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Squeezed hole spin qubits in Ge quantum dots with ultrafast gates at low power
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Hole spin qubits in planar Ge heterostructures are one of the frontrunner platforms for scalable quantum
computers. In these systems, the spin-orbit interactions permit efficient all-electric qubit control. We propose
a minimal design modification of planar devices that enhances these interactions by orders of magnitude and
enables low power ultrafast qubit operations in the GHz range. Our approach is based on an asymmetric potential
that strongly squeezes the quantum dot in one direction. This confinement-induced spin-orbit interaction does
not rely on microscopic details of the device such as growth direction or strain and could be turned on and off
on demand in state-of-the-art qubits.
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I. INTRODUCTION

Holes in germanium (Ge) are promising candidates for
semiconductor based quantum information processing [1]. Ge
is one of the frontrunner materials for spin qubits because
the noise caused by hyperfine interactions can be strongly
suppressed by isotopic purification [2], and holes do not suf-
fer from valley degeneracies, a limiting factor for electrons
[3]. In addition, holes exhibit a strong spin-orbit interaction
(SOI), which enables electrically controlled single [4–7] and
two-qubit gates [8]. Among the several possible architectures,
quantum dots in planar Ge/SiGe heterostructures are one of
the most advanced. Singlet-triplet encoding [9] as well as a
four-qubit quantum processor have been demonstrated [10],
and the high degree of compatibility of these systems with
CMOS technology paves a way towards scalable quantum
computers [11].

In current Ge/SiGe devices, the quantum dots are rather
symmetric, with a lateral confinement much smoother than
the heterostructure width. This design results in a SOI that is
cubic in momentum [12] and that inherently relies on small
anisotropies of the valence band of Ge [13] and anharmonic-
ities of the lateral confinement [14]. In contrast, in Ge wires,
the holes are tightly confined in two directions and show a
much larger direct Rashba (DR) SOI [15–20] that is linear in
momentum and only weakly depends on valence band aniso-
tropies. The DRSOI is consistent with the faster Rabi oscilla-
tions observed in wires [5,6] compared to planar qubits [7].

In this paper, we propose a minimal modification of state-
of-the-art Ge/SiGe qubits that results in orders of magnitude
larger Rabi frequencies, enabling power efficient ultrafast
gates. Our approach is based on a squeezed dot, where one of
the lateral directions is tightly confined. This design takes full
advantage of the hole physics by recovering the large DRSOI
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typical of wires and in contrast to alternative proposals [21]
only weakly depends on the growth direction of the het-
erostructure. The DRSOI also opens up to the possibility
of strongly coupling these qubits to microwave resonators
[22,23], potentially enabling long-range interactions between
distant qubits and surface code architecture [24].

II. THEORETICAL MODEL

We examine the Ge quantum dot sketched in Fig. 1 and
modelled by the Hamiltonian

H =
(

γ1 + 5γs

2

)
p2

2m
− γs

m
(p · J)2

+ |b|ε0J2
z + VC − eEz + HB, (1)

where m is the electron mass, p = −ih̄∇ is the canonical
momentum [p2 = −h̄2∇2] and J = (Jx, Jy, Jz ) is the vector
of spin 3/2 matrices. Heavy holes (HH) and light holes (LH)
are mixed by the isotropic Luttinger-Kohn (LK) parameters
γ1 ≈ 13.35 and γs ≡ (γ2 + γ3)/2 ≈ 4.96 [25], and by the Bir-
Pikus strain energy bε0 [26], where b = −2.16 eV and ε0 ≡
ε‖ − εzz ≈ 1.74ε‖. The uniaxial strain caused by the mismatch
of the lattice constants in the heterostructure is described by
the strain tensor εi j ≈ δi jεii, with εxx = εyy ≡ ε‖ and εzz =
−2C12ε‖/C11 ≈ −0.74ε‖ [Ci j are the elastic constants of Ge]
[12,13].

The confinement energy VC = Vz(z) + ∑
i=x,y h̄ωir2

i /2l2
i

comprises an abrupt potential Vz modeling the boundaries of a
heterostructure of width w, and an electrostatic potential in the
r = (x, y) plane, parameterized by the harmonic lengths li and
by the frequencies ωi ≡ h̄γ1/ml2

i . While dc electric fields in
the r plane have no effect on the system, the externally tunable
electric field E > 0 compresses the wavefunction within a
length lE ≡ (h̄2γ1/2meE )1/3 ≈ 8 nm × E−1/3 from the top
boundary of the heterostructure [27] and controls the SOI.
To simplify the notation, throughout the paper E is given
in V/μm. The lengths lx,y,E introduced here are parame-
ters that model the electrostatic potential and depend on an
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FIG. 1. Squeezed hole qubit. A quantum dot is defined in a Ge
well of width w sandwiched between two Si1−xGex layers. The hole
wave function is localized within a region of width lE from the top
interface of the heterostructure by a dc electric field E and is confined
in the (x, y) plane by a anisotropic harmonic potential parameterized
by the lengths lx and ly. Different spin states are gapped by an in-
plane magnetic field By. An ac electric field E ac

y shifts the dot time-
dependently by dy, resulting in ultrafast Rabi oscillations.

average hole mass m/γ1. To define the qubit, we include an
external magnetic field B, typically of a few hundreds of
millitesla. The resulting Hamiltonian HB = HZ + HO com-
prises the Zeeman energy HZ = 2μBB · (κJ + qJ3) [25] and
the orbital contribution HO ≈ −2eγs{A · J, p · J}/m coming
from the Peierls substitutions p → π = p + eA, with A =
−(Bzy, 0, Byx − Bxy) being the vector potential. We neglect
irrelevant shifts of the dot and corrections O(B2).

III. OPTIMAL CONDITIONS FOR THE DRSOI

In the squeezed dot sketched in Fig. 1, E induces a DRSOI
HSO = vpyσx, which tends to align the ground-state quaside-
generate Kramers partners to the x direction. To predict the
optimal design for the DRSOI, we estimate the spin-orbit ve-
locity v by first diagonalizing H at py = 0 and B = 0, and then
projecting H1 = −2γs py{Jy, pxJx + pzJz}/m onto the ground-
state subspace [28]. Here, {A, B} = (AB + BA)/2. The SOI
depends on the lengths lx,E and w, and on the strain ε0.

We first set ε0 = 0, and in Fig. 2(a), we show how v varies
as a function of lx/lE for heterostructures with different widths
w. When lx � lE , the SOI is accurately described by the
expansion h̄v ≈ 5.1h̄2l2

x /ml3
E = 0.76eEl2

x , independent of w.
As the ratio lx/lE increases, v reaches the maximal value v∗ at
lx = l∗

x , and then decays as v ∝ lE/l2
x ∝ E−1/3 for lx 
 lE .

The position and value of the maximal SOI depend on w

and these dependencies are very well approximated by simple
fitting formulas in Fig. 2(b). The optimal SOI saturates to
h̄v∗ = 2.56h̄2/mlE ≈ 25 meV nm × E1/3 when w � 3lE ≈
24 nm × E−1/3; this condition is easily met in state-of-the-art
devices, where w ∈ [15, 30] nm and E � 1 V/μm [1]. We
remark that the case w 
 lE also describes inversion layers.

The condition for the optimal length l∗
x ≈ 0.81lE requires

a strong harmonic potential h̄ωx = 24 meV × E2/3 that com-
presses the wave function in a region shorter than 6.5 nm ×
E−1/3. While not unrealistic for industry standards [29], we
can relax this constraint by introducing the quantity lm

x ,

FIG. 2. DRSOI in a squeezed Ge dot. The spin-orbit velocity
v and the lengths are in units of h̄/mlE ≈ 9.53 meV nm × E 1/3/h̄
and lE ≈ 8 nm × E

−1/3
, respectively. E is in V/μm. In (a), we

show v against lx for different values of w. The gray dashed lines
are the asymptotic limits v = 5.1h̄l2

x /ml3
E and v = 3.16h̄lE/ml2

x ob-
tained when w 
 lE for small and large lx/lE , respectively. The
largest SOI v = v∗ is reached at lx = l∗

x , while v = v∗/2 at lx =
lm
x > l∗

x . The dependence of these parameters on w is shown in
(b); dots and lines are respectively numerical and the fitting for-
mulas v∗ = 2.56erf(0.14w2/l2

E )h̄/mlE , l∗
x = 0.81lE

√
erf(0.14w2/l2

E )
and lm

x = 1.52lE

√
erf(0.11w2/l2

E ). In (c) and (d), we focus on the
w 
 lE case. In (c), we study the effect of the anisotropies γ2 �= γ3

of the LK Hamiltonian for different confinement directions, and in
(d), we consider strained Ge. The strain ε0 is in units of εE/|b| ≈
0.37% × E 2/3. The largest SOI is reached along the orange curve
|b|ε0/εE = 0.5 − 0.2/(0.18 − lx/lE )2.

defined as the largest value of lx that guarantees v > v∗/2,
see Fig. 2(a). As shown in Fig. 2(b), this results in the experi-
mentally accessible length lm

x ≈ 12 nm × E−1/3 at w 
 lE .
The isotropic LK Hamiltonian in Eq. (1) neglects small

cubic anisotropies [25]. When these terms are included, v

depends on the alignment between confinement and crystal-
lographic axes. As shown in Fig. 2(c), a more refined analysis
analogous to Ref. [28] shows that the isotropic approximation
describes well the system, but there are special orientations
at which the DRSOI is enhanced: the DRSOI is largest when
z ‖ [110] and y ‖ [001] [18,28]. In contrast to other proposals
[21] for obtaining DRSOI in Ge heterostructures, in our ap-
proach, this particular growth direction is convenient but not
required. Also, because here the DRSOI originates from the
confinement potential and not from the small anisotropies of
Ge, the maximal SOI h̄v∗ is more than 5 times larger than in
Ref. [21] at comparable electric fields.

The strong DRSOI persists in strained heterostructures.
In Fig. 2(d), we analyze the dependence of v on lx/lE in a
strained device with w 
 lE . Here, we measure the strain ε0
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in units of εE/|b|, with εE ≡ h̄2γ1/2ml2
E being the electric

energy. Compressive strain with ε0 < 0 tends to align the spin
quantization axis to the z direction, thus reducing the HH-LH
mixing and the DRSOI. However, in the range of parame-
ters studied, the maximal SOI is only halved. In this case,
a tighter lateral confinement is required to reach the optimal
DRSOI and the wavefunction needs to be further squeezed to
lx ≈ 0.44lE . In contrast to Ge/Si core/shell wires, where the
strain increases the small gap between ground and first excited
states [15,16,18], and to electron-based devices, where strain
removes the valley degeneracy [3], in planar hole systems,
strain is not fundamentally required and could potentially be
minimized.

IV. RABI DRIVING IN A SQUEEZED QUANTUM DOT

In a squeezed Ge quantum dot, the large DRSOI enables
ultrafast qubit operations. In fact, a time-dependent shift of the
dot caused by ac in-plane fields Ex,y(t ) can drive transitions
between different qubit states via EDSR [30]. This effect
can be understood by moving to a frame that oscillates with
the center of the dot at position d(t ) = (dx(t ), dy(t )) with
di(t ) ≡ eEi(t )l2

i /h̄ωi via the time-dependent translation T =
e−ip·d/h̄. In this frame, the hole still evolves according to H ,
but feels additionally the external drive HD(t ) = −ih̄T †∂t T =
−p · ∂t d(t ). When the dot is strongly confined in the x di-
rection, the oscillation is restricted to the y direction and the
system is modelled by the wire Hamiltonian

HW = p2
y

2m̃
+ m̃ω̃2

y

2
y2 + vpyσx + μB

2
B · g̃ · σ − py∂t dy(t ),

(2)

acting on the Kramer partners |↑〉 and |↓〉. Here, we introduce
a matrix g̃i j = δi j (αi − βi p2

y/h̄2) of wire g factors, which is di-
agonal because of symmetry [28,31] and includes momentum
dependent corrections βi [15,16]. We rewrite the harmonic
confinement in terms of the orbital gap ω̃y that accounts for
the effective mass m̃ of the ground state doublet, i.e., ω̃y =
ωy

√
m/γ1m̃. In analogy, the dot width is l̃y = ly 4

√
m/γ1m̃.

When the drive and the Zeeman energy are much
smaller than ω̃y, an effective quantum dot theory is ob-
tained by projecting Eq. (2) onto the ground states 
↑↓ =
ψ (y)e−iσxy/lso|↑↓〉 of HW at B = Ey(t ) = 0. The transforma-
tion e−iσxy/lso removes the SOI, we introduce the spin-orbit
length lso ≡ h̄/m̃v, and ψ (y) = e−y2/2l̃2

y /
4
√

π l̃2
y . If we now spe-

cialize our analysis to the case B = Byey the resulting qubit
Hamiltonian is

HQ = μB

2
gyyByσy + εD(t )σx, (3)

where the dot g factor [15–17,32] and the driving εD(t ) are
respectively

gyy =
(

αy − βy

2l̃2
y

)
e
− l̃2y

l2so , (4a)

εD(t ) = h̄∂t dy(t )

lso
= l̃y

lso

e∂t Ey(t )l̃y
ω̃y

. (4b)

FIG. 3. Rabi driving of a squeezed dot. We compare an-
alytical results (lines) with numerical simulations (dots) of a
three-dimensional dot driven by a field with amplitude E ac

y and
frequency ωD. Here, w 
 lE . In (a), we analyze the dependence
of Rabi frequency ωR on the aspect ratio of the dot. In (b), we
show ωR (black) against ly in the DR (lx = l∗

x = 0.81lE ) and cubic
(lx = ly) SOI regime. In the latter case, we use the anisotropic LK
Hamiltonian and z ‖ [001]. To facilitate the comparison, ω∗

R has been
reduced by a factor 102. The energy gap ω̃∗

y at lx = l∗
x is shown

in red. In c) we show the g tensor at lx = l∗
x against ly; hollow

dots show gyy at lx = lm
x . Assuming l̃y ≈ ly, we find a good fit for

(α∗
x , β

∗
x /l2

E ) = (3.09, 7.72), (α∗
z , β

∗
z /l2

E ) = (3.92, 2), (α∗
y , β

∗
y /l2

E ) =
(0.37, 5.02) and (αm

y , βm
y /l2

E ) = (0.98, 6.38). In d) we examine ωR

at ly = 6lE against ε0 for different values of lx; solid lines mark the
fitting formulas discussed in the text. In the left (bottom) label of
(b) [(d)], E is in V/μm.

Considering an harmonic drive Ey(t ) = E ac
y sin(ωDt ) at the

resonance ωD = gyyμBBy the qubit shows Rabi oscillations
with frequency

ωR = ly
2lso

(
ly
lE

)3 E ac
y

E
ωD. (5)

Because our analysis treats the SOI exactly, it is applicable for
arbitrary SOI strengths. At resonance, it also agrees with the
perturbative results in Ref. [30] and the oscillation correctly
vanishes when Ey is static. By substituting the operators T
with magnetic translations [17], one can show that at reso-
nance the orbital effects only give corrections O(B2) and are
neglected here.

In Fig. 3, we use these analytical formulas to interpret the
results of a full three-dimensional numerical simulation of the
dot in Fig. 1 when w 
 lE . In this simulation, ωR and gii are
obtained by discretizing the Hamiltonian in Eq. (1) at Ey(t ) =
B = 0, and by projecting HD(t ) and HB onto the ground-state
subspace. The energy gap between this subspace and the first
excited state is the gap ω̃y. In Fig. 3(a), we show the Rabi
frequency ωR as a function of the aspect ratio of the dot. We
first neglect the strain and set ε0 = 0. When lx = ly (blue line)
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the dot is isotropic and ωR vanishes. In contrast, ωR is strongly
enhanced at lx ∼ lE and ly � 2lE , where the DRSOI is large.

In Fig. 3(b), we examine in more detail these two cases.
When lx = ly, a Rabi frequency ωc

R ≈ 0.039ωDE ac
y l2

y /El2
E

consistent with a cubic SOI [12,13] is recovered for z ‖ [001]
when including the LK anisotropies γ2 �= γ3 [13]. Because
(γ3 − γ2)/γ1 ≈ 0.1, this contribution is much smaller than
the DRSOI: in the range of parameter analyzed here and
for a driving field with ωD = 3 GHz and E ac

y /E = 2% [5],
we estimate a maximal value ωc

R ≈ 150 MHz, in reasonable
agreement with both theory [12,13] and experiments [7,8].
In contrast, in the DR regime, the Rabi frequency grows as
ωR ∝ l4

y , see Eq. (5), roughly independently of the growth di-
rection, resulting in ω∗

R ∼ 200ωDE ac
y /E ∼ 12 GHz at lx = l∗

x .
This frequency is two orders of magnitude larger than ωc

R, thus
enabling faster gates at lower power. We extract m̃ and l∗

so from
the slope of ω̃∗

y ∝ l−2
y and ω∗

R. In the regime of parameters
studied (also including strain), m̃ varies at most of ±20%
from m/γ1, resulting in a maximal variation of ω̃y and l̃y of
±10% and ±5% from ωy and ly, respectively. Consequently,
l∗
so ≈ γ1lE/2.56 ≈ 42 nm × E−1/3, in good agreement with

the fitted value l∗
so = 44 nm × E−1/3.

The g factors are described well by Eq. (4a) and equivalent
expressions in other directions (without the Gaussian decay
e−l̃2

y /l2
so for gxx) as shown in Fig. 3(c). When B = Byey, at the

confinement potential maximizing the DRSOI the Zeeman
gap is small because g∗

yy ≈ 0.1. Larger gaps are obtained by
rotating the magnetic field to the z direction or by widening
the dot: at lx = lm

x , gm
yy ≈ 7g∗

yy and the DRSOI is only halved,
thus still enabling above GHz Rabi oscillations.

In Fig. 3(d), we analyze the dependence of ωR on ε0 in a
strained dot with ly = 6lE ≈ 48 nm × E−1/3. When lx/lE �
l∗
x , we find that the effect of strain is accurately captured by

the fitting formula ωR(ε0) = ωR(0)/(1 − ε0/ε)2, where ε is
a positive parameter that decreases from ε∗ = 0.72% × E2/3

to εm = 0.42% × E2/3 when lx = [l∗
x , lm

x ]. In strained devices,
ωR is enhanced by reducing lx [gray dots in the figure] or
increasing ly [ωR(0) ∝ l4

y ].

V. SQUEEZED QUBITS IN STATE-OF-THE-ART DEVICES

To conclude our analysis, we simulate explicitly a squeezed
qubit in currently available devices [33]. In Fig. 4(a), we
show the Rabi and Zeeman frequencies as a function of E
in a dot with lateral sizes lx = 10 nm and ly = 50 nm and
well width w = 20 nm. The dot is driven at resonance by a
realistic ac electric field E ac

y = 0.02 V/μm [5] and is sub-
jected to a magnetic field By = 0.5 T. We relate the strain
ε0 ≈ 1.74ε‖ ≈ −5.4%(1 − x) to the Ge concentration x in
the barriers (see Fig. 1), by using the linear interpolation
ε‖ ≈ −0.62%(1 − x)/(1 − 0.8), based on the measured value
ε‖ ≈ −0.62% at x = 0.8 [33]. In this design, the Zeeman
energy is around 3 GHz and is 22 to 43 times smaller than
ω̃y � 420 μeV. The Rabi frequency is in the GHz range and
doubles when x changes from 0.8 to 0.9. These values are
comparable to the estimated values in Ge nanowires [16]
and result in ultrafast qubit gates. At the same time, be-
cause ωR ∝ E ac

y , the strong DRSOI enables power efficient
operations and currently achieved Rabi frequencies ωR ∼

(a) (b)

FIG. 4. Squeezed qubits in state-of-the-art devices. We simulate
the dot in Fig. 1 with realistic parameters w = 20 nm, lx = 10 nm
and ly = 50 nm; we use By = 0.5 T and E ac

y = 0.02 V/μm. In (a),
we show the Rabi (black) and Zeeman (red) frequencies ωR and
gyyμBBy/h against E for two devices with different concentration
of Ge x = 0.9 (solid) and x = 0.8 (dashed) (ε0 = −0.54% and ε0 =
−1.08%, respectively). In (b), we estimate the dephasing at x = 0.9;
we use

√
〈δE 2〉/E = 10−3 and

√〈δω2
i 〉 = 2ωi

√〈δl2
i 〉/li = 5 μeV.

100 MHz [7–10] are reached at the modest driving amplitude
E ac

y ≈ 2 × 10−3 V/μm.
Finally, in Fig. 4(b), we estimate the lifetime of this qubit

when left idle. Assuming 1/f charge noise, the fluctuations of
gyy as a function of lx,y and E result in a dephasing time T ∗

2 ≈
[μBBy

√
〈δη2〉∂gyy/

√
2π h̄∂η]−1 ∼ 300 ns. Here, η = lx, ly, E

and we neglect logarithmic corrections of T ∗
2 [34].

We note that the estimated value of T ∗
2 caused by the

charge noise is orders of magnitude smaller than the relaxation
time caused by phonons [35–37], but it is comparable to the
relaxation time caused by hyperfine interactions to nuclear
spin defects in natural Ge [38,39]. The hyperfine noise could
however be minimized by isotopically purifying the material
[2] or by a careful design of the dot [39].

The coherence can be improved by dynamical decoupling.
Alternatively, because the lateral confinement is controlled by
tunable potentials, we envision protocols where qubits could
be squeezed on-demand only when operational, thus enabling
ultrafast operations, while minimizing charge noise in the
unsqueezed state.

In summary, the proposed slight modification of current
planar devices based on an asymmetric confinement will push
this quantum dot architecture towards new speed and co-
herence standards. Our analysis is restricted to Ge but we
expect similar approaches to strongly enhance the SOI in other
semiconductors, such as Si, thus opening up to new possible
ways to implement low power ultrafast spin qubits in planar
quantum processors.
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Rehmann, A. Li, E. P. A. M. Bakkers, F. A. Zwanenburg, D.
Loss, D. M. Zumbühl, and F. R. Braakman, Strong spin-orbit

interaction and g-factor renormalization of hole spins in Ge/Si
nanowire quantum dots, Phys. Rev. Res. 3, 013081 (2021).
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