another OTE of this rule (cp. Figure 6.20).

Figure 6.20: One-to-one substitution example

Further, it was necessary to replace some properties: MMb:Library:name with MMc:
Library:name, MMb:Author:name with MMc:Author:name, MMb:Author:ns with MMc:
Author:ns, etc. What one cannot directly see in the code is the substitution of types.
Types had to be substituted for OTEs, Variables and VariableExps (e.g. c_ or l_).

142 Ontology-based Model Transformation

Listing 6.16: Example one-to-one substitution
1 transformation MMa2MMb(ma:MMa; mc:MMc) {
2 key MMc::Library{name};

...
4 top relation AuthorToAuthor_Scientist {

n: String;
6 checkonly domain ma c:Author {...} ;

enforce domain mc c_:Scientist {
8 ns=l_:Library{},

name=n,
10 ...

} ;
12 ...

}
14 }

The execution of One2ManySI substitution items replicates relations.11 Like one can
see in Listing 6.17, the relation AuthorsToAuthors has been duplicated to AuthorsToAu-
thors_1 and AuthorsToAuthors_2. This means, that the execution of a One2ManySI
substitution item copies whole relations of a model transformation, the elements that are
contained by those relations (like RelationDomain, OTE, Variable, etc.), and adds them
to the model transformation. Further it replaces the One2ManySI substitution item with
One2OneSI substitution items in the +siList of the substitution proposal for the relation
and each copy of the relation.

Figure 6.21: One-to-many substitution example

In the library example the One2ManySI substitution item has two target elements
MMc:Scientist and MMc:StoryWriter. Thus, the One2ManySI substitution item is re-
placed by two One2OneSI substitution items, one that has the target element MMc:Sci-
entist and one that has the target element MMc:StoryWriter (cp. Figure 6.21). Finally, all
substitution items of a copied relation, which have not been processed before the current
One2ManySI substitution item, are also replicated. In Listing 6.17 this is for example the
One2OneSI substitution item for MMc:Author:name. The copies of a substitution item
are directly inserted behind the original one in the substitution item list. The execution
of the substitution items in the +siList proceeds with the first substitution item that has
not yet been executed.

11Rules are only replicated for One2ManySI substitution items that references classes in the metamodel.
One2ManySI substitution items that reference properties behave like One2OneSI substitution items by
choosing one target element (property) that fits the substitution’s context.

6.4 Realization of Ontology-based Model Transformation 143

Listing 6.17: Example one-to-many substitution
1 relation AuthorsToAuthors_1 {
2 n: String;

checkonly domain ma c:Book {...} ;
4 enforce domain mc c_:Book {

journalAuthors=a_:Scientist{name=n}
6 } ;
}

8 relation AuthorsToAuthors_2 {
n: String;

10 checkonly domain ma c:Book {...} ;
enforce domain mc c_:Book {

12 novelAuthors=a_:StoryWriter{name=n}
} ;

14 }

The third substitution item RemovalSI is used to remove Keys, OTEs, PTIs, or even
Relations. Having a look at the library example, several removal substitution items have
to be generated to remove the property MMb:Author:profession from the relation Au-
thorToAuthor_Scientist. In Listing 6.18 one substitution item removed the OclExpres-
sion ’Scientist’ and one the PTI that references the property MMb:Author:profession (cp.
also Figure 6.22).

Figure 6.22: Removal substitution example

In the case that there occur nested OTEs or PTIs, the nested OTEs and PTIs also have
to be removed. For example in the relation AuthorToAuthor_Scientist the OTE Library{}
is nested within the PTI ns, since a variable with the type of a Library is assigned to a
property (ns=l_:Library{}). If the PTI ns had to be removed, also the OTE Library{} had
to be removed. Finally, if an OTE that binds the root variable of a relation domain has
to be removed (like Author in the relation AuthorToAuthor_Scientist), the whole relation
has to be removed from the model transformation.

Listing 6.18: Example removal substitution
1 top relation AuthorToAuthor_Scientist {
2 n: String;

checkonly domain ma c:... ;
4 enforce domain mc c_:Scientist {

ns=l_:Library{}, name=n
6 # removed Property MMb:Author:profession

removed OclExpression 'Scientist '
8 } ;
}

144 Ontology-based Model Transformation

Checking Semantics The checking semantics represents the second part of the
model transformation modification language’s semantics. It tests the generated model
transformations for so-called problems, which can occur by applying the modification
semantics.

• One set of problems affects the consistency of model transformation programs
with respect to the model transformation language, i.e. the generated model trans-
formations are not valid and cannot be executed.

• Another kind of problems is caused, when knowledge encoded into the original
model transformation is not preserved or lost. This is the case when modifications
and substitutions are applied to relations where they (normally) do not make sense.

In general, problems are detected via OCL [229] constraints. Only for a few prob-
lems, where additional information about the execution of the modification is needed,
we extend this mechanism with information from the substitution proposal; this is the
case for the second kind of problems where the generated model transformation has to
be compared with the original model transformation.

In the following we describe the problems that are detected by the checking seman-
tics and illustrate selected problems on the basis of the application scenario’s example
and the OCL constraints that are used for checking.

Checking Semantics – Checking validity This set of checks tests, whether the
generated model transformation conforms to the QVT relational metamodel and is con-
sistent, i.e. the generated model transformation can be executed.

• Problem 1: property is not part of class. This problem occurs, when a gener-
ated model transformation would require a property to be part of a class, what
is not the case in the respective metamodel. In the library example this is the
case in the relations AuthorsToAuthors_1 and AuthorsToAuthors_2 of the gen-
erated model transformation (see Listing 6.17). The pattern mb c_:Book {jour-
nalAuthors=...} requires the property MMc:Journal:journalAuthors to be part of
the class MMc:Book in the metamodel that is associated with the typed model mc.
This is not the case in the library example (cp. Figure 6.23).

Figure 6.23: Example for property is not part of class problem

The OCL invariant property_part_of_class in Listing 6.19 is used to check this
fact. The constraint is satisfied, if the respective OTE’s referred class contains
the property or if the OTE does not reference a class, i.e. the OTE could not be
substituted (see substitution of class failed).

6.4 Realization of Ontology-based Model Transformation 145

Listing 6.19: OCL constraint: property part of class

1 package qvttemplate
2 context PropertyTemplateItem

inv property_part_of_class:
4 self.objContainer.referredClass.

hasProperty(self.referredProperty)
6 or

self.objContainer.referredClassÑisEmpty()
8 endpackage

10 package emof
context Class

12 def: hasProperty(property: Property): Boolean =
self.ownedAttributeÑexists(p: Property | p = property)

14 or
self.superClassÑexists(c: Class | c.hasProperty(property))

16 endpackage

• Problem 2: substitution of property failed. This problem occurs, when the model
transformation modification program did not specify a substitution for a property
that is referred by a PTI. Since in such cases the modification semantics sets
the referredProperty of the PTI to the value UNDEFINED, the OCL constraint
checks whether the referred property of a PTI is not empty (see Listing 6.20). In
the library example this problem is detected for the property MMb:Book:index in
the relations NovelToNovel and JournalToJournal.

Listing 6.20: OCL constraint: substitution of property failed

1 package qvttemplate
2 context PropertyTemplateItem

inv referredProperty_must_be_set:
4 self.referredPropertyÑnotEmpty()
5 endpackage

• Problem 3: substitution of class failed. This problem occurs, when the model
transformation modification program did not specify a substitution for a class that
is referred by an OTE. Since in such cases the modification semantics sets the
referredClass of the OTE to the value UNDEFINED, the OCL constraint checks
whether the referred class of an OTE is not empty (see Listing 6.21).

Listing 6.21: OCL constraint: substitution of class failed

1 package qvttemplate
2 context ObjectTemplateExp

inv referredClass_must_be_set:
4 referredClassÑnotEmpty()
5 endpackage

• Problem 4: value of PTI must have a type compatible with the type of the referred
property. The OCL constraint in Listing 6.22 checks, whether the type of a PTI’s
value does conform to the type of the PTI’s referred property.

146 Ontology-based Model Transformation

Listing 6.22: OCL constraint: value of PTI must have a type compatible with the type
of the referred property

1 package qvttemplate
2 context PropertyTemplateItem

inv type_of_value_must_match_type_of_referredProperty:
4 value.typeÑisEmpty()
5 or
6 referredProperty.isOfType(value.type)
endpackage

8
package emof

10 context TypedElement
def: isOfType(type: Type): Boolean =

12 self.type.isAssignableFrom(type)

14 context Type
def: isAssignableFrom(type: Type): Boolean =

16 typeÑisEmpty()
17 or
18 self = type

or (
20 oclIsKindOf(Class)

and
22 oclAsType(Class).superClassÑexists(
23 superClass: Class | superClass.isAssignableFrom(type)
24)

)
26 endpackage

• Problem 5: OTE must refer to a class that belongs to the metamodel of the do-
main. Listing 6.23 checks whether classes referenced by OTEs belong to the meta-
model of the respective domain.

Listing 6.23: OCL constraint: OTE must refer to a class that belongs to the meta-
model of the domain

1 package qvtrelation
2 context RelationDomain

inv class_must_be_contained_in_metamodel:
4 pattern.templateExpressionÑforAll(
5 expression: qvttemplate::TemplateExpression |
6 expression.oclIsKindOf(qvttemplate::ObjectTemplateExp)

and (
8 let referredClass: emof::Class = expression.oclAsType(

qvttemplate::ObjectTemplateExp).referredClass
10 in

referredClassÑisEmpty()
12 or

typedModel.usedPackageÑexists(
14 metamodel: emof::Package |

metamodel.ownedTypeÑexists(type: emof::Type |
16 type = referredClass

)
18)

)
20)
endpackage

6.4 Realization of Ontology-based Model Transformation 147

• Further problems. The checking semantics comprises further OCL constraints to
check the validity of generated model transformations like whether the substituted
Keys belong to the metamodel or whether the metamodel could be substituted.

Checking Semantics – Comparing model transformations This kind of checks
is used to compare the generated model transformation with the original one. The checks
determine whether knowledge encoded into the original model transformation has been
lost and whether the relations of the original model transformation have been modified
in a correct manner. The occurrence of those problems does not necessarily depend
on the (in)validity of model transformations, but on information from the original model
transformation and the transformation execution. Thus we extended the OCL constraints
that check the validity of the generated model transformation with checks working on
the original model transformation and the substitution proposal.

• Problem 1: pattern removal. A loss of information occurs when a class or a
property could not be substituted and therefore the respective patterns had to be
removed from the model transformation. In our example this problem is caused by
the property_link5b(Author:professionÑ) in the modification program. This link
triggers the removal of the PTI that matches the property MMb:Author:profession
in the relations AuthorToAuthor_StoryWriter and AuthorToAuthor_Scientist.

• Problem 2: granularity of model transformation does not fit modification pro-
gram. This problem occurs, when a one-to-many substitution is applied to a top
level relation. If we had in the library example (see Listing 6.12) only one top
relation (AuthorToAuthor) for mapping Author instead of two relations (Author-
ToAuthor_StoryWriter and AuthorToAuthor_Scientist), the modification semantics
would try to apply the class link (Author Ñ StoryWriter,Scientist), i.e. a one-to-
many substitution, to the top relation AuthorToAuthor. This would result in a new
model transformation, which would produce for each instance of Author not one
element but two elements (one that is instance of StoryWriter and one that is in-
stance of Scientist) in the target model. The granularity of the AuthorToAuthor
relation in the initial model transformation specification is not fine enough. How-
ever, an exclusive-OR semantics where either an instance of StoryWriter or an in-
stance of Scientist is produced is more obvious. Therefore the initial model trans-
formations is required to have relations, where the patterns matching the source
model Ma make the essential distinction.

Conclusions

In our approach of OntMT we address the automation challenge to achieve more efficient
reuse and evolution of models and model transformations. To put the respective mecha-
nisms at a higher level of abstraction we developed a language to specify modifications
of model transformations. We use this language in the implementation of the OntMT
approach as an abstraction layer to decouple modelling issues from ontology reasoning
issues. The (abstract) syntax we use for this language is based on the syntax of languages
used for model mapping and linking and thus is similar to the syntax of such languages.
This enables easier integration of these approaches and may also foster synergy effects.
However, the semantics totally differs from existing approaches and provides a new and
novel way to deal with the above described challenges.

148 Ontology-based Model Transformation

6.4.3 Ontology Representation and Reasoning

In a semantic-enabled modelling and development suite like introduced in Section 6.3.1
models and metamodels are automatically represented in both the MDA TS and the
Ontology TS. Approaches like described in [39, 69, 234] can be used realize mappings
between (meta)models and ontologies. The EODMvproject [77] already provides a first
implementation of the mapping between UML and OWL that is described in [230].

Having described extensively the operations that are performed in the MDA TS for
OntMT in the previous sections, we now deal with the Ontology TS in this section.
We describe how the metamodels can be represented and annotated with OWL. Since
inference is an integral part of the OntMT approach, we introduce a set of relationships
and reasoning rules that are used to infer relationships between metamodel elements
for OntMT. These techniques are used to implement the inference component of the
Sem-MT-Tool. For a better illustration we use the metamodels, the RO and the semantic
mappings of the process case study in Section 6.5.1 as a running example. Further details
and a description of the implementation can be found in [95].

Ontology Representation

For representing our metamodels, the RO, and semantic mappings in OWL, we decided
to assume the existence of a global domain. We decided to not apply approaches that
support local domains like [49, 55, 56, 109, 161] in OntMT, due to the poor reasoning
support that is currently available for these approaches. Thus, semantic relations are in-
terpreted in the same way as axioms in the ontologies [51]. All data that is relevant for
the reasoning is stored in one ontology. In the following we introduce, how metamodels,
a RO, and semantic mappings are stored in an OWL ontology. Since the way concepts
are represented in an OWL ontology has also implications on the reasoning and vice
versa, we will also discuss the reasoning possibilities of different representation mecha-
nisms.

Representing the Reference Ontology Representing the RO in the (global) common
ontology is relatively straight forward, since the RO has often already been built in the
OWL format. Listing 6.24 depicts an excerpt of the RO from Figure 6.27 represented in
OWL.

Listing 6.24: OWL representation of RO
<owl:Class rdf:about="urn:ua:pvs/CompositeProcess"/>
<owl:Class rdf:about="urn:ua:pvs/ProcessComponent">
<owl:... />

</owl:Class >
...
<owl:ObjectProperty rdf:about="urn:ua:pvs/composedOf_1">

<owl:inverseOf rdf:resource="urn:ua:pvs/composedOf_2"/>
</owl:ObjectProperty >
...
<owl:DatatypeProperty rdf:about="urn:ua:pvs/ProcessComponent_name">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="urn:ua:pvs/ProcessComponent"/>

</owl:DatatypeProperty >
...

6.4 Realization of Ontology-based Model Transformation 149

Representing Metamodels Metamodels are represented in MOF and UML respec-
tively. To convert them to OWL we can make use of the UML to OWL mapping de-
scribed in the ODM [230, p.201ff] standard of the OMG. Table 6.2 gives an overview
on which OWL element is the equivalent to which UML element. Both OWL and UML
are based on classes. A class in OWL is associated with a set of individuals. A class in
UML is a more general construct, but one of its uses is as a set of instances. Thus, UML
classes are mapped on owl:Class. The relationships among classes represented in OWL
by owl:ObjectProperty and owl:DatatypeProperty come from two different sources in
MOF models.

• One source is the association ownedAttribute between class and property. In-
stances of classes’ ownedAttribute properties translate to owl:ObjectProperties,
if the types of the UML properties are classes. MOF ownedAttribute associa-
tions are distinct, even if ownedAttributes have the same name associated with
different classes. The OWL property names therefore must be unique. One way
to ensure this is to use a combination of the class name and the owned property
name. One further problem regarding attributes is the distinct definition of the
subclass relationship in MOF and OWL (OWL rdfs:subClassOf, MOF general-
ization). Whereas it is possible to directly access an inherited attribute in MOF
via stating "Class.attribute", this is not possible in OWL, especially in a subclass
hierarchy.

• The second source of OWL properties in a MOF model are associations. A binary
MOF association translates directly to an owl:ObjectProperty.

The mapping, which is depicted in Table 6.2, can be used to transform metamodels
to so-called application ontologies in OWL format. Representing the metamodels in
OWL is the key prerequisite to add them to the (global) common ontology and to apply
inference.

UML OWL
Class owl:Class

Property owl:DatatypeProperty

Association owl:ObjectProperty

Table 6.2: UML to OWL mapping

Listing 6.25 depicts an excerpt of the running example’s process metamodel (see
Figure 6.25) represented in OWL.

Listing 6.25: OWL representation of metamodels
<owl:Class rdf:about="urn:ua:pvs/P_Step"/>
<owl:Class rdf:about="urn:ua:pvs/P_Process">
<owl:ObjectProperty rdf:resource="urn:ua:pvs/P_steps"/>

</owl:Class >
<owl:Class rdf:about="urn:ua:pvs/P_Flow"/>
...
<owl:ObjectProperty rdf:resource="urn:ua:pvs/P_source"/>
...
<owl:DatatypeProperty rdf:about="urn:ua:pvs/P_Step_name"/>
...

150 Ontology-based Model Transformation

Representing Semantic Mappings Semantic mappings (ontological groundings) spec-
ify relationships between metamodels and ontologies. These relationships have to be
added to the global ontologies in order to connect the metamodels and the RO. This is a
prerequisite to allow reasoning about dependencies between metamodels via the RO.

Relationships between Classes Relationships between OWL classes can be rep-
resented as object properties between these classes. OWL already provides object prop-
erties like owl:equivalentClass or owl:disjointWith to specify such relationships between
classes. To represent the semantic mappings we use the relationships equivalence, con-
tainment right and containment left. In the reasoning Section 6.4.3 we introduce more
relationships (overlap and possible overlap) that can be derived between classes via rea-
soning. In the following, we present two ways to represent relationships, one by using
the expressiveness of OWL DL and one by using the expressiveness of OWL Full. Via
both ways the same reasoning results can be inferred. However, the realization of the
reasoning and the execution time differs.

Representation with OWL DL. OWL DL requires that object properties only exist be-
tween instances of classes. Hence, in the OWL DL representation only one class
is specified in the TBox which serves as the basic type for every element of either
the metamodel or the RO. Therefore an instance of this class is created for every
class of the running example. Listing 6.26 depicts the necessary OWL code. Both
CompositeProcess and P_Process are instances of TBOX_BaseClass.

Listing 6.26: Representing relationships between classes in OWL DL
<owl:Class rdf:about="urn:ua:pvs/TBOX_BaseClass"/>
<urn:ua:pvs/:TBOX_BaseClass rdf:about="urn:ua:pvs/CompositeProcess">
<urn:ua:pvs/:eq >
<urn:ua:pvs/:TBOX_BaseClass rdf:about="urn:ua:pvs/P_Process"/>

</urn:ua:pvs/:eq >
</urn:ua:pvs/:TBOX_BaseClass >

Representation with OWL Full. Listing 6.27 depicts the ontological grounding of Pro-
cess of the process metamodel to CompositeProcess of the RO via an equivalence
relation urn:ua:pvs/:eq. The equivalence relation is directly inserted between both
classes. Although being TBox elements, both classes are treated as instances
which leads to the ontology being in OWL Full.

Listing 6.27: Representing relationships between classes in OWL Full
<owl:Class rdf:about="urn:ua:pvs/CompositeProcess"/>
<owl:Class rdf:about="urn:ua:pvs/P_Process">
<urn:ua:pvs/:eq rdf:resource="urn:ua:pvs/CompositeProcess"/>

</owl:Class >

Relationships between Datatype- and Object Properties Depending on which
OWL level is needed (OWL DL or OWL Full), the expression of relationships between
datatype and object properties poses far more difficult challenges than representing rela-
tionships between classes.

• The first problem is that OWL DL does only allow to specify object properties
between classes. This means that it is not possible to represent relationships be-
tween datatype or object properties with object properties in OWL DL. This is
only possible in OWL Full.

6.4 Realization of Ontology-based Model Transformation 151

• The second problem relates to inheritance in MOF/UML. In the example in Fig-
ure 6.24 the class B inherits from class A. A has an attribute name. In MOF, UML,
or an object-oriented language, B.name represents the attribute name of the class
B.

In OWL DL this fact is more complex to define. Attributes are represented as
datatype properties. To specify that a datatype property belongs to a certain class,
this class type is added to the set of domains of the datatype property. In the
example, name would have {A,C} as its domains. A, B, and C can now have a
name property. However, it is not possible to represent only those name proper-
ties, which belong to the class B via B.name. In OWL DL a new class, which is
an intersection of B and the attribute name (see Figure 6.24), has to be built. In
OWL Full one can alternatively create a unique datatype property for every ele-
ment in the inheritance hierarchy. In the example the two new datatype properties
would be A_name and B_name.

Figure 6.24: Accessing B.name in OWL via an Intersection

In our concrete realization, we decided to choose a simpler representation of the
relationships and used OWL Full reasoning, instead of realizing a more complex rela-
tionship representation so that OWL DL reasoning can be applied. In the following we
introduce the representation with OWL Full. A description of OWL DL representation
can be found in [95].

Representation with OWL Full. OWL Full allows to specify object properties not only
between classes but also between datatype and object properties, i.e. datatype
and object properties are treated as instances of classes. Listing 6.28 depicts
an example of how datatype properties are related via an object property. The
P_name datatype property has an object property urn:ua:pvs/:eq, which relates to
the datatype property name.

For the described inheritance problem an unique-name approach is the most con-
sequent solution in OWL Full. This way, a unique attribute is created for every

152 Ontology-based Model Transformation

attribute in a class hierarchy. In the example of Figure 6.24, a uniquely identifi-
able datatype property is created for every single class (A and B) in the hierarchy.
A has the datatype property A_name (where A_ is a prefix of the namespace of
the attribute name) and B contains B_name. To define that both attributes repre-
sent one and the same MOF/UML attribute, both are connected via an equivalence
relationship.

Listing 6.28: Relationships between datatype properties with OWL Full
<owl:DatatypeProperty rdf:about="urn:ua:pvs/P_name">
<urn:ua:pvs/:eq >
<owl:DatatypeProperty rdf:about="urn:ua:pvs/name"/>

</urn:ua:pvs/:eq >
</owl:DatatypeProperty >

Reasoning

Types of Relationships In the field of ontology matching and ontology mapping one
can in general identify three relationships between ontology elements. According to
[51, 191, 267] these are equivalence, containment and overlap.

• Equivalence (�) means that the connected elements represent the same aspect of
the real world. An element of an application ontology corresponds to an element in
the reference ontology or can be precisely expressed by a composition of elements.
Later, we will refer to this relationship by the relation type also as <equal>.

• Containment (�,�) states that the element in one ontology represents a more spe-
cific aspect of the world than the element in the other ontology. The relation can
be defined in one or the other direction, depending on which concept is more
specific. When an element is not sufficiently refined (i.e. it does not match the
accuracy level of the ontology) we use the relation <general>. When an element
is described at a level of refinement that does not match the level of refinement of
the other ontology, we use the relation <specific>.

• Overlap (o) states that the connected elements represent different aspects of the
world, but have an overlap in some respect. This relation is of the type <overlap>.

Based on these general relationship types we define five relationships, which we
will use for the inference in this thesis: equals, containment right, containment left and
overlap. The fifth relationship specifies a possible overlap. This relationship is weaker
than the overlap relationship, since the relationship only holds with a given percentage
p between two elements. Table 6.3 provides an overview of these relationship types.
For each relationship one can find a short description, a symbol that represents this
relationship, and the description of the semantics.

The decision to base our relationships on relationships that are also used in ontology
mapping approaches offers the possibility to exchange the reasoning rules defined in this
section with other calculi. For example, parts of the reasoning could be accomplished by
OWL DL or OWL Full reasoning capabilities or one could use a reasoning calculus that
supports local domains like C-OWL [49], ontology integration framework [55], DL for
Information Integration [56], E-connections [161], or distributed first-order logic [109].

6.4 Realization of Ontology-based Model Transformation 153

Name Description (C relation D) Symbol
Equivalence C and D represent the same concept �

Semantics: C � D ô CI � DI

Containment right C is more <specific> than D �

Semantics: C � D ô CI � DI

Containment left C is more <general> than D �

Semantics: C � D ô CI � DI

Overlap The concepts of C and D overlap o

Semantics: C o D ô CI O DI

Possible Overlap There is a certain probability P Θ

that the concepts of C and D overlap

Semantics: C Θ D ô CI θ DI

Table 6.3: Available relationship types

Reasoning Rules To derive the above described relationships between more (meta-
model) elements, we have developed a set of reasoning rules. In this section we specify
these rules that can be used to derive concrete implementations for specific rules engines
like we have done for the Jena general purpose reasoner. More detailed specifications of
these rules can be found in the Appendix C.2.

Listing 6.29 depicts rules that use simple OWL class definitions and relationships to
compute new relationships.

Listing 6.29: Reasoning rules using simple class definitions
Equality symmetry:

C � D Ñ D � C
Overlap symmetry:

C o D Ñ D o C
Possible overlap symmetry:

C Θ D Ñ D Θ C
Containment right inverse:

C � D Ñ D � C
Containment left inverse:

C � D Ñ D � C
Equality transitivity:

C � D[D � E Ñ C � E
Containment right transitivity:

C � D[D � E Ñ C � E
Containment left transitivity:

C � D[D � E Ñ C � E
Overlap (Pseudo-) transitivity:

C o D[D o E Ñ C Θ E
Possible overlap transitivity:

C Θ D[D Θ E Ñ C Θ E
Containment right 1:

C � D[D � E Ñ C � E
Containment right 2:

C � D[D � E Ñ C � E
Containment left 1:

C � D[D � E Ñ C � E
Containment left 2:

C � D[D � E Ñ C � E
Overlap 1:

C o D[D � E Ñ C o E
Overlap 2:

C � D[D o E Ñ C o E
Possible overlap 1:

C Θ D[D � E Ñ C Θ E
Possible overlap 2:

154 Ontology-based Model Transformation

C � D[D Θ E Ñ C Θ E
Containment in general:

C � D[D � E Ñ C Θ E
Containment of special:

C � D[D � E Ñ C o E
Containment right and overlap:

C � D[D o E Ñ C Θ E
Overlap and containment right:

C o D[D � E Ñ C o E
Containment left and overlap:

C � D[D o E Ñ C o E
Overlap and containment left:

C o D[D � E Ñ C Θ E

Classes in ontologies can be assembled of other classes. We support reasoning rules
that match classes that are defined in OWL through union, intersection, and complement
of classes. Listing 6.30 depicts rules that match complex classes, which are defined
by the union of other classes, to compute new relationships (see also Table C.8 and
Table C.9 in Appendix C.2).

Listing 6.30: Rules matching A �
�n

i�1 Ai ^ 1 ¤ m ¤ n
X equals A:

X � A[A �
�n

i�1 Ai Ñ X � A1 [. . .[X � An
X contained in A:

X � A[A �
�n

i�1 Ai Ñ X Θ A1 [. . .[X Θ An
X contains A:

X � A[A �
�n

i�1 Ai Ñ X � A1 [. . .[X � An
X overlaps A:

X O A[A �
�n

i�1 Ai Ñ X Θ A1 [. . .[X Θ An
X possible overlap A:

X Θ A[A �
�n

i�1 Ai Ñ X Θ A1 [. . .[X Θ An
Am equals X:

Am � X [A �
�n

i�1 Ai Ñ A � X
Am is contained in X:

Am � X [A �
�n

i�1 Ai Ñ A o X
Am contains X:

Am � X [A �
�n

i�1 Ai Ñ A � X
Am overlaps X:

Am o X [A �
�n

i�1 Ai Ñ A o X
Am possible overlap X:

Am Θ X [A �
�n

i�1 Ai Ñ A Θ X

Listing 6.31 depicts rules that match complex classes, which are defined by the in-
tersection of other classes, to compute new relationships (see also Table C.10 and Ta-
ble C.11 in Appendix C.2).

Listing 6.31: Rules matching A �
�n

i�1 Ai ^ 1 ¤ m ¤ n
X equals A:

X � A[A �
�n

i�1 Ai Ñ X � A1 [. . .[X � An
X contained in A:

X � A[A �
�n

i�1 Ai Ñ X � A1 [. . .[X � An
X contains A:

X � A[A �
�n

i�1 Ai Ñ X o A1 [. . .[X o An
X overlaps A:

X o A[A �
�n

i�1 Ai Ñ X o A1 [. . .[X o An
X possible overlap A:

X Θ A[A �
�n

i�1 Ai Ñ X Θ A1 [. . .[X Θ An
Am equals X:

Am � X [A �
�n

i�1 Ai Ñ A � X
Am contains X:

Am � X [A �
�n

i�1 Ai Ñ A Θ X
Am overlaps X:

Am o X [A �
�n

i�1 Ai Ñ A Θ X
Am possible overlap X:

6.4 Realization of Ontology-based Model Transformation 155

Am Θ X [A �
�n

i�1 Ai Ñ A Θ X

Listing 6.32 depicts rules for relationships between a class X and a complex class A,
which is built by the complement of B (see also Table C.12 and Table C.13 in Appendix
C.2).

Listing 6.32: Rules matching A � B
X equals A:

X � A[A � BÑ X � B
X contained in A:

X � A[A � BÑ X � B
X contains A:

X � A[A � BÑ X Θ B
X overlaps A:

X o A[A � BÑ X Θ B
X possible overlap A:

X Θ A[A � BÑ X Θ B
B equals X:

B � X [A � BÑ A � X
B is contained in X:

B � X [A � BÑ A Θ X
B contains X:

B � X [A � BÑ X � A
B overlaps X:

B o X [A � BÑ A Θ X
B possible overlap X:

B Θ X [A � BÑ A Θ X

Conclusions

In this section we presented a way to represent metamodels and ontological groundings
of metamodels. We developed a set of reasoning rules that allow us to infer relationships
between metamodels on the basis of the introduced representation concepts. We used
the ontology representation and the reasoning rules to implement the process modelling
case study (see Section 6.5.1) and showed the applicability of these techniques in the
context of OntMT. As discussed in Section 6.6, the representation formalisms and the
reasoning can be further improved by providing solutions that lie in OWL DL or by
using reasoning calculi that support a local domain approach.

6.4.4 Sem-MT-Component

The Sem-MT-Component implements the core part of the OntMT approach. It provides
the main functionality of the Sem-MT-Tool by making use of the inference results of the
Ontology TS and computing modification programs for the generation and evolution of
model transformations in the MDA TS. In this section we describe our realization of the
correlation algorithm used to compute model transformation programs. We present a rat-
ing that can be used to select the ’best’ generated model transformation and summarize
with future extensions of the correlation algorithm.

Correlation

Algorithm 6.1 in Section 6.3.2 illustrates the correlation algorithm implemented by the
Sem-MT-Component to generate new model transformations. The Sem-MT-Component

156 Ontology-based Model Transformation

takes as input an initial model transformation, the metamodel which has to be substi-
tuted in the model transformation, and the new metamodel.12 In a first step, it requests
the model manipulator to compute a set of all classes and properties Cs that have to be
substituted in the initial model transformation. Second, it invokes the inference compo-
nent to obtain a set of possible substitutions for all classes and properties to substitute
CSss. Next, the computation of a substitution proposal SP begins. A substitution pro-
posal contains the model transformation modification program, the problems that occur
by applying the substitutions to a model transformation, and a rating of the performed
substitutions. After a substitution proposal is calculated by the Sem-MT-Component, the
model manipulator performs the substitution and validates the generated model transfor-
mation. Then the substitution proposal is rated by the Sem-MT-Component. The Sem-
MT-Component tries to compute alternative substitution proposals until the application
of a substitution proposal does not lead to any problems, or no further substitution pro-
posals can be found. Finally, the Sem-MT-Component chooses the substitution proposal
with the best rating from all computed substitution proposals SPs and the new model
transformation is generated on the basis of this substitution proposal.

Algorithm 6.4 is used to obtain possible substitutions for the concepts of the meta-
model that shall be substituted in the model transformation (oldMM). The reasoner is
invoked in line 4 and returns a set of reasoning results (RR)13. From the reasoning result
only relationships are chosen, where the source is the concept c and the target concept
is part of the new metamodel (newMM). We have specified the query on the reasoning
results in relational algebra [58, 59, 155].

Table 6.4: Obtain reasoning results

1: function S(c, oldMM, newMM) : ReasoningResults
2: RRÐH � set of reasoning results
3:
4: RRÐ R(oldMM, newMM) � reasoning returns 3-tuples
5: return Q(πx1 ,x2 ,x3ppRR Xrx1s ptpcquqq Xrx3s pnewMMqq)
6: end function

The calculation of a new substitution proposal distinguishes between two main cases
(see Algorithm 6.5) calculating an initial substitution proposal and calculating an alter-
native substitution proposal. The calculation of an initial substitution proposal takes only
<equal> relationships between metamodel elements into account. If there doesn’t exist
such a relationship for a concept c, a removal substitution is added to the substitution
proposal (see (c,NULL) in line 9). To calculate an alternative substitution proposal, also
other relationships than <equal> between the metamodel elements are considered. For
each concept c, that caused a problem in the execution of the previous substitution pro-
posal, the algorithm tries to find a better substitution. The choice of the new proposed
substitutions depends on heuristics that try to find a substitution that best fits for the
initial model transformations.

12Call-by-reference is used for all parameters of the algorithms described in this section.
13The reasoner returns 3-tuples, which are of the form (Subject,Predicate,Object).

6.4 Realization of Ontology-based Model Transformation 157

Table 6.5: Calculate substitution proposal

1: function SP(lastSP, SPs, Cs, CSss) : SubstitutionProposal
2: newSP.subst ÐH
3: RRÐH
4:
5: if SPs � H then � calculate initial substitution proposal
6: for all c P Cs do
7: RRÐ Q(πx1 ,x3pσx2�1equal1pCSss Xrx1s ptpcquqqq)
8: if RR � H then
9: RRÐ {(c,NULL)}

10: end if
11: newSP.subst Ð newSP.subst Y (RR)
12: end for
13: else � calculate alternative substitution proposal
14: for all c P Cs do
15: if P(c, lastSP) then
16: RRÐ Q(πx1 ,x3pCSss Xrx1s ptpcquqq)
17: RRÐ RR \ S(c, CSss)
18: newSP.subst Ð newSP.subst Y S(RR) � usage of heuristics
19: else
20: newSP.subst Ð newSP.subst Y S(c, lastSP)
21: end if
22: end for
23: end if
24: return newSP
25: end function

Rating substitutions proposals

The choice of the substitution proposal, which is used to generate the new model trans-
formation, is based on the ratings of the substitution proposals. A rating of a substitution
proposal is a measure of the generated model transformation’s quality. The rating is
based on factors that are measured for each substitution proposal:

• Problems occurring in the substitution proposal: This measure counts the prob-
lems that were detected by the validator in the generated model transformation.
The measure distinguishes between the different kinds of problems and assigns
different weights to the various problem types according to the severity.

• Number of concepts that could be substituted: This measure counts how many
classes and properties could be substituted. From this measure it can be derived
how many concepts could not be substituted.

• Relationships used for substitution: This measure counts and rates the relation-
ships that are used in the modification program of the substitution proposal. In
general a substitution derived from an <equal> relationship gets a better rating
than substitutions derived from other relationships.

• Position of the problems and used relationships in the model transformation: This
is an optional factor that can influence the three other ratings described above. The
assumption for this factor is, that some relations of the model transformation are
more important to the overall result than others.

158 Ontology-based Model Transformation

Algorithm 6.6 depicts a sample rating of substitution proposals. For each substitution
proposal two rating values are computed. One rating counts the problems that were
detected in the generated model transformation after executing the substitution proposal.
The second rating is a value for the substitutions used in the substitution proposal. Each
substitution used in the substitution proposal is multiplied with a factor that is highest
for <equal> relationships.

Table 6.6: Rating of substitution proposals

1: function S(SP) : SP
2: SP.rateProblemsÐ #(P(SP))
3: SP.rateSubst Ð SP.rateSubst + 10 * Q(COUNT(σx2�1equal1 (SP.rateSubst)))
4: SP.rateSubst Ð SP.rateSubst + 7 * Q(COUNT(σx2�1 speci f ic1 (SP.rateSubst)))
5: SP.rateSubst Ð SP.rateSubst + 5 * Q(COUNT(σx2�1general1 (SP.rateSubst)))
6: ...

7: return SP
8: end function

Finally, the substitution proposal with the best rating is chosen to generate the new
model transformation (see Algorithm 6.7). In our basic correlation algorithm the sub-
stitution proposal with the fewest detected problems is chosen. If this choice has more
than one result, we also consider the ratings of the substitutions used in the substitution
proposals.

Table 6.7: Choosing a substitution proposal

1: function SP(CSss, SPs) : SubstitutionProposal
2: remSPsÐH � remaining substitution proposals in choice
3:
4: remSPsÐ Q(πS P(GROUPBY(SPs,SP,MIN,SP.rateProblems)))
5: if #(remSPs) == 1 then
6: return (remSPs)
7: end if
8:
9: remSPsÐ Q(πS P(GROUPBY(remSPs,SP,MAX,SPs.rateSubst)))

10: if #(remSPs) == 1 then
11: return (remSPs)
12: end if
13: ...
14: return (remSPs)
15: end function

Concrete ratings depend always on the purpose OntMT is used for. For the different
application scenarios separate metrics are defined. A metric, which was developed for
automated mapping generation, will put more emphasis on an executable model trans-
formation than on the relationships used for substitution. If OntMT is used to support
developers in adjusting their model transformations, OntMT will only make suggestions
to the developer. Hence, the metric puts more emphasis on exact substitutions of meta-
model elements than on the execution of the new model transformation.

6.5 Case Studies 159

Summary

As we illustrate in the process modelling case study (see Section 6.5.1), the described
basic correlation algorithm can be used to automatically generate model transforma-
tions. However, there are a few issues that can be improved in future. At the moment
the correlation algorithm tries to find alternative substitutions for all concepts where
problems occurred in one iteration. With this strategy one might loose substitution solu-
tions that generate better model transformations. Hence, we propose to apply only one
new substitution to every alternative substitution proposal. Also the implementation of
backtracking would help to ensure that the correlation algorithm does not miss adequate
substitution solutions. One can find a critical discussion about the runtime performance
of the correlation algorithm in Section 6.6.2.

6.5 Case Studies

To show the applicability of the OntMT approach, we conducted two case studies with
our prototypical implementation. Each case study realizes one of the application sce-
narios OntMT was developed for (see Section 6.2). The first case study in Section 6.5.1
deals with the domain of process modelling and realizes the automated generation of
model transformations scenario described in Section 6.2.1. The second case study in
Section 6.5.2 realizes the model transformation evolution scenario described in Sec-
tion 6.2.2. It applies OntMT to model transformations that evolve in the context of
the OMG’s standardization process for an UML Profile and Metamodel for Services
(UPMS).

6.5.1 Mapping Generation for Process Modelling

This section presents a case study performed with OntMT for the automated generation
of model transformations scenario described in Section 6.2.1. The case study deals with
the domain of process modelling. In this domain various process modelling formats
and metamodels exist [30, 225, 226, 238, 261]. This case study makes use of a generic
metamodel Process for modelling processes and a metamodel EPC that can be used
to represent EPCs. As an ontology for process modelling we use the Web Ontology
Language for Services (OWL-S) [304, 305], which is under standardization at the W3C.

The goal of the case study is to automatically generate model transformations be-
tween different metamodels by using ontologies and reasoning technology. We will use
OntMT to generate a QVT Relations model transformation between the metamodels
Process and EPC.

First, we will present the input that is necessary to start the execution of OntMT.
These are the metamodels, the RO, and the bindings of the metamodels to the RO. Sec-
ond, we describe how the bootstrapping for the Process metamodel is performed. Third,
the reasoner of the Sem-MT-Tool infers relationships between the two metamodels Pro-
cess and EPC. Since generating a new model transformation with OntMT is an incre-
mental process, we describe the computation of substitution proposals, the execution
of the MT modifications, and the validation of the generation results in separate para-
graphs for each substitution proposal (SP1-SP3). Finally, the substitution proposals are
rated and the substitution proposal with best rating is chosen to generate the new model
transformation.

160 Ontology-based Model Transformation

Input to OntMT

Input for the generation of a Process to EPC model transformation are the metamodels
(Process and EPC), the RO, and the bindings of the metamodels to the RO.

Process Metamodel Figure 6.25 depicts the Process metamodel. A Process consists
of Steps and Flows. A Step can have in flows (+inFlow) and out flows (+outFlow). Step
is an abstract class with the realizations Task, Decision, and Merge inheriting from it.

Figure 6.25: Metamodel Process

EPC Metamodel Figure 6.26 depicts the EPC metamodel. An Epc consists of Func-
tions, ControlElements, and Connectors. The abstract class ControlElement is the top
node in the inheritance hierarchy representing EPC nodes. ControlElement is also an
abstract class with the two subclasses Join and Split. Connector can have source and
target Epcelements. Therefore Connector has relationships to Function, Join, and Split.

Figure 6.26: Metamodel EPC

6.5 Case Studies 161

Reference Ontology Figure 6.27 depicts the RO. The RO is an excerpt of the Ser-
viceModel of OWL-S. The concepts Process, AtomicProcess, and CompositeProcess in-
herit from ServiceModel. AtomicProcess, ControlContruct, Split, and Join inherit from
ProcessComponent. A CompositeProcess is composed of ProcessComponent and the
FollowedBy class, which are separate concepts in OWL-S. ProcessComponent and Fol-
lowedBy are connected by the object properties connected and followed by.

ServiceModel

Process

CompositeProcess

ControlConstruct

AtomicProcess

ProcessComponent

Split

Join

connected

composedOf

xsd:String

name

name
SubClass/Property

ObjectProperty

DatatypeProperty

FollowedBy

followed

composedOf

Figure 6.27: Reference ontology for process modelling

Binding of Metamodels to the Reference Ontology For the binding (ontological
grounding) we use a notation similar to Semantic Mediation and Application Interop-
erability Language (SMAIL) [191]. ’=:’ stands for a lossless annotation, where the an-
notation fully captures the intended meaning. ’>:’ denotes an overspecification, where
the level of refinement of the annotated element is greater than the level of refinement
of the concepts in the RO. ’=:’ and ’>:’ correspond to the relationship types � and �
used for reasoning (see Section 6.4.3). Table 6.8 represents the binding of the Process
metamodel to the RO. Table 6.9 represents the binding of the EPC metamodel to the
RO.

Bootstrapping of the Initial Model Transformation

In a first step, the bootstrap model transformation is generated by traversing the meta-
model Process via its containment relationships and mapping the associations occurring
in the metamodel. The bootstrapping process works as follows:

• For each class in the Process metamodel one top relation mapping rule is gen-
erated in the bootstrap model transformation (Process, Flow). If there occurs
inheritance, mapping rules for the concrete leaf classes (Task, Decision, Merge)
are generated instead of mapping the abstract superclass (Step). This enhances the
granularity of the model transformation specification. The mandatory properties
are specified as part of the top relation matching the classes (in the ProcessToPro-
cess relation the name property; see Listing 6.33). Optional properties would be
shifted to separate relations, which are used to further constrain the top relations
via where-clauses.

162 Ontology-based Model Transformation

Process =: CompositeProcess

Process.name =: CompositeProcess.name

Process.steps =: CompositeProcess.composedOf

Process.flows =: CompositeProcess.composedOf

Step =: ProcessComponent

Step.name =: ProcessComponent.name

Step.outFlow =: ProcessComponent.connected

Step.inFlow =: ProcessComponent.inverseOf(followed)

Step.namespace =: ProcessComponent.inverseOf(composedOf)

Task =: AtomicProcess

Task.name =: AtomicProcess.name

Task.outflow =: AtomicProcess.connected

Task.inFlow =: AtomicProcess.inverseOf(followed)

Task.namespace =: AtomicProcess.inverseOf(composedOf)

Decision =: Split

Decision.name =: Split.name

Decision.outFlow =: Split.connected

Decision.inFlow =: Split.inverseOf(followed

Decision.namespace =: Split.inverseOf(composedOf)

Merge =: Join

Merge.name =: Join.name

Merge.outFlow =: Join.connected

Merge.inFlow =: Join.inverseOf(followed)

Merge.namespace =: Join.inverseOf(composedOf)

Flow =: FollowedBy

Flow.name =: FollowedBy.name

Flow.namespace =: FollowedBy.namespace

Flow.sink =: FollowedBy.followed

Flow.source =: FollowedBy.inverseOf(connected)

Table 6.8: Binding of the Process metamodel to the reference ontology

6.5 Case Studies 163

Epc =: CompositeProcess

Epc.name =: CompositeProcess.name

Epc.connectors =: CompositeProcess.composedOf

Epc.functions >: CompositeProcess.composedOf

Epc.controlelements >: CompositeProcess.composedOf

Epcelement =: ProcessComponent

Epcelement.name =: ProcessComponent.name

Function =: AtomicProcess

Function.name =: AtomicProcess.name

Function.outConnectorF >: AtomicProcess.connected

Function.inConnectorF >: AtomicProcess.inverseOf(followed)

Function.namespace =: AtomicProcess.inverseOf(composedOf)

Join =: Join

Join.name =: Join.name

Join.outConnectorJ >: Join.connected

Join.inConnectorJ >: Join.inverseOf(followed)

Join.namespace =: Join.inverseOf(composedOf)

Split =: Split

Split.name =: Split.name

Split.outConnectorS >: Split.connected

Split.inConnectorS >: Split.inverseOf(followed)

Split.namespace =: Split.inverseOf(composedOf)

Connector =: FollowedBy

Connector.name >: FollowedBy.name

Connector.namespace >: FollowedBy.namespace

Connector.sinkFunction >: FollowedBy.followed

Connector.soureFunction >: FollowedBy.inverseOf(connected)

Connector.sinkJoin >: FollowedBy.followed

Connector.sourceJoin >: FollowedBy.inverseOf(connected)

Connector.sinkSplit >: FollowedBy.followed

Connector.souceSplit >: FollowedBy.inverseOf(connected)

Table 6.9: Binding of the EPC metamodel to the reference ontology

164 Ontology-based Model Transformation

Listing 6.33: Bootstrapping top relations code for classes
1 top relation ProcessToProcess {
2 n: String;

checkonly domain prc_1 p_1:Process {
4 name=n

};
6 enforce domain prc_2 p_2:Process {

name=n
8 };

}

• Containment associations are realized in the bootstrap model transformation as
properties of the contained elements (namespace) and constrain the top relations
via when-clauses (e.g. in the FlowToFlow relation in Listing 6.34).

Listing 6.34: Bootstrapping when-clauses for containment associations
1 top relation FlowToFlow {
2 n: String;

checkonly domain prc_1 f_1:Flow {
4 namespace=p_1:Process {},

name=n
6 };

enforce domain prc_2 f_2:Flow {
8 namespace=p_2:Process {},

name=n
10 };

when
12 {

ProcessToProcess(p_1,p_2);
14 }

where
16 {

Flow2Flow_sink(f_1,f_2);
18 Flow2Flow_source(f_1,f_2);

}
20 }

• Other associations are realized via separate relations in the bootstrap model trans-
formation (StepToStep_out, StepToStep_in, FlowToFlow_sink, and FlowTo than
<equal>Flow_source). The StepToStep_in relation is shown as an example in
Listing 6.35.

Listing 6.35: Bootstrapping associations as separate relations
1 relation StepToStep_in {
2 n: String;

checkonly domain prc_1 s_1:Step {
4 inFlow=in_1:Flow {

name=n
6 }

};
8 enforce domain prc_2 s_2:Step {

inFlow=in_2:Flow {
10 name=n

}
12 };

}

6.5 Case Studies 165

The complete QVT Relations code of the bootstrapped model transformation can be
found in Appendix C.3.1.

Reasoning

Before a substitution proposal can be computed by OntMT, the reasoner has to infer
relationships between the two metamodels Process and EPC. For the case study, the
reasoner infers14 128 relationships between the two metamodels. The relations are rep-
resented as triples, which have the form <subject> <predicate> <object>. However,
not all reasoning results are used by OntMT, since some of the inferred relationships
are stronger than other inferred relationships. For example, OntMT will only use the
relationship A <equal> B though there might be other relationships like A <special> B.
In the case study 79 OntMT uses inferred relationships.

Listing 6.36 depicts the relationships, that were infered for the Process. A complete
overview of the reasoning results relevant for OntMT in this case study can be found in
Appendix C.3.2.

Listing 6.36: Reasoning results for Process
<urn : ua : pvs / P r o c e s s > <equa l > <urn : ua : pvs / Epc>
<urn : ua : pvs / P r o c e s s > <p o s s i b l e o v e r l a p > <urn : ua : pvs / Jo in >
<urn : ua : pvs / P r o c e s s > <p o s s i b l e o v e r l a p > <urn : ua : pvs / C on t r o l E l e m en t >
<urn : ua : pvs / P r o c e s s > <p o s s i b l e o v e r l a p > <urn : ua : pvs / S p l i t >
<urn : ua : pvs / P r o c e s s > <p o s s i b l e o v e r l a p > <urn : ua : pvs / Epcelement >
<urn : ua : pvs / P r o c e s s > <p o s s i b l e o v e r l a p > <urn : ua : pvs / Func t ion >

<urn : ua : pvs / P r o c e s s : f lows > <equa l > <urn : ua : pvs / Epc : c o n n e c t o r s >

<urn : ua : pvs / P r o c e s s : s t e p s > <g e n e r a l > <urn : ua : pvs / Epc : c o n t r o l e l e m e n t s >
<urn : ua : pvs / P r o c e s s : s t e p s > <g e n e r a l > <urn : ua : pvs / Epc : f u n c t i o n s >

<urn : ua : pvs / P r o c e s s : name> <equa l > <urn : ua : pvs / Epc : name>
<urn : ua : pvs / P r o c e s s : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / S p l i t : name>
<urn : ua : pvs / P r o c e s s : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / Epc : name>
<urn : ua : pvs / P r o c e s s : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / Epce lement : name>
<urn : ua : pvs / P r o c e s s : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / J o i n : name>
<urn : ua : pvs / P r o c e s s : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / C o n t r o l E l e m e n t : name>
<urn : ua : pvs / P r o c e s s : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / F u n c t i o n : name>

With this input, metamodels, reference ontology, ontological groundings, bootstrap
transformation, and possible substitutions, the computation of the substitution of N1Process
with NEPC can start:

Calculating Substitution Proposals

Substitution Proposal 1 In the first substitution proposal, the Sem-MT-Component
considers only facts with the relationship <equal>, in order to find the best possible sub-
stitution. Since for the properties<Process:Flow:outFlow> and<Process:Flow:inFlow>
no substitution in the context of <EPC:Epcelement> is possible, these properties are
added as removal substitutions to the model transformation modification program. This
is done in the hope that it does not affect the model transformation. The substitutions of
the first substitution proposal can be found in Listing 6.37.

14The reasoning was conducted with the reasoning rule presented in Section 6.4.3 and implemented with
the JENA general purpose reasoner.

166 Ontology-based Model Transformation

Listing 6.37: Substitution proposal 1 (SP1)
1 SubstitutionProposal1 (Process ; EPC) {
2 CL1 (Process Ñ EPC) {
3 PL1 (Process.name Ñ EPC.name);
4 } ;

CL2 (Step Ñ Epcelement) {
6 PL2a (Step.name Ñ Epcelement.name);
7 PL2b (Step.inFlow Ñ);
8 PL2c (Step.outFlow Ñ);
9 } ;

10 CL3 (Task Ñ Function) {
11 PL3a (Task.name Ñ Function.name);
12 PL3b (Task.namespace Ñ Function.namespace);
13 } ;
14 CL4 (Decision Ñ Join) {
15 PL4a (Decision.name Ñ Join.name);
16 PL4b (Decision.namespace Ñ Join.namespace);
17 } ;
18 CL5 (Merge Ñ Split) {
19 PL5a (Merge.name Ñ Split.name);
20 PL5b (Merge.namespace Ñ Split.namespace);
21 } ;
22 CL6 (Flow Ñ Connector) {
23 PL6a (Flow.name Ñ Connector.name);
24 PL6b (Flow.namespace Ñ Connector.namespace);
25 PL6b (Flow.sink Ñ);
26 PL6b (Flow.source Ñ);
27 } ;
28 }

The model manipulator generates a new model transformation on the basis of the
initial substitution proposal (excerpts are shown in Listing 6.38).

Listing 6.38: QVT Relations code generated with SP1
1 transformation ProcessToEPC(prc_1:Process; prc_2:EPC) {
2

key EPC::Epc {name};
4 key EPC::Epcelement {name};

key EPC::Function {name, namespace};
6 key EPC::Split {name, namespace};

key EPC::Join {name, namespace};
8 key EPC::Connector {name, namespace};

10 top relation ProcessToProcess {
n: String;

12 checkonly domain prc_1 p_1:Process {
name=n

14 };
enforce domain prc_2 p_2:Epc {

16 name=n
};

18 }

20 top relation TaskToTask {
n: String;

22 checkonly domain prc_1 t_1:Task {
namespace=p_1:Process {},

24 name=n

6.5 Case Studies 167

};
26 enforce domain prc_2 t_2:Function {

namespace=p_2:Epc {},
28 name=n

};
30 when

{
32 ProcessToProcess(p_1,p_2);

}
34 where {

StepToStep_out(t_1,t_2);
36 StepToStep_in(t_1,t_2);

}
38 }

40 ...

42 relation StepToStep_out {
n: String;

44 checkonly domain prc_1 s_1:Step {
outFlow=out_1:Flow {

46 name=n
}

48 };
enforce domain prc_2 s_2:Epcelement {

50 /* removed PropertyTemplateItem 'Step:outFlow' */
};

52 }

54 ...
}

The model transformation is validated by the model manipulator, which detects four
Substitution of property failed problems for Step:inFlow, Step:outFlow, Flow:sink, and
Flow:source.

Substitution Proposal 2 Thereon the Sem-MT-Component searches for an alternate
substitution, also considering relationships with predicates other than <equal>. For a
substitution decision it applies a hierarchy, in which the predicate <equal> is better than
<special> and <special> is better than <general>. The facts provided by the reasoner
for Step:inFlow, Step:outFlow, Flow:sink, and Flow:source are depicted in Listing 6.39.

Listing 6.39: Additional reasoning results used in SP2
<urn : ua : pvs / Step : outFlow> <g e n e r a l > <urn : ua : pvs / F u n c t i o n : ou tConnec to rF >
<urn : ua : pvs / Step : outFlow> <g e n e r a l > <urn : ua : pvs / J o i n : o u t C o n n e c t o r J >
<urn : ua : pvs / Step : outFlow> <g e n e r a l > <urn : ua : pvs / S p l i t : ou tConnec to rS >

<urn : ua : pvs / Step : inFlow> <g e n e r a l > <urn : ua : pvs / F u n c t i o n : inConnec to rF >
<urn : ua : pvs / Step : inFlow> <g e n e r a l > <urn : ua : pvs / J o i n : i n C o n n e c t o r J >
<urn : ua : pvs / Step : inFlow> <g e n e r a l > <urn : ua : pvs / S p l i t : i nConnec to rS >

<urn : ua : pvs / Flow : s ink > <g e n e r a l > <urn : ua : pvs / Connec to r : t a r g e t J o i n >
<urn : ua : pvs / Flow : s ink > <g e n e r a l > <urn : ua : pvs / Connec to r : t a r g e t F u n c t i o n >
<urn : ua : pvs / Flow : s ink > <g e n e r a l > <urn : ua : pvs / Connec to r : t a r g e t S p l i t >

<urn : ua : pvs / Flow : sou rce > <g e n e r a l > <urn : ua : pvs / Connec to r : s o u r c e J o i n >
<urn : ua : pvs / Flow : sou rce > <g e n e r a l > <urn : ua : pvs / Connec to r : s o u r c e F u n c t i o n >
<urn : ua : pvs / Flow : sou rce > <g e n e r a l > <urn : ua : pvs / Connec to r : s o u r c e S p l i t >

168 Ontology-based Model Transformation

Based on its history of previously proposed substitutions15, the Sem-MT-Component
computes a second substitution proposal SP2, which e.g. proposes to substitute the
Step:outFlow property with the three different outConnector properties (cp. Listing 6.40).

Listing 6.40: Substitution proposal 2 (SP2)
1 SubstitutionProposal2 (Process ; EPC) {
2 CL1 (Process Ñ EPC) {
3 PL1 (Process.name Ñ EPC.name);
4 } ;

CL2 (Step Ñ Epcelement) {
6 PL2a (Step.name Ñ Epcelement.name);
7 PL2b (Step.inFlow Ñ Function:inConnectorF
8 Join:inConnectorJ

Split:inConnectorS);
10 PL2c (Step.outFlow Ñ Function:outConnectorF
11 Join:outConnectorJ
12 Split:outConnectorS);

} ;
14 CL3 (Task Ñ Function) {
15 PL3a (Task.name Ñ Function.name);
16 PL3b (Task.namespace Ñ Function.namespace);
17 } ;
18 CL4 (Decision Ñ Join) {
19 PL4a (Decision.name Ñ Join.name);
20 PL4b (Decision.namespace Ñ Join.namespace);
21 } ;
22 CL5 (Merge Ñ Split) {
23 PL5a (Merge.name Ñ Split.name);
24 PL5b (Merge.namespace Ñ Split.namespace);
25 } ;
26 CL6 (Flow Ñ Connector) {
27 PL6a (Flow.name Ñ Connector.name);
28 PL6b (Flow.namespace Ñ Connector.namespace);
29 PL6b (Flow.sink Ñ Connector:targetFunction
30 Connector:targetSplit

Connector:targetJoin);
32 PL6b (Flow.source Ñ Connector:sourceFunction
33 Connector:sourceSplit
34 Connector:sourceJoin);

} ;
36 }

Listing 6.41 shows excerpts of the QVT Relations code, which is generated by the
model manipulator on the basis of SP2. For the one-to-many substitution of the proper-
ties the model manipulator tries to choose one property that fits the context of the rela-
tion. However, it is not possible to find an appropriate substitution (i.e. property) for the
relations StepToStep_in and StepToStep_out, since for example Function:inConnectorF,
Join:outConnectorJ, and Split:inConnectorS do not belong to the class Epcelement.

Hence, the validator of the model manipulator detects two Property is not part of
class problems. The substitution of Flow:sink and Flow:source with a property that
does not exactly match them is not detected as problem. This compromise was accepted
when building SP2 and will be considered later in the rating of the substitution proposal.

15The Sem-MT-Component has a history of its previous substitution proposals, so that it will not make
the same proposal a second time and the search for substitutions terminates.

6.5 Case Studies 169

Listing 6.41: QVT Relations code generated with SP2
1 relation StepToStep_out {
2 n: String;

checkonly domain prc_1 s_1:Step {
4 outFlow=out_1:Flow {

name=n
6 }

};
8 enforce domain prc_2 s_2:Epcelement {
/* no appropriate property found to substitute 'Step:outFlow'*/

10 <null>=out_2:Connector {
name=n

12 }
};

14 }

16 relation StepToStep_in {
n: String;

18 checkonly domain prc_1 s_1:Step {
inFlow=in_1:Flow {

20 name=n
}

22 };
enforce domain prc_2 s_2:Epcelement {

24 /* no appropriate property found to substitute 'Step:inFlow'*/
<null>=in_2:Connector {

26 name=n
}

28 };
}

30
relation Flow2Flow_sink {

32 n: String;
checkonly domain prc_1 f_1:Flow {

34 sink=sink_1:Step {
name=n

36 }
};

38 enforce domain prc_2 f_2:Flow {
targetFunction=sink_2:Step {

40 name=n
}

42 };
}

44
relation Flow2Flow_source {

46 n: String;
checkonly domain prc_1 f_1:Flow {

48 source=source_1:Step {
name=n

50 }
};

52 enforce domain prc_2 f_2:Flow {
sourceFunction=source_2:Step {

54 name=n
}

56 };
}

170 Ontology-based Model Transformation

Substitution Proposal 3 The Sem-MT-Component again calculates an alternative sub-
stitution proposal SP3, where a Step is substituted by Function, Join, and Split (see List-
ing 6.42).

Listing 6.42: Substitution proposal 3 (SP3)
1 SubstitutionProposal3 (Process ; EPC) {
2 CL1 (Process Ñ EPC) {
3 PL1 (Process.name Ñ EPC.name);
4 } ;

CL2 (Step Ñ Function , Split, Join) {
6 PL2a (Step.name Ñ Epcelement.name);
7 PL2b (Step.inFlow Ñ Function:inConnectorF
8 Join:inConnectorJ

Split:inConnectorS);
10 PL2c (Step.outFlow Ñ Function:outConnectorF
11 Join:outConnectorJ
12 Split:outConnectorS);

} ;
14 CL3 (Task Ñ Function) {
15 PL3a (Task.name Ñ Function.name);
16 PL3b (Task.namespace Ñ Function.namespace);
17 } ;
18 CL4 (Decision Ñ Join) {
19 PL4a (Decision.name Ñ Join.name);
20 PL4b (Decision.namespace Ñ Join.namespace);
21 } ;
22 CL5 (Merge Ñ Split) {
23 PL5a (Merge.name Ñ Split.name);
24 PL5b (Merge.namespace Ñ Split.namespace);
25 } ;
26 CL6 (Flow Ñ Connector) {
27 PL6a (Flow.name Ñ Connector.name);
28 PL6b (Flow.namespace Ñ Connector.namespace);
29 PL6b (Flow.sink Ñ Connector:targetFunction
30 Connector:targetSplit

Connector:targetJoin);
32 PL6b (Flow.source Ñ Connector:sourceFunction
33 Connector:sourceSplit
34 Connector:sourceJoin);

} ;
36 }

The model manipulator generates a new model transformation on the basis of SP3
(excerpts are shown in Listing 6.43; the complete QVT Relations code can be found
in Appendix C.6). In this the relation StepToStep_out is split into three relations, one
matching Function, one matching Split, and one matching Join.

The validator of the model manipulator comes to the result, that SP3 leads to a new
model transformation in which none of the problems mentioned above occur.

Listing 6.43: QVT Relations code generated with SP3
1 relation StepToStep_out_1 {
2 n: String;

checkonly domain prc_1 s_1:Step {
4 outFlow=out_1:Flow {

name=n
6 }

};

6.5 Case Studies 171

8 enforce domain prc_2 s_2:Function {
outConnectorF=out_2:Connector {

10 name=n
}

12 };
}

14
relation StepToStep_out_2 {

16 n: String;
checkonly domain prc_1 s_1:Step {

18 outFlow=out_1:Flow {
name=n

20 }
};

22 enforce domain prc_2 s_2:Split {
outConnectorS=out_2:Connector {

24 name=n
}

26 };
}

28
relation StepToStep_out_3 {

30 n: String;
checkonly domain prc_1 s_1:Step {

32 outFlow=out_1:Flow {
name=n

34 }
};

36 enforce domain prc_2 s_2:Join {
outConnectorJ=out_2:Connector {

38 name=n
}

40 };
}

Choosing the Best Substitution Proposal

Since, no further problems occurred in applying SP3 to the bootstrap model transforma-
tion, the Sem-MT-Component stops computing new substitution proposals and compares
the substitution proposals on the basis of their ratings. Each row represents the rating
for one substitution proposal. The first column depicts the name of the substitution pro-
posal. In the second column one can find the problems that occurred in executing the
substitution proposal on the input model transformation. The third and the fourth column
depict the number and the type of the substituted concepts in the input model transfor-
mation as well as the number and the type of inferred relationships used to compute the
substitution proposal.

The Sem-MT-Component decides to use SP3 to generate the new model transfor-
mation. This is based on the consideration that a model transformation generated from
SP2 couldn’t be executed due to typing problems and that SP3 can substitute more con-
cepts of the original model transformation than SP1. The model transformation between
metamodel NProcess to NEPC generated by OntMT can be found in Appendix C.6.

172 Ontology-based Model Transformation

Substitution
Proposal

Problems occurred Substituted
Concepts

Used
relationships

SP1 4x Substitution of property failed 6x class
10x property

16x <equal>

SP2 2x Property is not part of class 6x class
14x property

16x <equal>
12x <general>

SP3 — 6x class
14x property

15x <equal>
15x <general>

Table 6.10: Rating of the substitution proposals

Summary

This case study shows that the OntMT approach can be applied to automatically generate
model transformations between different metamodels. It illustrates how reasoning results
from the Ontology TS can be used to trigger the automated model transformation in an
incremental process. This incremental process is used to bridge the gap between the
conceptual representation in the Ontology TS and the concrete implementations of the
(meta)models in the MDA TS [91]. It is described how the validation results of the
higher-order model transformations semantics and the computation of mapping model,
i.e. the modification program, complement one another.

Though the generation of the new model transformation was performed totally auto-
matically in this case study, it may be necessary, due to both technical reasons or human
factors, to consider human interaction in the generation process. A more extensive and
critical discussion about this and other issue concerning OntMT can be found in Sec-
tion 6.6. The model transformations presented in this case study have been implemented
with QVT Relations and executed and tested with ModelMorf [291].

6.5.2 Model Transformation Evolution for Service Modelling

This section presents a case study performed with OntMT for the model transformation
evolution scenario described in Section 6.2.2. The case study deals with the domain
of service modelling, where various projects have been conducted in the recent years.
These projects had a multitude of metamodels and UML profiles as an outcome. At the
moment the OMG preforms a standardization process for an UML Profile and Meta-
model for Services (UPMS) [232].

The goal of the case study is to evolve model transformations that have been specified
before the UPMS standardization process. The goal is to reuse the knowledge encoded
into a transformation between the SPL4AOX [23] and the PIM4SOA [30] metamodel.
This transformation was developed to transform SPL4AOX models in the PIM4SOA for-
mat, which was developed as a platform independent service model interchange format.
SPL4AOX models shall now be transformed to models of the initial submission of the
UPMS standard [236].

We limited the scope of this case study to the core concepts for service modelling.
However, this did lead to trivial model transformations and substitutions. As we will
describe later, the initial model transformation encodes non-trivial knowledge about the
transformation of SPL4AOX models into PIM4SOA models. This justifies the applica-
tion of OntMT and the model transformation modification technique to reuse this trans-
formation. The model transformation modification has also to make use of a variety of
different substitutions in the service modelling case study.

6.5 Case Studies 173

Input to OntMT

Input for the generation of a SPL4AOX to UPMS model transformation are the initial
model transformation (SPL4AOXtoPIM4SOA), the metamodels (SPL4AOX, PIM4SOA,
and UPMS), and the model transformation modification program (PIM4SOA to UPMS
mapping).

SPL4AOX Metamodel Figure 6.28 depicts the SPL4AOX metamodel. A SPL4AOX-
model consists of ServiceProviders and ServiceCollaborations. Services are collabora-
tions between exactly two Roles: the service provider (Role with roleType=’PROVID-
ER’) and the service requester (Role with roleType=’REQUESTOR’). They are realized
as ServiceCollaborations. Roles define how partners participate in and contribute to
collaborations. Partners can offer services in the role of a service provider or request ser-
vices as a service requestor. A collaboration references the participating roles (+role).
Services can be defined through the combination of other services. Elementary, not
composed collaborations (in most cases these are binary collaborations) are the funda-
mental parts of composed collaborations. Composed collaborations can be specified
through CollaborationUse (+subservices). The mapping from roles (+role) of elemen-
tary collaborations to the roles (+boundRole) of composed collaborations is defined by
a RoleBinding. A ServiceProvider is an abstract description of a service component,
which defines its structure and visible behavior. A ServiceProvider is an entity that of-
fers services and defines conditions for the usage of these services. A service provider
contains Roles (+role), with whom it can participate in collaborations. For instance, it
can offer and request services in collaborations through these roles.

Figure 6.28: Metamodel SPL4AOX

PIM4SOA Metamodel One can find the concepts of the PIM4SOA metamodel rele-
vant for this case study in Figure 6.29. In PIM4SOA, Collaborations are used to specify
interactions between service consumers and providers. Collaborations can be defined

174 Ontology-based Model Transformation

on the basis of subcollaborations via CollaborationUse, i.e they can be nested to arbi-
trary depth. A CollaborationUse specifies a link (+collaboration) to the used Collabo-
rations definition and a RoleBinding (+bindings). The RoleBinding relates the specific
roles within the current collaboration (+boundRole) to the roles of the used collaboration
(+role). A Role can be requester or a provider of a service (indicated by the property
roleType). A ServiceProvider specifies an entity that provides or consumes services.
Therefore it takes on roles through which it +participates in collaborations and realizes
roles in collaborations via CollaborationUse. The RoleBinding is used to specify which
roles of the collaboration are realized by the roles of the service provider.

Figure 6.29: Metamodel PIM4SOA

UPMS Metamodel In the UPMS metamodel a Component (see Figure 6.30) specifies
provided services (+services) and consumes requisitions (+requisitions). A Service is
the mechanism by which a provider makes available capabilities that meet the needs of
consumer requisitions. A Requisition is the mechanism by which a consumer accesses
capabilities of provider services. UPMS captures the service and participant require-
ments in a Contract that specifies what is being accomplished, the roles (Role) that
participate in achieving the desired result, the responsibilities of those roles, etc. A Ful-
fillment indicates the ability of a service participant (Component) to fulfill a Contract.
The Fulfillment has bindings that indicate what role each part plays in the contract. Ful-
fillment can also be used to nest Contracts to arbitrary depth.

SPL4AOXtoPIM4SOA Model Transformation The input model transformation trans-
forms SPL4AOX models into PIM4SOA models. In the following we present the core
mapping rules and describe the non-trivial transformation knowledge that is encoded
in the transformation. The complete QVT transformation code can be found in Ap-
pendix C.4.1.

6.5 Case Studies 175

Figure 6.30: Metamodel UPMS

176 Ontology-based Model Transformation

Simple Model Element Mappings The SPL4AOX elements SPL4AOXmodel, Ser-
viceCollaboration, and ServiceProvider are directly mapped to their correspondents in
the PIM4SOA metamodel (PIM4SOAmodel, Collaboration, and ServiceProvider). List-
ing 6.44 depicts the SPL4AOXToPIM4SOAmodel relation that maps SPL4AOXmodel to
PIM4SOAmodel. The variable n is used to map the name of the models. The key defi-
nition for PIM4SOAmodel ensures, that not multiple instances of PIM4SOAmodel with
the same name are created in the enforced domain.

Listing 6.44: SPL4AOXtoPIM4SOA: simple model element mapping
1 transformation SPL4AOXtoPIM4SOA(aox:SPL4AOX; soa:PIM4SOA) {
2

key PIM4SOA::PIM4SOAmodel {name};
4 ...

6 top relation SPL4AOXToPIM4SOAmodel {
n: String;

8 checkonly domain aox a_1:SPL4AOXmodel {
name=n

10 };
enforce domain soa s_1:PIM4SOAmodel {

12 name=n
};

14 }

16 ...
}

Mapping of Collaboration Nesting As described in the introduction of the meta-
models, ServiceCollaborations and Collaborations can be nested to arbitrary depth. First
of all, roles have to be created for the Collaborations in PIM4SOA, since in SPL4AOX
ServiceCollaborations do not contain roles but only references them. As we can see
in Listing 6.45 for each role that is referenced by a ServiceCollaboration, the relation
CollaborationRoleToCollaborationRole creates a role that is contained by the respec-
tive Collaboration. In the transformation we have to distinguish between roles that are
contained by ServiceProviders and roles that are contained by Collaborations in the
PIM4SOA domain. Hence, for the created roles the property roleOwner is set to ’C’.

The roles for mapping the collaboration nesting are straightforward, mapping Col-
laborationUse, RoleBinding, and the Roles. The QVT transformation code can be found
in Appendix C.4.1.

Listing 6.45: SPL4AOXtoPIM4SOA: collaboration nesting
1 key PIM4SOA::Role {name, roleOwner};
2

relation CollaborationRoleToCollaborationRole {
4 n: String;

checkonly domain aox a_1:ServiceCollaboration {
6 role=ar_1:Role {

name=n
8 }

};
10 enforce domain soa s_1:Collaboration {

roles=sr_1:Role {
12 name=n,

6.5 Case Studies 177

roleOwner='C'
14 }

};
16 }

Mapping the Participation of Service Providers in Collaborations To express
the participation of ServiceProviders in Collaborations more transformation knowledge
has to be encoded in the QVT transformation code. In SPL4AOX ServiceCollaborations
simply reference the Roles that are provided by the ServiceProviders. In PIM4SOA both
ServiceProviders and Collaborations own Roles. The participation of ServiceProvider
in a Collaboration is expressed via CollaborationUse and RoleBinding.

Listing 6.46 depicts the QVT code that implements the necessary transformation
logic. The relation ServiceProviderToServiceProvider creates for each ServiceProvider
that participates in a (Service)Collaboration a CollaborationUse and a RoleBinding. The
creation of the RoleBindings is done by the roleBindingSP relations, which are ’invoked’
by the ServiceProviderToServiceProvider relation via a where-clause. The RoleBinding
references the respective roles of the ServiceProvider (via +boundRole) and the Collab-
oration (via +role).

Listing 6.46: SPL4AOXtoPIM4SOA: participation of service providers in collaborations
1 top relation ServiceProviderToServiceProvider {
2 n,nr: String;

checkonly domain aox a_1:ServiceProvider {
4 namespace=am_1:SPL4AOXmodel {},

name=n,
6 role=ar:Role{

name=nr,
8 usingService=ac:ServiceCollaboration {}

}
10 };

enforce domain soa s_1:ServiceProvider {
12 namespace=sm_1:PIM4SOAmodel {},

name=n,
14 participates=scu:CollaborationUse {

name=n+'_SP',
16 collaboration=sc:Collaboration {},

bindings=srb:RoleBinding {
18 name=n+'_RB'

}
20 }

};
22 when

{
24 SPL4AOXToPIM4SOAmodel(am_1,sm_1);

CollaborationToCollaboration(ac,sc);
26 }

where
28 {

roleBindingSP_Provider(ar,srb);
30 roleBindingSP_Requestor(ar,srb);

}
32 }

34 relation roleBindingSP_Provider {
nr: String;

178 Ontology-based Model Transformation

36 checkonly domain aox a_1:Role {
name=nr,

38 roleType='PROVIDER '
};

40 enforce domain soa s_1:RoleBinding {
role=sRole:Role{

42 name=nr,
roleOwner='C'

44 },
boundRole=sBoundRole:Role {

46 name=nr,
roleOwner='SP',

48 roleType='PROVIDER '
}

50 };
}

Mapping of Service Provider Roles Listing 6.47 depicts the mapping of Roles,
which are contained by ServiceProviders in PIM4SOA models. One rule maps Roles
with the roleType=’PROVIDER’ and one rule maps Roles with the roleType=’REQUEST-
OR’. Though this could expressed in one mapping rule, we will see later in the execu-
tion of OntMT and the model transformation modification, that this greater granularity
is necessary to obtain good results.

Listing 6.47: SPL4AOXtoPIM4SOA: service provider roles
1 top relation RoleToRole_Provider {
2 n: String;

checkonly domain aox a_1:Role {
4 namespace=asp_1:ServiceProvider {},

name=n,
6 roleType='PROVIDER '

};
8 enforce domain soa s_1:Role {

namespace1=ssp_1:ServiceProvider {},
10 name=n,

roleType='PROVIDER ',
12 roleOwner='SP'

};
14 when

{
16 ServiceProviderToServiceProvider(asp_1,ssp_1);

}
18 }

20 top relation RoleToRole_Requestor {
n: String;

22 checkonly domain aox a_1:Role {
namespace=asp_1:ServiceProvider {},

24 name=n,
roleType='REQUESTOR '

26 };
enforce domain soa s_1:Role {

28 namespace1=ssp_1:ServiceProvider {},
name=n,

30 roleType='REQUESTOR ',
roleOwner='SP'

6.5 Case Studies 179

32 };
when

34 {
ServiceProviderToServiceProvider(asp_1,ssp_1);

36 }
}

PIM4SOA to UPMS Mapping Listing 6.48 depicts the PIM4SOA to UPMS mapping,
which is used as model transformation modification program in this case study.

Listing 6.48: PIM4SOAtoUPMSmapping MT modification program
1 PIM4SOAtoUPMSmapping (PIM4SOA ; UPMS) {
2 CL1 (PIM4SOAmodel Ñ UPMSmodel) {
3 PL1a (PIM4SOAmodel:name Ñ UPMSmodel:name);
4 } ;

CL2 (ServiceProvider Ñ Component) {
6 PL2a (ServiceProvider:name Ñ Component:name);
7 PL2b (ServiceProvider:namespace Ñ Component:namespace);
8 PL2c (ServiceProvider:participates Ñ Component:contracts);
9 } ;

10 CL3 (Collaboration Ñ Contract) {
11 PL3a (Collaboration:name Ñ Contract:name);
12 PL3b (Collaboration:namespace Ñ Contract:namespace);
13 PL3c (Collaboration:roles Ñ Contract:parts);
14 } ;

CL4 (CollaborationUse Ñ Fulfillment) {
16 PL4a (CollaborationUse:name Ñ Fulfillment:name);
17 PL4b (CollaborationUse:namespace2 Ñ Fulfillment:.namespace2);
18 PL4c (CollaborationUse:collaboration

Ñ Fulfillment:contractUse);
20 PL4d (CollaborationUse:bindings Ñ Fulfillment:roleBinding);
21 } ;
22 CL5 (RoleBinding Ñ Dependency) {
23 PL5a (RoleBinding:name Ñ Dependency:name);
24 PL5b (RoleBinding:namespace Ñ Dependency:namespace);
25 PL5c (RoleBinding:role Ñ Dependency:role);
26 PL5d (RoleBinding:boundRole

Ñ Dependency:boundRole ,
28 Dependency:boundRoleService ,

Dependency:boundRoleRequisition);
30 } ;

CL6a (Role Ñ Role, Service, Requisition) {
32 PL6a_1 (Role:name Ñ Role.name,
33 Service:name,
34 Requisition:name);

PL6b_2 (Role:roleOwner Ñ);
36 } ;

CL6b (Role {roleOwner='C'} Ñ Role) {
38 PL6b_1 (Role:name Ñ Role.name);
39 PL6b_2 (Role:roleOwner Ñ);
40 PL6b_3 (Role:roleType Ñ);
41 } ;
42 CL6c (Role {roleOwner='SP'} Ñ Service, Requisition) {
43 PL6c_1 (Role:name Ñ
44 Service:name,

Requisition:name);
46 PL6c_2 (Role:roleOwner Ñ);

180 Ontology-based Model Transformation

47 PL6c_3 (Role:roleType Ñ);
48 PL6c_4 (Role:namespace1 Ñ Service:namespace ,
49 Requisition:namespace);
50 } ;

CL6d (Role {roleOwner='SP', roleType='PROVIDER '}
52 Ñ Service) {
53 PL6d_1 (Role:name Ñ Service:name);
54 PL6d_2 (Role:roleOwner Ñ);
55 PL6d_3 (Role:roleType Ñ);
56 PL6c_4 (Role:namespace1 Ñ Service:namespace);
57 } ;
58 CL6e (Role {roleOwner='SP', roleType='REQUESTOR '}

Ñ Requisition) {
60 PL6e_1 (Role:name Ñ Requisition:name);
61 PL6e_2 (Role:roleOwner Ñ);
62 PL6e_3 (Role:roleType Ñ);
63 PL6c_4 (Role:namespace1 Ñ Requisition:namespace);
64 }
}

Execution of OntMT

In the following we describe the execution of the model transformation modification for
the service modelling case study and provide some examples via code fragments. The
complete SPL4AOXtoUPMS model transformation, which is the output of the model
transformation modification, can be found in Appendix C.4.2.

One-to-one Substitution One example of an one-to-one substitution performed in the
execution of the case study is the SPL4AOXToPIM4SOAmodel relation. In the soa do-
main, PIM4SOAmodel has been replaced with UPMSmodel. Listing 6.49 depicts the
adjusted relation.

Listing 6.49: SPL4AOXtoUPMS: one-to-one substitution
1 top relation SPL4AOXToUPMSmodel {
2 n: String;

checkonly domain aox a_1:SPL4AOXmodel {
4 name=n

};
6 enforce domain soa s_1:UPMSmodel {

name=n
8 };

}

One-to-many Substitution In the case of one-to-many substitutions one has to distin-
guish between substitutions for classes and substitutions for properties.

Classes One-to-many substitutions for classes are executed as splits. In the case
study the key PIM4SOA::Role{name,roleOwner} is split into three separate keys de-
picted in Listing 6.50.

6.5 Case Studies 181

Listing 6.50: SPL4AOXtoUPMS: one-to-many substitution - classes
1 key UPMS::Role {name};
2 key UPMS::Service {name};

key UPMS::Requisition {name};

Properties One-to-many substitutions for classes are executed as alternatives. This
means, that the property is chosen for the substitution that best fits the context of the re-
lation. For example, one can find a one-to-many substitution for the boundRole property
in the relation roleBindingSP_Provider. The one-to-many substitution offers the prop-
erties boundRoleRequisition and boundRoleService as possible substitutions. Since, the
property should have the type Service, the boundRoleService property is chosen for the
substitution (see Listing 6.51).

Listing 6.51: SPL4AOXtoUPMS: one-to-many Substitution - properties
1 relation roleBindingSP_Service {
2 nr: String;

checkonly domain aox a_1:Role {
4 name=nr,

roleType='PROVIDER '
6 };

enforce domain soa s_1:Dependency {
8 role=sRole:Role{

name=nr
10 },

boundRoleService=sBoundRole:Service {
12 name=nr

}
14 };

}

Removal Substitution Examples of removal substitutions can be found in the relation
RoleToRole_Provider. The properties roleOwner and roleType are removed from the soa
domain in the RoleToRole_Provider relation. The result can be seen in Listing 6.52.

Constraining Finally, we can also find substitutions where the appropriate substi-
tution is selected from a set of mappings on the basis of constraints. In case of the
soa domain of the RoleToRole_Provider relation, the Role is constrained with roleType
=’PROVIDER’ and roleOwner =’SP’. Hence, as one can see in Listing 6.52, Service is
chosen to substitute Role.

Listing 6.52: SPL4AOXtoUPMS: removal and constraining
1 top relation RoleToService {
2 n: String;

checkonly domain aox a_1:Role {
4 namespace=asp_1:ServiceProvider {},

name=n,
6 roleType='PROVIDER '

};
8

enforce domain soa s_1:Service {
10 namespace=ssp_1:Component {},

182 Ontology-based Model Transformation

name=n
12 };

when
14 {

ServiceProviderToComponent(asp_1, ssp_1);
16 }

}

Summary

The model transformations presented in this case study have been implemented with
QVT Relations and executed and tested with ModelMorf [291] and models of the Pur-
chase Order example described in [236]. The model transformation modification has
been accomplished with the implementation of the higher-order model transformation
language (see Section 6.4.2) provided by the OntMT project [272].

The case study shows that OntMT and the model transformation modification ap-
proach can very well be applied to real world scenarios like the evolution of metamodels
and model transformations in a standardization process. However, one cannot expect
that for all model transformation modification executions no problems will be detected.
As we will discuss in Section 6.6 this depends on the respective model transformations
and the delta between the metamodels.

6.6 Assessment of Ontology-based Model Transformation

This section discusses the OntMT approach with respect to its practical application, its
limits, and possible weaknesses.

6.6.1 Application Areas

OntMT fosters the exchange of models and the evolution of model transformations.
Model exchange scenarios are build on the generation of new model transformations,
while model transformation evolution scenarios aim at reusing model transformations.
As introduced in Section 3.3, one can distinguish between horizontal and vertical model
transformations. Horizontal model transformations are mappings between models at a
certain abstraction level, where no information is lost and no additional information is
added. Vertical model transformations are refinements that add additional information
to the generated model about e.g. architecture or platform. Thus, the target model of a
refinement is more detailed than the source model.

Figure 6.31 categorizes the support that OntMT can provide to the described appli-
cation scenarios and the different types of model transformations.

• To exchange models between different DSLs, metamodels and modelling styles,
OntMT is able to automatically generate mappings. However, the level of au-
tomation depends on how different the DSLs and their modelling approaches are.
It may be necessary to provide additional mapping information through an initial
model transformation, which cannot be inferred from the ontologies.

• OntMT supports the evolution and reuse of existing mappings. The new model
transformation can be either generated from scratch or obtained through adjusting

6.6 Assessment of Ontology-based Model Transformation 183

Figure 6.31: Application of OntMT to model exchange and model transformation evo-
lution

the existing mapping. The more individual features, which are different to the
core structure of the metamodels, are encoded in existing mappings, the more
preferable it is to adjust existing mappings. The generation of new mappings is
better, if the new metamodel provides extensions to the old one or a new modelling
style specifies a fundamentally different composition of modelling elements.

• For the evolution and reuse of refinements, OntMT provides the possibility of
automated modification and adjustment of existing model transformations. Re-
finement model transformations cannot be generated without human interaction,
since they contain individual knowledge about software architecture or the plat-
form, e.g. patterns like broker, model-view-controller, etc.

6.6.2 Evaluation

The OntMT approach adjusts initial model transformations in order to generate or main-
tain model transformations. Since mapping knowledge is captured in bindings of the
metamodels to the reference ontology, one could favour an approach that derives model
transformation rules directly from these bindings. This may very well work for model
exchange scenarios. However, in model transformation evolution scenarios the model
transformation itself would have to be encoded in the bindings. In our opinion, it is bet-
ter to encode this transformation knowledge in an initial model transformation, i.e. the
model transformation to reuse.

The level of automation that OntMT can provide highly depends on how different
metamodels, DSLs, and modelling approaches are. If for example two DSL totally differ
in their modelling approaches, their metamodel bindings will be two mostly unconnected
sets of the reference ontology. OntMT does not add real transformation knowledge
that changes the semantics of model transformation. It depends on the results that are
inferable via the ontologies that are used to adjust the syntax of model transformations.

We also made scalability considerations and tests for OntMT in terms of memory
requirements, runtime, and size of model transformations that can be processed. This
was done for the three components of OntMT (see Section 6.3.1) separately. Memory
requirements and runtime of the model manipulator rise linear to the number of rules a
model transformation contains. We tested this with model transformations that contain
up to 200 rules. In OntMT reasoning has only to be performed once at runtime. Its
memory requirements and runtime depends on the size and the complexity of the on-
tologies. Implementations of other semantic web projects show that even for ontologies
that are large and require quite complex reasoning results are achievable in a reasonable

184 Ontology-based Model Transformation

time. Since the application scenarios of OntMT do not have hard real-time constraints,
we do not see problems in practice concerning memory requirements, runtime, and size
of model transformations for the model manipulator and the inference component.

However, the Sem-MT-Component can be seen as the ’bottleneck’ of the OntMT
approach. This component has to combine the reasoning results to a sensible input
for the model manipulator. For this combination the size of the solution space grows
exponentially with the relationships that are inferred for each concept. The size of the
solution space is cn, where c is the number of concepts in a metamodel and n is the
number of relationships inferred for each concept. We try to solve this problem by
restricting the solution space. As exemplified in the case study we apply heuristics that
first guess an ’ideal’ solution and then try to solve problems locally in the solution space,
i.e. where the problems in the generated model transformation were detected.

6.6.3 Discussion

The OntMT approach assumes the existence of an appropriate RO. However, develop-
ing or agreeing on a RO is a non-trivial task. For example there may exist different
versions of (reference) ontologies, what would transfer the problem of heterogeneous
models from the MDA TS to the Ontology TS. In those cases techniques for match-
ing and merging ontologies, like linguistic, schema-based, or probabilistic approaches,
combined with human intervention have to be applied to obtain a suitable RO. Ontol-
ogy alignment, matching, and mapping approaches can be also very useful to discover
and define bindings from the metamodels to the RO. [172] describes an approach and
a conceptual framework for mapping distributed ontologies. It can provide the basis for
an interactive and incremental mapping process that is needed for developing the bind-
ings in OntMT. In such a process the SKOS mapping vocabulary [311] could be used
to specify mappings between concepts from different ontologies. For this vocabulary
a search algorithm has been developed [106] that can discover potential candidates for
substitutions in OntMT.

To provide ontological groundings and to find ROs may require to invest a lot of
effort. Depending on the concrete application scenario, this effort may not be justifiable
with the generation and evolution of model transformations. Developing or adjusting
model transformations by hand may be cheaper. Hence, the goal is to reuse ROs and
ontological groundings with other applications that are part of a semantic-enabled mod-
elling and development suite (see Section 6.3.1).

A totally automated solution may also have to cope with acceptance problems of
software engineers. Software engineers will probably not be willing to give up overall
control of model transformation to an automated tool, which makes its choice based on
metrics and heuristics. Hence, the majority of application scenarios will be of such a
form, that the Sem-MT-Tool makes suggestions with a change and problem history to
the software engineer. The engineer has the possibility to accept, correct, or reject the
suggestions.

6.7 Related Work

The generation of model transformations and the evolution of models, metamodels, and
transformations are classical meta data management problems. Model management is an
approach to meta data management that offers a higher level programming interface [34].

6.7 Related Work 185

It tries to solve problems of data programmability via mappings and model management
operators [35, 89]. Basic operators for model management, which tackle meta data
evolution scenarios, are Match, Compose, and TransfGen. Match takes two models as
input and returns a mapping between them. Compose takes a mapping between models
A and B and a mapping between models B and C, and returns a mapping between A and
C. TransfGen takes a mapping between the models A and B and returns a new model
transformation between A and B.

The Match operator is applied in most model management solutions and often used
as a first step for data integration. Hence, it is not surprising that a multitude of ap-
proaches has been developed realizing and improving the Match operator. At the end of
2007, the Publication Categorizer on Schema Evolution16 documented more than 415
publications in the field of schema evolution. In Section 6.7.1 we give an overview of
the use and realization of the Match operator in the fields of Dataware and Database
Management Systems TS (DBMS TS), Ontology TS, and MDA TS.

To provide solutions for model and model transformation evolution problems, ap-
proaches have to support more model management operators than the Match operator.
In Section 6.7.2 we present and compare approaches that address model and model trans-
formation evolution in the field of MDE.

6.7.1 Mapping Approaches

In most use cases, evolution of models and model transformation is triggered by the
evolution of metamodels. The reason is that metamodels are the basis for model and
model transformation specification. Hence, representing the changes in metamodels
through mappings is an important basis for approaches that provide solutions to model
and model transformation evolution, since these mappings represent a single source of
information about the change in the meta data. The Match operator can be used to obtain
these mappings.

DBMS TS is probably the research field, where data integration and meta data map-
ping has been studied for the longest time [2, 154, 166, 189, 190]. Schema match-
ing is used to identify the semantic heterogeneity in order to integrate data in various
database application domains. The format and semantics of data is typically specified
as meta data. Semantic heterogeneity can be expressed as mappings, which specify the
relationships between elements of meta data. Since mapping specification is a tedious,
time-consuming, error-prone, and expensive process [247], a variety of solution has been
developed to automate the matching process. [247] and [70] provide surveys about au-
tomatic schema matching in the DBMS TS.

In the Ontology TS more expressive mapping representations than in the DBMS TS
have been proposed to bridge between different ontologies [82, 87, 172, 192]. These ap-
proaches have mappings as first class entities. The set of valid mapping constructs, that
involve complex axioms such as equivalence and generalization, specify the relation-
ships between concepts of two or more ontologies. Other approaches like [49, 55, 56,
109, 161] support mappings between ontologies by considering them as local domains.
[269] provides an overview of approaches for schema and ontology matching.

The concept of mapping and matching meta data is also applied to the MDA TS.
The use of model-based correspondences was introduced in [246]. Approaches [44, 88,
90, 325] have been developed to make mappings between metamodels available to MDE

16http://se-pubs.dbs.uni-leipzig.de

http://se-pubs.dbs.uni-leipzig.de

186 Ontology-based Model Transformation

solutions as native constructs. Probably the most prominent one is the model weaving
approach [44, 88].

AMW The ATLAS Model Weaver (AMW) tool implements the model weaving ap-
proach [44, 88]. It enables the representation of correspondences between models in
so-called weaving models, from which model transformations can be generated. AMW
defines a core and generic weaving model with the help of abstract concepts, which are
used to specify links between metamodels, such as a WModel, WLink, and WLinkEnd.
Since each concept is defined abstract, concrete links and their semantics have to be de-
fined for Domain Specific Weaving Metamodels (DSWMs). [90] suggests DSWMs for
the following application domains: Composition - Override, Merge, Delete; Interoper-
ability - Equality, SourceToTarget; Data integration - Concatenation, Equality, IntToStr;
Traceability - Origin, Source, Evolution, Modified, Added; Ontology alignment - Equiv-
alent, Equality, Resemblance, Proximity.

Correspondence Models [89] develops correspondence metamodel extensions to the
generic AMW metamodel. The goal is to fully capture different kinds of semantic het-
erogeneity between tool metamodels. The developed metamodel extensions are similar-
ity expressions (equality, equivalence, non equivalence), mapping expressions (many-to-
one, one-to-many, many-to-many), and data value expressions.

Bridging DSLs [325] proposes the use of an explicit and formal mapping model to
bridge DSLs and UML. It reuses the AMW core weaving language and extends it with
class, attribute, reference, enumeration, literal, and data mappings.

Semaphore The Model-based Semantic Mapping Framework (Semaphore) [16, 169]
also allows to create mappings between (meta)models. The user of Semaphore can use a
set of mapping operators (i.e. the weaving links in the AMW approach): root mapping,
simple mapping, concatenate mapping, split mapping, and substring mapping.

6.7.2 Comparison of Model and Model Transformation Evolution
Approaches

With the evolution of metamodels it is necessary to deal with the evolution of models,
model transformations, constraints, editors, etc. in MDE. In the following we provide
a comparison of approaches that deal with model and model transformation evolution.
Most approaches are based on mappings that specify the delta between the old and the
new metamodel. From mappings one obtains a (new) transformation that can be exe-
cuted on models, that conform to the new metamodel.

Categorization

For the comparison we selected a set of categories. We use these categories to classify
approaches supporting (meta) data evolution in the MDA TS. Most categories are de-
rived from the work of [35, 65, 146, 247]. Whenever necessary, we introduced other
categories. The categories are explained in the following list.

Evolution Scenarios We consider the following evolution scenarios:

6.7 Related Work 187

• Model Evolution: In this scenario, a new model transformation is produced
to transform models conforming to the old metamodels into models con-
forming to the new metamodel.

• Model Transformation Evolution: In this scenario, for an existing model
transformation, which is specified on the basis of old metamodels, a new
model transformation for the new metamodels is produced.

Model Management Operators This category indicates the model management oper-
ators, that are used by the compared approaches to support evolution scenarios.
We consider the operators Match, Compose, and TransfGen.

Mappings Mappings are used to express correspondences between (meta)models. We
distinguish model mapping approaches by the means of the following categories.

• Instance vs. Schema: Instance-level approaches consider instance data (i.e.
data contents). In extreme cases, no schema information is given at all.
Schema-level approaches only consider metamodel information, not instance
data.

• Granularity: Mapppings can be defined for individual metamodel elements,
such as attributes or classes17, or for combinations of elements, such as com-
plex metamodel structures.

• Cardinality: Mappings may relate one or more elements of one metamodel
to one or more elements of another, yielding four cases 1:1, 1:n, m:1, and
m:n.

• Similarity: Similarity expressions like equality, equivalence, and non-equiv-
alence represent resemblance links between metamodel elements. Equality
is used when a pair of elements represents exactly the same information. In
the case of equivalence the linked elements contain similar information, but
not exactly the same. However, the translation semantics may be the same
as in equality links.

• Constraint: Constraints on metamodels and metamodel elements often de-
fine data types and value ranges, uniqueness, optionality, relationship types
and cardinalities, etc. In constraint-based mapping approaches, constraints
can be interpreted as structures, where the topology of structures as well as
different element types are used to define mappings.

MT Language This category concerns the model transformations languages supported
by the approaches, which can be used to realize and execute the evolution scenar-
ios. Conceptual indicates the model transformation paradigm the approach can
support in principle. The realized category is used to enumerate the model trans-
formation languages for which the approach has already been implemented.

Representation TS This category considers the Technological Space (TS) that is used
to represent models, mappings, and model transformation.

17Data value expressions differ from mapping expressions because they also evaluate the model elements,
not only the metamodel elements. Data value expressions modify the source model values to make them
compatible with the target model.

188 Ontology-based Model Transformation

Automation This category is used to express the automation support for the Match op-
erator. Automation support of (meta)model matching can be manifold, ranging
from the use of linguistic methods (e.g. name matching) and constraint-based ap-
proaches to the use of heuristic, reasoning results, etc.

Approaches for Model and Model Transformation Evolution

A variety of approaches that deal with (meta) data evolution have been developed. Since
this thesis is about MDSD, we restrict our comparison to approaches that provide so-
lutions directly applicable to evolution scenarios in the MDA TS. There also exist ap-
proaches that use similar techniques in the DBMS TS and the Ontology TS. However,
these solutions cannot be applied to models conforming to different metamodels directly.
The distance between the conceptual basis of the models and the implementation is too
big [91]. Indeed, some of the approaches [151, 251] we discuss in the following provide
additional techniques to use the results and benefits of the Ontology TS.

Model-driven Tool Interoperability The approach presented in [89] captures differ-
ent kinds of complex mappings between tool meta data using correspondence models. It
uses the correspondence models to automatically produce executable ATL transforma-
tions.

The approach for model-driven tool interoperability supports the model evolution
scenario and the exchange of models. Model transformation evolution is not supported
directly. This could be realized by chaining model transformations. Model-driven tool
interoperability realizes the Match and the TransfGen model management operators.
Mappings are defined at schema-level for elements of the metamodel. The approach
allows instance level mapping for data values via so-called DataExpressions. The corre-
spondence models allows to use equality, equivalence, and non-equivalence mappings.
It is possible to specify 1:1, 1:n, m:1, and m:n mappings. The approach for model-driven
tool interoperability is independent of any model transformation language and has been
realized for ATL. Mappings, models, and model transformations are represented in the
MDA TS. The approach does not provide automation support for the Match operator.

Semi-automatic Model Integration The work described in [91] presents an approach
to semi-automate the development of transformations via weaving models of the model
weaving approach. It describes an iterative and incremental procedure of weaving link
generation, similarity calculation, and weaving link selection.

The semi-automatic model integration approach can be used to realize the model
evolution scenario. For model transformation evolution this approach cannot be applied
directly; one would need to apply chaining of model transformations. Semi-automatic
model integration realizes the Match and the TransfGen model management operators.
Mappings are defined at schema-level for elements of the metamodel. The weaving
model allows to use equality and equivalence to define mappings. Semi-automatic makes
use of 1:1 mappings. The approach is independent of any model transformation lan-
guage and has been realized for ATL. Mappings, models, and model transformations are
represented in the MDA TS. The approach provides automation support for the Match
operator in various ways. It calculates similarity values for element mappings using lin-
guistic matching approaches (e.g. string similarity, dictionary of synonyms, etc.) and

6.7 Related Work 189

approaches exploiting the structure of the metamodels. Further it selects the best map-
ping links through link filtering and link rewriting.

Semaphore The Model-based Semantic Mapping Framework (Semaphore) [169, 16]
supports mappings between domain models and allows the user to specify these map-
pings DSLs graphically. The key idea is that mappings between different information
formats are used to generate the transformations, that actually perform the needed data
conversion.

Semaphore supports the model evolution scenario and the exchange of models, but
does not support model transformation evolution directly. Semaphore realizes the Match
and the TransfGen model management operators. Mappings are defined at schema-level
for elements of the metamodel. It is possible to express equality as well as 1:1 and 1:n
mappings. Semaphore has been implemented to produce XSLT transformation code.
However, it is independent of any specific model transformation language. Mappings,
models, and model transformations can be represented in various TSs. Examples have
been implemented for the Structured Document TS (XML TS) and the DBMS TS. Since
the approach does not provide automation support for the Match operator, mappings have
to be specified and adjusted manually when ever changes to the meta data occur.

Ontology-based Model Transformation The OntMT [250, 251, 252] approach pre-
sented in this thesis lifts metamodels to an ontological level, and derives metamodel
mappings from the ontology reasoning results. It interprets metamodel mappings as
model transformation modification programs.

OntMT supports both aspects, the model evolution and the model transformation sce-
nario. It realizes the Match and the Compose model management operator directly. The
TransfGen operator is realized through a combination of a model transformation boot-
strapping algorithm and the application of the Compose operator. Mappings are defined
at schema-level for elements of the metamodel. The OntMT uses the equality relation-
ship to define 1:1 and 1:n mappings. Constraints of mappings can be defined through a
value pattern mechanism. A mapping is only applied, if the value pattern matches e.g. a
model transformation rule. The approach currently supports declarative transformation
language and has been implemented for QVT Relations. Models are represented both
in the MDA TS and the Ontology TS. Mappings and model transformations are rep-
resented in the MDA TS. OntMT provides automation support for the Match operator
in various ways. It makes use of the reasoning result from the Ontology TS. It applies
heuristics and the results of the Compose operator’s execution to generate metamodel
mappings and model transformation modification programs respectively.

ModelCVS The Semantic Infrastructure for Model-based Tool Integration (Model-
CVS) project [151, 152, 193] provides a framework for semi-automatic generation of
transformation programs. By representing modelling language concepts explicitly in
ontologies, the goal is to derive bridgings between the original metamodels from the
mapping between the ontologies. Concrete model transformations are derived from these
bridgings (metamodel mappings).

The ModelCVS approach provides support for the model evolution scenario and the
exchange of models. Model transformation evolution is not supported directly. Model-
CVS realizes the Match and the TransfGen model management operators. Little can be

190 Ontology-based Model Transformation

found about which metamodel mapping constructs are supported by the ModelCVS ap-
proach. However, the experience report in [153] indicates the kind of mapping constructs
that are derived from ontology mappings in the ModelCVS approaches. According to
this, mappings are defined at schema-level for elements of the metamodel. The equality
relationship can be used to specify 1:1 mappings. The approach for model-driven tool
interoperability is independent of any model transformation language and has been re-
alized for ATL (the TranfGen operator has been realized as part of the Bridging DSLs
with UML approach). Mappings and models are represented in both the MDA TS and
the Ontology TS. Model transformations are represented in the MDA TS. The approach
provides reasoning support to automate the Match operator. On ontological level further
techniques from other ontology mapping and matching approaches can be integrated.

Model Transformation Generation By-Example The Model Transformation Gener-
ation By-Example (MTBE) approach [326] makes use of inter-model mappings repre-
senting semantic correspondences between concrete domain models. The inter-model
mappings between domain models can be used to generate the model transformation
rules, by-example, taking into account the already defined mapping between abstract
and concrete syntax elements.

MTBE supports the model evolution scenario and the exchange of models, but does
not support model transformation evolution directly. It realizes the Match and the Trans-
fGen model management operators. Mappings are defined at schema-level for elements
of the metamodel and at instance-level for the model elements. The approach allows to
use the equality relationship to define 1:1 mappings. MTBE supports constraint map-
pings by so-called conditional mappings, where the mapping of elements depends on
the values of their attributes. The approach is independent of any model transformation
language and has been realized for ATL. Mappings, models, and model transforma-
tions are represented in the MDA TS. The approach provides some automation support
for the Match operator by generating metamodel model mappings from sample model
mappings.

Semi-automatic Approach for Bridging DSLs with UML [325] presents a semi-
automatic approach for bridging DSLs with UML. The approach is based on the man-
ual mapping of domain-specific metamodels and UML and the automatic generation of
UML profiles and model transformations.

This bridging approach provides support for the model evolution scenario and the
exchange of models. Model transformation evolution is not supported directly. It real-
izes the Match and the TransfGen model management operators. The bridging language
extends the AMW weaving metamodel. Mappings are defined at schema-level for ele-
ments of the metamodel. The approach allows to use the equality relationship to define
1:1 mappings. The approach is independent of any model transformation language and
has been realized for ATL. Mappings, models, and model transformations are repre-
sented in the MDA TS. The approach does not provide automation support for the Match
operator.

Model Typing In [279], the authors introduce model typing as extension of object-
oriented typing and propose an algorithm for checking the conformance of model types.
It is presented, how model typing permits more flexible reuse of model transformations

6.8 Conclusions 191

across various metamodels while preserving type safety.
This approach improves the reuse of models and model transformations whenever

small changes to metamodels occur, like altering the cardinality of an association. In
case of major change in models’ representation formats, model transformations still have
to be modified manually. This stems mainly from the fact that this approach does not
support the Match or any other model management operator. The approach does not im-
prove (meta) data evolution directly through the manipulation of the this data. Evolution
is supported by extending the set of valid input and output models of a model transfor-
mations or MDE tools, by comparing not the metamodels but the type of the models; i.e.
in evolution scenarios the old model (transformation) is the new model (transformation).
Models and model transformations are represented in the MDA TS.

Comparison Overview

Table 6.11 provides an overview of the approaches supporting evolution scenarios in
the MDA TS. The table uses the categories we presented above for the classification
of the discussed approaches. The following notes provide further clarification about the
comparison table:

a) This approach supports the model transformation scenario only indirectly. The
scenario could be realized by chaining model transformations. Depending on the
language of the model transformations, which are generated from the mapping
specification, chaining has an impact on other model transformation features. For
example traceability of the new chained model transformation execution may be
difficult to achieve.

b) This approach realizes the TransfGen operator through a combination of model
transformation bootstrapping and the application of the Compose operator.

c) This approach does not generate or modify model transformations. The old mod-
els and model transformations are also the new ones.

6.8 Conclusions

In this chapter we presented a variety of contributions that address interoperability and
evolution problems in MDSD. The most important ones are: We developed the OntMT
approach, which provides means to automatically deal with model and model trans-
formation evolution scenarios. We introduced an architecture for a semantic-enabled
modelling and development suite, which provides the basis to support developers and
modellers in a sophisticated manner by making use of reasoning results. We described
concepts and techniques to realize and implement the OntMT approach. We developed a
higher-order model transformation language that allows to modify model transformation
and lends itself for automating reuse of model transformations. We showed how the se-
mantics of the higher-order model transformation language and the reasoning results can
be used to automate the model management operator Match and compute (meta)model
mappings.

The approach of OntMT provides technology that fosters interoperability in model
exchange and the evolution of model transformations. It integrates ontologies in MDSD

192 Ontology-based Model Transformation

Model Typing

ye
sc

ye
sc

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

M
D

A

M
D

A

n/
a

MTBE ye
s

no
a

ye
s

no ye
s

in
st

an
ce

,
sc

he
m

a

el
em

en
t

1:
1

eq
ua

lit
y

co
nd

iti
on

s

la
ng

.i
nd

ep
.

A
T

L

M
D

A

M
D

A

M
D

A

ex
am

pl
es

ModelCVS ye
s

no
a

ye
s

no ye
s

sc
he

m
a

el
em

en
t

1:
1

eq
ua

lit
y

no

la
ng

.i
nd

ep
.

A
T

L
M

D
A

,
O

nt
ol

og
y

M
D

A
,

O
nt

ol
og

y

M
D

A

re
as

on
in

g

OntMT ye
s

ye
s

ye
s

ye
s

ye
sb

sc
he

m
a

el
em

en
t

1:
1,

1:
n

eq
ua

lit
y

va
lu

e
pa

tt
er

ns

de
cl

ar
at

iv
e

Q
V

T
R

el
at

io
ns

M
D

A
,

O
nt

ol
og

y

M
D

A

M
D

A
re

as
on

in
g,

he
ur

is
tic

s

Semaphore

ye
s

no
a

ye
s

no ye
s

sc
he

m
a

el
em

en
t

1:
1,

1:
n

eq
ua

lit
y

no

la
ng

.i
nd

ep
.

X
SL

T

T
S

in
de

p.

T
S

in
de

p.

T
S

in
de

p.

no

Semi-autom.
Model Integration ye

s

no
a

ye
s

no ye
s

sc
he

m
a

el
em

en
t

1:
1

eq
ua

lit
y,

eq
ui

va
le

nc
e

no

la
ng

.i
nd

ep
.

A
T

L

M
D

A

M
D

A

M
D

A
si

m
il.

ca
lc

.,
fil

te
ri

ng
,r

ew
ri

tin
g

Model-driven
Tool Interoperability ye

s

no
a

ye
s

no ye
s

sc
he

m
a,

in
st

an
ce

el
em

en
t

1:
1,

1:
n,

m
:1

,m
:n

eq
ua

lit
y,

eq
ui

va
le

nc
e,

no
n-

eq
ui

v.

no

la
ng

.i
nd

ep
.

A
T

L

M
D

A

M
D

A

M
D

A

no

C
at

eg
or

y M
od

el
s

M
Ts

M
at

ch
C

om
po

se

Tr
an

sf
G

en

In
st

.v
s.

Sc
he

m
a

G
ra

nu
la

ri
ty

C
ar

di
na

lit
y

Si
m

ila
ri

ty

C
on

st
ra

in
t

C
on

ce
pt

ua
l

R
ea

liz
ed

M
ap

pi
ng

s

M
od

el
s

M
Ts

A
ut

om
at

io
n

E
vo

lu
tio

n
sc

en
ar

io
s

M
od

el
M

gm
t.

O
pe

ra
to

rs

M
at

ch
in

g

M
T

la
ng

ua
ge

R
ep

re
se

n-
ta

tio
n

T
S

Table 6.11: Comparison of approaches supporting MDE evolution scenarios

6.8 Conclusions 193

and makes use of the reasoning capabilities of the Ontology TS. By automated gener-
ation of mappings it offers new possibilities for the integration of domain-specific lan-
guages and ’legacy’ models in a plug&play manner. This makes it easier for new organ-
isations to join collaborations. OntMT also supports organisations evolving their mod-
elling techniques like using new and more advanced versions of modelling languages. It
yields more efficient reuse of model transformations and the knowledge that is captured
in those transformations. Nevertheless, OntMT uses additional information, which has
to be provided by the experts developing metamodels and domain-specific languages.

Chapter 7

Conclusions

In this thesis we investigated methods and techniques to improve the practical application
of MDSD for efficient and effective CBP enactment. Three problems were identified: the
lack of CBP modelling and enactment infrastructures, the absence of adequate methods
to select ICT architectures in MDSD, and the evolution of meta data and their dependent
artifacts in MDSD, i.e. models and transformations.

7.1 Summary

With the overall goal of a broader dissemination and easier adoption of MDSD, we
developed solutions that address these problems.

CBP Modelling and Enactment Infrastructure

We developed frameworks, tools, and model transformations that facilitate the genera-
tion of executable code from high-level, domain-specific models. Thereby, we presented
software architecture patterns that enable ICT system coordination in a service-oriented
environment. We implemented a set of model transformations, that are based on soft-
ware architecture patterns and allow automated generation of PIMs from computational
independent CBP models. We developed a model and code generation framework that
facilitates the generation of executable workflow code from higher-level process models
(e.g. PIMs and CIMs) on the basis of the input from modelling and domain experts.

This contribution bridges the semantic gap between domain-specific, high-level busi-
ness process descriptions and the technologies used to implement them in service-ori-
ented ICT systems. Both domain and IT experts benefit since our contribution provides a
set of sensible and customizable transformations they can reuse to improve the develop-
ment and adjustment of their ICT systems. These experts do not have to develop similar
transformations again, what saves them a time consuming, error-prone, and often tedious
task. Further, the focus of software development is shifted away from the underlying IT
technology towards the ideas and concepts of the problem domain.

ICT Architecture Selection

We investigated new decision methods and guidelines for the selection of appropriate
ICT architectures. We developed a model for decision support that helps IT architects to
derive an appropriate architecture paradigm for a given use case or application domain.

196 Conclusions

The decision model combines the AHP with scenario-based architecture evaluation tech-
niques. Hence, we further presented scenario descriptions that allow the evaluation and
selection of appropriate ICT system coordination architecture paradigms for CBP en-
actment. We assist IT architects by providing a set of guidelines of how contingencies
influence ICT system coordination architecture.

Our decision method, the scenario descriptions, and the set of guidelines help IT
architects to select and reuse appropriate ICT system coordination architectures for CBP
enactment in a timely manner. This helps to gain productivity wins by reducing the
development time and improving the quality of development with existing and tested
solutions. Without sufficient decision support people would start redeveloping the solu-
tions themselves.

Model and Transformation Evolution

We developed the OntMT approach that facilitates the technical aspects of exchanging
models between different enterprises and the reuse and evolution of model transforma-
tions. The OntMT approach provides means to automatically deal with model and model
transformation evolution scenarios. We described an architecture for a semantic-enabled
modelling and development suite. We implemented OntMT as such a semantic-enabled
tool and applied OntMT to two real world case studies. We further developed a higher-
order model transformation language, that realizes the model management Compose op-
erator and lends itself for automating the reuse of model transformations via the modifi-
cation of model transformations. The OntMT approach is the first appoach that supports
the Compose operator for the MDA TS (cp. Table 6.11).

OntMT enables organisations to exchange models as well as to reuse existing models
and model transformations despite of interoperability challenges. Differences in syntax
and semantics of modelling formalisms, that arise from the use of DSLs and the con-
stant evolution of models and modelling languages, can be overcome with as little effort
as possible. Organisations and modellers benefit from OntMT since it allows them to
exchange, customize, and evolve models and model transformations more efficiently.

7.2 Discussion and Outlook

Though MDSD yields advances in the efficiency and the effectiveness of software engi-
neering, it does not provide magic buttons and is not a silver bullet [52, 96] that reduces
essential complexity in software development. MDSD reduces development time and
improves software quality by providing higher-level abstractions that fit the needs of the
developers and improve the communication with the users. However, it is still necessary
to specify requirements that unambiguously define the problem as the requirements fi-
delity at the higher abstraction level determines the potential quality of the systems to
develop.

In this thesis we took the usefulness of MDSD as granted and put our focus on meth-
ods and techniques to improve the practical application of MDSD for efficient and effec-
tive CBP enactment. We developed contributions to three main challenges as described
above. There still exist other challenges that have to be addressed, like the support of
people involved in model-driven development projects through appropriate guidelines
and methodologies. Some of our results can be applied to broader problem areas than
the design and enactment of CBPs and the case studies presented in this thesis.

7.2 Discussion and Outlook 197

CBP Modelling and Enactment Infrastructure

For the CIM to PIM transformation we developed software architecture patterns for ICT
system generation that can be applied to enact CBPs. We implemented these patterns
in the CIM to PIM transformations that allow automated generation of service-oriented,
platform independent models (PIM4SOA) from computational independent CBP mod-
els. Our solution stands out from other solutions presented under the MDSD label.
It not only converts the representation format of cross-organisational business process
from EPC to PIM4SOA and leaves the implementation of the software architecture as
a manual task to the system architect. Our solutions narrow the gap between high-level
business models and ICT system models significantly by encoding software architecture
patterns in the model transformations. Having implemented and applied such model
transformations for the central, the decentral, and the brokerless approach, we gained
insights how CBPs should be ideally modelled in CIMs. We found it important that
CBPs are explicitly modelled; otherwise, model transformation results are likely to be
of poor quality. The decentral broker architecture relies on the existence of a CBP model
to a higher degree than the central broker architecture and the brokerless architecture:
the latter can be derived more easily from the process flow; in the former, the appro-
priate grouping of processes to view processes in a decentral broker must be specified
explicitly.

In the context of executable WS-BPEL workflow code, there exist a variety of solu-
tions that provide hardly more than another concrete syntax (graphical instead of textual)
for WS-BPEL. These solutions do not narrow the gap between higher-level process de-
scriptions and workflow execution. Tool chains that allow model-driven development
and the generation of WS-BPEL code still have restrictions that prevent all process
models from being fully transformed. The model and code generation framework pre-
sented in this thesis provides a solution that helps to efficiently bridge the gap between
higher-level process descriptions and executable workflow code. It allows to achieve
time savings compared to other approaches. However, these time savings depend on the
complexity of the input graphs (e.g. with or without cycles) and on the experience of the
developer. Our model and code generation framework makes it possible for people with
no or little experience in code generation and graph transformation to produce work-
flow code at reasonable time. Future work is to apply the model and code generation
framework to other languages like XPDL or OWL-S code.

ICT Architecture Selection

The evaluation and decision support method enables people to get a better understand-
ing of the influence of contingencies on the overall decisions. Existing approaches do
not take into account how the various aspects of organisations’ environment influence
the measurement and the final decision of the evaluation process. Our experience so far
indicates that pairwise comparisons reduce the amount of information that is necessary
for decisions. Since people can only deal with information involving simultaneously a
small number of facts, pairwise comparisons help evaluators to make better judgements
compared to methods where more information needs to be considered. Though pair-
wise comparisons require more complex calculations than other rating approaches, they
promise to provide more exact results.

Future work is the question how decision methods as the one developed in this the-
sis can be built into existing enterprise modelling frameworks and model-driven IDEs,

198 Conclusions

to support process modelers and ICT architects in their task of creating and manag-
ing executable CBP specifications from business level models. A second area concerns
the specification of further scenarios to extend the scope of the evaluation and decision
method’s application. More fine-grained models and extensions of our decision method
need to be developed to support the process down to the platform-specific and code
levels.

Model and Transformation Evolution

The OntMT approach facilitates the exchange of models between different enterprises
as well as the reuse and evolution of model transformations. It assumes the existence of
an appropriate Reference Ontology (RO). However, developing or agreeing on a RO is
a non-trivial task. For example there may exist different versions of (reference) ontolo-
gies, what would transfer the problem of heterogeneous models from the MDA TS to the
Ontology TS. In those cases techniques for matching and merging ontologies, like lin-
guistic, schema-based, or probabilistic approaches, combined with human intervention
have to be applied to obtain a suitable RO. Ontology alignment, matching, and mapping
approaches can also be very useful to discover and define bindings from the metamodels
to the RO. To provide ontological groundings and to find ROs may require to invest a lot
of effort. Hence, the goal is to reuse ROs and ontological groundings with other appli-
cations that are part of a semantic-enabled modelling and development suite. Further, a
totally automated solution may also have to cope with acceptance problems of software
engineers. Software engineers will probably not be willing to give up overall control of
model transformations to an automated tool, which makes its choice based on metrics
and heuristics. Hence, the majority of application scenarios will be of such a form, that
the Sem-MT-Tool makes suggestions with a change and problem history to the software
engineer. The engineer has the possibility to accept, correct, or reject the suggestions.

Future research is to apply the techniques of the higher-order transformation lan-
guage also to imperative model transformation languages. Another task is to extend the
correlation algorithm of the Sem-MT-Component for a more sophisticated support of
the Match model management operator. It further seems promising to apply the con-
cepts developed for the OntMT approach to other meta data evolution problems. From a
today’s point of view, it will be a great challenge to develop similar techniques for con-
straint languages like OCL. The techniques of the higher-order transformation language
can also be applied to the evolution of editors, which realize a mapping of the abstract
syntax to concrete visualizations.

Bibliography

[1] Model-driven Interoperability. http://www.modelbased.net/mdi/index.
html, February 2007.

[2] Serge Abiteboul, Sophie Cluet, and Tova Milo. Correspondence and Translation
for Heterogeneous Data. In Proceedings of the 6th International Conference on
Database Theory (ICDT), volume 1186, pages 351–363. Springer, January 1997.

[3] AGILE. AGILE project: Agile Software Development of Embedded Systems.
http://www.agile-itea.org.

[4] AgilPro. AgiPro project: Agile Business Processes With Service Enabled Appli-
cations. http://www.agilpro.eu/.

[5] Aditya Agrawal, Gabor Karsai, and Feng Shi. Graph Transformations on Domain-
Specific Models. Technical Report ISIS-03-403, Institute for Software Integrated
Systems, Vanderbilt University, Nashville, TN, USA, November 2003.

[6] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison Wesley, 1986.

[7] David H. Akehurst, W. Gareth Howells, and Klaus D. McDonald-Maier. Kent
Model Transformation Language. In Model Transformations in Practice Work-
shop, MoDELS Conference, Montego Bay, Jamaica, October 2005.

[8] David H. Akehurst and Stuart Kent. A Relational Approach to Defining Transfor-
mations in a Metamodel. In 5th International Conference on The Unified Mod-
eling Language (UML), Dresden, Germany, volume 2460 of Lecture Notes in
Computer Science, pages 243–258. Springer-Verlag, September/October 2002.

[9] Scott W. Ambler. Agile Modeling (AM) Home Page: Effective Practices for
Modeling and Documentation. http://www.agilemodeling.com.

[10] AMPLE. AMPLE project: Aspect-Oriented, Model-driven Product Line Engi-
neering. http://www.ample-project.net/.

[11] Jim Amsden, Tracy Gardner, Catherine Griffin, and Sridhar Iyengar. Draft UML
1.4 profile for automated business processes with a mapping to BPEL 1.0, version
1.1. IBM developerworks, June 2003.

[12] Marc Andries, Gregor Engels, Annegret Habel, Berthold Hoffmann, Hans-Jörg
Kreowski, Sabine Kuske, Detlef Plump, Andy Schürr, and Gabriele Taentzer.
Graph Transformation for Specification and Programming. Science of Computer
Programming, 34(1):1–54, April 1999.

http://www.modelbased.net/mdi/index.html
http://www.modelbased.net/mdi/index.html
http://www.agile-itea.org
http://www.agilpro.eu/
http://www.agilemodeling.com
http://www.ample-project.net/

200 BIBLIOGRAPHY

[13] AndroMDA. AndroMDA. http://www.andromda.org/.

[14] Assaf Arkin. Business Process Modeling Language (BPML). BPMI.org, Novem-
ber 2002.

[15] ATHENA IP. ATHENA IP European Project: Advanced Technologies for inter-
operability of Heterogeneous Enterprise Networks and their Applications. http:
//www.athena-ip.org.

[16] ATHENA IP. Model-based Semantic Mapping Framework (Semaphore). http:
//modelbased.net/semaphore/.

[17] Colin Atkinson and Thomas Kühne. Model-Driven Development: A Metamodel-
ing Foundation. IEEE Software, 20(5):36–41, September 2003.

[18] ATLAS group. KM3: Kernel MetaMetaModel - Manual version 0.3, August
2005.

[19] AToM3. AToM3: A Tool for Multi-Paradigm modeling. http://atom3.cs.
mcgill.ca/.

[20] Ralph-Johan Back. On Correct Refinement of Programs. Journal of Computer
and System Sciences, 23(1):49–68, August 1981.

[21] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley, 2003.

[22] Len Bass and Bonnie E. John. Linking Usability to Software Architecture Patterns
Through General Scenarios. Journal of Systems and Software, 66(3):187–197,
June 2003.

[23] Bernhard Bauer, Florian Lautenbacher, Stephan Roser, Wolf Fischer, and Viviane
Schöbel. SPL4AOX – Eine Modellierungssprache als Service-Profil für den MID
innovatorAOX 2006 sowie Transformationen nach WSDL und BPEL4WS. May
2006.

[24] Bernhard Bauer, Jörg P. Müller, and Stephan Roser. A Model-Driven Approach
to Designing Cross-Enterprise Business Processes. In On the Move to Meaningful
Internet Systems 2004: OTM 2004 Workshops: OTM Confederated International
Workshops and Posters, GADA, JTRES, MIOS, WORM, WOSE, PhDS, and IN-
TEROP 2004, Agia Napa, Cyprus, October 25-29, 2004. Proceedings, volume
3292 of Lecture Notes in Computer Science, pages 544–555. Springer, October
2004.

[25] Bernhard Bauer, Jörg P. Müller, and Stephan Roser. Adaptive Design of
Cross-Organizational Business Processes Using a Model-Driven Architecture.
In Wirtschaftsinformatik 2005: eEconomy, eGovernment, eSociety, 7. Interna-
tionale Tagung Wirtschaftsinformatik 2005, Bamberg, Germany, pages 103–122.
Physica-Verlag, February 2005.

[26] Bernhard Bauer, Jörg P. Müller, and Stephan Roser. A Decentralized Broker
Architecture for Collaborative Business Process Modelling and Enactment. In
Enterprise Interoperability - New Challenges and Approaches (I-ESA’06), pages
115–126. Springer, April 2006.

http://www.andromda.org/
http://www.athena-ip.org
http://www.athena-ip.org
http://modelbased.net/semaphore/
http://modelbased.net/semaphore/
http://atom3.cs.mcgill.ca/
http://atom3.cs.mcgill.ca/

BIBLIOGRAPHY 201

[27] Bernhard Bauer, Jörg P. Müller, and Stephan Roser. Model- and Architecture-
Driven Development in the Context of Cross-Enterprise Business Process En-
gineering. In Proceedings of the IEEE International Conference on Services
Computing (SCC’06), Chicago, USA, pages 119–126. IEEE Computer Society,
September 2006.

[28] Bernhard Bauer, Günther Palfinger, Florian Lautenbacher, and Stephan Roser.
"AgilPro": Modellierung, Simulation und Ausführung agiler Prozesse. Objekt
Spektrum, (1):52–59, January/February 2007.

[29] Bernhard Bauer and Stephan Roser. Semantic-enabled Software Engineering and
Development. In INFORMATIK 2006 - Informatik für Menschen Band 2, 1st
International Workshop on Applications of Semantic Technologies, AST 2006,
Dresden, Germany, volume P-94 of Lecture Notes in Informatics, pages 293–296.
Bonner Köllen, October 2006.

[30] Gorka Benguria, Xabier Larrucea, Brian Elvesæter, Tor Neple, Anthony
Beardsmore, and Michael Friess. A Platform Independent Model for Service
Oriented Architectures. In Enterprise Interoperability: New Challenges and Ap-
proaches, Proceedings Of the 2nd International Conference on Interoperability
of Enterprise Systems and Architecture (I-ESA’2006), Bordeaux, France, pages
23–34. Springer, April 2007.

[31] Douglas W. Bennett. Designing Hard Software - The Essential Task. Prentice
Hall, 1997.

[32] Tim Berners-Lee and Mark Fischetti. Weaving the Web: The Original Design
and Ultimate Destiny of the World Wide Web by Its Inventor. Harper Collins, 1
edition, September 1999.

[33] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, 284(5):34–43, May 2001.

[34] Philip A. Bernstein. Applying Model Management to Classical Meta-Data Prob-
lems. In First Biennial Conference on Innovative Data Systems Research (CIDR),
Asilomar, CA, USA, pages 209–220, January 2003.

[35] Philip A. Bernstein and Sergey Melnik. Model Management 2.0: Manipulating
Richer Mappings. In Proceedings of the ACM SIGMOD international confer-
ence on Management of data (SIGMOD), Beijing, China, pages 1–12. ACM, June
2007.

[36] Jean Bézivin. Model Engineering: from Principles to Platforms, March 2005.

[37] Jean Bézivin. On the unification power of models. Software and System Modeling,
4(2):171–188, May 2005.

[38] Jean Bézivin, Fabian Büttner, Martin Gogolla, Frederic Jouault, Ivan Kurtev, and
Arne Lindow. Model Transformations? Transformation Models! In Proceedings
of Model Driven Engineering Languages and Systems, 9th International Confer-
ence, MoDELS 2006, Genova, Italy, volume 4199 of Lecture Notes in Computer
Science, pages 440–453. Springer, October 2006.

202 BIBLIOGRAPHY

[39] Jean Bézivin, Vladan Devedžić, Dragan Djurić, Jean-Marie Favreau, Dragan
Gašević, and Frédéric Jouault. An M3-Neutral Infrastructure for Bridging Model
Engineering and Ontology Engineering. In Interoperability of Enterprise Soft-
ware and Applications (INTEROP-ESA’05), pages 159–171, 2005.

[40] Jean Bézivin, Grégoire Dupé, Frédéric Jouault, and Jamal Eddine Rougui. First
experiments with the ATL model transformation language: Transforming XSLT
into XQuery. In OOPSLA Workshop on Generative Techniques in the Context of
the MDA, 2003.

[41] Jean Bézivin and Olivier Gerbé. Towards a Precise Definition of the OMG/MDA
Framework. In 16th IEEE international conference on Automated software en-
gineering (ASE), San Diego, USA, pages 273–280. IEEE Computer Society,
November 2001.

[42] Jean Bézivin, Guillaume Hillairet, Frédéric Jouault, Ivan Kurtev, and William
Piers. Bridging the MS/DSL Tools and the Eclipse Modeling Framework. In
International OOPSLA’05 Workshop on Software Factories at, San Diego, Cali-
fornia, USA, October 2005.

[43] Jean Bézivin, Frédéric Jouault, Peter Rosenthal, and Patrick Valduriez. Modeling
in the Large and Modeling in the Small. In European MDA Workshops: Foun-
dations and Applications, MDAFA 2003 and MDAFA 2004, Twente, The Nether-
lands, and Linköping, Sweden, volume 3599 of Lecture Notes in Computer Sci-
ence, pages 33–46. Springer, June 2003/04.

[44] Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. First Experiments with a
ModelWeaver. In Proceedings of the OOPSLA GPCE Workshop on Best Prac-
tices for Model Driven Software Development Workshop, Vancouver, Canada, Oc-
tober 2004.

[45] Alex Birman and John Ritsko. Preface to Service-Oriented Architecture. IBM
Systems Journal, 44(4):651–652, 2005.

[46] Grady Booch, Alan Brown, Sridhar Iyengar, James Rumbaugh, and Bran Selic.
An MDA Manifesto. MDA Journal, May 2004.

[47] Stefano Borgo, Aldo Gangemi, Nicola Guarino, Claudio Masolo, and Alessan-
dro Oltramari. OntologyRoadMap. WonderWeb Deliverable D15. http://
wonderweb.semanticweb.org, December 2002.

[48] Adam Bosworth. Data Routing Rather than Databases: The Meaning of the Next
Wave of the Web Revolution to Data Management. In 28th international con-
ference on Very Large Data Bases (VLDB), Hong Kong, China, page .1. Morgan
Kaufmann, August 2002.

[49] Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano Serafini, and
Heiner Stuckenschmidt. C-OWL: Contextualizing Ontologies. In 2nd Interna-
tional Semantic Web Conference (ISWC), Florida, USA, volume 2870 of Lecture
Notes in Computer Science, pages 164–179. Springer, October 2003.

http://wonderweb.semanticweb.org
http://wonderweb.semanticweb.org

BIBLIOGRAPHY 203

[50] Peter Braun and Frank Marschall. The Bi-directional Object-Oriented Trans-
formation Language. Technical Report TUM-I0307, Technische Universität
München, München, Germany, May 2003.

[51] Saartje Brockmanns and Peter Haase. A Metamodel and UML Profile for Net-
worked Ontologies. In 2nd International Workshop on Semantic Web Enabled
Software Engineering (SWESE), Athens, GA, USA, November 2006.

[52] Jr. Frederick P. Brooks. No Silver Bullet: Essence and Accidents of Software
Engineering. Computer, 20(4):10–19, April 1987.

[53] Phillip A. Brown and David F. Gibson. A quantified model for facility site se-
lection application to multiplant location problem. AIIE transactions: industrial
engineering research and development, 4(1):1–10, 1972.

[54] R. Ian Bull and Jean-Marie Favre. Visualization in the Context of Model Driven
Engineering. In Workshop on Model Driven Development of Advanced User In-
terfaces (MDDAUI) at MoDELS Conference, Montego Bay, Jamaica, volume 159
of CEUR Workshop Proceedings. CEUR-WS.org, October 2005.

[55] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. A Frame-
work for Ontology Integration. In First Semantic Web Working Symposium, Stan-
ford, USA, Frontiers in artificial intelligence and applications, pages 303–316.
IOS Press, 2002.

[56] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Description
Logics for Information Integration. In Computational Logic: Logic Programming
and Beyond, volume 2408 of Lecture Notes in Computer Science, pages 41–60.
Springer, 2002.

[57] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Architecture.
Addison-Wesley, 2002.

[58] Edgar F. Codd. A Relational Model of Data for Large Shared Data Banks. Com-
munications of the ACM, 13(6):377–387, June 1970.

[59] Edgar F. Codd. The Relational Model for Database Management: Version
2. ACM Classic Books Series. Addison-Wesley Longman Publishing Co., Inc.,
1990.

[60] Compuware. OptimalJ, Model-driven development for Java. http://www.
compuware.com/products/optimalj/.

[61] Steve Cook. Domain-Specific Modeling and Model Driven Architecture, January
2004.

[62] Microsoft Corporation. Visual Studio 2005 Team System Modeling Strategy and
FAQ. Visual Studio 2005 Technical Articles, May 2005.

[63] Krzysztof Czarnecki and Michal Antkiewicz. Mapping Features to Models:
A Template Approach Based on Superimposed Variants. In 4th International
Conference on Generative Programming and Component Engineering, Tallinn,
Estonia, volume 3676 of Lecture Notes in Computer Science, pages 422–437.
Springer, September/October 2005.

http://www.compuware.com/products/optimalj/
http://www.compuware.com/products/optimalj/

204 BIBLIOGRAPHY

[64] Krzysztof Czarnecki and Simon Helsen. Classification of Model Transformation
Approaches. In Proceedings Of the OOPSLA’03 Workshop on the Generative
Techniques in the Context Of Model-Driven Architecture, Anaheim, California,
USA, 2003.

[65] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model transfor-
mation approaches. IBM Systems Journal, 45(3):621–645, July 2006.

[66] Paulo Pinheiro da Silva, Deborah L. McGuinness, and Richard Fikes. A proof
markup language for Semantic Web services. Information Systems, 31(4):381–
395, June/July 2006.

[67] Juan de Lara and Hans Vangheluwe. AToM: A Tool for Multi-Formalism and
Meta-Modeling. In 5th International Conference on Fundamental Approaches to
Software Engineering (FASE), Grenoble, France, volume 2306 of Lecture Notes
in Computer Science, pages 174–188. Springer, April 2002.

[68] Henry Lieberman Dieter Fensel, James A. Hendler and Wolfgang Wahlster, ed-
itors. Spinning the Semantic Web: Bringing the World Wide Web to Its Full
Potential. The MIT Press, 2003.

[69] Dragan Djurić, Dragan Gašević, and Vladan Devedžić. Ontology Modeling and
MDA. Journal of Object Technology, 4(1):109–128, January-February 2005.

[70] AnHai Doan and Alon Y. Halevy. Semantic Integration Research in the Database
Community: A Brief Survey. AI Magazine, Special Issue on Semantic Integration,
26(1):83–94, March 2005.

[71] Thomas J. Dolan. Architecture assessment of Information-System Families. PhD
thesis, Technische Universiteit Eindhoven, 2001.

[72] Lex Donaldson. The Contingency Theory of Organizations. SAGE Publications,
Inc, February 2001.

[73] Eclipse Project. ATLAS MegaModel Management (AM3). http://www.
eclipse.org/gmt/am3/.

[74] Eclipse Project. ATLAS Model Weaver (AMW). http://www.eclipse.org/
gmt/amw/.

[75] Eclipse Project. Eclipse Modeling Framework (EMF). http://www.eclipse.
org/modeling/emf/.

[76] Eclipse Project. Eclipse Validation Framework. http://www.eclipse.org/
modeling/emf/?project=validation#validation.

[77] Eclipse Project. EMF Ontology Definition Metamodel (EODM). http://www.
eclipse.org/modeling/mdt/?project=eodm.

[78] Eclipse Project. Generative Modeling Tools (GMT). http://www.eclipse.
org/gmt/.

[79] Eclipse Project. Java Emitter Templates (JET). http://www.eclipse.org/
modeling/m2t/?project=jet#jet.

http://www.eclipse.org/gmt/am3/
http://www.eclipse.org/gmt/am3/
http://www.eclipse.org/gmt/amw/
http://www.eclipse.org/gmt/amw/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/?project=validation#validation
http://www.eclipse.org/modeling/emf/?project=validation#validation
http://www.eclipse.org/modeling/mdt/?project=eodm
http://www.eclipse.org/modeling/mdt/?project=eodm
http://www.eclipse.org/gmt/
http://www.eclipse.org/gmt/
http://www.eclipse.org/modeling/m2t/?project=jet#jet
http://www.eclipse.org/modeling/m2t/?project=jet#jet

BIBLIOGRAPHY 205

[80] Eclipse Project. Model Driven Development integration (MDDi). http://www.
eclipse.org/mddi/.

[81] Sven Efftinge, Peter Friese, Arno Haase, Clemens Kadura, Bernd Kolb, Dieter
Moroff, Karsten Thoms, and Markus Völter. openArchitectureWare User Guide,
Version 4.2, September 2007.

[82] Marc Ehrig, Peter Haase, Mark Hefke, and Nenad Stojanovic. Similarity for
Ontologies - A Comprehensive Framework. In 13th European Conference on
Information Systems, Regensburg, Germany, May 2005.

[83] Brian Elvesæter, Axel Hahn, Arne-Jørgen Berre, and Tor Neple. Towards an In-
teroperability Framework for Model-Driven Development of Software Systems.
In Interoperability of Enterprise Software and Applications, Proceedings of the
1st International Conference on Interoperability of Enterprise Systems and Ar-
chitecture (I-ESA’2005), Geneva, Switzerland, pages 409–420. Springer, 2005.

[84] Thomas Erl. Service-Oriented Architecture: A Field Guide to Integrating XML
and Web Services. Prentice Hall International, 2004.

[85] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall International, 2005.

[86] European Commission. Third Status Report on European Technology Platforms:
At the Launch of FP7, March 20007.

[87] Jérôme Euzenat. An API for Ontology Alignment. In 3rd International Semantic
Web Conference, Hiroshima, Japan, volume 3298 of Lecture Notes in Computer
Science, pages 698–712. Springer, November 2004.

[88] Marcos Didonet Del Fabro, Jean Bézivin, Frédéric Jouault, Erwan Breton, and
Guillaume Gueltas. AMW: A Generic Model Weaver. In 1ères Journées sur
l’Ingénierie Dirigée par les Modèles, 2005.

[89] Marcos Didonet Del Fabro, Jean Bézivin, Frédéric Jouault, and Patrick Valduriez.
Model-Driven Tool Interoperability: An Application in Bug Tracking. In 5th
International Conference on Ontologies, DataBases, and Applications of Seman-
tics (ODBASE), Montpellier, France, volume 4275 of Lecture Notes in Computer
Science, pages 863–881. Springer, October 2006.

[90] Marcos Didonet Del Fabro, Jean Bézivin, and Patrick Valduriez. Weaving Models
with the Eclipse AMW plugin. In Eclipse Modeling Symposium, Eclipse Summit
Europe 2006, Esslingen, Germany, 2006.

[91] Marcos Didonet Del Fabro and Patrick Valduriez. Semi-automatic Model Integra-
tion using Matching Transformations and Weaving Models. In 22nd Annual ACM
symposium on Applied computing (SAC) - Model Transformation Track, Seoul,
Korea, pages 963–970. ACM, 2007.

[92] Jean-Marie Favre. CacOphoNy: Metamodel-Driven Architecture Reconstruction.
In 11th Working Conference on Reverse Engineering (WCRE), Delft, The Nether-
lands, pages 204–213. IEEE Computer Society, November 2004.

http://www.eclipse.org/mddi/
http://www.eclipse.org/mddi/

206 BIBLIOGRAPHY

[93] Jean-Marie Favre. Foundations of Meta-Pyramids: Languages vs. Metamodels
– Episode ii: Story of Thotus the Baboon1. In Jean Bezivin and Reiko Heckel,
editors, Language Engineering for Model-Driven Software Development, num-
ber 04101 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2005. Inter-
nationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany.

[94] Jean-Marie Favre. Foundations of Model (Driven) (Reverse) Engineering : Mod-
els – Episode i: Stories of The Fidus Papyrus and of The Solarus. In Jean
Bezivin and Reiko Heckel, editors, Language Engineering for Model-Driven Soft-
ware Development, number 04101 in Dagstuhl Seminar Proceedings, Dagstuhl,
Germany, 2005. Internationales Begegnungs- und Forschungszentrum fuer Infor-
matik (IBFI), Schloss Dagstuhl, Germany.

[95] Wolf Fischer and Stephan Roser. Inference for an Application of Semantic-
enabled Software Development. 2008, forthcoming.

[96] David Flater. Impact of Model-Driven Standards. In 35th Annual Hawaii Inter-
national Conference on System Sciences (HICSS), volume 9, pages 3706–3714.
IEEE Computer Society, January 2002.

[97] Franck Fleurey, Zoé Drey, Didier Vojtisek, Cyril Faucher, and Vincent Mahé.
Kermeta language – Reference manual, June 2007.

[98] Joachim H. Frank, Tracy A. Gardner, and Simon K. Johnston. Business Process
Definition Metamodel - Concepts and Overview, April 2004.

[99] David S. Frankel. Model Driven Architecture - Applying MDA™ to Enterprise
Computing. John Wiley & Sons, Inc., New York, NY, USA, 2003.

[100] Fujaba. Fujaba Tool Suite. http://www.fujaba.de/.

[101] Erich Gamma, Richard Helm, and Ralph E. Johnson. Design Patterns. Elements
of Reusable Object-Oriented Software. Addison-Wesley Longman, 1995.

[102] Andrés García-Camino, Pablo Noriega, and Juan-Antonio Rodríguez-Aguilar.
Implementing Norms in Electronic Institutions. In Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS), Utrecht,
The Nederlands, pages 667–673. ACM Press, July 2005.

[103] Tracy Gardner, Catherine Griffin, Jana Koehler, and Rainer Hauser. A review of
OMG MOF 2.0 Query / Views / Transformations Submissions and Recommenda-
tions towards the final Standard. In 1st MetaModelling for MDA Workshop, Kings
Manor, York, England, pages 178–197, November 2003.

[104] Tracy Gardner and Larry Yusuf. Explore model-driven development (MDD) and
related approaches: A closer look at model-driven development and other industry
initiatives. IBM developerworks, March 2006.

[105] Dragan Gašević, Dragan Djurić, and Vladan Devedžić. Model Driven Architec-
ture and Ontology Development. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

http://www.fujaba.de/

BIBLIOGRAPHY 207

[106] Dragan Gašević and Marek Hatala. Searching Web Resources Using Ontology
Mappings. In K-CAP 2005 Workshop on Integrating Ontologies, Banff, Canada,
volume 156 of CEUR Workshop Proceedings. CEUR-WS.org, October 2005.

[107] Anna Gerber, Michael Lawley, Kerry Raymond, Jim Steel, and Andrew Wood.
Transformation: The Missing Link of MDA. In Proceedings of Graph Trans-
formation: First International Conference (ICGT’02) Barcelona, Spain, volume
2505 of Lecture Notes in Computer Science, pages 90–105. Springer, October
2002.

[108] Parviz Ghandforoush, Philip Y. Huang, and Bernard W. Taylor. A mulit-criteria
decision model for the selection of a computerized manufacturing control system.
International Journal of Production Research, 23(1):117–128, 1985.

[109] Chiara Ghidini and Luciano Serafini. Distributed First Order Logic - Revised
Semantics. Technical report, ITC-irst, January 2005.

[110] Interactive Objects Software GmbH. ArcStyler. http://www.arcstyler.com.

[111] Asunción Gómez-Pérez and Oscar Corcho. Ontology Languages for the Semantic
Web. IEEE Intelligent Systems, 17(1):54–60, January/February 2002.

[112] Mathias Götz, Stephan Roser, Florian Lautenbacher, and Bernhard Bauer. Using
Token Analysis to Transform Graph-Oriented Process Models to BPEL. 2008,
forthcoming.

[113] Jeff Gray, Yuehua Lin, and Jing Zhang. Automating Change Evolution in Model-
Driven Engineering. IEEE Computer (Special issue on Model-Driven Engineer-
ing), 39(2):51–58, Februaber 2006.

[114] Jack Greenfield. Bare-Naked Languages or What Not to Model. The Architecture
Journal, October 2006.

[115] Jack Greenfield and Keith Short. Software factories: assembling applications
with patterns, models, frameworks and tools. In OOPSLA’03: Companion of
the 18th annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 16–27, New York, NY, USA, 2003.
ACM Press.

[116] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools. Wiley
Publishing Inc., 2004.

[117] Ulrike Greiner, Sonia Lippe, Timo Kahl, Jörg Ziemann, and Frank-Walter Jäkel.
Designing and Implementing Cross-Organizational Business Processes - Descrip-
tion and Application of a Modelling Framework. In Enterprise Interoperability
- New Challenges and Approaches (I-ESA’06), pages 137–147. Springer, April
2006.

[118] Thomas R. Gruber. Toward principles for the design of ontologies used for knowl-
edge sharing. International Journal of Human-Computer Studies, 43(5-6):907–
928, November/December 1995.

http://www.arcstyler.com

208 BIBLIOGRAPHY

[119] Nicola Guarino. Understanding, building and using ontologies. International
Journal of Human-Computer Studies, 46(2-3):293–310, February/March 1997.

[120] Nicola Guarino. Formal Ontology and Information Systems. In Proceedings
of the 1st International Conference on Formal Ontology in Information Systems
(FOIS), Trento, Italy, pages 3–15. IOS Press, June 1998.

[121] Michael Guttmann. A Response to Steve Cook. MDA Journal, February 2004.

[122] Brent Hailpern and Peri Tarr. Model-driven development: The good, the bad, and
the ugly. IBM Systems Journal, 45(3):451–461, July 2006.

[123] Michael Hammer and James Champy. Reengineering the Corporation: A Mani-
festo for Business Revolution. Harper Business, New York, 1993.

[124] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics
of "Semantics"? IEEE Computer, 37(10):64–2, October 2004.

[125] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design Science
in Information Systems Research. MIS Quarterly, 28(1):75–105, March 2004.

[126] Ian Horrocks and Peter Patel-Schneider. Reducing OWL entailment to description
logic satisfiability. Journal of Web Semantics, 1(4):345–357, October 2004.

[127] IBM. Rational Software Architect. http://www-306.ibm.com/software/
awdtools/architect/swarchitect/index.html.

[128] IBM. WebSphere. http://www-306.ibm.com/software/websphere/.

[129] IBM, BEA Systems, Microsoft, SAP AG, and Siebel Systems. Business Process
Execution Language for Web Services version 1.1, May 2003.

[130] IBM alphaWorks. Model Transformation Framework (MTF). http://www.
alphaworks.ibm.com/tech/mtf.

[131] IDEAS – Thematic Network. A Gap Analysis. Deliverables D3.4, D3.5, D3.6,
May 2003.

[132] IDEAS – Thematic Network. The Vision for 2010. Deliverable D2.4, May 2003.

[133] Institute for Software Integrated Systems (ISIS). The Generic Modeling Environ-
ment. http://www.isis.vanderbilt.edu/projects/gme/.

[134] Internet Engineering Task Force (IETF). Uniform Resource Identifiers (URI):
Generic Syntax. RfC 2396, August 1998.

[135] IRISA-Triskell. Kermeta: Triskell Metamodeling Kernel. Kermeta.

[136] Igor Ivkovic and Kostas Kontogiannis. Tracing Evolution Changes of Software
Artifacts through Model Synchronization. In 20th IEEE International Conference
on Software Maintenance, Washington, DC, USA, pages 252–261. IEEE Com-
puter Society, September 2004.

[137] JAMDA. JAMDA Java Model Driven Architecture. http://sourceforge.
net/projects/jamda.

http://www-306.ibm.com/software/awdtools/architect/swarchitect/index.html
http://www-306.ibm.com/software/awdtools/architect/swarchitect/index.html
http://www-306.ibm.com/software/websphere/
http://www.alphaworks.ibm.com/tech/mtf
http://www.alphaworks.ibm.com/tech/mtf
http://www.isis.vanderbilt.edu/projects/gme/
http://sourceforge.net/projects/jamda
http://sourceforge.net/projects/jamda

BIBLIOGRAPHY 209

[138] Jena. Jena – A Semantic Web Framework for Java. http://jena.
sourceforge.net/.

[139] Nicholas R. Jennings, Katia Sycara, and Michael Wooldridge. A Roadmap of
Agent Research and Development. Autonomous Agents and Multi-Agent Systems,
1(1):7–38, 1998.

[140] Nick R. Jennings, Tim J. Norman, Peyman Faratin, Paul O’Brien, and Brian
Odgers. Autonomous Agents for Business Process Management. International
Journal of Applied Artificial Intelligence, 14(2):145–189, 2000.

[141] Nick R. Jennings, Tim J. Norman, Peyman Faratin, Paul O’Brien, Brian Odgers,
and James L. Alty. Implementing a Business Process Management System using
ADEPT: A Real-World Case Study. International Journal of Applied Artificial
Intelligence, 14(5):421–463, 2000.

[142] Richard Johnson, David Pearson, and Keshav Pingali. The Program Structure
Tree: Computing Control Regions in Linear Time. In ACM SIGPLAN 1994 con-
ference on Programming language design and implementation (PLDI), Orlando,
Florida, United States, pages 171–185. ACM Press, 1994.

[143] Simon Johnston. UML 2.0 Profile for Software Services. IBM developerworks,
April 2005.

[144] Frédéric Jouault and Jean Bézivin. KM3: a DSL for Metamodel Specification.
In 8th IFIP International Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS), Bologna, Italy, volume 4037 of Lecture Notes
in Computer Science, pages 171–185. Springer, June 2006.

[145] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In Model
Transformations in Practice Workshop at MoDELS 2005, Montego Bay, Jamaica,
volume 3844 of Lecture Notes in Computer Science, pages 128–138. Springer,
October 2005.

[146] Frédéric Jouault and Ivan Kurtev. On the interoperability of model-to-model
transformation languages. Science of Computer Programming, 68(3):114–137,
October 2007.

[147] Jürgen Jung. Meta-Modelling Support for a General Process Modelling Tool. In
5th OOPSLA Workshop on Domain-Specific Modeling, 2005.

[148] Matjaz B. Juric. A Hands-on Introduction to BPEL. Technical report, Oracle.

[149] Audris Kalnins, Janis Barzdins, and Edgars Celms. Model Transformation Lan-
guage MOLA. In European MDA Workshops: Foundations and Applications,
MDAFA 2003 and MDAFA 2004, Twente, The Netherlands, and Linköping, Swe-
den, volume 3599 of Lecture Notes in Computer Science, pages 62–76. Springer,
June 2003/04.

[150] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Nowak, and A. S. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90- TR-21, Software Engineereing Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA, 1990.

http://jena.sourceforge.net/
http://jena.sourceforge.net/

210 BIBLIOGRAPHY

[151] Gerti Kappel, Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler, Thomas Re-
iter, Werner Retschitzegger, Wieland Schwinger, and Manuel Wimmer. Lifting
Metamodels to Ontologies: A Step to the Semantic Integration of Modeling Lan-
guages. In ACM/IEEE 9th International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS/UML), Genova, Italy, volume 4199 of Lec-
ture Notes in Computer Science, pages 528–542. Springer, October 2006.

[152] Gerti Kappel, Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler, Thomas Re-
iter, Werner Retschitzegger, Wieland Schwinger, and Manuel Wimmer. On Model
and Ontologies - A Layered Approach for Model-based Tool Integration. In Pro-
ceedings of Modellierung 2006, Innsbruck, Austria, Lecture Notes in Informatics.
GI, March 2006.

[153] Gerti Kappel, Horst Kargl, Gerhard Kramler, Andrea Schauerhuber, Martina
Seidl, Michael Strommer, and Manuel Wimmer. Matching Metamodels with Se-
mantic Systems - An Experience Report. In Model Management und Metadaten-
Verwaltung - BTW 2007 Workshop, Aachen, Germany, March 2007.

[154] Vipul Kashyap and Amit Sheth. Semantic and schematic similarities between
database objects: a context-based approach. The VLDB Journal, 5(4):276–304,
December 1996.

[155] Alfons Kemper and Andre Eickler. Datenbanksysteme – Eine Einführung. Old-
enbourg, 6 edition, March 2006.

[156] Bartosz Kiepuszewski, Arthur H.M. ter Hofstede, and Wil M.P. van der Aalst.
Fundamentals of control flow in workflows. Acta Informatica, 39(3):143–209,
March 2003.

[157] Ralf Klein, Florian Kupsch, and August-Wilhelm Scheer. Modellierung inter-
organisationaler Prozesse mit Ereignisgesteuerten Prozessketten. In Veröf-
fentlichungen des Instituts für Wirtschaftsinformatik, volume 178. Scheer, 2004.

[158] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained, The Model Driven
Architecture: Practice and Promise. Addison-Wesley, April 2003.

[159] Alexander Königs. Model Transformation with Triple Graph Grammars. In Pro-
ceedings of Model Transformations in Practice Workshop, MoDELS Conference,
Montego Bay, Jamaica, October 2005.

[160] Ivan Kurtev, Jean Bézivin, and Mehmet Aksit. Technological Spaces: An Ini-
tial Appraisal. In International Federated Conference (DOA, ODBASE, CoopIS),
Industrial Track, Irvine, CA, USA, 2002.

[161] Oliver Kutz, Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. E-
connections of abstract description systems. Artificial Intelligence, 156(1):1–73,
June 2004.

[162] Grant Larsen. Model-driven development: Assets and reuse. IBM Systems Jour-
nal, 45(3):541–553, July 2006.

BIBLIOGRAPHY 211

[163] Michael Lawley and Jim Steel. Practical Declarative Model Transformation with
Tefkat. In Proceedings of Model Transformations in Practice Workshop, MoD-
ELS Conference, Montego Bay, Jamaica, volume 3844 of Lecture Notes in Com-
puter Science, pages 139–150. Springer, October 2005.

[164] Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai, Jason Garrett, Charles
Thomason, Greg Nordstrom, Jonathan Sprinkle, and Peter Volgyesi. The Generic
Modeling Environment. In Proceedings of the IEEE Workshop on Intelligent Sig-
nal Processing (WISP’01), Budapest, Hungary. IEEE, May 2001.

[165] Christine Legner and Kristin Wende. Towards an Excellence Framework for Busi-
ness Interoperability. In 19th Bled eConference "eValues", Slovenia, June 2006.

[166] Maurizio Lenzerini. Data Integration: A Theoretical Perspective. In Proceedings
of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems (PODS), pages 233–246. ACM, 2002.

[167] Frank Leymann. Web Services Flow Language (WSFL 1.0). IBM, May 2001.

[168] Frank Leymann, Dieter Roller, and Marc-Thomas Schmidt. Web services and
business process management. IBM Systems Journal, 41(2):198–211, 2002.

[169] Andreas Limyr, Tor Neple, Arne-Jørgen Berre, and Brian Elvesæter. Semaphore
- A Model-Based Semantic Mapping Framework. In Business Process Manage-
ment Workshop, BPM 2006 International Workshops, BPD, BPI, ENEI, GPWW,
DPM, semantics4ws, Vienna, Austria, volume 4103 of Lecture Notes in Computer
Science, pages 275–284. Springer, September 2006.

[170] Sonia Lippe, Ulrike Greiner, and Alistair Barros. A Survey on State of
the Art to Facilitate Modelling of Cross-Organisational Business Processes.
In XML4BPM 2005, Proceedings of the 2nd GI Workshop XML4BPM –
XML Interchange Formats for Business Process Management at 11th GI
Conference BTW 2005, Karlsruhe, Germany, pages 7–22, http://wi.wu-
wien.ac.at/˜mendling/XML4BPM2005/xml4bpm-2005-proceedings-lippe.pdf,
March 2005.

[171] Duen-Ren Liu and Minxin Shen. Modeling Workflows with a Process-View Ap-
proach. In DASFAA ’01: Proceedings of the 7th International Conference on
Database Systems for Advanced Applications, Hong Kong, China, pages 260–
267. IEEE Computer Society, April 2001.

[172] Alexander Maedche, Boris Motik, Nuno Silva, and Raphael Volz. MAFRA - A
MApping FRAmework for Distributed Ontologies. In 13th European Conference
on Knowledge Engineering and Knowledge Management (EKAW), Siquenca,
Spain, volume 2473 of Lecture Notes in Computer Science, pages 235–250.
Springer, October 2002.

[173] MagicDraw. MagicDraw: Architecture Made Simple. http://www.
magicdraw.com/.

[174] Thomas W. Malone. Modeling Coordination in Organizations and Markets. Man-
agement Science, 33(10):1317–1332, October 1987.

http://www.magicdraw.com/
http://www.magicdraw.com/

212 BIBLIOGRAPHY

[175] Keith Mantell. From UML to BPEL - Model Driven Architecture in a Web service
world. IBM developerworks, September 2005.

[176] Manyeta. Codagen Architect. http://www.manyeta.com/.

[177] Frank Marschall and Peter Braun. Model Transformations for the MDA with
BOTL. In Workshop on Model Driven Architecture: Foundations and Applica-
tions, Enschede, The Netherlands, number TR-CTIT-03-27 in CTIT Technical
Report, pages 25–36. University of Twente, June 2003.

[178] Martin Matula. NetBeans Metadata Repository, March 2003.

[179] Paul T. Maurer. ActiveBPEL 3.0 from Active Endpoints, Inc. SOA World Maga-
zine, pages 22–23, December 2006.

[180] Stephen J. Mellor and Marc J. Balcer. Executable UML: A Foundation for Model-
Driven Architecture. Addison Wesley, May 2002.

[181] Jan Mendling, Kristian Lassen, and Uwe Zdun. Transformation Strategies be-
tween Block-Oriented and Graph-Oriented Process Modelling Languages. In
Multikonferenz Wirtschaftsinformatik (MKWI), volume 2, pages 297–312. GITO-
Verlag, 2006.

[182] Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transformation. Elec-
tronic Notes in Theoretical Computer Science, 152:125–142, September 2005.
International Workshop on Graph and Model Transformation (GraMoT), Tallinn,
Estonia.

[183] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to Develop
Domain-Specific Languages. ACM Computing Surveys (CSUR), 37(4):316–344,
December 2005.

[184] Kai Mertins and Roland Jochem. Integrated Enterprise Modeling: Method and
Tool. SIGGROUP Bulletin, 18(2):63–66, August 1997.

[185] MetaCase. Domain-Specific Modeling with MetaEdit+. http://www.
metacase.com/.

[186] Microsoft. Domain-Specific Language Tools. http://msdn.microsoft.com/
vstudio/DSLTools/.

[187] MID. Modellierungsplattform Innovator. http://www.mid.de/Innovator.
html.

[188] George A. Miller. The Magical Number Seven, Plus or Minus Two: Some Limits
on our Capacity for Processing Information. The Psychological Review, 63:81–
97, 1956.

[189] Renée J. Miller, Mauricio A. Hernéndez, Laura M. Haas, Lingling Yan,
C. T. Howard Ho, Ronald Fagin, and Lucian Popa. The Clio Project: Manag-
ing Heterogeneity. SIGMOD Rec., 30(1):78–83, March 2001.

http://www.manyeta.com/
http://www.metacase.com/
http://www.metacase.com/
http://msdn.microsoft.com/vstudio/DSLTools/
http://msdn.microsoft.com/vstudio/DSLTools/
http://www.mid.de/Innovator.html
http://www.mid.de/Innovator.html

BIBLIOGRAPHY 213

[190] Tova Milo and Sagit Zohar. Using Schema Matching to Simplify Heterogeneous
Data Translation. In Proceedings of the 24rd International Conference on Very
Large Data Bases (VLDB, pages 122–133. Morgan Kaufmann Publishers Inc.,
August 1998.

[191] Michele Missikoff, Federica Schiappelli, and Francesco Taglino. A Controlled
Language for Semantic Annotation and Interoperability in e-Business Applica-
tions. 2003.

[192] Prasenjit Mitra, Gio Wiederhold, and Martin L. Kersten. A Graph-Oriented Model
for Articulation of Ontology Interdependencies. In Proceedings of the 7th Inter-
national Conference on Extending Database Technology (EDBT), volume 1777 of
Lecture Notes in Computer Science, pages 86–100. Springer-Verlag, March 2000.

[193] ModelCVS. ModelCVS Project: A Semantic Infrastructure for Model-based Tool
Integration. http://www.modelcvs.org/.

[194] MODELPLEX. MODELPLEX project: MODELling solution for comPLEX
software system. http://www.modelplex-ist.org/.

[195] MODELWARE. MODELWARE project: MODELling solution for softWARE
systems. http://www.modelware-ist.org/.

[196] MOFScript. MOFScript. http://www.eclipse.org/gmt/mofscript/.

[197] MOMOCS. MOMOCS project: MOdel driven MOdernisation of Complex Sys-
tems. http://www.momocs.org/.

[198] Peter D. Mosses. Action semantics. Cambridge University Press, New York, NY,
USA, 1992.

[199] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving Exe-
cutability into Object-Oriented Metalanguages. In 8th International Conference
on Model Driven Engineering Languages and Systems (MoDELS), Montego Bay,
Jamaica, volume 3713 of Lecture Notes in Computer Science, pages 264–278.
Springer, October 2005.

[200] Pierre-Alain Muller, Philippe Studer, Frédéric Fondement, and Jean Bézivin. Plat-
form independent Web application modeling and development with Netsilon.
Software and System Modeling, 4(4):424–442, June 2005.

[201] NESSI. Networked European Software and Services Initiative. http://www.
nessi-europe.com/Nessi.

[202] NetBeans. Metadata Repository (MDR). http://mdr.netbeans.org/.

[203] OASIS. ebXML Business Process Specification Schema Technical Specification
v2.0.4. ebxmlbp-v2.0.4-Spec-os-en, December 2006.

[204] OASIS. Reference Model for Service Oriented Architecture, Committee Draft
1.0. wd-soa-rm-cd1, February 2006.

[205] OASIS. Web Services Business Process Execution Language Version 2.0.
wsbpel-primer, May 2007.

http://www.modelcvs.org/
http://www.modelplex-ist.org/
http://www.modelware-ist.org/
http://www.eclipse.org/gmt/mofscript/
http://www.momocs.org/
http://www.nessi-europe.com/Nessi
http://www.nessi-europe.com/Nessi
http://mdr.netbeans.org/

214 BIBLIOGRAPHY

[206] oAW. openArchitectureWare (oaw). http://www.openarchitectureware.
org/.

[207] Daniel Oberle. Semantic Management of Middleware, volume 1 of Semantic Web
and Beyond. Springer, 2005.

[208] OMG. OMG Model Driven Architecture. http://www.omg.org/mda/.

[209] OMG. Common Warehouse Metamodel (CWM) Specification, version 1.0.
ad/01-02-01, February 2001.

[210] OMG. Meta Object Facility (MOF) Specification, version 1.4. formal/02-04-03,
April 2002.

[211] OMG. Request for Proposal: MOF 2.0 Query / View / Transformations RFP.
ad/2002-04-10, April 2002.

[212] OMG. MDA Guide Version 1.0. omg/2003-05-01, May 2003.

[213] OMG. MDA Guide Version 1.0.1. omg/2003-06-01, June 2003.

[214] OMG. Response to the MOF 2.0 Query/Views/Transformations RFP (ad/2002-
04-10). ad/2003-08-05, August 2003.

[215] OMG. Revised submission for MOF 2.0 Query / Views / Transformations RFP,
Version 1.1. ad/03-08-08, August 2003.

[216] OMG. A Definition of MDA. ormsc/04-08-02, August 2004.

[217] OMG. Addendum to the minutes of ORMSC Meeting - Orlando, FL (June 2004).
ormsc/04-06-01, June 2004.

[218] OMG. Business Process Definition MetaModel (BPDM), Revised Submission to
BEI RFP bei/2003-01-06. bei/2004-08-03, August 2004.

[219] OMG. MOF Model to Text Transformation Language, Request For Proposal.
ad/2004-04-07, April 2004.

[220] OMG. UML Profile for Enterprise Distributed Object Computing (EDOC).
http://www.omg.org/technology/documents/formal/edoc.htm, 2004.

[221] OMG. MOF 2.0/XMI Mapping Specification, Version 2.1. formal/05-09-01,
September 2005.

[222] OMG. MOF QVT Final Adopted Specification. ptc/05-11-01, November 2005.

[223] OMG. Software Process Engineering Metamodel Specification, version 1.1.
formal/05-01-06, January 2005.

[224] OMG. Business Motivation Model (BMM) Specification. dtc/2006-08-03, Au-
gust 2006.

[225] OMG. Business Process Definition MetaModel (BPDM), final submission.
bmi/2006-11-03, December 2006.

http://www.openarchitectureware.org/
http://www.openarchitectureware.org/
http://www.omg.org/mda/
http://www.omg.org/technology/documents/formal/edoc.htm

BIBLIOGRAPHY 215

[226] OMG. Business Process Modeling Notation Specification, Final Adopted Speci-
fication. dtc/06-02-01, February 2006.

[227] OMG. MDA Guide Draft 0.1.5. ormsc/06-09-03, September 2006.

[228] OMG. Meta Object Facility (MOF) Core Specification, version 2.0. formal/06-
01-01, January 2006.

[229] OMG. Object Constraint Language, OMG Available Specification, Version 2.0.
formal/06-05-01, May 2006.

[230] OMG. Ontology Definition Metamodel, Sixth Revised Submission. ad/2006-05-
01, May 2006.

[231] OMG. Revised submission for MOF Model to Text Transformation Language
RFP (ad/2004-04-07), version 1.3. ad/2006-04-03, April 2006.

[232] OMG. UML Profile and Metamodel for Services (UPMS), Request For Proposal.
soa/2006-09-09, September 2006.

[233] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification
- Final Adopted Specification. ptc/07-07-07, July 2007.

[234] OMG. Ontology Definition Metamodel, Adopted Specification. ptc/2007-09-09,
November 2007.

[235] OMG. UML Profile and Metamodel for Services - for Heterogeneous Architec-
tures (UPMS-HA). ad/2007-06-02, June 2007.

[236] OMG. UML Profile and Metamodel for Services, Initial Submission. ad/2007-
06-03, June 2007.

[237] OMG. Unified Modeling Language: Infrastructure, version 2.1.1. formal/07-02-
06, February 2007.

[238] OMG. Unified Modeling Language: Superstructure, version 2.1.1. formal/07-02-
05, February 2007.

[239] OMG. White paper: Architecture-Driven Modernization – Transforming the En-
terprise. admtf/07-12-01, December 2007.

[240] Oracle. Oracle® BPEL Process Manager, Developer’s Guide, October 2005.

[241] Chun Ouyang, Marlon Dumas, Arthur H.M. ter Hofstede, and Wil M.P. van der
Aalst. Pattern-based translation of BPMN process models to BPEL web services.
International Journal of Web Services Research (JWSR), 5(1):42–62, 2007.

[242] Terence Parr. ANTLR 3.0. http://antlr.org/, 2007.

[243] Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Lan-
guage. Pragmatic Bookshelf, May 2007.

[244] Octavian Patrascoiu. YATL:Yet Another Transformation Language. In 1st Euro-
pean MDA Workshop, MDA-IA, Twente, The Netherlands, pages 83–90, January
2004.

http://antlr.org/

216 BIBLIOGRAPHY

[245] Pellet. Pellet: The Open Source OWL DL Reasoner. http://pellet.owldl.
com/.

[246] Rachel A. Pottinger and Philip A. Bernstein. Merging Models Based on Given
Correspondences. In Proceedings of the 29th international conference on Very
large data bases (VLDB), Berlin, Germany, pages 862–873. VLDB Endowment,
2003.

[247] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic
schema matching. The VLDB Journal, 10(4):334–350, December 2001.

[248] Stephan Roser. Modellgetriebene Geschäftsprozessautomatisierung. Technical
Report 2005-09, Institute of Computer Science, Univeristy of Augsburg, April
2005.

[249] Stephan Roser and Bernhard Bauer. A Categorization of Collaborative Business
Process Modeling Techniques. In Workshop on Service oriented Solutions for
Cooperative Organizations (SoS4CO) in 7th International IEEE Conference on E-
Commerce Technology, Munich, Germany, pages 43–51, Washington, DC, USA,
July 2005. IEEE Computer Society.

[250] Stephan Roser and Bernhard Bauer. Ontology-Based Model Transformation. In
Satellite Events at the MoDELS 2005 Conference, MoDELS 2005 International
Workshops, Doctoral Symposium, Educators Symposium, Montego Bay, Jamaica,
volume 3844 of Lecture Notes in Computer Science, pages 355–356. Springer,
October 2005.

[251] Stephan Roser and Bernhard Bauer. An Approach to Automatically Generated
Model Transformations Using Ontology Engineering Space. In 2nd International
Workshop on Semantic Web Enabled Software Engineering (SWESE), Athens, GA,
USA, November 2006.

[252] Stephan Roser and Bernhard Bauer. Automatic Generation and Evolution of
Model Transformations Using Ontology Engineering Space. Journal on Data
Semantics, Springer LNCS, 2008, forthcoming.

[253] Stephan Roser, Florian Lautenbacher, and Bernhard Bauer. Generation of Work-
flow Code from DSMs. In J. Sprinkle, J. Gray, M. Rossi, and J.-P. Tolvanen, ed-
itors, 7th OOPSLA Workshop on Domain-Specific Modeling, Montreal, Canada,
number 38 in Computer Science and Information System Reports. University of
Jyväskylä, October 2007.

[254] Stephan Roser, Florian Lautenbacher, and Bernhard Bauer. MDSD light for ERP.
In 23rd Annual ACM symposium on Applied computing (SAC) - Enterprise Infor-
mation Systems Track, Fortaleza, Ceará, Brazil, March 2008.

[255] Jeff Rothenberg. Artificial intelligence, simulation & modeling, chapter The Na-
ture of Modeling, pages 75–92. John Wiley & Sons, Inc., New York, NY, USA,
1989.

[256] Thomas L. Saaty. The Analytic Hierarchy Process. McGraw-Hill, New York,
1980.

http://pellet.owldl.com/
http://pellet.owldl.com/

BIBLIOGRAPHY 217

[257] Thomas L. Saaty. How to make a decision: The Analytic Hierarchy Process.
European Journal of Operational Research, 48(1):9–26, September 1990.

[258] Thomas L. Saaty. How to make a decision: The Analytic Hierarchy Process.
Interfaces, 24(6):19–43, November-December 1994.

[259] Thomas L. Saaty. Decision Making for Leaders. RWS Publications, 3rd edition,
1999.

[260] SAP Research. Maestro. http://www.athena-ip.org, 2006.

[261] August-Wilhelm Scheer. ARIS – Vom Geschäftsprozess zum Anwendungssystem.
Springer, 3 edition, 1998.

[262] Douglas C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering.
Computer, 39(2):25–31, February 2006.

[263] Karsten A. Schulz and Maria E. Orlowska. Facilitating cross-organisational
workflows with a workflow view approach. Data & Knowledge Engineering,
51(1):109–147, April 2004.

[264] SECSE. SECSE project: Service Centric System Engineering. http://secse.
eng.it/.

[265] Ed Seidewitz. What models mean. IEEE Software, 20(5):26–32, September/Oc-
tober 2003.

[266] Shane Sendall and Wojtek Kozaczynski. Model Transformation: The Heart and
Soul of Model-Driven Software Development. IEEE Software, 20(5):42–45,
September/October 2003.

[267] Luciano Serafini, Heiner Stuckenschmidt, and Holger Wache. A Formal Inves-
tigation of Mapping Language for Terminological Knowledge. In 19th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), Edinburgh, Scotland,
pages 576–581. Professional Book Center, July/August 2005.

[268] SERIOUS. SERIOUS project: Software Evolution, Refactoring, Improvement of
Operational & Usable Systems. http://lore.cmi.ua.ac.be/serious.

[269] Pavel Shvaiko and Jérôme Euzenat. A Survey of Schema-Based Matching Ap-
proaches. Journal on Data Semantics IV, 3730:146–171, 2005.

[270] Charles C. Snow, Raymond E. Miles, and Henry J. Coleman. Managing 21st
Century Network Organizations. Organizational Dynamics, 20(3):5–20, 1992.

[271] Arnor Solberg, Robert France, and Raghu Reddy. Navigating the MetaMuddle.
In 4th Workshop in Software Model Engineering (WiSME’05), Montego Bay, Ja-
maica, 2005.

[272] Sourceforge Project. Ontology-based Model Transformation (OntMT). http:
//sourceforge.net/projects/ontmt/.

[273] Sourceforge Project. QVT Relations Parser. http://sourceforge.net/
projects/qvtparser/.

http://www.athena-ip.org
http://secse.eng.it/
http://secse.eng.it/
http://lore.cmi.ua.ac.be/serious
http://sourceforge.net/projects/ontmt/
http://sourceforge.net/projects/ontmt/
http://sourceforge.net/projects/qvtparser/
http://sourceforge.net/projects/qvtparser/

218 BIBLIOGRAPHY

[274] Sourceforge Project. Token Analysis. http://sourceforge.net/projects/
tokenanalysis/.

[275] Sourceforge Project. Workflow Generation Framework. http://sourceforge.
net/projects/wf-codegen.

[276] Günter Spur, Kai Mertins, and Roland Jochem. Integrated Enterprise Modelling.
Beuth Verlag, 1996.

[277] Fabian Stäber, Giorgio Sobrito, Jörg P. Müller, Udo Bartlang, and Thomas Friese.
Interoperability challenges and solutions in Automotive Collaborative Product
Development. In Enterprise Interoperability II: New Challenges and Approaches
(I-ESA’07), pages 709–720. Springer, March 2007.

[278] Tomas Stahl and Markus Völter. Model-Driven Software Development: Technol-
ogy, Engineering, Management. Wiley, May 2006.

[279] Jim Steel and Jean-Marc Jézéquel. Model Typing for Improving Reuse in Model-
Driven Engineering. In 8th International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS), Montego Bay, Jamaica, volume 3713 of
Lecture Notes in Computer Science, pages 84–96. Springer, October 2005.

[280] Paul A. Strassmann. Is Outsourcing Profitable? Lecture at George Mason Uni-
versity, March 2006.

[281] StringTemplate. StringTemplate. http://www.stringtemplate.org/.

[282] Gerson Sunyé, Damien Polleta, Yves Le Traon, and Jean-Marc Jézéquel. Refac-
toring UML Models. In 4th International Conference on The Unified Model-
ing Language Conference, Modeling Languages, Concepts, and Tools, Toronto,
Canada, volume 2185 of Lecture Notes in Computer Science, pages 134–148.
Springer, October 2001.

[283] Peter Swithinbank, Mandy Chessell, Tracy Gardner, Catherine Griffin, Jessica
Man, Helen Wylie, and Larry Yusuf. Patterns: Model-Driven Development Using
IBM Rational Software Architect. IBM Redbook SG24-7105-00b, December
2005.

[284] Janos Sztipanovits and Gabor Karsai. Model-Integrated Computing. Computer,
30(4):110–111, April 1997.

[285] Gabriele Taentzer. AGG: A Graph Transformation Environment for Modeling and
Validation of Software. In 2nd International Workshop on Application of Graph
Transformations with Industrial Relevance (AGTIVE), Charlottesville, VA, USA,
volume 3062 of Lecture Notes in Computer Science, pages 446–453. Springer,
September 2003.

[286] Satish Thatte. XLANG: Web Services for Business Process Design. Microsoft,
2001.

[287] D. A. Thomas and B. M. Barry. Model-Driven Development: the Case for
Domain-Oriented Programming. In Companion of the 18th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 2–7, October 2003.

http://sourceforge.net/projects/tokenanalysis/
http://sourceforge.net/projects/tokenanalysis/
http://sourceforge.net/projects/wf-codegen
http://sourceforge.net/projects/wf-codegen
http://www.stringtemplate.org/

BIBLIOGRAPHY 219

[288] Juha-Pekka Tolvanen. Making Model-Based Code Generation Work. Embedded
Systems Europe, 8(60):36–38, August/September 2004.

[289] Juha-Pekka Tolvanen and Steven Kelly. Domänenspezifische modellierung. Ob-
jektspektrum, 4:30–34, July/August 2004.

[290] Laurence Tratt. The MT Model Transformation Language. In 21st Annual ACM
symposium on Applied computing (SAC) - Model Transformation Track, Dijon,
France, pages 1296–1303. ACM, April 2006.

[291] TRDDC. ModelMorf: A Model Transformer. http://www.tcs-trddc.com/
ModelMorf/index.htm.

[292] UML 2 Semantics Project. UML 2 Semantics Project. http://www.cs.
queensu.ca/~stl/internal/uml2/index.html.

[293] Will M.P. van der Aalst and Arthur H.M. ter Hofstede. YAWL: Yet Another
Workflow Language. Information Systems, 30(4):245–275, 2005.

[294] Jussi Vanhatalo, Hagen Völzer, and Frank Leymann. Faster and More Focused
Control-Flow Analysis for Business Process Models Through SESE Decompo-
sition. In 5th International Conference Service-Oriented Computing (ICSOC),
Vienna, Austria, volume 4749 of Lecture Notes in Computer Science, pages 43–
55. Springer, September 2007.

[295] Dóniel Varró and Andrós Pataricza. Generic and Meta-transformations for Model
Transformation Engineering. In 7th International Conference on the Unified Mod-
eling Language, Lisbon, Portugal, volume 3273 of Lecture Notes in Computer
Science, pages 290–304. Springer, October 2004.

[296] Dóniel Varró, Gergely Varró, and Andrós Pataricza. Designing the auto-
matic transformation of visual languages. Science of Computer Programming,
44(2):205–227, August 2002.

[297] Velocity. The Apache Velocity Project. http://velocity.apache.org/.

[298] Eelco Visser. A survey of rewriting strategies in program transformation systems.
Electronic Notes in Theoretical Computer Science, 1st International Workshop
on Reduction Strategies in Rewriting and Programming (WRS’01), Utrecht, The
Netherlands, 57:109–143, December 2001.

[299] Didier Vojtisek and Jean-Marc Jázáquel. MTL and Umlaut NG: Engine and
Framework for Model Transformation, 2004.

[300] W3C. Rule Interchange Format (RIF) Working Group. http://www.w3.org/
2005/rules/wiki/RIF_Working_Group.

[301] W3C. XSL Transformations (XSLT), Version 1.0. http://www.w3.org/TR/
xslt, November 1999.

[302] W3C. Web Services Description Language (WSDL) 1.1. http://www.w3.org/
TR/wsdl, March 2001.

http://www.tcs-trddc.com/ModelMorf/index.htm
http://www.tcs-trddc.com/ModelMorf/index.htm
http://www.cs.queensu.ca/~stl/internal/uml2/index.html
http://www.cs.queensu.ca/~stl/internal/uml2/index.html
http://velocity.apache.org/
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

220 BIBLIOGRAPHY

[303] W3C. Web Service Choreography Interface (WSCI) 1.0. http://www.w3.org/
TR/wsci, August 2002.

[304] W3C. OWL-S: Semantic Markup for Web Services. http://www.w3.org/
Submission/OWL-S, November 2004.

[305] W3C. OWL Web Ontology Language for Services (OWL-S). http://www.w3.
org/Submission/2004/07/, July 2004.

[306] W3C. OWL Web Ontology Language Semantics and Abstract Syntax. http:
//www.w3.org/TR/owl-semantics/, February 2004.

[307] W3C. RDF Primer. http://www.w3.org/TR/rdf-primer/, February 2004.

[308] W3C. RDF Semantics. http://www.w3.org/TR/rdf-mt/, February 2004.

[309] W3C. RDF Vocabulary Description Language 1.0: RDF Schema. http://www.
w3.org/TR/rdf-schema/, February 2004.

[310] W3C. Resource Description Framework (RDF): Concepts and Abstract Syntax.
http://www.w3.org/TR/rdf-concepts/, February 2004.

[311] W3C. SKOS Mapping Vocabulary Specification. http://www.w3.org/2004/
02/skos/mapping/spec/, November 2004.

[312] W3C. Web Services Architecture, W3C Working Group Note. http://www.
w3.org/TR/ws-arch/, February 2004.

[313] W3C. Web Services Choreography Description Language Version 1.0. http:
//www.w3.org/TR/ws-cdl-10/, November 2005.

[314] W3C. Extensible Markup Language (XML) 1.0 (Fourth Edition). http://www.
w3.org/TR/xml/, September 2006.

[315] W3C. SPARQL Query Language for RDF. http://www.w3.org/TR/
rdf-sparql-query/, November 2007.

[316] W3C. XML Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20/,
January 2007.

[317] Ueli Wahli, Larissa Leybovich, Eric Prevost, Russell Scher, Andre Venancio,
Sascha Wiederkom, and Neil MacKinnon. Business Process Management: Mod-
eling through Monitoring Using WebSphere V6 Products. IBM Redbook SG24-
7148-00, April 2006.

[318] John J. Wallis and C. North Douglas. Measuring the transactions sector in
the American economy, volume volume of series. University of Chicago Press,
Chicago, Long-term factors in American economic growth edition, 1986.

[319] WfMC. Process Definition Interface – XML Process Definition Language.
WFMC-TC-1025, October 2005.

[320] Stephen White. Best Practices for Using WebSphere Business Modeler and Mon-
itor. IBM Redpaper REDP-4159-00, April 2006.

http://www.w3.org/TR/wsci
http://www.w3.org/TR/wsci
http://www.w3.org/Submission/OWL-S
http://www.w3.org/Submission/OWL-S
http://www.w3.org/Submission/2004/07/
http://www.w3.org/Submission/2004/07/
http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/2004/02/skos/mapping/spec/
http://www.w3.org/2004/02/skos/mapping/spec/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/xpath20/

BIBLIOGRAPHY 221

[321] Ian Wilkie, Adrian King, Mike Clarke, Chas Weaver, Chris Raistrick, and Paul
Francis. UML ASL Reference Guide for ASL Language Level 2.5 – Manual Revi-
sion D. Kennedy Carter, 2003.

[322] Oliver E. Williamson. Markets and Hierarchies: Analysis and Antitrust Implica-
tions. Free Press, 1975.

[323] Oliver E. Williamson. Transaction Cost Economics. Handbook of Industrial
Organization, 1:135–182, 1989.

[324] Edward D. Willink. UMLX: A Graphical Transformation Language for MDA.
In 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Anaheim, CA, pages 13–24, 2003.

[325] Manuel Wimmer, Andrea Schauerhuber, Michael Strommer, Wieland Schwinger,
and Gerti Kappel. A Semi-automatic Approach for Bridging DSLs with UML.
In J. Sprinkle, J. Gray, M. Rossi, and J.-P. Tolvanen, editors, 7th OOPSLA Work-
shop on Domain-Specific Modeling, Montreal, Canada, number 38 in Computer
Science and Information System Reports. University of Jyväskylä, October 2007.

[326] Manuel Wimmer, Michael Strommer, Horst Kargl, and Gerhard Kramler. To-
wards Model Transformation Generation By-Example. In HICSS-40 Hawaii In-
ternational Conference on System Sciences, Hawaii, USA, page 285b. IEEE Com-
puter Society, January 2007.

[327] Glynn Winskel. The Formal Semantics of Programming Languages: An Intro-
duction. MIT Press, 1993.

[328] Xactium. XMF Mosaic. http://www.xactium.com/.

[329] XDoclet. XDoclet Attribute Oriented Programming. http://xdoclet.
sourceforge.net/xdoclet/index.html.

[330] Jing Zhang, Yuehua Lin, and Jeff Gray. Model-Driven Software Development,
volume 1, chapter Generic and Domain-Specific Model Refactoring Using a
Model Transformation Engine, pages 199–218. Springer, Heidelberg, Germany,
2005.

http://www.xactium.com/
http://xdoclet.sourceforge.net/xdoclet/index.html
http://xdoclet.sourceforge.net/xdoclet/index.html

Acronyms

Abstract Syntax TS Grammarware TS

ADM Architecture-Driven Modernization

AGG Attributed Graph Grammar

AGILE Agile Software Development of Embedded Systems

AgilPro Agile Business Processes With Service Enabled Applications

AHP Analytic Hierarchy Process

AJAX Asynchronous JavaScript and XML

AM3 ATLAS MegaModel Management

AMPLE Aspect-Oriented, Model-driven Product Line Engineering

AMW Atlas ModelWeaver

ANTLR ANother Tool for Language Recognition

AOSD Aspect-oriented Software Development

API Application Programming Interface

ASL Action Specification Language

ATHENA IP Advanced Technologies for Interoperability of Heterogeneous Enterprise
Networks and their Applications

ATL Atlas Transformation Language

AToM3 A Tool for Multi-formalism and Meta-Modeling

ARIS Architecture of Integrated Information Systems

B2B Business-To-Business

BMM Business Motivation Model

BPDM Business Process Definition Metamodel

BPEL4WS Business Process Execution Language for Web Services

BPML Business Process Modeling Language

224 BIBLIOGRAPHY

BPMN Business Process Modeling Notation

BPSS Business Process Specification Schema

BOTL Bidirectional Object-oriented Transformation Language

CASE Computer-aided Software Engineering

CBP Cross-organisational Business Process

CIM Computation Independent Model

CL Common Logic

CORBA Common Object Request Broker Architecture

C-OWL Context OWL

CRM Customer Relationship Management

C-SAW Constraint-Specification Aspect Weaver

CWM Common Warehouse Metamodel

DBMS TS Dataware and Database Management Systems TS

DL Description Logic

DSL Domain Specific Language

DSM Domain Specific Model

DSWM Domain Specific Weaving Metamodel

EAI Enterprise Application Integration

ebXML eBusiness eXtensible Markup Language

EDOC Enterprise Distributed Object Computing

EMF Eclipse Modeling Framework

EMOF Essential MOF

EODM EMF Ontology Definition Metamodel

EPC Event-driven Process Chain

eEPC extended Event-driven Process Chain

ERP Enterprise Resource Planning

ES Elementary Service

ETP European Technology Platform

Fujaba From UML to Java And Back Again

BIBLIOGRAPHY 225

GReAT Graph Rewriting and Transformation language

GME Generic Modeling Environment

GMT Generative Modeling Tools

GPL General Public License

ICT Information and Communication Technology

IT Information Technology

IDE Integrated Development Environment

IDEAS Interoperability Development for Enterprise Application and Software

IEM Integrated Enterprise Modelling

J2EE Java 2 Platform Enterprise Edition

Jamda Java Model Driven Architecture

jBPM JBoss workflow engine

JET Java Emitter Templates

JMI Java Metadata Interface

KM3 Kernel MetaMetaModel

LHS left-hand side

LiMo AgilPro Light Modeler

MAS Multi-agent Systems

MDA Model Driven Architecture

MDA TS Modelware and Model-based Technology TS

MDD Model Driven Development

MDDi Model Driven Development integration

MDE Model Driven Engineering

MDR Metadata Repository

MDSD Model Driven Software Development

MDSE Model Driven Software Engineering

MIC Model Integrated Computing

MO2GO Method for Object Oriented Business Process Optimization

ModelCVS Semantic Infrastructure for Model-based Tool Integration

226 BIBLIOGRAPHY

MOLA MOdel transformation LAnguage

MT Model Transformation

MTBE Model Transformation Generation By-Example

MTL Model Transformation Language

MTF Model Transformation Framework

MODELPLEX MODELling solution for comPLEX software systems

MODELWARE MODELling solution for softWARE systems

MOF Meta Object Facility

MOMOCS MOdel driven MOdernisation of Complex Systems

NESSI Networked European Software and Services Initiative

OASIS Organization for the Advancement of Structured Information Standards

oAW openArchitectureWare

OCL Object Constraint Language

ODM Ontology Definition Metamodel

OEM Original Equipment Manufacturer

OMG Object Management Group

OntMT Ontology-based Model Transformation

Ontology TS Ontologyware and Ontology Engineering TS

OTE Object Template Expression

OWL Web Ontology Language

OWL-S Web Ontology Language for Services

P2P peer-to-peer

PIM Platform Independent Model

PIM4SOA Platform Independent Model for Service Oriented Architectures

PM Platform Model

PO Purchasing Organisation

PP Private Process

PSM Platform Specific Model

PTI Property Template Item

BIBLIOGRAPHY 227

QVT Query, Views, and Transformation

RDF Resource Description Framework

RDF(S) RDF Schema

RHS right-hand side

RIF Rule Interchange Format

RO Reference Ontology

SECSE Service Centric System Engineering

Semaphore Model-based Semantic Mapping Framework

SERIOUS Software Evolution, Refactoring, Improvement of Operational & Usable
Systems

SESE Single-Entry-Single-Exit Component

SKOS Simple Knowledge Organisation Systems

SMAIL Semantic Mediation and Application Interoperability Language

SME Small and Medium Enterprise

SOA Service Oriented Architecture

SOR Statement of Requirements

SPARQL SPARQL Protocol and RDF Query Language

SPEM Software Process Engineering Metamodel

SPL Software Product Line

SPL4AOX Service Modeling Language for MID innovatorAOX

SU Supplier

TBox terminological component / vocabulary in knowledge base

TM Topic Maps

TS Technological Space

UML Unified Modeling Language

UPMS UML Profile and Metamodel for Services

UPMS–HA UML Profile and Metamodel for Services – for Heterogeneous
Architectures

URI Uniform Resource Identifier

VIATRA VIsual Automated model TRAnsformations

228 BIBLIOGRAPHY

VP View Process

W3C World Wide Web Consortium

WS-BPEL Web Services Business Process Execution Language

WSA Web Service Architecture

WS–CDL Web Services Choreography Description Language

WSDL Web Services Description Language

WSFL Web Services Flow Language

WCSI Web Service Choreography Interface

XMI XML Metadata Interchange

XML Extensible Markup Language

XML TS Structured Document TS

XPath XML Path Language

XPDL XML Process Definition Language

XSLT Extensible Stylesheet Language Transformation

YATL Yet Another Transformation Language

YAWL Yet Another Workflow Language

List of Figures

1.1 Scenario realizing cross-organisational business process modelling and
execution . 2

1.2 Objectives overview . 5
1.3 Structure of the thesis . 8

2.1 PIM4SOA metamodel: service modelling 13
2.2 PIM4SOA metamodel: process modelling 14
2.3 UML profile for PIM4SOA: service modelling 15
2.4 UML profile for PIM4SOA: process modelling 16
2.5 Orchestration . 18
2.6 Choreography . 18
2.7 Executable, abstract, and collaborative processes 19
2.8 PIM4SOA metamodel CBP-extension: Providers 20
2.9 PIM4SOA metamodel CBP-extension: ViewTasks 21
2.10 Quality Attribute . 22
2.11 AHP example: decomposition tree . 24
2.12 Reference model for conceptual integration 29

3.1 Tenets of MDA . 34
3.2 Megamodel: system, model, and representationOf 39
3.3 Megamodel: set and elementOf . 39
3.4 Modelling languages, metamodels, models and their relationships . . . 39
3.5 The 3+1 metamodelling hierarchy . 40
3.6 Basic concepts of model transformation 45
3.7 Feature diagram representing the top-level areas of variation 48
3.8 QVT languages architecture . 54
3.9 Relations metamodel: transformation and model types 54
3.10 Relations metamodel: relations and domains 55
3.11 Relations metamodel: patterns and templates 57
3.12 Relations metamodel: keys and object creation 58

4.1 MDSD steps . 62
4.2 Coordination topologies . 64
4.3 Brokerless architecture . 65
4.4 Central broker architecture . 65
4.5 Decentral broker architecture . 66
4.6 Case study: process overview . 67
4.7 PIM4SOA model for brokerless architecture 68

230 LIST OF FIGURES

4.8 PIM4SOA model using composite collaboration 69
4.9 PIM4SOA instance central broker . 70
4.10 Application of transformation rules 1.1-1.3 71
4.11 Application of transformation rule 2 72
4.12 Application of transformation rules 3.1-3.2 73
4.13 Create offer process modelled with AgilPro Light Modeller 75
4.14 Model and code generation framework 79
4.15 Code generation . 80
4.16 Create offer process as common process model 82
4.17 Block-structured create offer process as standard process model in UML

syntax . 82

5.1 Application example: collaborative product development 88
5.2 Multi-criteria decision model for ICT architectures 89
5.3 Methodology for evaluation and decision model 90
5.4 AHP decomposition tree for CBP evaluation model 95
5.5 Sensitivity analysis chart . 105
5.6 Sensitivity analysis chart . 106

6.1 Scenario realizing CBP modelling and execution 111
6.2 Ontology-based model transformation: overall approach 113
6.3 Modelling language, semantic mapping, semantic domain and their rep-

resentations . 114
6.4 Procedure of automated mapping generation 115
6.5 Procedure of model transformation evolution 116
6.6 OntMT as part of a semantic-enabled modelling and development suite . 117
6.7 Sem-MT-Tool component architecture 117
6.8 Inference component . 118
6.9 Semantics of model transformation modification 119
6.10 Two example metamodels . 120
6.11 Model manipulator . 122
6.12 Bootstrapping patterns for rules 3.1-3.4 126
6.13 Reuse scenario . 130
6.14 Metamodels MMa and MMb . 131
6.15 Metamodel MMc . 131
6.16 External view on higher-order model transformation 134
6.17 Internal view on higher-order model transformation 135
6.18 Abstract syntax of the higher-level model transformation language . . . 136
6.19 Modification semantics internal data 139
6.20 One-to-one substitution example . 141
6.21 One-to-many substitution example . 142
6.22 Removal substitution example . 143
6.23 Example for property is not part of class problem 144
6.24 Accessing B.name in OWL via an Intersection 151
6.25 Metamodel Process . 160
6.26 Metamodel EPC . 160
6.27 Reference ontology for process modelling 161
6.28 Metamodel SPL4AOX . 173

LIST OF FIGURES 231

6.29 Metamodel PIM4SOA . 174
6.30 Metamodel UPMS . 175
6.31 Application of OntMT to model exchange and model transformation

evolution . 183

List of Tables

2.1 UML profile definition for PIM4SOA 17
2.2 AHP example: rating size of house . 24
2.3 AHP example: local and global priorities 24

5.1 Scenario 1: modification of CBPs . 94
5.2 Patterns and tactics that can be used to support scenario 1 to 11 98
5.3 Influence of contingencies on scenario ratings 99
5.4 Priority comparison matrix for the first level factors 103
5.5 Priority comparison matrix for the second level factor modifiability . . . 103
5.6 Rating scenario 1 . 103
5.7 Overall subjective measure . 104
5.8 Overall objective measure . 104
5.9 Overall subjective measure . 106
5.10 Overall objective measure . 106

6.1 Correlation algorithm . 123
6.2 UML to OWL mapping . 149
6.3 Available relationship types . 153
6.4 Obtain reasoning results . 156
6.5 Calculate substitution proposal . 157
6.6 Rating of substitution proposals . 158
6.7 Choosing a substitution proposal . 158
6.8 Binding of the Process metamodel to the reference ontology 162
6.9 Binding of the EPC metamodel to the reference ontology 163
6.10 Rating of the substitution proposals 172
6.11 Comparison of approaches supporting MDE evolution scenarios 192

B.1 Scenario 1: modification of CBPs . 253
B.2 Scenario 2: change of partners in CBP 253
B.3 Scenario 3: incremental development of CBPs 254
B.4 Scenario 4: reuse of CBPs . 254
B.5 Scenario 5: change of CBP protocol specification 254
B.6 Scenario 6: change of elementary services 255
B.7 Scenario 7: privacy of internal ESs related data 255
B.8 Scenario 8: privacy of internal CBPs realizations 255
B.9 Scenario 9: reuse of elementary services 256
B.10 Scenario 10: change of ES’s interfaces 256
B.11 Scenario 11: development of CBP variants 257

234 LIST OF TABLES

B.12 Scenario 12: bottle-neck . 257
B.13 Scenario 13: security overhead . 258
B.14 Scenario 14: versioning . 258
B.15 Scenario 15: monitoring . 258
B.16 Influence of contingencies on scenario ratings 1-5 259
B.17 Influence of contingencies on scenario ratings 6-10 259
B.18 Influence of contingencies on scenario ratings 11-15 260
B.19 Priority comparison matrix for the first level factors 261
B.20 Priority comparison matrix for second level factor modifiability 261
B.21 Priority comparison matrix for second level factor privacy 261
B.22 Priority comparison matrix for second level factor reuse 262
B.23 Priority comparison matrix for second level factor interoperability . . . 262
B.24 Priority comparison matrix for second level factor efficiency 262
B.25 Priority comparison matrix for second level factor manageability 262
B.26 Rating scenario 1 . 263
B.27 Rating scenario 2 . 263
B.28 Rating scenario 3 . 263
B.29 Rating scenario 4 . 264
B.30 Rating scenario 5 . 264
B.31 Rating scenario 6 . 264
B.32 Rating scenario 7 . 264
B.33 Rating scenario 8 . 264
B.34 Rating scenario 9 . 264
B.35 Rating scenario 10 . 264
B.36 Rating scenario 11 . 265
B.37 Rating scenario 12 . 265
B.38 Rating scenario 13 . 265
B.39 Rating scenario 14 . 265
B.40 Rating scenario 15 . 265
B.41 Priority comparison matrix for the first level factors 268
B.42 Priority comparison matrix for second level factor modifiability 268
B.43 Priority comparison matrix for second level factor privacy 268
B.44 Priority comparison matrix for second level factor reuse 269
B.45 Priority comparison matrix for second level factor interoperability . . . 269
B.46 Priority comparison matrix for second level factor efficiency 269
B.47 Priority comparison matrix for second level factor manageability 269
B.48 Rating scenario 1 . 270
B.49 Rating scenario 2 . 270
B.50 Rating scenario 3 . 270
B.51 Rating scenario 4 . 271
B.52 Rating scenario 5 . 271
B.53 Rating scenario 6 . 271
B.54 Rating scenario 7 . 271
B.55 Rating scenario 8 . 271
B.56 Rating scenario 9 . 271
B.57 Rating scenario 10 . 271
B.58 Rating scenario 11 . 272
B.59 Rating scenario 12 . 272

LIST OF TABLES 235

B.60 Rating scenario 13 . 272
B.61 Rating scenario 14 . 272
B.62 Rating scenario 15 . 272

C.1 Rules for symmetry . 277
C.2 Rules for inverse . 277
C.3 Rules for transitivity . 278
C.4 Rules for equality reduction, part 1 . 279
C.5 Rules for equality reduction, part 2 . 280
C.6 Containments . 280
C.7 Containment with overlap . 281
C.8 A �

�n
i�1 Ai ^ 1 ¤ m ¤ n, part 1 . 282

C.9 A �
�n

i�1 Ai ^ 1 ¤ m ¤ n, part 2 . 283
C.10 A �

�n
i�1 Ai ^ 1 ¤ m ¤ n, part 1 . 284

C.11 A �
�n

i�1 Ai ^ 1 ¤ m ¤ n, part 2 . 285
C.12 A � B, part 1 . 286
C.13 A � B, part 2 . 287

Listings

3.1 Transformation example . 55
3.2 Relation and domain example . 56
3.3 When and where clauses example . 56
3.4 Pattern and template example . 57
3.5 Keys and object creation example . 59
4.1 BPEL code generated in SPL4AOX 76
4.2 BPEL code generated in AgilPro . 77
4.3 Generated BPEL code for start node 82
4.4 BPEL instructions for OfferID input data of Create Offer node 83
4.5 BPEL instructions for execution of Create Offer node 83
4.6 BPEL instructions generated for processing alternative 84
6.1 Sample reasoning rules . 118
6.2 Example model transformation specification (notation similar to QVT) . 120
6.3 Model transformation after applying one-to-one substitution 120
6.4 Model transformation after applying one-to-many substitution 120
6.5 Bootstrapping: mapping classes . 125
6.6 Bootstrapping: mapping mandatory attributes 125
6.7 Bootstrapping: mapping optional attributes 126
6.8 Bootstrapping: mapping mandatory composition associations 127
6.9 Bootstrapping: mapping optional composition associations 127
6.10 Bootstrapping: mapping mandatory associations 128
6.11 Bootstrapping: mapping optional associations 128
6.12 QVT specification of Mt:MaÑMb . 132
6.13 Example modification program . 137
6.14 Compute substitution items for OTE 140
6.15 Execution of one-to-one substitution 141
6.16 Example one-to-one substitution . 142
6.17 Example one-to-many substitution . 143
6.18 Example removal substitution . 143
6.19 OCL constraint: property part of class 145
6.20 OCL constraint: substitution of property failed 145
6.21 OCL constraint: substitution of class failed 145
6.22 OCL constraint: value of PTI must have a type compatible with the type

of the referred property . 146
6.23 OCL constraint: OTE must refer to a class that belongs to the metamodel

of the domain . 146
6.24 OWL representation of RO . 148
6.25 OWL representation of metamodels 149

238 LISTINGS

6.26 Representing relationships between classes in OWL DL 150
6.27 Representing relationships between classes in OWL Full 150
6.28 Relationships between datatype properties with OWL Full 152
6.29 Reasoning rules using simple class definitions 153
6.30 Rules matching A �

�n
i�1 Ai ^ 1 ¤ m ¤ n 154

6.31 Rules matching A �
�n

i�1 Ai ^ 1 ¤ m ¤ n 154
6.32 Rules matching A � B . 155
6.33 Bootstrapping top relations code for classes 164
6.34 Bootstrapping when-clauses for containment associations 164
6.35 Bootstrapping associations as separate relations 164
6.36 Reasoning results for Process . 165
6.37 Substitution proposal 1 (SP1) . 166
6.38 QVT Relations code generated with SP1 166
6.39 Additional reasoning results used in SP2 167
6.40 Substitution proposal 2 (SP2) . 168
6.41 QVT Relations code generated with SP2 169
6.42 Substitution proposal 3 (SP3) . 170
6.43 QVT Relations code generated with SP3 170
6.44 SPL4AOXtoPIM4SOA: simple model element mapping 176
6.45 SPL4AOXtoPIM4SOA: collaboration nesting 176
6.46 SPL4AOXtoPIM4SOA: participation of service providers in collaborations 177
6.47 SPL4AOXtoPIM4SOA: service provider roles 178
6.48 PIM4SOAtoUPMSmapping MT modification program 179
6.49 SPL4AOXtoUPMS: one-to-one substitution 180
6.50 SPL4AOXtoUPMS: one-to-many substitution - classes 181
6.51 SPL4AOXtoUPMS: one-to-many Substitution - properties 181
6.52 SPL4AOXtoUPMS: removal and constraining 181
A.1 AgilPro case study generated code . 239
C.1 QVT model transformation Mt:MaÑMc that is generated for the library

example . 275
C.2 The bootstrap model transformation in QVT Relations syntax 288
C.3 Reasoning results for classes . 291
C.4 Reasoning results for associations . 291
C.5 Reasoning results for properties . 292
C.6 The generated model transformation in QVT Relations syntax 293
C.7 The input model transformation in QVT relational syntax 298
C.8 The output model transformation in QVT relational syntax 303

Appendix A

CBP Enactment

Listing A.1: AgilPro case study generated code
1 <?xml version="1.0" encoding="UTF-8"?>
<process name="CreateOffer"
xmlns="http://schemas.xmlsoap.org

/ws/2003/03/business-process/"
5 xmlns:acc="urn:samples:account"

xmlns:agi="urn:samples:agilpro"
xmlns:atm="urn:samples:atm"
xmlns:bpel="http://schemas.xmlsoap.org

/ws/2003/03/business-process/"
10 xmlns:tic="urn:samples:ticket"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
targetNamespace="urn:samples:atm">
<partnerLinks >

15 <!-- relationship with the ATM -->
<partnerLink myRole="FrontEnd" name="atm"
partnerLinkType="atm:Atm-Front"/>
<!-- relationship with the ticket issuer -->
<partnerLink name="ticket" partnerRole="TicketIssuer"

20 partnerLinkType="atm:Front-Ticket" />
<!-- relationship with the account system -->
<partnerLink name="account" partnerRole="AccountSystem"
partnerLinkType="atm:Front-Account" />
<!-- relationship with the agilpro framework -->

25 <partnerLink name="agilpro" partnerRole="AgilproIssuer"
partnerLinkType="atm:Front-Agilpro" />

</partnerLinks >
<variables >
<!-- ATM connection request -->

30 <variable name="connectReq" messageType="atm:connectRequest"/>
<!-- ticket creation request -->
<variable name="ticketReq"
messageType="tic:ticketRequest" name="ticketReq"/>
<!-- ticket number wrapper -->

35 <variable name="ticketMsg"
messageType="tic:ticketMessage"/>
<!-- ATM connection flag -->
<variable name="connected" type="xsd:boolean"/>
<!-- customer session flag -->

40 <variable name="logged" type="xsd:boolean"/>
<variable name="connectToAgilproReq"

240 CBP Enactment

messageType="agi:connectToAgilproRequest"/>
<variable name="setApplicationReq"
messageType="agi:setApplicationRequest"/>

45 <variable name="setValueToObjectReq"
messageType="agi:setValueToObjectRequest"/>
<variable name="getValueFromObjectReq"
messageType="agi:getValueFromObjectRequest"/>
<variable name="getValueFromObjectRes"

50 messageType="agi:getValueFromObjectResponse"/>
<variable name="startActionReq"
messageType="agi:startActionRequest"/>
<variable name="endActionReq"
messageType="agi:endActionRequest"/>

55 <variable name="nextActionReq"
messageType="agi:nextActionRequest"/>
<variable name="checkGuardReq"
messageType="agi:checkGuardRequest"/>
<variable name="checkGuardRes"

60 messageType="agi:checkGuardResponse"/>
<variable name="disconnectAgilproReq"
messageType="agi:disconnectAgilproRequest"/>
<variable name="disconnectAgilproRes"
messageType="agi:disconnectAgilproResponse"/>

65 </variables >
<correlationSets >
<!-- conversation with a connected ATM -->
<correlationSet name="atmInteraction"
properties="atm:ticketId"/>

70 </correlationSets >
<!-- structure of process -->
<sequence name="mainSequence">
<!-- receive a connection request -->
<receive name="connectIn" createInstance="yes"

75 portType="atm:FrontEnd" operation="connect"
partnerLink="atm" variable="connectReq"/>

<!-- generate a ticket number -->
<invoke name="createTicket" partnerLink="ticket"
portType="tic:TicketIssuer" operation="createTicket"

80 inputVariable="ticketReq" outputVariable="ticketMsg">
<correlations >
<correlation initiate="yes" pattern="in"
set="atmInteraction"/>

</correlations >
85 </invoke>

<!-- initialize the status flags -->
<assign name="initConnection">
<copy>
<from expression="true()"/>

90 <to variable="connected"/>
</copy>
<copy>
<from expression="false()"/>
<to variable="logged"/>

95 </copy>
</assign>
<!-- send the ticket number back to the ATM -->
<reply name="connectOut"
portType="atm:FrontEnd" operation="connect"

100 partnerLink="atm" variable="ticketMsg">

241

<correlations >
<correlation set="atmInteraction"/>
</correlations >
</reply>

105 <!-- handle the ATM connection -->
<scope name="connectionUnit"
variableAccessSerializable="no">
<variables >
<!-- customer log on request -->

110 <variable name="logOnReq"
messageType="atm:logOnRequest"/>
<!-- connection status response -->
<variable name="statusRsp"
messageType="atm:statusResponse"/>

115 </variables >
<sequence name="START">
<receive
portType="atm:FrontEnd" operation="connectToAgilpro"
partnerLink="atm" variable="connectToAgilproReq">

120 <correlations >
<correlation set="atmInteraction"/>
</correlations >
</receive>
<assign name="copy_Ticketnumber">

125 <copy>
<from part="Ticketnumber" variable="connectToAgilproReq"/>
<to part="Ticketnumber" variable="nextActionReq"/>
</copy>
</assign>

130 <scope name="Defaultname">
<sequence >
<empty/>
</sequence >
</scope>

135 <scope name="CreateOffer">
<sequence >
<empty/>
<assign name="set_App_OfferManagement">
<copy>

140 <from part="Ticketnumber" variable="nextActionReq"/>
<to part="Ticketnumber" variable="setApplicationReq"/>
</copy>
<copy>
<from expression="string(

145 'eu.emundo.agilpro.fw.fe.erp.intf.AngebotUi ')"/>
<to part="JavaClassIN" variable="setApplicationReq"/>
</copy>
<copy>
<from expression="string('Assistant ')"/>

150 <to part="RoleIN" variable="setApplicationReq"/>
</copy>
<copy>
<from expression="string('CreateOffer ')"/>
<to part="ActionNameIN" variable="setApplicationReq"/>

155 </copy>
</assign>
<invoke name="setApplication_OfferManagement"
portType="agi:AgilproIssuer" operation="setApplication"
partnerLink="agilpro" inputVariable="setApplicationReq">

242 CBP Enactment

160 <correlations >
<correlation pattern="out" set="atmInteraction"/>
</correlations >
</invoke>
<assign name="set_DTO_Offerheader">

165 <copy>
<from part="Ticketnumber" variable="nextActionReq"/>
<to part="Ticketnumber" variable="setValueToObjectReq"/>
</copy>
<copy>

170 <from expression="string(
'eu.emundo.agilpro.fw.fe.erp.intf.AngebotPanelEn ')"/>
<to part="DataTypeIN" variable="setValueToObjectReq"/>
</copy>
<copy>

175 <from expression="string('TAB_ANGEBOT_KOPFDATEN ')"/>
<to part="ValueIN" variable="setValueToObjectReq"/>
</copy>
<copy>
<from expression="string('Offerheader ')"/>

180 <to part="NameIN" variable="setValueToObjectReq"/>
</copy>
<copy>
<from expression="number('-1')"/>
<to part="HashCodeIN" variable="setValueToObjectReq"/>

185 </copy>
</assign>
<invoke name="setValueToObject_Offerheader"
portType="agi:AgilproIssuer"
operation="setValueToObject"

190 partnerLink="agilpro"
inputVariable="setValueToObjectReq">
<correlations >
<correlation pattern="out" set="atmInteraction"/>
</correlations >

195 </invoke>
<assign name="set_DTO_OfferID">
<copy>
<from part="Ticketnumber" variable="nextActionReq"/>
<to part="Ticketnumber" variable="setValueToObjectReq"/>

200 </copy>
<copy>
<from expression="string('ID')"/>
<to part="DataTypeIN" variable="setValueToObjectReq"/>
</copy>

205 <copy>
<from expression="string('0')"/>
<to part="ValueIN" variable="setValueToObjectReq"/>
</copy>
<copy>

210 <from expression="string('OfferID ')"/>
<to part="NameIN" variable="setValueToObjectReq"/>
</copy>
<copy>
<from expression="number('-1')"/>

215 <to part="HashCodeIN" variable="setValueToObjectReq"/>
</copy>
</assign>
<invoke name="setValueToObject_OfferID"

243

portType="agi:AgilproIssuer"
220 operation="setValueToObject"

partnerLink="agilpro"
inputVariable="setValueToObjectReq">
<correlations >
<correlation pattern="out" set="atmInteraction"/>

225 </correlations >
</invoke>
<assign name="startAction_CreateOffer">
<copy>
<from part="Ticketnumber" variable="nextActionReq"/>

230 <to part="Ticketnumber" variable="startActionReq"/>
</copy>
</assign>
<invoke name="startAction_CreateOffer"
portType="agi:AgilproIssuer" operation="startAction"

235 partnerLink="agilpro" inputVariable="startActionReq">
<correlations >
<correlation pattern="out" set="atmInteraction"/>
</correlations >
</invoke>

240 <receive>
partnerLink="atm" variable="nextActionReq"
portType="atm:FrontEnd" operation="nextAction">
<correlations >
<correlation set="atmInteraction"/>

245 </correlations >
</receive>
<assign name="endAction_CreateOffer">
<copy>
<from part="Ticketnumber" variable="nextActionReq"/>

250 <to part="Ticketnumber" variable="endActionReq"/>
</copy>
</assign>
<invoke name="endAction_CreateOffer"
portType="agi:AgilproIssuer" operation="endAction"

255 partnerLink="agilpro" inputVariable="endActionReq">
<correlations >
<correlation pattern="out" set="atmInteraction"/>
</correlations >
</invoke>

260 <assign name="get_DTO_Offer">
<copy>
<from part="Ticketnumber"
variable="nextActionReq"/>

<to part="Ticketnumber"
265 variable="getValueFromObjectReq"/>

</copy>
<copy>
<from expression="string(
'eu.emundo.agilpro.fw.fe.dto.AngebotDTO ')"/>

270 <to part="DataTypeIN" variable="getValueFromObjectReq"/>
</copy>
<copy>
<from expression="string('102')"/>
<to part="ValueIN" variable="getValueFromObjectReq"/>

275 </copy>
<copy>
<from expression="string('Offer ')"/>

244 CBP Enactment

<to part="NameIN" variable="getValueFromObjectReq"/>
</copy>

280 </assign>
<invoke name="getValueFromObject_Offer"
portType="agi:AgilproIssuer"
operation="getValueFromObject"
partnerLink="agilpro"

285 inputVariable="getValueFromObjectReq"
outputVariable="getValueFromObjectRes">
<correlations >
<correlation pattern="out" set="atmInteraction"/>
</correlations >

290 </invoke>
</sequence >
</scope>
<scope name="AddOfferPosition">
<sequence >

295 <empty/>
<assign name="set_App_OfferManagement">
<copy>
<from part="Ticketnumber" variable="nextActionReq"/>
<to part="Ticketnumber" variable="setApplicationReq"/>

300 </copy>
<copy>
<from expression="string(
'eu.emundo.agilpro.fw.fe.erp.intf.AngebotUi ')"/>
<to part="JavaClassIN" variable="setApplicationReq"/>

305 </copy>
<copy>
<from expression="string('Assistant ')"/>
<to part="RoleIN" variable="setApplicationReq"/>
</copy>

310 <copy>
<from expression="string('AddOfferPosition ')"/>
<to part="ActionNameIN" variable="setApplicationReq"/>
</copy>
</assign>

315 <invoke name="setApplication_OfferManagement"
portType="agi:AgilproIssuer"
operation="setApplication"
partnerLink="agilpro"
inputVariable="setApplicationReq">

320 <correlations >
<correlation pattern="out" set="atmInteraction"/>
</correlations >
</invoke>
<assign name="set_DTO_Offer">

325 <copy>
<from part="Ticketnumber" variable="nextActionReq"/>
<to part="Ticketnumber" variable="setValueToObjectReq"/>
</copy>
<copy>

330 <from expression="string(
'eu.emundo.agilpro.fw.fe.dto.AngebotDTO ')"/>
<to part="DataTypeIN" variable="setValueToObjectReq"/>
</copy>
<copy>

335 <from expression="string('102')"/>
<to part="ValueIN" variable="setValueToObjectReq"/>

245

</copy>
<copy>
<from expression="string('Offer ')"/>

340 <to part="NameIN" variable="setValueToObjectReq"/>
</copy>
<copy>
<from expression="number('-1')"/>
<to part="HashCodeIN" variable="setValueToObjectReq"/>

345 </copy>
</assign>
<invoke name="setValueToObject_Offer"
portType="agi:AgilproIssuer"
operation="setValueToObject"

350 partnerLink="agilpro"
inputVariable="setValueToObjectReq">
<correlations >
<correlation pattern="out" set="atmInteraction"/>
</correlations >

355 </invoke>
<assign name="set_DTO_Offerposition">
<copy>
<from part="Ticketnumber" variable="nextActionReq"/>
<to part="Ticketnumber" variable="setValueToObjectReq"/>

360 </copy>
<copy>
<from expression="string(
'eu.emundo.agilpro.fw.fe.erp.intf.AngebotPanelEn ')"/>
<to part="DataTypeIN" variable="setValueToObjectReq"/>

365 </copy>
<copy>
<from expression="string('TAB_ANGEBOT_POSITIONEN ')"/>
<to part="ValueIN" variable="setValueToObjectReq"/>
</copy>

370 <copy>
<from expression="string('Offerposition ')"/>
<to part="NameIN" variable="setValueToObjectReq"/>
</copy>
<copy>

375 <from expression="number('-1')"/>
<to part="HashCodeIN" variable="setValueToObjectReq"/>
</copy>
</assign>
<invoke name="setValueToObject_Offerposition"

380 partnerLink="agilpro"
operation="setValueToObject"
portType="agi:AgilproIssuer"
inputVariable="setValueToObjectReq">
<correlations >

385 <correlation pattern="out" set="atmInteraction"/>
</correlations >
</invoke>
<assign name="startAction_AddOfferPosition">
<copy>

390 <from part="Ticketnumber" variable="nextActionReq"/>
<to part="Ticketnumber" variable="startActionReq"/>
</copy>
</assign>
<invoke name="startAction_AddOfferPosition"

395 portType="agi:AgilproIssuer"

246 CBP Enactment

operation="startAction"
partnerLink="agilpro"
inputVariable="startActionReq">
<correlations >

400 <correlation pattern="out" set="atmInteraction"/>
</correlations >
</invoke>
<receive
partnerLink="atm" variable="nextActionReq"

405 portType="atm:FrontEnd" operation="nextAction">
<correlations >
<correlation set="atmInteraction"/>
</correlations >
</receive>

410 <assign name="endAction_AddOfferPosition">
<copy>
<from part="Ticketnumber" variable="nextActionReq"/>
<to part="Ticketnumber" variable="endActionReq"/>
</copy>

415 </assign>
<invoke name="endAction_AddOfferPosition"
portType="agi:AgilproIssuer"
operation="endAction"
partnerLink="agilpro"

420 inputVariable="endActionReq">
<correlations >
<correlation pattern="out" set="atmInteraction"/>
</correlations >
</invoke>

425 </sequence >
</scope>
<assign name="checkConditions">
<copy>
<from part="Ticketnumber" variable="nextActionReq"/>

430 <to part="Ticketnumber" variable="checkGuardReq"/>
</copy>
<copy>
<from expression="string('Offer ')"/>
<to part="DataIN" variable="checkGuardReq"/>

435 </copy>
<copy>
<from expression="string('Offer ')"/>
<to part="AttributeIN" variable="checkGuardReq"/>
</copy>

440 <copy>
<from expression="string('>=')"/>
<to part="OperationIN" variable="checkGuardReq"/>
</copy>
<copy>

445 <from expression="string('1000')"/>
<to part="ValueIN" variable="checkGuardReq"/>
</copy>
</assign>
<invoke name="invokeGuardCheck"

450 portType="agi:AgilproIssuer" operation="checkGuard"
partnerLink="agilpro"
inputVariable="checkGuardReq"
outputVariable="checkGuardRes">
<correlations >

247

455 <correlation pattern="out" set="atmInteraction"/>
</correlations >
</invoke>
<switch name="Defaultname">
<case condition="bpel:getVariableData('checkGuardRes ',

460 'ValueOUT ')=1">
<sequence >
<scope name="CheckOfferConditions">
<sequence >
<empty/>

465 <assign name="set_App_PDFViewer">
<copy>
<from part="Ticketnumber"
variable="nextActionReq"/>
<to part="Ticketnumber"

470 variable="setApplicationReq"/>
</copy>
<copy>
<from expression="string(
'eu.emundo.agilpro.fw.fe.intf.AcrobatUi ')"/>

475 <to part="JavaClassIN" variable="setApplicationReq"/>
</copy>
<copy>
<from expression="string('HeadofSalesDepartment ')"/>
<to part="RoleIN" variable="setApplicationReq"/>

480 </copy>
<copy>
<from expression="string('CheckOfferConditions ')"/>
<to part="ActionNameIN"
variable="setApplicationReq"/>

485 </copy>
</assign>
<invoke name="setApplication_PDFViewer"
portType="agi:AgilproIssuer"
operation="setApplication"

490 partnerLink="agilpro"
portType="agi:AgilproIssuer"
inputVariable="setApplicationReq">
<correlations >
<correlation pattern="out" set="atmInteraction"/>

495 </correlations >
</invoke>
<assign name="set_DTO_Offer">
<copy>
<from part="Ticketnumber"

500 variable="nextActionReq"/>
<to part="Ticketnumber"
variable="setValueToObjectReq"/>

</copy>
<copy>

505 <from expression="string(
'eu.emundo.agilpro.fw.fe.dto.AngebotDTO ')"/>
<to part="DataTypeIN"
variable="setValueToObjectReq"/>

</copy>
510 <copy>

<from expression="string('102')"/>
<to part="ValueIN" variable="setValueToObjectReq"/>
</copy>

248 CBP Enactment

<copy>
515 <from expression="string('Offer ')"/>

<to part="NameIN" variable="setValueToObjectReq"/>
</copy>
<copy>
<from expression="number('-1')"/>

520 <to part="HashCodeIN"
variable="setValueToObjectReq"/>

</copy>
</assign>
<invoke name="setValueToObject_Offer"

525 portType="agi:AgilproIssuer"
operation="setValueToObject"
partnerLink="agilpro"
portType="agi:AgilproIssuer"
inputVariable="setValueToObjectReq">

530 <correlations >
<correlation pattern="out" set="atmInteraction"/>
</correlations >
</invoke>
<assign name="set_DTO_Offerprint">

535 <copy>
<from part="Ticketnumber"
variable="nextActionReq"/>
<to part="Ticketnumber"
variable="setValueToObjectReq"/>

540 </copy>
<copy>
<from expression="string('filename ')"/>
<to part="DataTypeIN"
variable="setValueToObjectReq"/>

545 </copy>
<copy>
<from expression="string(
'../agilio/demodaten/angebot5005.pdf')"/>
<to part="ValueIN" variable="setValueToObjectReq"/>

550 </copy>
<copy>
<from expression="string('Offerprint ')"/>
<to part="NameIN" variable="setValueToObjectReq"/>
</copy>

555 <copy>
<from expression="number('-1')"/>
<to part="HashCodeIN"
variable="setValueToObjectReq"/>

</copy>
560 </assign>

<invoke name="setValueToObject_Offerprint"
portType="agi:AgilproIssuer"
operation="setValueToObject"
partnerLink="agilpro"

565 inputVariable="setValueToObjectReq">
<correlations >
<correlation pattern="out" set="atmInteraction"/>
</correlations >
</invoke>

570 <assign name="startAction_CheckOfferConditions">
<copy>
<from part="Ticketnumber" variable="nextActionReq"/>

249

<to part="Ticketnumber" variable="startActionReq"/>
</copy>

575 </assign>
<invoke name="startAction_CheckOfferConditions"
portType="agi:AgilproIssuer"
operation="startAction"
partnerLink="agilpro"

580 inputVariable="startActionReq">
<correlations >
<correlation pattern="out" set="atmInteraction"/>
</correlations >
</invoke>

585 <receive
portType="atm:FrontEnd" operation="nextAction"
partnerLink="atm" variable="nextActionReq">
<correlations >
<correlation set="atmInteraction"/>

590 </correlations >
</receive>
<assign name="endAction_CheckOfferConditions">
<copy>
<from part="Ticketnumber" variable="nextActionReq"/>

595 <to part="Ticketnumber" variable="endActionReq"/>
</copy>
</assign>
<invoke name="endAction_CheckOfferConditions"
portType="agi:AgilproIssuer"

600 operation="endAction"
partnerLink="agilpro"
inputVariable="endActionReq">
<correlations >
<correlation pattern="out" set="atmInteraction"/>

605 </correlations >
</invoke>
</sequence >
</scope>
<empty/>

610 </sequence >
</case>
<case condition="bpel:getVariableData('checkGuardRes ',

'ValueOUT ')=0">
<sequence >

615 <empty/>
</sequence >
</case>
</switch>
<scope name="AddOfferToB2BPortal">

620 <sequence >
<empty/>
<assign name="set_App_WebBrowser">
<copy>
<from part="Ticketnumber" variable="nextActionReq"/>

625 <to part="Ticketnumber" variable="setApplicationReq"/>
</copy>
<copy>
<from expression="string(
'eu.emundo.agilpro.fw.fe.intf.BrowserUi ')"/>

630 <to part="JavaClassIN" variable="setApplicationReq"/>
</copy>

250 CBP Enactment

<copy>
<from expression="string('Assistant ')"/>
<to part="RoleIN" variable="setApplicationReq"/>

635 </copy>
<copy>
<from expression="string('AddOfferToB2BPortal ')"/>
<to part="ActionNameIN" variable="setApplicationReq"/>
</copy>

640 </assign>
<invoke name="setApplication_WebBrowser"
portType="agi:AgilproIssuer"
operation="setApplication"
partnerLink="agilpro"

645 inputVariable="setApplicationReq">
<correlations >
<correlation pattern="out" set="atmInteraction"/>
</correlations >
</invoke>

650 <assign name="set_DTO_SellerPortal">
<copy>
<from part="Ticketnumber" variable="nextActionReq"/>
<to part="Ticketnumber" variable="setValueToObjectReq"/>
</copy>

655 <copy>
<from expression="string('URL')"/>
<to part="DataTypeIN" variable="setValueToObjectReq"/>
</copy>
<copy>

660 <from expression="string(
'\Projekte\AgilPro\eclipse_workspace\Agilio
\demodaten\click2procure.html')"/>
<to part="ValueIN" variable="setValueToObjectReq"/>
</copy>

665 <copy>
<from expression="string('SellerPortal ')"/>
<to part="NameIN" variable="setValueToObjectReq"/>
</copy>
<copy>

670 <from expression="number('-1')"/>
<to part="HashCodeIN" variable="setValueToObjectReq"/>
</copy>
</assign>
<invoke name="setValueToObject_SellerPortal"

675 portType="agi:AgilproIssuer"
operation="setValueToObject"
partnerLink="agilpro"
inputVariable="setValueToObjectReq">
<correlations >

680 <correlation pattern="out" set="atmInteraction"/>
</correlations >
</invoke>
<assign name="set_DTO_Offer">
<copy>

685 <from part="Ticketnumber" variable="nextActionReq"/>
<to part="Ticketnumber" variable="setValueToObjectReq"/>
</copy>
<copy>
<from expression="string(

690 'eu.emundo.agilpro.fw.fe.dto.AngebotDTO ')"/>

251

<to part="DataTypeIN" variable="setValueToObjectReq"/>
</copy>
<copy>
<from expression="string('102')"/>

695 <to part="ValueIN" variable="setValueToObjectReq"/>
</copy>
<copy>
<from expression="string('Offer ')"/>
<to part="NameIN" variable="setValueToObjectReq"/>

700 </copy>
<copy>
<from expression="number('-1')"/>
<to part="HashCodeIN" variable="setValueToObjectReq"/>
</copy>

705 </assign>
<invoke name="setValueToObject_Offer"
portType="agi:AgilproIssuer"
operation="setValueToObject"
partnerLink="agilpro"

710 inputVariable="setValueToObjectReq">
<correlations >
<correlation pattern="out" set="atmInteraction"/>
</correlations >
</invoke>

715 <assign name="startAction_AddOfferToB2BPortal">
<copy>
<from part="Ticketnumber" variable="nextActionReq"/>
<to part="Ticketnumber" variable="startActionReq"/>
</copy>

720 </assign>
<invoke name="startAction_AddOfferToB2BPortal"
portType="agi:AgilproIssuer"
operation="startAction"
partnerLink="agilpro"

725 inputVariable="startActionReq">
<correlations >
<correlation pattern="out" set="atmInteraction"/>
</correlations >
</invoke>

730 <receive variable="nextActionReq"
portType="atm:FrontEnd" operation="nextAction"
partnerLink="atm">
<correlations >
<correlation set="atmInteraction"/>

735 </correlations >
</receive>
<assign name="endAction_AddOfferToB2BPortal">
<copy>
<from part="Ticketnumber" variable="nextActionReq"/>

740 <to part="Ticketnumber" variable="endActionReq"/>
</copy>
</assign>
<invoke name="endAction_AddOfferToB2BPortal"
portType="agi:AgilproIssuer"

745 operation="endAction"
partnerLink="agilpro"
inputVariable="endActionReq">
<correlations >
<correlation pattern="out" set="atmInteraction"/>

252 CBP Enactment

750 </correlations >
</invoke>
</sequence >
</scope>
<scope name="Defaultname">

755 <sequence >
<empty/>
</sequence >
</scope>
<assign>

760 <copy>
<from part="Ticketnumber" variable="nextActionReq"/>
<to part="Ticketnumber" variable="disconnectAgilproReq"/>
</copy>
</assign>

765 <invoke name="disconnectAgilpro"
portType="agi:AgilproIssuer"
operation="disconnectAgilpro"
partnerLink="agilpro"
inputVariable="disconnectAgilproReq"

770 outputVariable="disconnectAgilproRes">
<correlations >
<correlation pattern="out" set="atmInteraction"/>
</correlations >
</invoke>

775 </sequence >
</scope>
</sequence >
</process>

Appendix B

CBP Architecture Evaluation

B.1 Scenarios Descriptions

Scenario 1 – Modification of CBPs
Source Management
Stimulus Due to the constant and rapid change in business existing CBPs have

to be adapted to the new business models.
Environment Design-time
Artifact Cross-organisational business process
Response The necessary changes in order to enact the new CBP affect a min-

imal number of existing modules. Necessary change of existing
modules should have no side-effects on other processes (e.g CBPs).

Response
Measure

Brokerless: up to n ESs of the partners are affected
Central broker: the central broker is affected
Decentral broker: VPs of the respective partner(s) are affected

Table B.1: Scenario 1: modification of CBPs

Scenario 2: Change of partners in CBP
Source Management
Stimulus New partners have to get involved in the CPB which can have dif-

ferent ESs compared to the previous partners.
Environment Design-time
Artifact Cross-organisational business process
Response Minimal effort is needed for integrating the new partner in the CBP.

The ESs of the other partners have not to be changed. Minimal and
only local (only a small defined part of the CBP has to be altered)
changes to the CBP are necessary while the semantics of the CBP
is maintained.

Response
Measure

Brokerless: multiple ESs (of partners) are affected
Central broker: central CBP process realization or ESs of new
partners has to be adjusted
Decentral broker: integration affects only VP of the new partner

Table B.2: Scenario 2: change of partners in CBP

254 CBP Architecture Evaluation

Scenario 3: Incremental development of CBPs
Source Management (, Architects)
Stimulus An organisation, which wishes to participate in a CBP, asks for an

incremental development and enactment of CBPs. A minimal sys-
tem shall be designed and enacted early, while further functions are
added later.

Environment Design-time
Artifact Cross-organisational business process
Response The processes (especially ESs) of the other collaboration parterns

are not affected by the incremental CBP development. Changes to
the already implemented part of CBP are as small as possible when
developing a new increment.

Response
Measure

Brokerless: multiple ESs of partners are affected by each change
Central broker: ESs are not affected, but central CBP realization
Decentral broker: only the own VP has to be adjusted

Table B.3: Scenario 3: incremental development of CBPs

Scenario 4: Reuse of CBPs
Source Management, Architects
Stimulus Wish that CBP descriptions or parts of them can be reused in differ-

ent contexts. An organisation participates in various similar CBPs
and can reuse its parts of its CBP implementations.

Environment Design-time
Artifact Cross-organisational business process
Response Number of processes (CBP realizations) which have to be supported

by an organisation have to be minimized.
Response
Measure

Brokerless: Normally weak; only good, if ESs can be reused
(degree of standardization)
Central broker: Good, but CBP cannot be decoupled; thus only the
whole CBP can be reused
Decentral broker: CBP(VPs) are decoupled and does not depend
on ESs

Table B.4: Scenario 4: reuse of CBPs

Scenario 5: Change of CBP protocol specification
Source Management, Architects
Stimulus The protocol specification of a CBP changes (data types and/or con-

trol flow).
Environment Design-time (and run-time)
Artifact Cross-organisational business process
Response There should be no or minimal side-effects or changes to an organ-

isation’s internal ESs.
Response
Measure

Brokerless: ESs have to be adjusted
Central broker: The central broker process has to be adjusted
Decentral broker: Dependent where the changes occur, one or
more VPs have to be adjusted

Table B.5: Scenario 5: change of CBP protocol specification

B.1 Scenarios Descriptions 255

Scenario 6: Change of elementary services
Source Management, Architects
Stimulus An elementary service of an enterprise changes. This can comprise

the functionality but also the behaviour (represented by the ES’s
abstract process) of the ES.

Environment Design-time
Artifact Elementary service
Response There should be no side-effects to the ESs of the other partners. The

changes to the CBPs should be minimal and as local as possible
(only a small defined part of the CBP has to be altered).

Response
Measure

Brokerless: All processes using a replaced ES need to get the
knowledge about the new identity of the new ES. In the case of
changes to one process’s syntax or semantics, the other ESs have to
be further adjusted
Central broker: The central broker hides the identity of ESs from
other ESs. Changes have to be made only in the central broker
Decentral broker: The decentral broker hides the identity of ESs
from the other ESs and other organisations. Changes have to be
made only to one VP of the decentral broker

Table B.6: Scenario 6: change of elementary services

Scenario 7: Privacy of internal ESs related data
Source Management
Stimulus Wish that no information about organisational internal data struc-

tures is exposed to partners.
Environment Design-time (and run-time)
Artifact Data structures used by ESs
Response Only data structures are exposed which are needed or defined by

the CBP protocol. Specific organisational internal data structures
are not to be exhibited.

Response
Measure

Brokerless: This approach is the better, the more the data
structures, which have to be exchanged, are standardized
Central broker: This approach depends on who is responsible to
control the broker
Decentral broker: Internal data can be hidden by VPs

Table B.7: Scenario 7: privacy of internal ESs related data

Scenario 8: Privacy of internal CBPs realizations
Source Management
Stimulus Wish that partners cannot see how an organisation has realized its

part of the CBP.
Environment Design-time (and run-time)
Artifact Structure of ESs
Response Organisations participating an CBP get no or minimal information

about how the other organisations realize their part of the CBP and
structure their ESs.

Response
Measure

Brokerless: This approach works better, the more the process is
standardized
Central broker: It is likely that internal realization is exhibited to
the broker
Decentral broker: Internal CBP realizations can be hidden by VPs

Table B.8: Scenario 8: privacy of internal CBPs realizations

256 CBP Architecture Evaluation

Scenario 9: Reuse of elementary services
Source Management
Stimulus Wish that elementary services can easily be reused in different CBP

and in different contexts, respectively.
Environment Design-time
Artifact Elementary service
Response Minimal effort has to be made to use ESs in different CBPs and

contexts. There has to be maintained only a small number of vari-
ants for one ES, so that its implemenation can be easily replaced by
other applications.

Response
Measure

Brokerless: Weak, since an ES has to fit to other ESs in different
contexts
Central broker: Central broker process can be used for integrating
ESs
Decentral broker: VPs can be used for integration ESs. Integration
can be realized with in the organisation (its VP) which wants to
reuse ESs

Table B.9: Scenario 9: reuse of elementary services

Scenario 10: Change of ES’s interfaces
Source (Management,) Architects
Stimulus The interfaces (e.g. data types) of an organisation’s ESs have to be

altered.
Environment Design-time (and run-time)
Artifact Elementary service
Response There should be no side-effects to the ESs of the other partners. The

changes to the CBPs should be minimal and as local as possible
(only a small defined part of the CBP has to be altered).

Response
Measure

Brokerless: All processes using an replaced ES need to be adjusted
to the new syntax (interface) of the new process
Central broker: Changes have to be made only in the central broker
Decentral broker: Changes have to be made only to one VP of the
decentral broker

Table B.10: Scenario 10: change of ES’s interfaces

B.1 Scenarios Descriptions 257

Scenario 11: Development of CBP variants
Source Management
Stimulus Wish to include and exclude various ESs or to choose different ver-

sions of ESs to customize a CBP for specific collaborations.
Environment Design- and build-time
Artifact CBP design process and models
Response Including or excluding certain ESs has no side effects on the other

ESs and CBPs. A minimal number of redundant models has to be
maintained during design.

Response
Measure

Brokerless: many variants of ESs have to be maintained; variant of
one partner can cause variants for other partners; nevertheless for
short process with low complexity it may be an efficienty way to
realize small variations
Central broker: ESs are decoupled; new CBP variant is necesarry
for each partner wishing an own variant
Decentral broker: ESs and CBP(VPs) are decoupled as much as
possible

Table B.11: Scenario 11: development of CBP variants

Scenario 12: Bottle-neck
Source Management, System Administrators
Stimulus Wish that the systems enacting the CBPs should be able to cope

with a high number of process instances, high traffic volume, and a
high number of messages exchanged between the process partners.

Environment Run-time
Artifact CBP & ES
Response For relevant load and traffic volumes there exists no bottle-neck.
Response
Measure

Brokerless: In principle this approach is good, since the
communication is decentralized
Central broker: Due to the centralized broker component, there is
the risk of a communication and data transfer bottle-neck
Decentral broker: This approach has no central component, but
provides a single component for each organicsation and CBP

Table B.12: Scenario 12: bottle-neck

258 CBP Architecture Evaluation

Scenario 13: Security overhead
Source Management, System Administrators
Stimulus Security relevant attacks on the CBP and the ESs (inspection and

alterning of exchange messages, intrusion, DoS) have to be repelled.
Environment Run-time
Artifact CBP & ES
Response It is possible to undertake efficient actions to successfully prevent

such attacks. The action have minimal effects on the performance
of the system enacting the CBPs and ESs.

Response
Measure

Brokerless: In this approach all messages have to be encrypted,
since there are no private communication links
Central broker: All messages to the central broker have to be
encrypted; with the central broker it may be easiser to manage the
encryption keys
Decentral broker: Only message exchanged with other
organisations have to be encrypted. For messages between VP and
the ESs this may be not necessary

Table B.13: Scenario 13: security overhead

Scenario 14: Versioning
Source Management, System Administrators
Stimulus The various processes and process versions, which are developed

due to constant change of CBP, can be easily handled.
Environment Development- & Run-time
Artifact CBP & ES
Response Effort undertaken to handle multiple versions of process and espe-

cially of process instances is minimal.
Response
Measure

Brokerless: This totally decentralized approach requires powerful
versioning mechnisms
Central broker: In a central component versioning is not so
complex like in decentralized environments
Decentral broker: This approach needs a decentralized versioning
mechnisms, but has to deal with much less decentralized entities as
the first approach

Table B.14: Scenario 14: versioning

Scenario 15: Monitoring
Source Management, System Administrators
Stimulus Wish to monitor status and progress of the running process in-

stances.
Environment Run-time
Artifact CBP & ES
Response Possibility to monitor the running processes instances with minimal

effort.
Response
Measure

Brokerless: In this totally decentralized approach monitoring of the
CBP progress can be difficult
Central broker: In this approach only one process instance has to
be monitored in order to retrieve the status of CBP execution
Decentral broker: This approach needs to monitor the result of
multiple instances, but does have to collect data from less instances
like the first approach

Table B.15: Scenario 15: monitoring

B.2 Influences of Contingencies 259

B.2 Influences of Contingencies

Sc
en

ar
io

1

Sc
en

ar
io

2

Sc
en

ar
io

3

Sc
en

ar
io

4

Sc
en

ar
io

5

In
te

rn
al

C
on

tin
ge

nc
ie

s Coll. topology initiator�
power of
players� n/a n/a n/a

Product complexity� complexity� n/a
complexity/
specifityÖ n/a

Service flow n/a n/a n/a n/a �

Process n/a length� # process
instances� length� length�

E
xt

er
na

l
C

on
tin

ge
nc

ie
s Standardization Ö Ö Ö Ö Ö

Maturity Ö Ö Ö Ö Ö

Bus. semantics n/a Ö Ö Ö Ö

Legislation n/a n/a n/a n/a n/a

Table B.16: Influence of contingencies on scenario ratings 1-5

Sc
en

ar
io

6

Sc
en

ar
io

7

Sc
en

ar
io

8

Sc
en

ar
io

9

Sc
en

ar
io

10

In
te

rn
al

C
on

tin
ge

nc
ie

s Coll. topology n/a
power of
players� n/a n/a n/a

Product n/a n/a n/a complexityÖ n/a

Service flow � n/a n/a n/a n/a

Process n/a n/a n/a n/a n/a

E
xt

er
na

l
C

on
tin

ge
nc

ie
s Standardization Ö Ö Ö Ö Ö

Maturity Ö n/a n/a Ö n/a

Bus. semantics Ö Ö n/a Ö Ö

Legislation n/a n/a n/a n/a n/a

Table B.17: Influence of contingencies on scenario ratings 6-10

260 CBP Architecture Evaluation

Sc
en

ar
io

11

Sc
en

ar
io

12

Sc
en

ar
io

13

Sc
en

ar
io

14

Sc
en

ar
io

15

In
te

rn
al

C
on

tin
ge

nc
ie

s Coll. topology n/a n/a n/a n/a n/a

Product compl. � n/a n/a n/a n/a

Service flow n/a � � � �

Process length� # process
instances�

process
instances�

process
instances�

process
instances�

E
xt

er
na

l
C

on
tin

ge
nc

ie
s Standardization Ö n/a n/a Ö n/a

Maturity n/a n/a n/a Ö n/a

Bus. semantics n/a n/a n/a Ö n/a

Legislation n/a n/a � n/a �

Table B.18: Influence of contingencies on scenario ratings 11-15

B.3 Virtual Enterprise Scenario 261

B.3 Virtual Enterprise Scenario

Determining the Qualitative Measure - Weighting Subjective Factors

mod. pri. reuse int. eff. man. vi

modifiability 1 7 3 1
3 3 3 0.21

privacy 1
7 1 1

4
1
9

1
5

1
5 0.03

reuse 1
3 4 1 1

5 1 1 0.10
interoperability 3 9 5 1 5 5 0.45

efficiency 1
3 5 1 1

5 1 1 0.10
managability 1

3 5 1 1
5 1 1 0.10
λmax � 6.172, CR � 0.028

Table B.19: Priority comparison matrix for the first level factors

sc. 1 sc. 2 sc. 3 sc. 6 sc. 11 vi

scenario 1 1 3 7 1
5

1
3 0.14

scenario 2 1
3 1 5 1

5
1
5 0.08

scenario 3 1
5

1
7 1 1

9
1
9 0.03

scenario 6 5 5 9 1 3 0.47
scenario 11 3 5 9 1

3 1 0.27
λmax � 5.392, CR � 0.088

Table B.20: Priority comparison matrix for second level factor modifiability

sc. 7 sc. 8 vi

scenario 7 1 1
5 0.17

scenatio 8 5 1 0.83
λmax � 2.000, CR � 0.000

Table B.21: Priority comparison matrix for second level factor privacy

262 CBP Architecture Evaluation

sc. 4 sc. 9 sc. 11 vi

scenario 4 1 1 3 0.43
scenario 9 1 1 3 0.43

scenario 11 1
3

1
3 1 0.14

λmax � 3.000, CR � 0.000

Table B.22: Priority comparison matrix for second level factor reuse

sc. 5 sc. 10 vi

scenario 5 1 1
5 0.17

scenatio 10 5 1 0.83
λmax � 2.000, CR � 0.000

Table B.23: Priority comparison matrix for second level factor interoperability

sc. 12 sc. 13 vi

scenario 12 1 1
3 0.25

scenatio 13 3 1 0.72
λmax � 2.000, CR � 0.000

Table B.24: Priority comparison matrix for second level factor efficiency

sc. 14 sc. 15 vi

scenario 14 1 2 0.67
scenatio 15 1

2 1 0.33
λmax � 2.000, CR � 0.000

Table B.25: Priority comparison matrix for second level factor manageability

B.3 Virtual Enterprise Scenario 263

Determining the Qualitative Measure - Rating the Scenarios

scenario 1 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
7

1
7 0.14

Cen-Br. 7 1 1 1.00
Dec-Br. 7 1 1 1.00

λmax � 3.000, CR � 0.000

Table B.26: Rating scenario 1

scenario 2 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
5

1
7 0.11

Cen-Br. 5 1 1
3 0.44

Dec-Br. 7 3 1 1.00
λmax � 3.065, CR � 0.062

Table B.27: Rating scenario 2

scenario 3 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
5

1
9 0.08

Cen-Br. 5 1 1
5 0.30

Dec-Br. 9 5 1 1.00
λmax � 3.117, CR � 0.113

Table B.28: Rating scenario 3

264 CBP Architecture Evaluation

scenario 4 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1 1
4 0.25

Cen-Br. 1 1 1
4 0.25

Dec-Br. 4 4 1 1.00
λmax � 3.032, CR � 0.031

Table B.29: Rating scenario 4

scenario 5 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
7

1
7 0.14

Cen-Br. 7 1 1 1.00
Dec-Br. 7 1 1 1.00

λmax � 3.000, CR � 0.000

Table B.30: Rating scenario 5

scenario 6 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
4

1
5 0.16

Cen-Br. 4 1 1
3 0.46

Dec-Br. 5 3 1 1.00
λmax � 3.039, CR � 0.038

Table B.31: Rating scenario 6

scenario 7 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 2 1
5 0.24

Cen-Br. 1
2 1 1

6 0.14
Dec-Br. 5 6 1 1.00

λmax � 3.014, CR � 0.013

Table B.32: Rating scenario 7

scenario 8 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1 1
5 0.20

Cen-Br. 1 1 1
5 0.20

Dec-Br. 5 5 1 1.00
λmax � 3.000, CR � 0.000

Table B.33: Rating scenario 8

scenario 9 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
4

1
5 0.17

Cen-Br. 4 1 1
5 0.59

Dec-Br. 5 2 1 1.00
λmax � 3.025, CR � 0.024

Table B.34: Rating scenario 9

scenario 10 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
3

1
5 0.17

Cen-Br. 3 1 1
3 0.41

Dec-Br. 5 3 1 1.00
λmax � 3.039, CR � 0.038

Table B.35: Rating scenario 10

B.3 Virtual Enterprise Scenario 265

scenario 11 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
5

1
9 0.08

Cen-Br. 7 1 1
5 0.30

Dec-Br. 9 5 1 1.00
λmax � 3.117, CR � 0.113

Table B.36: Rating scenario 11

scenario 12 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 3 1 1.00
Cen-Br. 1

3 1 1
3 0.33

Dec-Br. 1 3 1 1.00
λmax � 3.000, CR � 0.000

Table B.37: Rating scenario 12

scenario 13 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
5

1
3 0.17

Cen-Br. 5 1 3 1.00
Dec-Br. 3 1

3 1 0.41
λmax � 3.039, CR � 0.038

Table B.38: Rating scenario 13

scenario 14 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
7

1
6 0.12

Cen-Br. 7 1 2 1.00
Dec-Br. 6 1

2 1 0.60
λmax � 3.032, CR � 0.031

Table B.39: Rating scenario 14

scenario 15 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
7

1
5 0.11

Cen-Br. 7 1 3 1.00
Dec-Br. 5 1

3 1 0.44
λmax � 3.064, CR � 0.062

Table B.40: Rating scenario 15

266 CBP Architecture Evaluation

Determining the Quantitative Measure

i � 0� brokerless architecture
i � 1� central broker architecture
i � 2� decentral broker architecture
discount rate d � 5.0%
number of discounting periods N � 10

Software Licence
Purchase Software CpurchaseS WBr = 0 npurchaseS WBr0 = 0

npurchaseS WBr1 = 1

npurchaseS WBr2 = 3

CpurchaseS WES = 500 npurchaseS WES 0 = 90

npurchaseS WES 1 = 90

npurchaseS WES 2 = 90

Annual Licences CannualS WBr = 3000 nannualS WBr0 = 0

nannualS WBr1 = 1

nannualS WBr2 = 3

CannualS WES = 0 nannualS WES 0 = 90

nannualS WES 1 = 90

nannualS WES 2 = 90

FVD
01
= FV0110

�
°N�1

t�0

FV012t
p1�dqt = 45000

FVD
11
= FV1110

�
°N�1

t�0

FV112t
p1�dqt = 69323

FVD
21
= FV2110

�
°N�1

t�0

FV212t
p1�dqt = 117970

Hardware
Purchase Hardware CpurchaseHWBr = 20000 npurchaseHWBr0 = 0

npurchaseHWBr1 = 1

npurchaseHWBr2 = 3

CpurchaseHWES = 5000 npurchaseHWES 0 = 15

npurchaseHWES 1 = 15

npurchaseHWES 2 = 15

Lease Hardware CleasingHWBr = 0 nleasingHWBr0 = 0

nleasingHWBr1 = 1

nleasingHWBr2 = 3

CleasingHWES = 0 nleasingHWES 0 = 15

nleasingHWES 1 = 15

nleasingHWES 2 = 15

FVD
02
= FV0210

�
°N�1

t�0

FV022t
p1�dqt = 75000

FVD
12
= FV1210

�
°N�1

t�0

FV122t
p1�dqt = 95000

FVD
22
= FV2210

�
°N�1

t�0

FV222t
p1�dqt = 135000

B.3 Virtual Enterprise Scenario 267

Labour
Setup & maintenance Csetup0 = 10000 Cmaintenance0 = 10000

Csetup1 = 25000 Cmaintenance1 = 20000

Csetup2 = 30000 Cmaintenance2 = 30000

Change Broker CchangeBr0 = 0 nchangeBr0 = 0

CchangeBr1 = 2500 nchangeBr1 = 1

CchangeBr2 = 1000 nchangeBr2 = 2.7

Change ES CchangeES 0 = 200 nchangeES 0 = 60

CchangeES 1 = 0 nchangeES 1 = 0

CchangeES 2 = 0 nchangeES 2 = 0

Frequency of Change nchange = 50

FVD
03
= FV0310

�
°N�1

t�0

FV032t
p1�dqt �

°N�1
t�0

FV033t
p1�dqt = 4955771

FVD
13
= FV1310

�
°N�1

t�0

FV132t
p1�dqt �

°N�1
t�0

FV133t
p1�dqt = 1200634

FVD
23
= FV2310

�
°N�1

t�0

FV232t
p1�dqt �

°N�1
t�0

FVi33t
p1�dqt = 1367791

268 CBP Architecture Evaluation

B.4 SME Scenario

Determining the Qualitative Measure - Weighting Subjective Factors

mod. pri. reuse int. eff. man. vi

modifiability 1 4 1
2 3 1

2
1
2 0.16

privacy 1
4 1 1

5
1
2

1
5

1
5 0.04

reuse 2 5 1 4 1 1 0.25
interoperability 1

3 2 1
4 1 1

4
1
4 0.06

efficiency 2 5 1 4 1 1 0.25
managability 2 5 1 4 1 1 0.25

λmax � 6.056, CR � 0.009

Table B.41: Priority comparison matrix for the first level factors

sc. 1 sc. 2 sc. 3 sc. 6 sc. 11 vi

scenario 1 1 1
9 1 1

5
1
3 0.05

scenario 2 9 1 9 5 7 0.59
scenario 3 1 1

9 1 1
5

1
3 0.05

scenario 6 5 1
5 5 1 3 0.21

scenario 11 3 1
7 3 1

3 1 0.11
λmax � 5.199, CR � 0.045

Table B.42: Priority comparison matrix for second level factor modifiability

sc. 7 sc. 8 vi

scenario 7 1 1 0.50
scenatio 8 1 1 0.50

λmax � 2.000, CR � 0.000

Table B.43: Priority comparison matrix for second level factor privacy

B.4 SME Scenario 269

sc. 4 sc. 9 sc. 11 vi

scenario 4 1 1 5 0.45
scenario 9 1 1 5 0.45

scenario 11 1
5

1
5 1 0.09

λmax � 3.000, CR � 0.000

Table B.44: Priority comparison matrix for second level factor reuse

sc. 5 sc. 10 vi

scenario 5 1 1
4 0.20

scenatio 10 4 1 0.80
λmax � 2.000, CR � 0.000

Table B.45: Priority comparison matrix for second level factor interoperability

sc. 12 sc. 13 vi

scenario 12 1 5 0.83
scenatio 13 1

5 1 0.17
λmax � 2.000, CR � 0.000

Table B.46: Priority comparison matrix for second level factor efficiency

sc. 14 sc. 15 vi

scenario 14 1 1
5 0.17

scenatio 15 5 1 0.83
λmax � 2.000, CR � 0.000

Table B.47: Priority comparison matrix for second level factor manageability

270 CBP Architecture Evaluation

Determining the Qualitative Measure - Rating the Scenarios

scenario 1 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
2

1
2 0.50

Cen-Br. 2 1 1 1.00
Dec-Br. 2 1 1 1.00

λmax � 3.000, CR � 0.000

Table B.48: Rating scenario 1

scenario 2 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
2

1
2 0.36

Cen-Br. 2 1 1
3 0.50

Dec-Br. 2 3 1 1.00
λmax � 3.136, CR � 0.131

Table B.49: Rating scenario 2

scenario 3 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
2

1
2 0.50

Cen-Br. 2 1 1 1.00
Dec-Br. 2 1 1 1.00

λmax � 3.000, CR � 0.000

Table B.50: Rating scenario 3

B.4 SME Scenario 271

scenario 4 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 3 2 1.00
Cen-Br. 1

3 1 1
2 0.30

Dec-Br. 1
2 2 1 0.55

λmax � 3.009, CR � 0.009

Table B.51: Rating scenario 4

scenario 5 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
3

1
5 0.17

Cen-Br. 3 1 1
3 0.41

Dec-Br. 5 3 1 1.00
λmax � 3.039, CR � 0.038

Table B.52: Rating scenario 5

scenario 6 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
5

1
5 0.20

Cen-Br. 5 1 1 1.00
Dec-Br. 5 1 1 1.00

λmax � 3.000, CR � 0.000

Table B.53: Rating scenario 6

scenario 7 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1 1 1.00
Cen-Br. 1 1 1 1.00
Dec-Br. 1 1 1 1.00

λmax � 3.000, CR � 0.000

Table B.54: Rating scenario 7

scenario 8 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1 1 1.00
Cen-Br. 1 1 1 1.00
Dec-Br. 1 1 1 1.00

λmax � 3.000, CR � 0.000

Table B.55: Rating scenario 8

scenario 9 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
3

1
5 0.17

Cen-Br. 3 1 1
3 0.41

Dec-Br. 5 3 1 1.00
λmax � 3.039, CR � 0.038

Table B.56: Rating scenario 9

scenario 10 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
2

1
2 0.40

Cen-Br. 5 1 1
2 0.64

Dec-Br. 5 2 1 1.00
λmax � 3.054, CR � 0.052

Table B.57: Rating scenario 10

272 CBP Architecture Evaluation

scenario 11 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
2

1
2 0.40

Cen-Br. 2 1 1
2 0.64

Dec-Br. 2 2 1 1.00
λmax � 3.054, CR � 0.052

Table B.58: Rating scenario 11

scenario 12 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 7 3 1.00
Cen-Br. 1

7 1 1
4 0.12

Dec-Br. 1
3 4 1 0.40

λmax � 3.032, CR � 0.031

Table B.59: Rating scenario 12

scenario 13 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
2

1
2 0.50

Cen-Br. 2 1 1 1.00
Dec-Br. 2 1 1 1.00

λmax � 3.000, CR � 0.000

Table B.60: Rating scenario 13

scenario 14 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
3

1
2 0.30

Cen-Br. 3 1 2 1.00
Dec-Br. 2 1

2 1 0.55
λmax � 3.009, CR � 0.009

Table B.61: Rating scenario 14

scenario 15 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
5

1
3 0.17

Cen-Br. 5 1 3 1.00
Dec-Br. 3 1

3 1 0.41
λmax � 3.039, CR � 0.038

Table B.62: Rating scenario 15

B.4 SME Scenario 273

Determining the Quantitative Measure

i � 0� brokerless architecture
i � 1� central broker architecture
i � 2� decentral broker architecture
discount rate d � 5.0%
number of discounting periods N � 10

Software Licence
Purchase Software CpurchaseS WBr = 0 npurchaseS WBr0 = 0

npurchaseS WBr1 = 1

npurchaseS WBr2 = 4

CpurchaseS WES = 5000 npurchaseS WES 0 = 20

npurchaseS WES 1 = 20

npurchaseS WES 2 = 20

Annual Licences CannualS WBr = 3000 nannualS WBr0 = 0

nannualS WBr1 = 1

nannualS WBr2 = 4

CannualS WES = 0 nannualS WES 0 = 20

nannualS WES 1 = 20

nannualS WES 2 = 20

FVD
01
= FV0110

�
°N�1

t�0

FV012t
p1�dqt = 100000

FVD
11
= FV1110

�
°N�1

t�0

FV112t
p1�dqt = 124323

FVD
21
= FV2110

�
°N�1

t�0

FV212t
p1�dqt = 197294

Hardware
Purchase Hardware CpurchaseHWBr = 20000 npurchaseHWBr0 = 0

npurchaseHWBr1 = 1

npurchaseHWBr2 = 4

CpurchaseHWES = 5000 npurchaseHWES 0 = 20

npurchaseHWES 1 = 20

npurchaseHWES 2 = 20

Lease Hardware CleasingHWBr = 0 nleasingHWBr0 = 0

nleasingHWBr1 = 1

nleasingHWBr2 = 4

CleasingHWES = 0 nleasingHWES 0 = 20

nleasingHWES 1 = 20

nleasingHWES 2 = 20

FVD
02
= FV0210

�
°N�1

t�0

FV022t
p1�dqt = 100000

FVD
12
= FV1210

�
°N�1

t�0

FV122t
p1�dqt = 120000

FVD
22
= FV2210

�
°N�1

t�0

FV222t
p1�dqt = 180000

274 CBP Architecture Evaluation

Labour
Setup & maintenance Csetup0 = 10000 Cmaintenance0 = 10000

Csetup1 = 25000 Cmaintenance1 = 15000

Csetup2 = 20000 Cmaintenance2 = 10000

Change Broker CchangeBr0 = 0 nchangeBr0 = 0

CchangeBr1 = 2000 nchangeBr1 = 1

CchangeBr2 = 1000 nchangeBr2 = 4

Change ES CchangeES 0 = 2 nchangeES 0 = 200

CchangeES 1 = 0 nchangeES 1 = 0

CchangeES 2 = 0 nchangeES 2 = 0

Frequency of Change nchange = 3

FVD
03
= FV0310

�
°N�1

t�0

FV032t
p1�dqt �

°N�1
t�0

FV033t
p1�dqt = 100808

FVD
13
= FV1310

�
°N�1

t�0

FV132t
p1�dqt �

°N�1
t�0

FV133t
p1�dqt = 195264

FVD
23
= FV2310

�
°N�1

t�0

FV232t
p1�dqt �

°N�1
t�0

FVi33t
p1�dqt = 198372

Appendix C

Ontology-based Model
Transformation

C.1 Library Example

Listing C.1: QVT model transformation Mt:MaÑMc that is generated for the library
example

1 transformation MMa2MMb(ma:MMa; mc:MMc) {
2

key MMc::Library{name};
4 key MMc::Book{name};

key MMc::Novel{name};
6 key MMc::Journal{name};

key MMc::Scientist{name};
8 key MMc::StoryWriter{name};

10 top relation LibraryToLibrary {
n: String;

12 checkonly domain ma c:Library {name=n};
enforce domain mc c_:Library {name=n};

14 }

16 top relation NovelToNovel {
i, n: String;

18 checkonly domain ma c:Novel {ns=l:Library{},name=n,index=i} ;
enforce domain mc c_:Novel {ns=l_:Library{},name=n,NULL} ;

20 when {
LibraryToLibrary(l,l_);

22 }
where {

24 AuthorsToAuthors(c,c_);
}

26 }

28 top relation JournalToJournal {
i, n, t: String;

30 checkonly domain ma c:Journal {ns=l:Library{},name=n,
topic=t,index=i} ;

32 enforce domain mc c_:Journal {ns=l_:Library{},name=n,
topic=t,NULL} ;

34 when {

276 Ontology-based Model Transformation

LibraryToLibrary(l,l_);
36 }

where {
38 AuthorsToAuthors_1(c,c_);

AuthorsToAuthors_2(c,c_);
40 }

}
42

top relation AuthorToAuthor_StoryWriter {
44 n: String;

checkonly domain ma c:Author {ns=l:Library{}, name=n,
46 profession='StoryWriter '} ;

enforce domain mc c_:StoryWriter {ns=l_:Library{}, name=n} ;
48 when {

LibraryToLibrary(l,l_);
50 }

}
52

top relation AuthorToAuthor_Scientist {
54 n: String;

checkonly domain ma c:Author {ns=l:Library{}, name=n,
56 profession='Scientist '} ;

enforce domain mc c_:Scientist {ns=l_:Library{}, name=n} ;
58 when {

LibraryToLibrary(l,l_);
60 }

}
62

relation AuthorsToAuthors_1 {
64 n: String;

checkonly domain ma c:Book {authors=a:Author{name=n}} ;
66 enforce domain mc c_:Book {journalAuthors=a_:Scientist{name=n}};

}
68

relation AuthorsToAuthors_2 {
70 n: String;

checkonly domain ma c:Book {authors=a:Author{name=n}} ;
72 enforce domain mc c_:Book {novelAuthors=a_:StoryWriter{name=n}};

}
74 }

C.2 Reasoning Rules 277

C.2 Reasoning Rules

Equality symmetry C � D Ñ D � C

If C equals D, then D equals C

C � D ô CI � DI ô DI � CI ô D � C

Overlap symmetry C o D Ñ D o C

If C overlaps with D, then D overlaps with C

C o D ô CI O DI ô DI O CI ô D o C

Possible overlap symmetry C Θ D Ñ D Θ C

If C has a possible overlap with D, then D has a possible overlap with C

C Θ D ô CI θ DI ô DI θ CI ô D Θ C

Table C.1: Rules for symmetry

Containment right inverse C � D Ñ D � C

If C is more specific than D, then D is less specific than C

C � D ô CI � DI ô DI � CI ô D � C

Containment left inverse C � D Ñ D � C

If C is less specific than D, then D is more specific than C

C � D ô CI � DI ô DI � CI ô D � C

Table C.2: Rules for inverse

278 Ontology-based Model Transformation

Equality transitivity C � D[D � E Ñ C � E

If C equals D and D equals E, then C equals E

C � D[D � E ô
CI � DI ^ DI � EI ñ
CI � EI ô
C � E

Containment right transitivity C � D[D � E Ñ C � E

If C is more specific than D and D is more specific than E, then C is also
more specific than E

C � D[D � E ô
CI � DI ^ DI � EI ñ
CI � EI ô
C � E

Containment left transitivity C � D[D � E Ñ C � E

If C is less specific than D and D is less specific than E, then C is also less
specific than E

C � D[D � E ô
CI � DI ^ DI � EI ñ
CI � EI ô
C � E

Overlap (Pseudo-) transitivity C o D[D o E Ñ C Θ E

If C overlaps with D and D overlaps with E, then there is a possibility that
C also overlaps with E

C o D[D o E ô
CI O DI ^ DI O EI ñ
CI θ EI ô
C Θ E

Possible overlap transitivity C ΘP1 D[D ΘP2 E Ñ C ΘPr E

If C possibly overlaps with D (probability P1) and D possibly overlaps with
E (probability P2), then C might also overlap with E. The resulting proba-
bility Pr is P1 � P2.

C ΘP1 D[D ΘP2 E ô
CI θP1 DI ^ DI θP2 EI ñ
CI θPr EI ô
C ΘPr E

Table C.3: Rules for transitivity

C.2 Reasoning Rules 279

Containment right 1 C � D[D � E Ñ C � E

If C is more specific than D and D equals E, then C is also more specific
than E.

C � D[D � E ô
CI � DI ^ DI � EI ñ
CI � EI ô
C � E

Containment right 2 C � D[D � E Ñ C � E

If C equals D and D is more specific than E, then C is also more specific
than E.

C � D[D � E ô
CI � DI ^ DI � EI ñ
CI � EI ô
C � E

Containment left 1 C � D[D � E Ñ C � E

If C is less specific than D and D equals E, then C is also less specific than
E.

C � D[D � E ô
CI � DI ^ DI � EI ñ
CI � EI ô
C � E

Containment left 2 C � D[D � E Ñ C � E

If C equals D and D is less specific than E, then C is also less specific than
E.

C � D[D � E ô
CI � DI ^ DI � EI ñ
CI � EI ô
C � E

Table C.4: Rules for equality reduction, part 1

280 Ontology-based Model Transformation

Overlap 1 C o D[D � E Ñ C o E

If C overlaps with D and D equals E, then C also overlaps with E.

C o D[D � E ô
CI O DI ^ DI � EI ñ
CI O EI ô
C o E

Overlap 2 C � D[D o E Ñ C o E

If C equals with D and D overlaps E, then C also overlaps with E.

C � D[D o E ô
CI � DI ^ DI O EI ñ
CI O EI ô
C o E

Possible overlap 1 C Θ D[D � E Ñ C Θ E

If C has a possible overlaps with D and D equals E, then C also has a
possible overlap with E.

C Θ D[D � E ô
CI θ DI ^ DI � EI ñ
CI θ EI ô
C Θ E

Possible overlap 2 C � D[D Θ E Ñ C Θ E

If C equals D and D has a possible overlaps with E, then C also has a
possible overlap with E.

C � D[D Θ E ô
CI � DI ^ DI θ EI ñ
CI θ EI ô
C Θ E

Table C.5: Rules for equality reduction, part 2

Containment in general C � D[D � E Ñ C Θ E

If C is more specific than D and D is less specific than E, C and E have a
possible overlap.

C � D[D � E ô
CI � DI ^ DI � EI ñ
CI θ EI ô
C Θ E

Containment of special C � D[D � E Ñ C o E

If C is less specific than D and D is more specific than E, then C and E have
a overlap.

C � D[D � E ô
CI � DI ^ DI � EI ñ
CI O EI ô
C o E

Table C.6: Containments

C.2 Reasoning Rules 281

Containment right and overlap C � D[D o E Ñ C Θ E

If C is more specific than D and D overlaps with E, C and E have a possible
overlap.

C � D[D o E ô
CI � DI ^ DI O EI ñ
CI θ EI ô
C Θ E

Overlap and containment right C o D[D � E Ñ C o E

If C overlaps with D and D is more specific than E, then C and E also
overlap.

C o D[D � E ô
CI O DI ^ DI � EI ñ
CI O EI ô
C o E

Containment left and overlap C � D[D o E Ñ C o E

If C is less specific than D and D overlaps with E, C and E also overlap.

C � D[D o E ô
CI � DI ^ DI O EI ñ
CI O EI ô
C o E

Overlap and containment left C o D[D � E Ñ C Θ E

If C overlaps with D and D is less specific than E, then C and E have a
possible overlap.

C o D[D � E ô
CI O DI ^ DI � EI ñ
CI θ EI ô
C Θ E

Table C.7: Containment with overlap

282 Ontology-based Model Transformation

X equals A X � A[A �
�n

i�1 Ai Ñ X � A1 [. . .[X � An

If X equals A and A is an union of classes A1 to An, then X also contains
every class A1 to An.

X � A[A �
�n

i�1 Ai ô
XI � AI ^ AI � AI

1 Y . . .Y AI
n ñ

XI � AI
1 ^ . . .^ XI � AI

n ô
X � A1 [. . .[X � An

X contained in A X � A[A �
�n

i�1 Ai Ñ X Θ A1 [. . .[X Θ An

If X is more specific than A and A is an union of classes A1 to An, X has a
possible overlap with classes A1 to An.

X � A[A �
�n

i�1 Ai ô
XI � AI ^ AI � AI

1 Y . . .Y AI
n ñ

XI θ AI
1 ^ . . .^ XI θ AI

n ô
X Θ A1 [. . .[X Θ An

X contains A X � A[A �
�n

i�1 Ai Ñ X � A1 [. . .[X � An

If X is less specific than A and A is an union of classes A1 to An, X contains
classes A1 to An.

X � A[A �
�n

i�1 Ai ô
XI � AI ^ AI � AI

1 Y . . .Y AI
n ñ

XI � AI
1 ^ . . .^ XI � AI

n ô
X � A1 [. . .[X � An

X overlaps A X O A[A �
�n

i�1 Ai Ñ X Θ A1 [. . .[X Θ An

If X overlaps with A and A is an union of classes A1 to An, X has a possible
overlap with classes A1 to An.

X o A[A �
�n

i�1 Ai ô
XI O AI ^ AI � AI

1 Y . . .Y AI
n ñ

XI θ AI
1 ^ . . .^ XI θ AI

n ô
X Θ A1 [. . .[X Θ An

X possible overlap A X Θ A[A �
�n

i�1 Ai Ñ X Θ A1 [. . .[X Θ An

If X has a possible overlap with A and A is an union of classes A1 to An, X
has a possible overlap with classes A1 to An.

X Θ A[A �
�n

i�1 Ai ô
XI θ AI ^ AI � AI

1 Y . . .Y AI
n ñ

XI θ AI
1 ^ . . .^ XI θ AI

n ô
X Θ A1 [. . .[X Θ An

Table C.8: A �
�n

i�1 Ai ^ 1 ¤ m ¤ n, part 1

C.2 Reasoning Rules 283

Am equals X Am � X [A �
�n

i�1 Ai Ñ A � X

If Am equals X and A is an union of classes A1 to An (Am is one of these
classes), A contains X

Am � X [A �
�n

i�1 Ai ô
AI

m � XI ^ AI � AI
1 Y . . .Y AI

m Y . . .Y AI
n ñ

AI � XI ô
A � X

Am is contained in X Am � X [A �
�n

i�1 Ai Ñ A o X

If Am is more specific than X and A is an union of classes A1 to An (Am is
one of these classes), A overlaps with X

Am � X [A �
�n

i�1 Ai ô
AI

m � XI ^ AI � AI
1 Y . . .Y AI

m Y . . .Y AI
n ñ

AI O XI ô
A o X

Am contains X Am � X [A �
�n

i�1 Ai Ñ A � X

If Am is less specific than X and A is an union of classes A1 to An (Am is one
of these classes), A is also less specific than X

Am � X [A �
�n

i�1 Ai ô
AI

m � XI ^ AI � AI
1 Y . . .Y AI

m Y . . .Y AI
n ñ

AI � XI ô
A � X

Am overlaps X Am o X [A �
�n

i�1 Ai Ñ A o X

If Am overlaps with X and A is an union of classes A1 to An (Am is one of
these classes), A also overlaps with X

Am o X [A �
�n

i�1 Ai ô
AI

m O XI ^ AI � AI
1 Y . . .Y AI

m Y . . .Y AI
n ñ

AI O XI ô
A o X

Am possible overlap X Am Θ X [A �
�n

i�1 Ai Ñ A Θ X

If Am has a possible overlap with X and A is an union of classes A1 to An

(Am is one of these classes), A also has a possible overlap with X

Am Θ X [A �
�n

i�1 Ai ô
AI

m θ XI ^ AI � AI
1 Y . . .Y AI

m Y . . .Y AI
n ñ

AI θ XI ô
A Θ X

Table C.9: A �
�n

i�1 Ai ^ 1 ¤ m ¤ n, part 2

284 Ontology-based Model Transformation

X equals A X � A[A �
�n

i�1 Ai Ñ X � A1 [. . .[X � An

If X equals A and A is an intersection of classes A1 to An, X is contained in
the classes A1 to An.

X � A[A �
�n

i�1 Ai ô
XI � AI ^ AI � AI

1 X . . .X AI
n ñ

XI � AI
1 ^ . . .^ XI � AI

n ô
X � A1 [. . .[X � An

X contained in A X � A[A �
�n

i�1 Ai Ñ X � A1 [. . .[X � An

If X is more specific than A and A is an intersection of classes A1 to An, X
is containd in the classes A1 to An.

X � A[A �
�n

i�1 Ai ô
XI � AI ^ AI � AI

1 X . . .X AI
n ñ

XI � AI
1 ^ . . .^ XI � AI

n ô
X � A1 [. . .[X � An

X contains A X � A[A �
�n

i�1 Ai Ñ X o A1 [. . .[X o An

If X is less specific than A and A is an intersection of classes A1 to An, X
overlaps with classes A1 to An.

X � A[A �
�n

i�1 Ai ô
XI � AI ^ AI � AI

1 X . . .X AI
n ñ

XI O AI
1 ^ . . .^ XI O AI

n ô
X o A1 [. . .[X o An

X overlaps A X o A[A �
�n

i�1 Ai Ñ X o A1 [. . .[X o An

If X overlaps with A and A is an intersection of classes A1 to An, X overlaps
with classes A1 to An.

X o A[A �
�n

i�1 Ai ô
XI O AI ^ AI � AI

1 X . . .X AI
n ñ

XI O AI
1 ^ . . .^ XI O AI

n ô
X o A1 [. . .[X o An

X possible overlap A X Θ A[A �
�n

i�1 Ai Ñ X Θ A1 [. . .[X Θ An

If X has a possible overlap with A and A is an intersection of classes A1 to
An, X has a possible overlap with classes A1 to An.

X Θ A[A �
�n

i�1 Ai ô
XI θ AI ^ AI � AI

1 X . . .X AI
n ô

XI θ AI
1 ^ . . .^ XI θ AI

n ô
X Θ A1 [. . .[X Θ An

Table C.10: A �
�n

i�1 Ai ^ 1 ¤ m ¤ n, part 1

C.2 Reasoning Rules 285

Am equals X Am � X [A �
�n

i�1 Ai Ñ A � X

If Am equals X and A is an intersection of classes A1 to An (Am is one of
these), A is contained in X

Am � X [A �
�n

i�1 Ai ô
AI

m � XI ^ AI � AI
1 X . . .X AI

m X . . .X AI
n ñ

AI � XI ô
A � X

Am is contained in X Am � X [A �
�n

i�1 Ai Ñ A � X

If Am is more specific than X and A is an intersection of classes A1 to An

(Am is one of these), A is contained in X

Am � X [A �
�n

i�1 Ai ô
AI

m � XI ^ AI � AI
1 X . . .X AI

m X . . .X AI
n ñ

AI � XI ô
A � X

Am contains X Am � X [A �
�n

i�1 Ai Ñ A Θ X

If Am is less specific than X and A is an intersection of classes A1 to An (Am

is one of these), A possibly overlaps with X

Am � X [A �
�n

i�1 Ai ô
AI

m � XI ^ AI � AI
1 X AI

m X . . .X AI
n ñ

AI θ XI ô
A Θ X

Am overlaps X Am o X [A �
�n

i�1 Ai Ñ A Θ X

If Am overlaps with X and A is an intersection of classes A1 to An (Am is
one of these), A has a possible overlap with X

Am o X [A �
�n

i�1 Ai ô
AI

m O XI ^ AI � AI
1 X . . .X AI

m X AI
n ñ

AI θ XI ô
A Θ X

Am possible overlap X Am Θ X [A �
�n

i�1 Ai Ñ A Θ X

If Am has a possible overlap with X and A is an intersection of classes A1

to An (Am is one of these), A also has a possible overlap with X

Am Θ X [A �
�n

i�1 Ai ô
AI

m θ XI ^ AI � AI
1 X . . .X AI

m X AI
n ñ

AI θ XI ô
A Θ X

Table C.11: A �
�n

i�1 Ai ^ 1 ¤ m ¤ n, part 2

286 Ontology-based Model Transformation

X equals A X � A[A � B Ñ X � B

If X equals A and A is the complement of B, X is the complement of B.

X � A[A � B ô
XI � AI ^ AI � BI ñ
XI � BI ô
X � B

X contained in A X � A[A � B Ñ X � B

If X is more specific than A and A is the complement of B, X contains the
complement of B

X � A[A � B ô
XI � AI ^ AI � BI ñ
XI � BI ô
X � B

X contains A X � A[A � B Ñ X Θ B

If X is less specific than A and A is the complement of B, X has a possible
overlap with B.

X � A[A � B ô
XI � AI ^ AI � BI ñ
XI θ BI ô
X Θ B

X overlaps A X o A[A � B Ñ X Θ B

If X overlaps with A and A is the complement of B, X has a possible overlap
with B.

X o A[A � B ô
XI O AI ^ AI � BI ñ
XI θ BI ô
X Θ B

X possible overlap A X Θ A[A � B Ñ X Θ B

If X has a possible overlap with A and A is the complement of B, X has a
possible overlap with B.

X Θ A[A � B ô
XI θ AI ^ AI � BI ñ
XI θ BI ô
X Θ B

Table C.12: A � B, part 1

C.2 Reasoning Rules 287

B equals X B � X [A � B Ñ A � X

If B equals X and A is the complement of B, A equals the complement of
X

B � X [A � B ô
BI � XI ^ AI � BI ñ
AI � XI ô
A � X

B is contained in X B � X [A � B Ñ A Θ X

If B is more specific than X and A is the complement of B, A has a possible
overlap with X

B � X [A � B ô
BI � XI ^ AI � BI ñ
AI θ XI

A Θ X

B contains X B � X [A � B Ñ X � A

If B is less specific than X and A is the complement of B, the complement
of X contains A.

B � X [A � B ô
BI � XI ^ AI � BI ñ
 XI � AI ô
 X � A

B overlaps X B o X [A � B Ñ A Θ X

If B overlaps with X and A is the complement of B, A has a possible overlap
with X

B o X [A � B ô
BI O XI ^ AI � BI ñ
AI θ XI

A Θ X

B possible overlap X B Θ X [A � B Ñ A Θ X

If B has a possible overlap with X and A is the complement of B, A also
has a possible overlap with X

B Θ X [A � B ô
BI θ XI ^ AI � BI ñ
AI θ XI

A Θ X

Table C.13: A � B, part 2

288 Ontology-based Model Transformation

C.3 Case Study - Process Modelling

C.3.1 Bootstrap Model Transformation

Listing C.2: The bootstrap model transformation in QVT Relations syntax
1 transformation ProcessToProcess(prc_1:Process; prc_2:Process) {
2

key process::Process {name};
4 key process::Step {name};

key process::Task {name, namespace};
6 key process::Decision {name, namespace};

key process::Merge {name, namespace};
8 key process::Flow {name, namespace};

10 top relation ProcessToProcess {
n: String;

12 checkonly domain prc_1 p_1:Process {
name=n

14 };
enforce domain prc_2 p_2:Process {

16 name=n
};

18 }

20 top relation TaskToTask {
n: String;

22 checkonly domain prc_1 t_1:Task {
namespace=p_1:Process {},

24 name=n
};

26 enforce domain prc_2 t_2:Task {
namespace=p_2:Process {},

28 name=n
};

30 when
{

32 ProcessToProcess(p_1,p_2);
}

34 where {
StepToStep_out(t_1,t_2);

36 StepToStep_in(t_1,t_2);
}

38 }

40 top relation DecisionToDecision {
n: String;

42 checkonly domain prc_1 d_1:Decision {
namespace=p_1:Process {},

44 name=n
};

46 enforce domain prc_2 d_2:Decision {
namespace=p_2:Process {},

48 name=n
};

50 when
{

52 ProcessToProcess(p_1,p_2);
}

C.3 Case Study - Process Modelling 289

54 where
{

56 StepToStep_out(d_1,d_2);
StepToStep_in(d_1,d_2);

58 }
}

60
top relation MergeToMerge {

62 n: String;
checkonly domain prc_1 m_1:Merge {

64 namespace=p_1:Process {},
name=n

66 };
enforce domain prc_2 m_2:Merge {

68 namespace=p_2:Process {},
name=n

70 };
when

72 {
ProcessToProcess(p_1,p_2);

74 }
where

76 {
StepToStep_out(m_1,m_2);

78 StepToStep_in(m_1,m_2);
}

80 }

82 relation StepToStep_out {
n: String;

84 checkonly domain prc_1 s_1:Step {
outFlow=out_1:Flow {

86 name=n
}

88 };
enforce domain prc_2 s_2:Step {

90 outFlow=out_2:Flow {
name=n

92 }
};

94 }

96 relation StepToStep_in {
n: String;

98 checkonly domain prc_1 s_1:Step {
inFlow=in_1:Flow {

100 name=n
}

102 };
enforce domain prc_2 s_2:Step {

104 inFlow=in_2:Flow {
name=n

106 }
};

108 }

110 top relation FlowToFlow {
n: String;

112 checkonly domain prc_1 f_1:Flow {

290 Ontology-based Model Transformation

namespace=p_1:Process {},
114 name=n

};
116 enforce domain prc_2 f_2:Flow {

namespace=p_2:Process {},
118 name=n

};
120 when

{
122 ProcessToProcess(p_1,p_2);

}
124 where

{
126 Flow2Flow_sink(f_1,f_2);

Flow2Flow_source(f_1,f_2);
128 }

}
130

relation Flow2Flow_sink {
132 n: String;

checkonly domain prc_1 f_1:Flow {
134 sink=sink_1:Step {

name=n
136 }

};
138 enforce domain prc_2 f_2:Flow {

sink=sink_2:Step {
140 name=n

}
142 };

}
144

relation Flow2Flow_source {
146 n: String;

checkonly domain prc_1 f_1:Flow {
148 source=source_1:Step {

name=n
150 }

};
152 enforce domain prc_2 f_2:Flow {

source=source_2:Step {
154 name=n

}
156 };

}
158 }

C.3 Case Study - Process Modelling 291

C.3.2 Reasoning Results

Listing C.3: Reasoning results for classes
<urn : ua : pvs / P r o c e s s > <equa l > <urn : ua : pvs / Epc>
<urn : ua : pvs / P r o c e s s > <p o s s i b l e o v e r l a p > <urn : ua : pvs / Jo in >
<urn : ua : pvs / P r o c e s s > <p o s s i b l e o v e r l a p > <urn : ua : pvs / C on t r o l E l e m en t >
<urn : ua : pvs / P r o c e s s > <p o s s i b l e o v e r l a p > <urn : ua : pvs / S p l i t >
<urn : ua : pvs / P r o c e s s > <p o s s i b l e o v e r l a p > <urn : ua : pvs / Epcelement >
<urn : ua : pvs / P r o c e s s > <p o s s i b l e o v e r l a p > <urn : ua : pvs / Func t ion >

<urn : ua : pvs / Step> <equa l > <urn : ua : pvs / Epcelement >
<urn : ua : pvs / Step> <g e n e r a l > <urn : ua : pvs / Jo in >
<urn : ua : pvs / Step> <g e n e r a l > <urn : ua : pvs / Func t ion >
<urn : ua : pvs / Step> <g e n e r a l > <urn : ua : pvs / S p l i t >
<urn : ua : pvs / Step> <g e n e r a l > <urn : ua : pvs / C on t r o l E l e m en t >
<urn : ua : pvs / Step> <p o s s i b l e o v e r l a p > <urn : ua : pvs / Epc>

<urn : ua : pvs / Task> <equa l > <urn : ua : pvs / Func t ion >
<urn : ua : pvs / Task> < s p e c i f i c > <urn : ua : pvs / Epcelement >
<urn : ua : pvs / Task> <p o s s i b l e o v e r l a p > <urn : ua : pvs / S p l i t >
<urn : ua : pvs / Task> <p o s s i b l e o v e r l a p > <urn : ua : pvs / Jo in >
<urn : ua : pvs / Task> <p o s s i b l e o v e r l a p > <urn : ua : pvs / Epc>
<urn : ua : pvs / Task> <p o s s i b l e o v e r l a p > <urn : ua : pvs / C on t r o l E l e m en t >

<urn : ua : pvs /Merge> <equa l > <urn : ua : pvs / Jo in >
<urn : ua : pvs /Merge> < s p e c i f i c > <urn : ua : pvs / C on t r o l E l e m en t >
<urn : ua : pvs /Merge> < s p e c i f i c > <urn : ua : pvs / Epcelement >
<urn : ua : pvs /Merge> <p o s s i b l e o v e r l a p > <urn : ua : pvs / S p l i t >
<urn : ua : pvs /Merge> <p o s s i b l e o v e r l a p > <urn : ua : pvs / Func t ion >
<urn : ua : pvs /Merge> <p o s s i b l e o v e r l a p > <urn : ua : pvs / Epc>

<urn : ua : pvs / Dec i s ion > <equa l > <urn : ua : pvs / S p l i t >
<urn : ua : pvs / Dec i s ion > < s p e c i f i c > <urn : ua : pvs / C on t ro l E l e m en t >
<urn : ua : pvs / Dec i s ion > < s p e c i f i c > <urn : ua : pvs / Epcelement >
<urn : ua : pvs / Dec i s ion > <p o s s i b l e o v e r l a p > <urn : ua : pvs / Jo in >
<urn : ua : pvs / Dec i s ion > <p o s s i b l e o v e r l a p > <urn : ua : pvs / Func t i on >
<urn : ua : pvs / Dec i s ion > <p o s s i b l e o v e r l a p > <urn : ua : pvs / Epc>

<urn : ua : pvs / Flow> <equa l > <urn : ua : pvs / Connec tor >

Listing C.4: Reasoning results for associations
<urn : ua : pvs / P r o c e s s : f lows > <equa l > <urn : ua : pvs / Epc : c o n n e c t o r s >

<urn : ua : pvs / P r o c e s s : s t e p s > <g e n e r a l > <urn : ua : pvs / Epc : c o n t r o l e l e m e n t s >
<urn : ua : pvs / P r o c e s s : s t e p s > <g e n e r a l > <urn : ua : pvs / Epc : f u n c t i o n s >

<urn : ua : pvs / Step : namespace> <g e n e r a l > <urn : ua : pvs / F u n c t i o n : namespace>
<urn : ua : pvs / Step : namespace> <g e n e r a l > <urn : ua : pvs / S p l i t : namespace>
<urn : ua : pvs / Step : namespace> <g e n e r a l > <urn : ua : pvs / J o i n : namespace>

<urn : ua : pvs / Step : outFlow> <g e n e r a l > <urn : ua : pvs / F u n c t i o n : ou tConnec to rF >
<urn : ua : pvs / Step : outFlow> <g e n e r a l > <urn : ua : pvs / J o i n : o u t C o n n e c t o r J >
<urn : ua : pvs / Step : outFlow> <g e n e r a l > <urn : ua : pvs / S p l i t : ou tConnec to rS >

<urn : ua : pvs / Step : inFlow> <g e n e r a l > <urn : ua : pvs / F u n c t i o n : inConnec to rF >
<urn : ua : pvs / Step : inFlow> <g e n e r a l > <urn : ua : pvs / J o i n : i n C o n n e c t o r J >
<urn : ua : pvs / Step : inFlow> <g e n e r a l > <urn : ua : pvs / S p l i t : i nConnec to rS >

<urn : ua : pvs / Flow : namespace> <g e n e r a l > <urn : ua : pvs / Connec to r : namespace>

<urn : ua : pvs / Flow : s ink > <g e n e r a l > <urn : ua : pvs / Connec to r : t a r g e t J o i n >
<urn : ua : pvs / Flow : s ink > <g e n e r a l > <urn : ua : pvs / Connec to r : t a r g e t F u n c t i o n >
<urn : ua : pvs / Flow : s ink > <g e n e r a l > <urn : ua : pvs / Connec to r : t a r g e t S p l i t >

<urn : ua : pvs / Flow : sou rce > <g e n e r a l > <urn : ua : pvs / Connec to r : s o u r c e J o i n >

292 Ontology-based Model Transformation

<urn : ua : pvs / Flow : sou rce > <g e n e r a l > <urn : ua : pvs / Connec to r : s o u r c e F u n c t i o n >
<urn : ua : pvs / Flow : sou rce > <g e n e r a l > <urn : ua : pvs / Connec to r : s o u r c e S p l i t >

Listing C.5: Reasoning results for properties
<urn : ua : pvs / P r o c e s s : name> <equa l > <urn : ua : pvs / Epc : name>
<urn : ua : pvs / P r o c e s s : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / S p l i t : name>
<urn : ua : pvs / P r o c e s s : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / Epc : name>
<urn : ua : pvs / P r o c e s s : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / Epce lement : name>
<urn : ua : pvs / P r o c e s s : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / J o i n : name>
<urn : ua : pvs / P r o c e s s : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / C o n t r o l E l e m e n t : name>
<urn : ua : pvs / P r o c e s s : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / F u n c t i o n : name>

<urn : ua : pvs / Task : name> <equa l > <urn : ua : pvs / F u n c t i o n : name>
<urn : ua : pvs / Task : name> < s p e c i f i c > <urn : ua : pvs / Epce lement : name>
<urn : ua : pvs / Task : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / Epc : name>
<urn : ua : pvs / Task : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / J o i n : name>
<urn : ua : pvs / Task : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / F u n c t i o n : name>
<urn : ua : pvs / Task : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / S p l i t : name>
<urn : ua : pvs / Task : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / C o n t r o l E l e m e n t : name>

<urn : ua : pvs / D e c i s i o n : name> <equa l > <urn : ua : pvs / S p l i t : name>
<urn : ua : pvs / D e c i s i o n : name> < s p e c i f i c > <urn : ua : pvs / C o n t r o l E l e m e n t : name>
<urn : ua : pvs / D e c i s i o n : name> < s p e c i f i c > <urn : ua : pvs / Epce lement : name>
<urn : ua : pvs / D e c i s i o n : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / F u n c t i o n : name>
<urn : ua : pvs / D e c i s i o n : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs /EPC : name>
<urn : ua : pvs / D e c i s i o n : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / S p l i t : name>
<urn : ua : pvs / D e c i s i o n : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / J o i n : name>

<urn : ua : pvs /Merge : name> <equa l > <urn : ua : pvs / J o i n : name>
<urn : ua : pvs /Merge : name> < s p e c i f i c > <urn : ua : pvs / C o n t r o l E l e m e n t : name>
<urn : ua : pvs /Merge : name> < s p e c i f i c > <urn : ua : pvs / Epce lement : name>
<urn : ua : pvs /Merge : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / Epc : name>
<urn : ua : pvs /Merge : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / S p l i t : name>
<urn : ua : pvs /Merge : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / J o i n : name>
<urn : ua : pvs /Merge : name> <p o s s i b l e o v e r l a p > <urn : ua : pvs / F u n c t i o n : name>

<urn : ua : pvs / Flow : name> <equa l > <urn : ua : pvs / Connec to r : name>

C.3 Case Study - Process Modelling 293

C.3.3 Generated Model Transformation

Listing C.6: The generated model transformation in QVT Relations syntax
1 transformation ProcessToProcess(prc_1:Process; prc_2:Epc) {
2

key Epc::Epc {name};
4 key Epc::Function {name, namespace};

key Epc::Split {name, namespace};
6 key Epc::Join {name, namespace};

key Epc::Connector {name, namespace};
8

top relation ProcessToProcess {
10 n: String;

checkonly domain prc_1 p_1:Process {
12 name=n

};
14 enforce domain prc_2 p_2:Epc {

name=n
16 };

}
18

top relation TaskToTask {
20 n: String;

checkonly domain prc_1 t_1:Task {
22 namespace=p_1:Process {},

name=n
24 };

enforce domain prc_2 t_2:Function {
26 namespace=p_2:Epc {},

name=n
28 };

when
30 {

ProcessToProcess(p_1,p_2);
32 }

where {
34 StepToStep_out_1(t_1,t_2);

StepToStep_in_1(t_1,t_2);
36 }

}
38

top relation DecisionToDecision {
40 n: String;

checkonly domain prc_1 d_1:Decision {
42 namespace=p_1:Process {},

name=n
44 };

enforce domain prc_2 d_2:Split {
46 namespace=p_2:Epc {},

name=n
48 };

when
50 {

ProcessToProcess(p_1,p_2);
52 }

where
54 {

StepToStep_out_2(d_1,d_2);

294 Ontology-based Model Transformation

56 StepToStep_in_2(d_1,d_2);
}

58 }

60 top relation MergeToMerge {
n: String;

62 checkonly domain prc_1 m_1:Merge {
namespace=p_1:Process {},

64 name=n
};

66 enforce domain prc_2 m_2:Join {
namespace=p_2:Epc {},

68 name=n
};

70 when
{

72 ProcessToProcess(p_1,p_2);
}

74 where
{

76 StepToStep_out_3(m_1,m_2);
StepToStep_in_3(m_1,m_2);

78 }
}

80
relation StepToStep_out_1 {

82 n: String;
checkonly domain prc_1 s_1:Step {

84 outFlow=out_1:Flow {
name=n

86 }
};

88 enforce domain prc_2 s_2:Function {
outConnectorF=out_2:Connector {

90 name=n
}

92 };
}

94
relation StepToStep_out_2 {

96 n: String;
checkonly domain prc_1 s_1:Step {

98 outFlow=out_1:Flow {
name=n

100 }
};

102 enforce domain prc_2 s_2:Split {
outConnectorS=out_2:Connector {

104 name=n
}

106 };
}

108
relation StepToStep_out_3 {

110 n: String;
checkonly domain prc_1 s_1:Step {

112 outFlow=out_1:Flow {
name=n

114 }

C.3 Case Study - Process Modelling 295

};
116 enforce domain prc_2 s_2:Join {

outConnectorJ=out_2:Connector {
118 name=n

}
120 };

}
122

relation StepToStep_in_1 {
124 n: String;

checkonly domain prc_1 s_1:Step {
126 inFlow=in_1:Flow {

name=n
128 }

};
130 enforce domain prc_2 s_2:Function {

inConnectorF=in_2:Connector {
132 name=n

}
134 };

}
136

relation StepToStep_in_2 {
138 n: String;

checkonly domain prc_1 s_1:Step {
140 inFlow=in_1:Flow {

name=n
142 }

};
144 enforce domain prc_2 s_2:Split {

inConnectorS=in_2:Connector {
146 name=n

}
148 };

}
150

relation StepToStep_in_3 {
152 n: String;

checkonly domain prc_1 s_1:Step {
154 inFlow=in_1:Flow {

name=n
156 }

};
158 enforce domain prc_2 s_2:Join {

inConnectorJ=in_2:Connector {
160 name=n

}
162 };

}
164

top relation FlowToFlow {
166 n: String;

checkonly domain prc_1 f_1:Flow {
168 namespace=p_1:Process {},

name=n
170 };

enforce domain prc_2 f_2:Connector {
172 namespace=p_2:Epc {},

name=n

296 Ontology-based Model Transformation

174 };
when

176 {
ProcessToProcess(p_1,p_2);

178 }
where

180 {
Flow2Flow_sink(f_1,f_2)_1;

182 Flow2Flow_sink(f_1,f_2)_2;
Flow2Flow_sink(f_1,f_2)_3;

184 Flow2Flow_source(f_1,f_2)_1;
Flow2Flow_source(f_1,f_2)_2;

186 Flow2Flow_source(f_1,f_2)_3;
}

188 }

190 relation Flow2Flow_sink_1 {
n: String;

192 checkonly domain prc_1 f_1:Flow {
sink=sink_1:Step {

194 name=n
}

196 };
enforce domain prc_2 f_2:FConnector {

198 targetFunction=sink_2:Function {
name=n

200 }
};

202 }

204 relation Flow2Flow_sink_2 {
n: String;

206 checkonly domain prc_1 f_1:Flow {
sink=sink_1:Step {

208 name=n
}

210 };
enforce domain prc_2 f_2:Connector {

212 targetSplit=sink_2:Split {
name=n

214 }
};

216 }

218 relation Flow2Flow_sink_3 {
n: String;

220 checkonly domain prc_1 f_1:Flow {
sink=sink_1:Step {

222 name=n
}

224 };
enforce domain prc_2 f_2:Connector {

226 targetJoin=sink_2:Join {
name=n

228 }
};

230 }

232 relation Flow2Flow_source_1 {

C.3 Case Study - Process Modelling 297

n: String;
234 checkonly domain prc_1 f_1:Flow {

source=source_1:Step {
236 name=n

}
238 };

enforce domain prc_2 f_2:Connector {
240 sourceFunction=source_2:Function {

name=n
242 }

};
244 }

246 relation Flow2Flow_source_2 {
n: String;

248 checkonly domain prc_1 f_1:Flow {
source=source_1:Step {

250 name=n
}

252 };
enforce domain prc_2 f_2:Connector {

254 sourceSplit=source_2:Split {
name=n

256 }
};

258 }

260 relation Flow2Flow_source_3 {
n: String;

262 checkonly domain prc_1 f_1:Flow {
source=source_1:Step {

264 name=n
}

266 };
enforce domain prc_2 f_2:Connector {

268 sourceJoin=source_2:Join {
name=n

270 }
};

272 }
}

298 Ontology-based Model Transformation

C.4 Case Study - Service Modelling

C.4.1 Initial Model Transformation

Listing C.7: The input model transformation in QVT relational syntax
1 transformation SPL4AOXtoPIM4SOA(aox:SPL4AOX; soa:PIM4SOA) {
2

key PIM4SOA::PIM4SOAmodel {name};
4 key PIM4SOA::Collaboration {name, namespace};

key PIM4SOA::CollaborationUse {name};
6 key PIM4SOA::ServiceProvider {name, namespace};

key PIM4SOA::Role {name, roleOwner};
8 key PIM4SOA::RoleBinding {name, namespace};

10 top relation SPL4AOXToPIM4SOAmodel {
n: String;

12 checkonly domain aox a_1:SPL4AOXmodel {
name=n

14 };
enforce domain soa s_1:PIM4SOAmodel {

16 name=n
};

18 }

20 top relation CollaborationToCollaboration {
n: String;

22 checkonly domain aox a_1:ServiceCollaboration {
namespace=am_1:SPL4AOXmodel {},

24 name=n
};

26 enforce domain soa s_1:Collaboration {
namespace=sm_1:PIM4SOAmodel {},

28 name=n
};

30 when
{

32 SPL4AOXToPIM4SOAmodel(am_1,sm_1);
}

34 where
{

36 CollaborationRoleToCollaborationRole(a_1,s_1);
}

38 }

40 relation CollaborationRoleToCollaborationRole {
n: String;

42 checkonly domain aox a_1:ServiceCollaboration {
role=ar_1:Role {

44 name=n
}

46 };
enforce domain soa s_1:Collaboration {

48 roles=sr_1:Role {
name=n,

50 roleOwner='C'
}

52 };
}

C.4 Case Study - Service Modelling 299

54
top relation CollaborationUseToCollaborationUse_Collaboration {

56 n: String;
checkonly domain aox a_1:CollaborationUse {

58 namespace=ac_1:ServiceCollaboration {},
service=ac_2:ServiceCollaboration {},

60 name=n
};

62 enforce domain soa s_1:CollaborationUse {
namespace2=sc_1:Collaboration {},

64 collaboration=sc_2:Collaboration {},
name=n

66 };
when

68 {
CollaborationToCollaboration(ac_1,sc_1);

70 CollaborationToCollaboration(ac_2,sc_2);
}

72 }

74 top relation RoleBindingToRoleBinding_Collaboration {
n: String;

76 checkonly domain aox a_1:RoleBinding {
namespace=arb_1:CollaborationUse {},

78 name=n
};

80 enforce domain soa s_1:RoleBinding {
namespace=srb_1:CollaborationUse {},

82 name=n
};

84 when
{

86 CollaborationUseToCollaborationUse_Collaboration(arb_1,srb_1);
}

88 where
{

90 RoleBindingToRoleBinding_role_Collaboration(a_1,s_1);
RoleBindingToRoleBinding_boundRole_Collaboration(a_1,s_1);

92 }
}

94
relation RoleBindingToRoleBinding_role_Collaboration {

96 n,nr: String;
checkonly domain aox a_1:RoleBinding {

98 role=ar_1:Role {
name=nr

100 }
};

102 enforce domain soa s_1:RoleBinding {
role=sr_1:Role {

104 name=nr,
roleOwner='C'

106 }
};

108 }

110 relation RoleBindingToRoleBinding_boundRole_Collaboration {
n,nr: String;

112 checkonly domain aox a_1:RoleBinding {

300 Ontology-based Model Transformation

boundRole=ar_1:Role {
114 name=nr

}
116 };

enforce domain soa s_1:RoleBinding {
118 boundRole=sr_1:Role {

name=nr,
120 roleOwner='C'

}
122 };

}
124

top relation ServiceProviderToServiceProvider {
126 n,nr: String;

checkonly domain aox a_1:ServiceProvider {
128 namespace=am_1:SPL4AOXmodel {},

name=n,
130 role=ar:Role{

name=nr,
132 usingService=ac:ServiceCollaboration {}

}
134 };

enforce domain soa s_1:ServiceProvider {
136 namespace=sm_1:PIM4SOAmodel {},

name=n,
138 participates=scu:CollaborationUse {

name=n+'_SP',
140 collaboration=sc:Collaboration {},

bindings=srb:RoleBinding {
142 name=n+'_RB'

}
144 }

};
146 when

{
148 SPL4AOXToPIM4SOAmodel(am_1,sm_1);

CollaborationToCollaboration(ac,sc);
150 }

where
152 {

roleBindingSP_Provider(ar,srb);
154 roleBindingSP_Requestor(ar,srb);

}
156 }

158 relation roleBindingSP_Provider {
nr: String;

160 checkonly domain aox a_1:Role {
name=nr,

162 roleType='PROVIDER '
};

164 enforce domain soa s_1:RoleBinding {
role=sRole:Role{

166 name=nr,
roleOwner='C'

168 },
boundRole=sBoundRole:Role {

170 name=nr,
roleOwner='SP',

C.4 Case Study - Service Modelling 301

172 roleType='PROVIDER '
}

174 };
}

176
relation roleBindingSP_Requestor {

178 nr: String;
checkonly domain aox a_1:Role {

180 name=nr,
roleType='REQUESTOR '

182 };
enforce domain soa s_1:RoleBinding {

184 role=sRole:Role{
name=nr,

186 roleOwner='C'
},

188 boundRole=sBoundRole:Role {
name=nr,

190 roleOwner='SP',
roleType='REQUESTOR '

192 }
};

194 }

196 top relation RoleToRole_Provider {
n: String;

198 checkonly domain aox a_1:Role {
namespace=asp_1:ServiceProvider {},

200 name=n,
roleType='PROVIDER '

202 };
enforce domain soa s_1:Role {

204 namespace1=ssp_1:ServiceProvider {},
name=n,

206 roleType='PROVIDER ',
roleOwner='SP'

208 };
when

210 {
ServiceProviderToServiceProvider(asp_1,ssp_1);

212 }
}

214
top relation RoleToRole_Requestor {

216 n: String;
checkonly domain aox a_1:Role {

218 namespace=asp_1:ServiceProvider {},
name=n,

220 roleType='REQUESTOR '
};

222 enforce domain soa s_1:Role {
namespace1=ssp_1:ServiceProvider {},

224 name=n,
roleType='REQUESTOR ',

226 roleOwner='SP'
};

228 when
{

230 ServiceProviderToServiceProvider(asp_1,ssp_1);

302 Ontology-based Model Transformation

}
232 }

}

C.4 Case Study - Service Modelling 303

C.4.2 Output Model Transformation

Listing C.8: The output model transformation in QVT relational syntax
1 transformation SPL4AOXtoUPMS(aox:SPL4AOX; soa:UPMS) {
2

key UPMS::UPMSmodel {name};
4 key UPMS::Contract {name, namespace};

key UPMS::Fulfillment {name};
6 key UPMS::Component {name, namespace};

key UPMS::Role {name};
8 key UPMS::Service {name};

key UPMS::Requisition {name};
10 key UPMS::Dependency {name, namespace};

12 top relation SPL4AOXToUPMSmodel {
n: String;

14 checkonly domain aox a_1:SPL4AOXmodel {
name=n

16 };
enforce domain soa s_1:UPMSmodel {

18 name=n
};

20 }

22 top relation CollaborationToContract {
n: String;

24 checkonly domain aox a_1:ServiceCollaboration {
namespace=am_1:SPL4AOXmodel {},

26 name=n
};

28 enforce domain soa s_1:Contract {
namespace=sm_1:UPMSmodel {},

30 name=n
};

32 when
{

34 SPL4AOXToUPMSmodel(am_1, sm_1);
}

36 where
{

38 CollaborationRoleToContractRole(a_1, s_1);
}

40 }

42 relation CollaborationRoleToContractRole {
n: String;

44 checkonly domain aox a_1:ServiceCollaboration {
role=ar_1:Role {

46 name=n
}

48 };
enforce domain soa s_1:Contract {

50 parts=sr_1:Role {
name=n

52 }
};

54 }

304 Ontology-based Model Transformation

56 top relation CollaborationUseToFulfillment_Collaboration {
n: String;

58 checkonly domain aox a_1:CollaborationUse {
namespace=ac_1:ServiceCollaboration {},

60 service=ac_2:ServiceCollaboration {},
name=n

62 };
enforce domain soa s_1:Fulfillment {

64 namespace2=sc_1:Contract {},
contractUse=sc_2:Contract {},

66 name=n
};

68 when
{

70 CollaborationToContract(ac_1, sc_1);
CollaborationToContract(ac_2, sc_2);

72 }
}

74
top relation RoleBindingToDependency_Collaboration {

76 n: String;
checkonly domain aox a_1:RoleBinding {

78 namespace=arb_1:CollaborationUse {},
name=n

80 };
enforce domain soa s_1:Dependency {

82 namespace=srb_1:Fulfillment {},
name=n

84 };
when

86 {
CollaborationUseToFulfillment_Collaboration(arb_1, srb_1);

88 }
where

90 {
RoleBindingToDependency_role_Collaboration(a_1, s_1);

92 RoleBindingToDependency_boundRole_Collaboration(a_1, s_1);
}

94 }

96 relation RoleBindingToDependency_role_Collaboration {
n,nr: String;

98 checkonly domain aox a_1:RoleBinding {
role=ar_1:Role {

100 name=nr
}

102 };
enforce domain soa s_1:Dependency {

104 role=sr_1:Role {
name=nr

106 }
};

108 }

110 relation RoleBindingToDependency_boundRole_Collaboration {
n,nr: String;

112 checkonly domain aox a_1:RoleBinding {
boundRole=ar_1:Role {

114 name=nr

C.4 Case Study - Service Modelling 305

}
116 };

enforce domain soa s_1:Dependency {
118 boundRole=sr_1:Role {

name=nr
120 }

};
122 }

124 top relation ServiceProviderToComponent
{

126 n,nr: String;
checkonly domain aox a_1:ServiceProvider {

128 namespace=am_1:SPL4AOXmodel {},
name=n,

130 role=ar:Role {
name=nr,

132 usingService=ac:ServiceCollaboration{}
}

134 };
enforce domain soa s_1:Component {

136 namespace=sm_1:UPMSmodel {},
name=n,

138 contracts=scu:Fulfillment {
name=n+'_SP',

140 contractUse=sc:Contract {},
roleBinding=srb:Dependency {

142 name=n+'_RB'
}

144 }
};

146 when
{

148 SPL4AOXToUPMSmodel(am_1, sm_1);
CollaborationToContract(ac, sc);

150 }
where

152 {
roleBindingSP_Service(ar, srb);

154 roleBindingSP_Requisition(ar, srb);
}

156 }

158 relation roleBindingSP_Service {
nr: String;

160 checkonly domain aox a_1:Role {
name=nr,

162 roleType='PROVIDER '
};

164 enforce domain soa s_1:Dependency {
role=sRole:Role{

166 name=nr
},

168 boundRoleService=sBoundRole:Service {
name=nr

170 }
};

172 }

306 Ontology-based Model Transformation

174 relation roleBindingSP_Requisition {
nr: String;

176 checkonly domain aox a_1:Role {
name=nr,

178 roleType='REQUESTOR '
};

180 enforce domain soa s_1:Dependency {
role=sRole:Role{

182 name=nr
},

184 boundRoleRequisition=sBoundRole:Requisition {
name=nr

186 }
};

188 }

190 top relation RoleToService {
n: String;

192 checkonly domain aox a_1:Role {
namespace=asp_1:ServiceProvider {},

194 name=n,
roleType='PROVIDER '

196 };

198 enforce domain soa s_1:Service {
namespace=ssp_1:Component {},

200 name=n
};

202 when
{

204 ServiceProviderToComponent(asp_1, ssp_1);
}

206 }

208 top relation RoleToRequisition {
n: String;

210 checkonly domain aox a_1:Role {
namespace=asp_1:ServiceProvider {},

212 name=n,
roleType='REQUESTOR '

214 };
enforce domain soa s_1:Requisition {

216 namespace=ssp_1:Component {},
name=n

218 };
when

220 {
ServiceProviderToComponent(asp_1, ssp_1);

222 }
}

224 }

Curriculum Vitae

Name Stephan Roser

Date of birth 25th August 1979

Place of birth Augsburg

Nationality German

since 10/2004 Research assistant at the Department of Computer Science
(University of Augsburg)

10/2001 - 09/2004 Studies in Applied Computer Science (University of Augsburg)
Degree: Diploma

05/2000 - 09/2001 Studies in Economathematics (University of Augsburg)
Degree: Intermediate diploma

07/1999 - 04/2000 Basic military service (Bad Reichenhall)

09/1990 - 06/1999 Secondary school (Neusäß)
Leaving certificate: Abitur

09/1986 - 07/1990 Primary school (Neusäß)

	1 Introduction
	1.1 Problems and Challenges
	1.2 Objectives, Approach, and Contributions
	1.3 Outline

	2 Basics
	2.1 Service-oriented Paradigm
	2.2 Process Modelling and Execution
	2.2.1 Orchestration & Choreography
	2.2.2 Process Modelling
	2.2.3 Cross-organisational Business Processes

	2.3 Architecture Evaluation and Decision Methods
	2.3.1 Architecture Evaluation
	2.3.2 Analytic Hierarchy Process
	2.3.3 Contingency Theory

	2.4 Semantic Technologies and Technological Spaces
	2.4.1 Technological Spaces
	2.4.2 Ontology
	2.4.3 Syntax, Semantics, and Ontology

	2.5 Summary

	3 Model Driven Software Development
	3.1 MDE Approaches to Software Development
	3.1.1 MDA
	3.1.2 Software Factories
	3.1.3 Benefits of Model Driven Engineering
	3.1.4 MDE Tool Suites and Initiatives

	3.2 Models
	3.2.1 MegaModel for MDE
	3.2.2 Metamodelling Hierarchy
	3.2.3 UML vs. Domain Specific Languages
	3.2.4 Types of Models
	3.2.5 Models as Assets of Organisations

	3.3 Model Transformation and Code Generation
	3.3.1 Features of Model Transformations
	3.3.2 Classification of Model Transformation Approaches
	3.3.3 OMG Standard: Query/View/Transformation

	3.4 Summary

	4 Enacting Cross-organisational Business Processes with MDSD
	4.1 Transforming CIM to PIM
	4.1.1 Problem Description
	4.1.2 Software Architectures for ICT System Coordination
	4.1.3 Case Study
	4.1.4 Implementation and Execution CIM to PIM Model Transformations
	4.1.5 Discussion

	4.2 Transforming PIM to PSM
	4.2.1 Context and Example
	4.2.2 Problem Description
	4.2.3 Model and Code Generation Framework
	4.2.4 Case Study
	4.2.5 Discussion

	4.3 Conclusions

	5 ICT Architectures for CBP Enactment: Applicability Criteria and Evaluation
	5.1 Example and Problem Description
	5.2 A Method for Evaluation of ICT Architecture Applicability
	5.2.1 Methodological Issues
	5.2.2 Multi-criteria Evaluation and Decision Model
	5.2.3 Measuring Qualitative Factors
	5.2.4 Measuring Quantitative Factors

	5.3 Applying the Evaluation Method
	5.3.1 Virtual Enterprise Scenario
	5.3.2 SME Scenario

	5.4 Discussion and Conclusions

	6 Ontology-based Model Transformation
	6.1 Problem Description
	6.1.1 A MDSD Scenario
	6.1.2 Problem Statement

	6.2 The Ontology-based Model Transformation Approach
	6.2.1 Automated Generation of Model Transformations
	6.2.2 Evolution of Model Transformations

	6.3 Components of Ontology-based Model Transformation
	6.3.1 Components of a Sem-MT-Tool
	6.3.2 Architecture of Ontology-based Model Transformation

	6.4 Realization of Ontology-based Model Transformation
	6.4.1 Model Transformation Bootstrapping
	6.4.2 Higher-order Model Transformation Language
	6.4.3 Ontology Representation and Reasoning
	6.4.4 Sem-MT-Component

	6.5 Case Studies
	6.5.1 Mapping Generation for Process Modelling
	6.5.2 Model Transformation Evolution for Service Modelling

	6.6 Assessment of Ontology-based Model Transformation
	6.6.1 Application Areas
	6.6.2 Evaluation
	6.6.3 Discussion

	6.7 Related Work
	6.7.1 Mapping Approaches
	6.7.2 Comparison of Model and Model Transformation Evolution Approaches

	6.8 Conclusions

	7 Conclusions
	7.1 Summary
	7.2 Discussion and Outlook

	Bibliography
	Acronyms
	Figures
	Tables
	Listings
	A CBP Enactment
	B CBP Architecture Evaluation
	B.1 Scenarios Descriptions
	B.2 Influences of Contingencies
	B.3 Virtual Enterprise Scenario
	B.4 SME Scenario

	C Ontology-based Model Transformation
	C.1 Library Example
	C.2 Reasoning Rules
	C.3 Case Study - Process Modelling
	C.3.1 Bootstrap Model Transformation
	C.3.2 Reasoning Results
	C.3.3 Generated Model Transformation

	C.4 Case Study - Service Modelling
	C.4.1 Initial Model Transformation
	C.4.2 Output Model Transformation

