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Abstract
A large proportion of the energy consumed by private households is used for space 
heating and domestic hot water. In the context of the energy transition, the predomi-
nant aim is to reduce this consumption. In addition to implementing better energy 
standards in new buildings and refurbishing old buildings, intelligent energy man-
agement concepts can also contribute by operating heat generators according to 
demand based on an expected heat requirement. This requires forecasting models 
for heat demand to be as accurate and reliable as possible. In this paper, we present 
a case study of a newly built medium-sized living quarter in central Europe made 
up of 66 residential units from which we gathered consumption data for almost two 
years. Based on this data, we investigate the possibility of forecasting heat demand 
using a variety of time series models and offline and online machine learning (ML) 
techniques in a standard data science approach. We chose to analyze different mod-
eling techniques as they can be used in different settings, where time series models 
require no additional data, offline ML needs a lot of data gathered up front, and 
online ML could be deployed from day one. A special focus lies on peak demand 
and outlier forecasting, as well as investigations into seasonal expert models. We 
also highlight the computational expense and explainability characteristics of the 
used models. We compare the used methods with naive models as well as each 
other, finding that time series models, as well as online ML, do not yield promising 
results. Accordingly, we will deploy one of the offline ML models in our real-world 
energy management system in the near future.
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1  Introduction

The energy transition (the replacement of the use of fossil energy sources with an 
ecological, sustainable energy supply) is one of the most important environmen-
tal, economic, and sociological challenges this decade.

In addition to expanding renewable energies, increasing energy efficiency 
and reducing overall energy consumption are essential objectives. In particular, 
the building and private housing sectors have a high potential for energy sav-
ings. Therefore, the goal in the residential sector must be a reduction in heat and 
primary energy demand. In the future, buildings’ heating requirements must be 
covered entirely by solar, biomass, or geothermal energy. Accordingly, energy 
management concepts are being developed to ensure efficient and safe renewable 
energy use while fulfilling the thermal requirements of residents. However, these 
concepts necessitate methods for forecasting both the generation and the energy 
load [1]. Furthermore, they always presuppose individual boundary conditions, 
i.e., for private housing, the thermal comfort of the occupants must be ensured. 
So, developing accurate models to forecast the actual heat demand is essential.

For accurate heat demand prediction, the potential of data-driven methods has 
become apparent in recent years [2–4]. Unlike traditional engineering and physi-
cal methods, these techniques do not require detailed building data or extensive 
expertise to apply elaborate technical procedures, which is a significant advan-
tage. Data-driven methods learn from real-time or historical data.

Using historical data, statistical models can be trained in a stationary learning 
environment. Batch learning techniques, known as (supervised) offline machine 
learning methods, and time series models are used to learn the best predictor 
from training data.

However, in many use cases, historical data is unavailable from the beginning of 
a system’s life. Moreover, the prediction of energy demand should be considered a 
non-stationary problem since unforeseen changes may occur over time, e.g., degra-
dation of insulation, occupant changes, or general usage patterns. Generally, these 
issues are combined in the term concept drift [5]. To cope with these problems, 
models must be able to learn and evolve dynamically in an uncertain environment. 
In this work, the familiar issue of sensor drifts is, however, largely insignificant. The 
sensors capturing heat usage are calibrated for long-term use and regularly main-
tained or replaced after the guaranteed runtime. Whereas third-party weather data 
could theoretically suffer from sensor drifts, this is also unlikely to become a signifi-
cant problem as those sensors are typically built for long-term stability.

A typical approach for handling (initially) low data availability and concept 
drift is the usage of online machine learning methods where the data is fed into 
the model sequentially whenever it becomes available (rather than at fixed times-
tamps—potentially even a single one before the first deployment—like in offline 
machine learning) to update its parameters and—hopefully—lead to the best pos-
sible predictor at each step.

In this work, we investigate the potential application of a large variety of dif-
ferent model producing methods in a newly built real-world residential setting, 
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based on data we gathered from June 2020 to February 2022. These models 
should accurately forecast the heat demand of all units within the small complex. 
We make both the data gathered in this field study, as well as all of our results 
publicly available.

Regardless of the specific model type, this application domain—as it ensures the 
thermal comfort of occupants—requires its models to be well understandable for the 
engineers in the companies responsible. More significant issues could quickly termi-
nate contracts and destroy business models, which in turn makes the application of 
more complex models less likely. Therefore, we discuss the employed models not only 
on their merits regarding predictive performance but also on their presumed transpar-
ency and explainability of decisions.

Moreover, heat supply is a critical task that must be ensured in any extreme or unu-
sual situation (especially sub-zero temperatures). Therefore, we also examine how well 
the models predict heat consumption for data outliers.

In Sect. 2, we reintroduce the task of heat consumption forecasting. Section 3 gives 
a more detailed overview of the aims of this specific work with Sect. 5 introducing the 
data set we first gathered and then investigated the forecasting methods on. This field’s 
state-of-the-art and other recent approaches are summarized in Sect. 4. Section 6 gives 
an overview of the employed methods and their potential merits, whereas Sect. 7 intro-
duces our experimental approach at evaluating these methods in relation to our field 
study’s data. The results are first presented in Sect. 8 and then discussed in detail (espe-
cially regarding the predictive errors, the usage in embedded systems, and the explain-
ability of models) in Sect. 9. In our data, we found some outliers that were quite hard 
to predict correctly. These and the models’ results are discussed in Sect. 10. Section 11 
concludes this paper and gives an overview of our results and an outlook on the next 
steps within this field study.

2 � Problem description

Most data-driven models require large and diverse sets of training data for accurate heat 
consumption prediction. These datasets often contain data from several years to rep-
resent seasonal patterns and trends. However, for more specialized use cases, such as 
individual neighborhoods, these data sets are mostly unavailable. Usually, when new 
energy systems are commissioned, no training data has been gathered, even if energy 
management systems had been in place before. Even during the active operation of 
modern systems, the data sets grow slowly. Additionally, the data can not initially 
reflect any long-term seasonality or trends. The forecast quality drops significantly 
when an unfamiliar situation occurs, e.g., the first summer/winter or some concept drift.

The heat consumption can be described by a continuous function that models the 
relationship between the heat consumption y ∈ ℝ and a set of k variables x ∈ ℝ

k for a 
time t:

(1)f (xt) → yt
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The heat consumption is modeled as a sequence of data points over time for time 
series analysis models. The time series is decomposed into the deterministic trend 
mt , seasonal components st and a random, stationary component (error) �t.

3 � Aim of research

This research aims to evaluate models predicting heat requirements for an energy 
management system, which regulates a central heating system and distributes heat 
to multiple residential units. The models have to achieve good predictive perfor-
mance despite limited training data (cf. Sect. 5), a situation typically encountered 
in new energy management systems or newly built or renovated units. If a new and 
unknown situation occurs, the investigated models must generalize well, i.e., make 
stable predictions with a small error value. Based on the models’ forecasts, a sched-
ule spanning the next 48 to 72 h is created for the energy management systems. Sub-
sequently, the schedule gets updated every 24 h as more up-to-date (weather) data is 
available. In line with our field study’s requirements, the duration of the schedules 
is chosen to ensure that the power systems can continue to run automatically in the 
event of internet failures. The field of application is the load and storage manage-
ment, respectively, energy management systems, for buildings and quarters. Specifi-
cally, the results of this research will later be used in the area of a cloud application 
with distributed edge devices. It is analyzed whether the model computations can 
be performed directly on the embedded systems, which often have low computa-
tional and memory performance, or should be outsourced to an external server. In 
addition, the models are examined to determine whether the model’s predictions can 
be explained and understood by (non-specialist) persons responsible for the systems 
and the heat supply.

4 � Related work

In recent years, many studies on energy load forecasting have been published. The 
data-driven approaches can be classified into statistical and machine learning (ML)-
based methods.

Time series models are widely used in statistical methods. For these methods, the 
consumption is modeled as a time series. In general, the forecast horizon for load 
forecasts for heat (or electricity) is divided into short-term and long-term, where 
short-term forecasts give a minutely or hourly forecast in a horizon is up to 24 h, 
whereas long-term predictions refer to load forecasts for, typically, 1 week but also 
up to one or more years. The goal of short-term horizons is to optimize the day-to-
day operation of energy systems while long-term model can be used for the planning 
of energy systems. In this study, we aim at making short-term predictions, although, 
the following models after frequently used in both settings. Particularly frequently 
studied time series models are ARIMA [6–9] and its improvement SARIMA [10], 

(2)yt = mt + st + �t
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and Exponential Smoothing [11–14]. The development of the BATS models (Box-
Cox transformation, ARMA residuals, trend, and seasonality) and the TBATS mod-
els (trigonometric seasonal BATS) was a significant advance in the field of time 
series forecasting techniques. BATS and TBATS can be used to model time series 
with multiple complex seasonalities [15, 16]. The TBATS model has excellent fore-
cast accuracy and offers a possibility for long-term load forecasting [17–19]. An 
alternative, based on grey system theory and Markov chains rather than ARMA, are 
Grey-Markov models (GM) [20–22]. Studies that have compared GM models with 
ARIMA models have concluded that the predictive performance of both models is 
comparable, with ARIMA being slightly better than GM [23] or vice versa [24]. 
However, GM’s predictions often undershoot, which is detrimental to supplying suf-
ficient heat, while ARIMA tends to overshoot [24]. Also, GM is somewhat more 
computationally intensive [24]. Another basic statistical analysis method is to model 
the load forecasts linearly, as with Linear Regression (LR) [25, 26], Recursive Least 
Squares (RLS) [27–29], fuzzy LR methods [30] or Polynomial Regression [31].

A wide range of different approaches to ML has been pursued. Often evalu-
ated ML models are Support Vector Regression (SVR) [32–34], respectively Sup-
port Vector Machines [35–37], Random Forest Regression (RFR) [38, 39], or Ker-
nel Ridge Regression (KRR) [40]. The comprehensive literature review on energy 
demand forecasting by Ghalehkhondabi et al. [41] shows that artificial neural net-
work (ANN) models perform very well in this domain. This conclusion is also 
confirmed by later studies that have investigated ANNs [42–45], Long Short-Term 
Memory (LSTM) networks [34, 46–48] or Convolutional Neural Networks (CNNs) 
[49, 50].

Different ML methods are combined to improve the prediction quality of ML 
models to reduce their respective drawbacks. In short-term load forecasting, SVR 
is often combined with other ML methods [51–53]. Another option is to combine 
LSTMs with CNNs [54–57]. The conventional LSTM neural network is extended by 
a preprocessing phase using a CNN.

Beyond the already presented methods, authors recently took a variety of dif-
ferent approaches towards predicting energy demand: [58] combines ANNs with 
metaheuristic algorithms, including artificial bee colony optimization, particle 
swarm optimization, an imperialist competitive algorithm, and a genetic algorithm. 
In [59], further development of CNNs for limited data is presented. Kannari et al. 
[60] combine physics-based modeling and ML to forecast the energy consumption 
of buildings. Potočnik et al. [61] investigate a multi-stage ML-based approach for 
short-term heat demand forecasting. The approach includes feature extraction and 
different ML models for forecasting. A similar approach is taken by Golmohamadi 
[62]. In [63] and [64], probabilistic approaches are presented and combined with 
ML models. Recently, studies have been published that take a similar approach to 
our present study. Kurek et al. [65] investigate various regression models, deep neu-
ral networks, and models using fuzzy logic for heat demand forecasting for the War-
saw district heating network, which supplies heat for domestic and heating purposes. 
They divide the year into summer, winter, and intermediate seasons and evaluate the 
models for each season for a 72-h horizon.
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5 � Case study and data set

The data was gathered in a newly built residential quarter (completion 2019) in 
southern Germany near Munich. The quarter contains 66 residential units, and the 
heat meter is located behind a heat accumulator and records the domestic hot water 
supply and the space heating demand. A controller keeps the flow after the heat 
accumulator at a constant temperature of 48◦ C. While in the original data, the heat 
demand of all 66 apartments was recorded individually for billing reasons, we want 
to stress that in this study we aim at predicting the load at the central heating sys-
tem. The controller of said system distributes heat to the apartments individually but 
only the overall required heat is relevant for planning purposes. From a data science 
perspective, this also has the advantage that we can better compensate for any erro-
neous data or data failures from individual apartments, therefore also adjusting for 
noise. The heat demand is examined in a 60-minute interval and measured in watt-
hours [Wh]. Thus, it is not the behavior of the residents that is predicted, but the 
required output of the heating system in 1 h. The scaled heat consumption is shown 
in Fig. 1. The hydraulic diagram of individual housing stations where a heat meter is 
installed can be found in the supplementary information’s1 Sect. 1.

Fig. 1   The scaled hourly heat consumption measured in kilowatts [kW], from 1. June 2020, to 28. Febru-
ary 2022

1  https://​github.​com/​Neele​Kemper/​resid​ential-​unit-​heat-​forec​ast/​tree/​main/​suppl​ement​ary_​infor​mation.

https://github.com/NeeleKemper/residential-unit-heat-forecast/tree/main/supplementary_information
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The data was collected in a period from 01. June 2020 to 28. February 2022. The 
limits of the period are set by the commissioning of the monitoring system and the 
first draft of this paper. In total, 15,228 data points were collected during this period.

Eight parameters are available as input for the models: Month of the year, day of 
the week,2 the hour of the day, outside temperature, solar radiation, heat consump-
tion 24 h ago, average heat consumption over the last 24 h, and the degree hour. The 
degree hour is the difference between the target inside and the measured outside 
temperatures. It is only calculated for days whose average outside temperature is 
below a heating limit. A target inside temperature of 21◦ C and a heating limit of 
15◦ C is assumed. Outside temperature and solar radiation were retrieved from the 
weather API Weatherbit.3 Sect. 2 of the supplementary information contains Fig. 1’s 
corresponding parameters temperature, solar radiation, heat consumption 24 h ago, 
average heat consumption over the last 24 h, and degree hour.

6 � Forecasting concepts

In this section, we introduce the various forecasting concepts from traditional statis-
tics and modern machine learning (ML) that were used in this work. While none of 
them are new, this section improves the self-containedness of the paper and hope-
fully allows readers from a civil engineering background to better understand and 
follow this work and maybe reapply it to their own data.

In general, forecasting techniques can be divided into two main types: simple sta-
tistical or parametric models, and ML-based models.

Classical models, such as (S)ARIMA, Exponential Smoothing, and LR, use 
historical data for mathematical combinations to forecast heat consumption. Their 
advantage is that the estimations of the parameters are easily interpretable.

However, as the complexity of the forecast data increases, these methods become 
less reliable. A transition from linear to nonlinear models is necessary. ML-based 
methods are generally adaptive and robust to noisy data due to their ability to gener-
alize from observed patterns. Often used ML methods in load forecasting are ANNs, 
SVR and RFR. Within the family of ANNs, different architectures are common: The 
traditional fully connected network, as well as CNNs, LSTMs, or combinations of 
these.

If the training data D = {(x1, y1), ..., (xt, yt)} is available in sequential order, a 
model to predict the next time step t + 1 can be learned via online learning. Online 
learning updates the predictor in real-time, always incorporating the newest avail-
able data, which can protect against the influences of data drifts but might struggle 
with strong seasonalities in the data.

2  For quarters where the heating system turns on/off at certain dates of the year, whether that date has 
passed should be included in the features (or different models should be trained altogether). However, in 
our case, study, the heating system was available year-round.
3  https://​www.​weath​erbit.​io.

https://www.weatherbit.io


	 N. Kemper et al.

1 3

In our work, we incorporate a variety of online learners: RLS, Stochastic Gra-
dient Descent trained linear models (SGD), and three types of ANNs. As fully 
connected ANNs have some limitations in an online learning environment, two 
additional concepts are investigated: an ANN combined with an Experience 
Replay (ER)–like buffer and the online framework based on Hedge Backpropaga-
tion (HBP) presented by [66].

The following is a brief outline of the methods examined. We sort them from 
time series over offline ML to online ML, and within their respective category by 
model complexity:

Holt-winter smoothing
Exponential Smoothing is a powerful time series forecasting method for uni-

variate data that is often used as an alternative to the autoregressive approach. 
Exponential Smoothing combines the advantages of flexibility, reliability of pre-
dictions, and low cost. Holt-Winter Smoothing (HWS) [67, 68] is an extension of 
simple exponential smoothing for trends and seasonal patterns.

Seasonal autoregressive integrated moving average
Autoregressive Integrated Moving Average (ARIMA) is a statistical model for 

non-stationary time series. Seasonal ARIMA (SARIMA) takes the non-seasonal 
components of the ARIMA and adds a seasonal term. The seasonal term is very 
similar to the non-seasonal components of the model, but it includes a backward 
shift by a seasonal period [69].

ARIMA and exponential smoothing use complementary approaches to predict 
time series. Exponential smoothing models describe the trend and seasonality in 
the data, while ARIMA models describe the autocorrelation in the data [69].

Linear regression
Linear Regression (LR) is the simplest approach to model the relationship 

between a set of independent variables xT = (x1, x2, .., xp) and a dependent vari-
able y. This is in contrast to the aforementioned time series approaches, where 
predictions on y were made based on previous values for y, assuming that there is 
a sequential order. Fitting a linear model to a given data set requires the estima-
tion of regression coefficients, typically by minimizing the squared error terms.

Kernel ridge regression
When a learning task can not be modeled using a linear function, a kernel 

can be used to transform the data into a higher dimensional space, called kernel 
space, where the data can be modeled linearly. A fundamental algorithm to be 
kernelized is Ridge Regression, which attempts to solve the frequent problems of 
multicollinearity and high variance in LR by including shrinkage methods and L2 
regularization in the updates. Kernel Ridge Regression (KRR) combines Ridge 
Regression with a kernel.

Support vector regression
Support Vector Regression (SVR) is a generalization of traditional support 

vector machines for classification and supports both linear and nonlinear regres-
sions. SVR formulates the function approximation itself as a linear function, 
where the data is mapped into kernel space for a nonlinear function to achieve 
lower errors.
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Random forest regression
In Random Forest Regression (RFR), a collection of uncorrelated decision trees 

is built and their individual predictions are averaged to produce an accurate predic-
tion of the dependent variable y.

Deep neural networks
A fully connected layer is a way to arrange neurons in an ANN where all neurons 

of a layer are connected to all neurons of the next layer (with individual weights). 
A sufficiently large network (having multiple fully connected layers in sequence) is 
commonly referred to as a deep neural network (DNN). Although this term now-
adays often refers to networks with a wide variety of layers (as long as they are 
numerous), we stick to the original sense of multiple fully connected layers for this 
work.

Convolutional neural networks
Convolutional Neural Networks (CNNs) comprise three types of layers: convolu-

tional Layers, pooling Layers, and fully connected layers. Parameters of the convo-
lutional layer focus on the use of filter operations. A discrete convolution calculates 
the activation of the neurons, instead of matrix multiplication as in other ANNs. A 
pooling layer gradually reduces the dimensionality of the representation, thus reduc-
ing the number of parameters and computational complexity of the model.

Long short-term memory
ANNs have limitations in solving sequential data problems, such as time series. 

Long Short-Term Memory (LSTM) is a recurrent network using a chain-like struc-
ture of repeating cells. These cells store important information from previous train-
ing steps, enabling the learning of long-term dependencies, and use a feedback loop 
to accept a sequence of inputs.

Recursive least squares
Recursive Least Squares (RLS) is an extension of the Least Squares method, with 

a recursive algorithm to design an adaptive filter where the parameters are updated 
iteratively, enabling this method to optimize a linear function in an online learning 
setting.

Stochastic gradient descent
Gradient descent is an iterative optimization algorithm for differentiable func-

tions. The function is minimized by updating the parameters proportionally to the 
negative of the gradient of the target function. Stochastic Gradient Descent selects 
a random subsample of the data to compute the gradient. When used in an online 
ML setting, the most recent data point is used. In this study, we use it to optimize a 
linear function to which we refer by SGD to make it easier distinguishable from the 
offline ML linear Regression model.

Online deep learning
The straightforward approach to transferring the training process of a fully con-

nected network to an online learning environment is to apply the backpropagation 
algorithm to a single instance rather than batches or mini-batches of data. We refer 
to this as Online Deep Learning (ODL).

Experience replay
Experience Replay (ER) is a technique designed to resolve the problem of 

catastrophic forgetting in ANNs, where subsequent updates of the model lead 
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to a forgetting of previously learned information. This problem is especially 
big when using very small online updates rather than shuffled mini-batches and 
can lead to the loss of seasonal information. In this paper, we employ an ER-
like technique to a DNN (ODL-ER), where we add new training data to a fixed 
length FIFO buffer from which we randomly sample data points and merge them 
with the newest data points into a mini-batch to perform model updates using 
backpropagation.

Hedge backpropagation
ODL, as described above, has some critical limitations. The main challenge is 

to choose the network’s ideal architecture (complexity) in advance of the train-
ing. If the model is too complex, the learning process converges too slow, break-
ing an essential requirement property of online learning. However, if the model 
is too simple, complex patterns cannot be learned. In traditional model selec-
tion, this problem would be solved using validation data, which is unavailable 
in an online environment. Sahoo et  al. [66] present a framework that attempts 
to solve these challenges by developing an ANN that is adaptive in complexity. 
The framework was initially developed for classification problems but is applied 
to the continuous regression problem of heat load forecasting in this work.

The existing ANN architecture is adapted by connecting each hidden layer to 
an output layer. Instead of the standard backpropagation, Hedge Backpropaga-
tion (HBP) is used, which evaluates the performance of the output layers in each 
online round and extends the backpropagation to train the ANN online. The out-
puts of the different depths are optimally utilized by the hedge algorithm [70]. 
This allows training an ANN with adaptive capacities to simultaneously share 
knowledge between shallow and deep networks. The architecture of multiple 
depths makes the learning process robust to vanishing gradients and decreasing 
feature reuse.

7 � Methodology

The basic design of experiments is the same for all methods examined and out-
lined below. However, the evaluation of prediction quality distinguishes between 
time series models, offline ML methods, and online ML methods. On the one 
hand, from an algorithmic perspective, the heat demand is modeled according to 
the different approaches of taking data between the models. More importantly, 
the application options differ between the three approaches. Time series models 
do not require additional features beyond the raw consumption, whereas offline 
and online ML methods use additional features (as outlined in Sect. 5). If such 
data is available both approaches are theoretically viable. However, offline mod-
els would be employed in settings with low concept or sensor drifts for which 
plenty of historical data is available, whereas online models would be used when 
strong drifts occur or data has not (yet) been gathered sufficiently.

An overview of the main software libraries used can be found in the supple-
mentary information’s Sect. 3.
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7.1 � Experimental design

The data set is divided into summer months and winter months, corresponding 
to not-heating season and heating season, respectively. The allocation was made 
based on the specific measured heating demand. The winter months are defined 
from 21. September to 04. May. Accordingly, the summer months are set to 05. 
May to 20. September. We want to stress that this means that we have differ-
ent lengths of application of a supposedly seasonal model, as well as differing 
amounts of data. Importantly, it also emphasizes the higher importance of lower 
prediction errors in what we refer to as winter/heating season.

We use the entire data set to train and validate the models (without separate 
holdout sets). Models trained on both summer and winter data are referred to as 
all in the following. In addition, we examine how the models trained on the entire 
data perform when being evaluated on the summer months (all-summer) and the 
winter months (all-winter). Furthermore, other models are trained and assessed 
using only data from summer (summer) or winter months (winter). This gives 
an idea whether it would be beneficial to train separate models for the different 
seasons.

Time Series Models These are trained with the first-year data (June 2020 to May 
2021) and evaluated on the second-year data (June 2021 to February 2022), with the 
usual distinction of summer and winter months.

The optimization of hyperparameters of the time series models is performed 
using a grid search approach. The performance of the grid search algorithm for the 
different hyperparameter settings is measured using the second-year data. Preselec-
tion of the SARIMA parametrization is performed using the Box-Jenkins method.

Offline ML methods
The data is randomly divided into training and test data with a ratio of 4 to 1. 

The data partitioning uses 30 ascending seeds, resulting in 30 different training and 
testing datasets. This process is also known as monte-carlo cross-validation. The dif-
ferent methods are each trained on each of the 30 training datasets and evaluated 
with the corresponding test dataset. The mean performance is then calculated and 
reported over those runs.

The optimization of hyperparameters of the models was performed with the 
framework KerasTuner [71] using Bayesian Optimization.

Online ML methods
The data is presented in sequential order to the algorithms, simulating an in-vivo 

deployment. A model is trained with the data of the first 24 h. Next, the forecast 
quality is evaluated with the data for the next 24 h. The model is then updated with 
the next 24 data points. This updating, forecasting, and evaluation cycle continues 
until no new data is available. For all methods, this experimental run is repeated 30 
times and a mean performance is calculated and reported.

To optimize the hyperparameters of ODL and HBP, KerasTuner with Bayes-
ian Optimization is used. For the ANN of ODL-ER, we adopt the parameteriza-
tion of ODL. For the parametrization of the ER component, we use grid search, 
which is also used for RLS and SGD. We use Grid Search for RLS, SGD, and ER 
because they cannot be straightforwardly optimized using KerasTuner and, due to 
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a comparatively small hyperparameter space that needs to be examined, the easier-
to-use and follow Grid Search can be used comfortably while avoiding performance 
problems.

7.2 � Metrics

The prediction performance of the models is examined using various metrics.
The Root Mean Squared Error (RMSE) is used to measure the prediction quality.

The Mean Absolute Scaled Error (MASE), unlike the RSME, is a scale-independent 
measurement. The MASE is the mean absolute error of the predicted value divided 
by the mean absolute error of a naive benchmark model. We employ the seasonal 
MASE where the naive model prediction is created at each time step by equating the 
current prediction with the corresponding value of the last time step. We report this 
additional metric as the scaling indicates how well the model compares to a simple 
model and, therefore, determine if it is worthwhile to even consider the model for 
usage.

The numerator ej is the absolute prediction error for a given period (with J, the num-
ber of predictions), defined as the actual value ( yj ) minus the predicted value ( ̂yj ) for 
that period: ej = yj − ŷj . The denominator is the mean absolute error of the one-step 
“naive forecast method" on the training set, which uses the actual value of the previ-
ous season as the forecast: ŷt = yt−m , where m is the seasonal period. As a seasonal 
period, we choose m = 1 , that is, the last known value, for both the time series and 
the online models. For offline ML models the MASE typically uses the mean of the 
data as a naive model. Thus, we use it as well in this work.

For the offline and online ML methods, the scattering measure of the Mean Abso-
lute Deviation from the Median (MAD) over the predictions of the different runs is 
calculated.

where yi,j is the prediction of run i at time index j and ỹj is the median of the predic-
tions of all runs for time index j, whereas the mean averages over all time indices.

To better compare the forecasting performance of different models, it is tested 
whether the different results between two models are statistically significant or due 
to random chance. This is tested using a statistical significance test. For normally 
distributed competence values, the Student’s T-Test can be chosen; otherwise, the 
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Mann–Whitney U-Test is appropriate. The selected significance level of 0.05 is 
adjusted with the Bonferroni correction.

An overview of the search spaces for the parametrization and the optimal found 
parametrization of the investigated models can be found in supplementary informa-
tion’s Sect. 4.

8 � Results

In this section, we present the results of the experiments for the different meth-
ods, grouped by the three families of algorithms, producing different scenarios of a 
deployed prediction system (cf. Sect. 7).

In preliminary investigations, we could show that the quality of 24-h and 48-h 
forecasts hardly differ. Therefore, the 24-h forecast, which is the—at the moment—
typical application in a real-world scenario, is presented here in more detail. A 
detailed comparison of the metrics for a 24-h and 48-h prediction for the offline and 
online ML models can be found in the supplementary information’s Sect. 5. In the 
future, the 48-h forecast might become more important. Therefore, we want to stress 
that the following findings do transfer.

For all models examined, the RMSE value is lower in the summer months than 
in the winter months, as can be seen in Tables 1, 3, and 6. This is in no way surpris-
ing, as heat consumption is lower in the summer months than in winter (cf. Fig. 1, 
as there is no need for space heating. However, the relative deviation of the forecast 
from the actual consumption is higher in summer.

Table 1   Comparison of the 
RMSE values in kWh of the 
two time series methods for 
the different periods summer, 
winter, and all year. The 
best-performing model’s value 
for the respective period is 
highlighted in bold

Time Series - RMSE [kWh]

HWS SARIMA

Summer 8.13 6.93
Winter 21.01 15.68
All 21.84 15.72
All-summer 10.95 14.64
All-winter 26.96 16.44

Table 2   Comparison of the 
MASE values in kWh of the two 
time series methods

Time series - MASE [kWh]

HWS SARIMA

Summer 2.02 1.65
Winter 3.02 2.24
All 3.66 2.79
All-summer 3.25 4.53
All-winter 4.01 2.28
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The time series models, the LSTM, and the SGD have the highest RMSE values 
among all the examined models and do not seem to be competitively performing 
options (even within their respective scenarios) (Table 2).

8.1 � Time series

The time series models are utterly unconvincing. While SARIMA mostly outper-
forms HWS, the errors Table 1 are still very high. MASE values indicate that the 
models perform worse on average than the naive model, which always returns the 
previous value. While the seasonal experts outperform the general model, neither is 
application ready.

8.2 � Offline machine learning

Overall, offline ML models, except for LSTM, perform slightly better than their 
online counterparts (cf. Tables 3 and 6, respectively), although we want to stress the 
caveat that those can not be deployed together with the energy management system 
but require longer periods of data gathering beforehand. LSTM performs compara-
ble to the time series models. The—on average—best-performing model is KRR, 
a relatively simple and comparably well-interpretable model. RFR, a substantially 
more complex model, performs similarly well.

However, accounting for the MAD values (cf. Table 4), where RFR is indicated at 
more reliably arriving at those scores (compared on different sets of randomly split 

Table 3   Comparison of the 
RMSE values in kWh of the 
seven offline ML methods

Offline Machine Learning - RMSE [kWh]

LR KRR SVR RFR DNN CNN LSTM

Summer 4.05 3.53 3.71 3.58 3.9 3.78 5.56
Winter 9.33 7.33 8.12 7.58 9.11 8.34 15.91
All 7.82 6.11 6.76 6.37 7.79 7.2 17.61
All-summer 4.39 3.54 3.67 3.61 4.4 3.94 15.42
All-winter 9.39 7.3 8.14 7.63 9.33 8.67 18.9

Table 4   Comparison of the 
MAD values in kWh of the 
seven offline ML methods

Offline machine learning - MAD [kWh]

LR KRR SVR RFR DNN CNN LSTM

Summer 0.05 0.26 0.3 0.18 0.17 0.25 0.05
Winter 0.09 0.63 0.56 0.35 0.28 0.91 0.25
All 0.06 0.49 0.35 0.31 0.2 0.64 0.09
All-summer 0.05 0.29 0.2 0.17 0.15 0.47 0.1
All-winter 0.07 0.62 0.45 0.4 0.23 0.74 0.09
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data), might motivate the usage of RFR over KRR. Interestingly, both do not per-
form substantially better than a simple LR which also exhibits the most reliable per-
formance (indicated by the very low MAD values (0.05 kWh - 0.09 kWh)). CNNs 
also show a similar—albeit slightly worse—performance but are quite susceptible 
to different splits. Performance trends between the five settings are similar and there 
does not seem to be a benefit of creating specialized models for summer and winter 
over just training one generalist on all data that then evaluates on whatever the cur-
rent season requires.

In contrast to our findings above on time series, MASE values (cf. Table 5) indi-
cate that using relatively complex machine learning with additional input informa-
tion proves beneficial over using the mean as the base forecast.

To reiterate, this result illustrates that some meaningful pattern could be extracted 
from the (additional) data.

8.3 � Online machine learning

The online ML models display (cf. Table  6) slightly higher RMSE values than 
offline ones.

However, the SGD model diverges strongly and performs similarly to the time 
series models. For the summer months, the RMSE values of all other online models 
are in a comparable range and only marginally differ from those of the offline ML 
models. For the winter months, however, this difference increases noticeably. Inter-
estingly, as with offline ML models, seasonal experts do not massively outperform 
their generalizing counterparts (Tables  7, 8). Overall, the best-performing model 

Table 5   Comparison of the 
MASE values in kWh of the 
seven offline ML methods

Offline Machine Learning - MASE [kWh]

LR KRR SVR RFR DNN CNN LSTM

Summer 0.66 0.56 0.59 0.57 0.63 0.61 0.9
Winter 0.52 0.4 0.44 0.41 0.5 0.45 0.95
All 0.34 0.26 0.28 0.27 0.33 0.31 0.89
All-summer 0.72 0.57 0.58 0.57 0.73 0.64 0.99
All-winter 0.52 0.4 0.44 0.41 0.51 0.47 0.95

Table 6   Comparison of the 
RMSE values in kWh of the five 
online ML methods

Online machine learning - RMSE [kWh]

RLS SGD ODL ODL-ER HBP

Summer 4.16 5.13 4.42 3.83 4.29
Winter 9.58 25.01 10.6 8.64 10.59
All 7.49 15.55 8.5 6.61 8.13
All-summer 4.15 5.07 4.37 4.15 4.29
All-winter 9.57 22.09 10.46  8.68 10.53
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seems to be ODL-ER, although with a slightly wider distribution over the different 
runs.

As RLS does not involve a stochastic component, its MAD of 0 is unsurprising. 
None of the online ML methods beat the naive model, the actual value from 1 h ago, 
which is somewhat discouraging their usage.

9 � Discussion

This section discusses the experimental results and the advantages and disadvan-
tages of the methods for the specific real-world use case.

In our use case, as well as many similar ones, the most commonly used controller 
is the single-board computer PhyBOARD-Regor from Phytec Messtechnik GmbH.4 
Here, a phyCORE-AM335x is used as the processor and 512 MB NAND Flash and 
512 MB DDR RAM are integrated as memory modules. The controllers have lim-
ited computational and memory power, which is a critical limitation for the direct 
use of the models in embedded systems. Keep in mind that besides doing statistical 
inference using the trained models (and maybe even model training), these control-
lers also need to do their original task allocating substantial shares of their available 
resources.

Table 7   Comparison of the 
MAD values in kWh of the five 
online ML methods

Online machine learning - MAD [kWh]

RLS SGD ODL ODL-ER HBP

Summer 0 1.6 0.09 0.1 0.05
Winter 0 18.59 0.19 0.31 0.2
All 0 10.06 0.15 0.2 0.12
All-summer 0 1.44 0.08 0.15 0.1
All-winter 0 15.44 0.19 0.23 0.13

Table 8   Comparison of the 
MASE values in kWh of the five 
online ML methods

Online machine learning - MASE [kWh]

RLS SGD ODL ODL-ER HBP

Summer 1.04 1.24 1.08 1.16 1.07
Winter 1.44 4.15 1.58 1.24 1.6
All 1.29 2.7 1.37 1.23 1.39
All-summer 1.04 1.21 1.06 1.22 1.06
All-winter 1.44 3.63 1.56 1.23 1.59

4  https://​www.​phytec.​de/​produ​kte/​single-​board-​compu​ter/​phybo​ard-​regor-​am335x/.

https://www.phytec.de/produkte/single-board-computer/phyboard-regor-am335x/
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A critical constraint is the prediction of peak demand. Accurate forecasting of peaks 
is essential for safe and reliable scheduling of heat supply at peak times to ensure the 
thermal needs of residents are met.

For all methods and models, the deviation of the prediction for the summer months 
is higher than the deviation in the winter months. This is particularly well shown by the 
MASE values of the offline ML methods for the summer and winter months. MASE 
values are higher in the summer months with an average of 0.67 than in the winter 
months with 0.53.

The prediction errors are lower in the summer months than in the winter months, but 
if the low consumption in the summer months is taken into account, the prediction is 
inaccurate. This is because the heat demand in the summer months consists mainly of 
hot water demand and the drawing patterns vary considerably. Due to the low number 
of apartments and residents, water consumption deviating from the norm strongly influ-
ences the summer months’ heat demand. The domestic hot water demand is difficult to 
predict because single deviations strongly influence existing patterns. While hot water 
shows inconsistent trends all year, summer vacations additionally disrupt general eve-
ryday patterns for occupants. A high variation of the prediction for the summer months 
cannot be avoided in this use case. The additional space heating demand—related to 
the outside temperature—in the winter months compensates for those irregularities.

9.1 � Time series

The advantage of both time series models is that they are easy to understand, apply, and 
implement. However, time series analysis techniques require large amounts of error-
free data that depicts long-term trends and patterns, which are unavailable in this use 
case. As these are mathematically simple models, they fail to model more complex 
trends and patterns, as illustrated by the high RMSE values of the two methods. There-
fore, both models are ill-suited for the use case examined.

The advantages and disadvantages of the two time series methods evaluated are 
briefly discussed in detail:

9.1.1 � Holt–Winter Smoothing

HWS emphasizes recent observations. The predictions lag behind the actual trend as 
a side effect of the smoothing process, which also neglects highs and lows caused by 
random fluctuations. This is also reflected in the high error value. HWS has many criti-
cal limitations for practical application. The lagged trend prevents short-term but essen-
tial changes in the trend, such as a sudden cold snap, from being incorporated into the 
prediction. The neglect of lows and highs is particularly critical for forecasting peak 
demand.

9.1.2 � SARIMA

SARIMA makes stable estimates of the trend and seasonal patterns. However, it can 
only extract linear relationships within the time series. For more complex patterns 
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and trends in heat consumption, SARIMA reaches its limits, as seen in high error 
values. The coefficients are difficult to interpret, and there is a risk that parameters 
are incorrectly fitted.

As noted in the results, the seasonal expert models of time series methods per-
form significantly better than their general counterparts. This is likely due to the 
limited training data. The general model cannot learn the global seasonal pattern of 
heating and non-heating seasons. The high error values particularly show this for the 
summer months in the general model. The models were last fitted with data from the 
winter months. For the following summer months, the models automatically assume 
a heating period. If only limited data is available, separate models should be learned 
accordingly. Whether, after a few years, a general model could perform on par with 
the offline ML approaches remains unknown. This might be interesting as to the 
low computing power required, the time series models can be trained and applied 
directly to the controller.

However, regardless of this, none of the time series models was able to outper-
form the naive model (or even be competitive). Therefore, their application should 
not be further considered.

9.2 � Offline machine learning

ML models easily recognize trends and patterns in data. They are good at learning 
connections and relations in multi-dimensional and multivariate data and can model 
complex consumption patterns.

However, offline ML models face some limitations to our specific use case. To 
achieve a good prediction quality, the methods require detailed data, which is not 
always available in a real-world scenario. With the availability of new data, the mod-
els have to be re-trained and often re-parametrized, which involves additional com-
putational effort and data science expertise. In addition, the models lag behind the 
latest observations and thus cannot respond quickly to concept drifts.

In the following, the offline ML methods investigated are discussed in more 
detail.

9.2.1 � Linear regression

LR performs well when the data set is linearly separable. The assumption of linear-
ity is also the major limitation of LR because a linear relationship between the vari-
ables in real heat consumption is rarely given. This explains the high error values 
of LR in the winter months. The heat demand can be modeled linearly to a cer-
tain extent for the summer months. The prediction error of the LR for the summer 
months is in the same order of magnitude as that of all other ML models, except the 
LSTM models. The LR is particularly sensitive to noise, overfitting, outliers, and 
multicollinearity.

Summarizing, LR is easy to implement, interpret, and efficient to train, while it 
can be used directly on controllers and is easy to understand even for non-specialized 
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people. However, it does not sufficiently capture the important patterns to model 
winter month heat consumption.

9.2.2 � Kernel ridge regression

KRR prevents overfitting to some extent by L2 regularization on its updates. It can 
solve non-linear problems, resulting in lower error values for the winter months. The 
calculation of KRR is efficient on a low-dimensional data set such as this one. With 
a large amount of training data, the memory requirements and computing power are 
high. The memory required for the kernel matrix grows quadratically, and the com-
putational power needed for the model grows cubically for the model to the size of 
the training sample [72].

9.2.3 � Support vector regression

SVR can also solve non-linear problems and is somewhat robust to outliers, shown 
in average RMSE values for the winter months. The SVR benefits from its simple 
implementation. Compared to other regression techniques, it performs few compu-
tations and is more computationally efficient than KRR and RFR, making it more 
suitable for direct application on embedded systems. High accuracy requires a lot of 
memory for the support vectors and is, therefore, unsuitable for embedded training 
of larger data sets.

9.2.4 � Random forest regression

RFR can solve non-linear problems efficiently by combining the outputs of multi-
ple decision trees, reducing overfitting and variance. The low RMSE and MAD val-
ues confirm this for RFR in the results. Also, RFR can automatically handle miss-
ing data and is robust to outliers, as shown by the small error values for the winter 
months. It is also little affected by noise and is very stable, even with new data. This 
is an essential aspect of practical applications, where clean data is not guaranteed 
and stable prediction in unknown situations is necessary. However, RFR is quite 
complex to interpret and, while this is theoretically doable, it is usually not realis-
tically achievable for non-data scientists. Additionally, training time is often long, 
requiring moderately high compute, making it unsuitable for training on the control-
lers when a large training data set is provided.

9.2.5 � Deep neural networks

Sufficiently large DNNs have a robust non-linear mapping capability and a high tol-
erance to complexity in the data. DNNs can learn prediction models well, even if the 
data does not have constant variance or noise terms are unavailable. Based on these 
characteristics, a DNN should, in theory, be ideal for forecasting heat consumption. 
However, this is not confirmed by the below-average results. Typically, DNNs not 
only require more data than other ML methods, they are also heavily influenced 
by bias in the data, leading to overfitting and poor generalization. This limitation, 
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together with the unsolved problem of explaining a DNN’s predictions, negates the 
advantages of a DNN for the examined use case. Likely, the data set examined in 
this study is too small for a good predictive function to be learned, as shown by the 
high error values.

CNN and LSTM inherit the advantages and disadvantages of the simpler DNN. 
CNN has a more complex architecture, making parametrization even more critical. 
LSTM is already even more prone to overfitting because typical regularization tech-
niques, such as dropout layers, are challenging. This is a probable reason for the 
poor performance of LSTM in this study. LSTM is hardware inefficient and can-
not be trained and, for more complex models, maybe not even be deployed on the 
embedded hardware.

In addition, NNs are very time-consuming to build and require high computing 
power. High computing power is especially critical because, in practice, as in this 
case, embedded systems with low computing capacity are used. However, this is not 
yet a debilitating problem for the use case considered in this paper, as the models 
could be trained remotely and then deployed, as for most models, inference is sub-
stantially cheaper and should be doable on most commonly-used systems.

9.2.6 � Statistical analysis

Frequentist statistical significance tests show that the RMSE values of almost all 
models differ, regardless of their complexity and different approaches. The null 
hypothesis is not rejected between LR and DNN trained and evaluated on the entire 
dataset. Also, the null hypothesis is not rejected for the KRR and RFR, as well as for 
the CNN and LR trained and evaluated in the summer months. It cannot be said with 
certainty that these models have a better prediction quality. However, as those tests 
can offer misleading results, we visually investigate the distributions of the results in 
the following.

Figures  2a, 3 compare the distributions of RMSE values for models trained or 
evaluated on the entire data (using 30 randomly split train and test sets). Kernel 
density estimation (KDE) is a non-parametric method for estimating the probabil-
ity density function of a data set using a kernel function (here, Gaussian kernel). 
With KDE, conclusions can be made about the underlying population based on a 
finite sample of data. It operates on a histogram where data points (in our case, the 
errors of individual runs) are assigned a bin, with ‘count’ referring to the number of 
RMSE values in a bin. In the supplementary information’s Sect. 6, the distribution 
of RMSE values is shown for all offline and online models.

Comparing the distributions of RMSE values for KRR, RFR, and SVR (cf. 
Fig.  2a) illustrates that KRR provides the best expected prediction, followed by 
RFR. KRR and RFR have a similar probability density function, exhibiting a lower 
dispersion of errors than SVR.

The comparison of the distribution of RMSE values for LR, DNN, and CNN (cf. 
Fig. 2b) shows that the distributions of error values for the LR and DNN are very 
similar, which corroborates the result of the significance test, indicating that differ-
ences between the two models might be based on a statistical coincidence. Moreo-
ver, the comparison shows that CNN makes the best prediction of the ANNs. The 
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Fig. 2   Comparison of the histograms and distributions of RMSE values. The models are trained and 
evaluated on the entire data
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RMSE values of the CNN have a wide spread, indicating convergence into different 
local minima.

Except for the LSTM, the offline methods all perform similarly for forecasting the 
heat demand of the summer months (about 3.53 kWh to 4.4 kWh). The demand is 
difficult to forecast because no clear relations, patterns, and trends are shown in the 
data due to the composition of heat demand in the summer months. It is plausible 
that the selected input features do not sufficiently capture the motivation of users to 
use hot water.

ANNs, particularly LSTMs, are unsuitable for limited data, as already noted. LR 
and DNN do not model the demand peaks. As discussed above, the prediction of 
peak demand is particularly critical. The prediction error of the computationally 
intensive DNN hardly differs from the computationally efficient LR. The CNN has 
the best forecast quality among the ANNs, but it does not come close to the perfor-
mance of the KRR or RFR.

KRR and RFR models are most suitable for practical application due to the 
low RMSE and MAD values. The advantage of RFR over KRR is that it is less 
data dependent, as indicated by the lower MAD value (different splits lead to more 
evenly generalizing models). However, KRR is more computationally efficient than 
RFR and far easier to understand and interpret for users with a limited data science 
background. This is especially apparent in comparison to all tested ANNs. Which 
of the two candidate models is more suitable must be determined on a project-spe-
cific basis. If computational and time requirements are generous, RFR can be used, 

Fig. 3   Comparison of the histogram and distribution of RMSE values for ODL-ER, RLS, ODL, and 
HBP (left to right). The models are trained and evaluated on the entire data. Note that RLS is determinis-
tic (zero variance), forming a dirac delta
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otherwise, KRR is to be preferred. For our specific use case, the RFR is suitable 
because the controller has sufficient calculation power, and the calculations of the 
predictions are made only once a day.

9.3 � Online machine learning

As the data arrives as a stream, online ML models require—often significantly—
less storage for training than offline ML models, even if the model has the same 
number of parameters. This can overcome memory problems in embedded systems 
used in real-world scenarios. They allow for quick model updates and adapt better to 
changes in the data.

To avoid long convergence times, online models require good initialization. This 
is problematic because validation data is not available in reality. Frequent model 
updates could disrupt convergence, as observed for SGD regression. Furthermore, 
the models are usually more challenging to maintain. Contaminated data can desta-
bilize and corrupt models. Therefore, the models’ data and performance must be 
continuously monitored to avoid this. Maintenance is a critical issue when online 
ML models are used at the customer’s site. It must be guaranteed that the incoming 
data is error-free and not contaminated so that the online model is not corrupted and 
provides stable forecasts.

The online ML methods examined are discussed in more detail below.

9.3.1 � Stochastic gradient descent

In an online learning environment, SGD is computationally very fast as few data 
points are processed. However, due to the frequent updates, the gradient descent 
towards minima is noisy, often leading in other directions and disrupting conver-
gence. This explains the high error values and is indicated by the high MAD and 
RMSE values. SGD is unsuitable for practical application.

9.3.2 � Recursive least squares

RLS is simple to calculate, mathematically understandable, and easy to implement. 
It has good convergence properties. Since the RLS is an adaptive filter algorithm, 
its prediction does vary over different runs. RLS is computationally light but poten-
tially unstable, although the results do not confirm this. Only the forgetting factor, 
which is close to one, and the initialization value between zero and one need to be 
optimized. Due to these points, it is also possible for people with limited ML exper-
tise to quickly learn to configure and apply RLS. RLS can be used directly on the 
controllers as it does not require large computing and storage capacities.

9.3.3 � Online deep learning

The advantage of ODL is that it is the intuitive implementation of a DNN in an 
online learning environment. The performance of a DNN is highly dependent on 
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parametrization, which is difficult to optimize in an online environment without sub-
stantial prior expert knowledge, which is hard to transfer to the resolution of this 
complex data science task, even given the obvious availability of civil engineer-
ing expertise. In this study, we optimized ODL for this specific use case, which is 
impossible in real-world scenarios due to a lack of validation data. Consequently, 
the prediction quality of ODL can be significantly worse in other projects where 
parametrization is not possible in advance. As with offline ML methods, training on 
CPUs is computationally costly and time-consuming. It is recommended to perform 
the calculation on an external GPU.

9.3.4 � Online deep learning with experience replay

ER tries to overcome the limitations of ODL, at least partially. Previous experience 
is used efficiently by including it several times in the learning phase. In this way, 
ER addresses the problem of catastrophic forgetting. Furthermore, it has a better 
convergence behavior during training because the inputs are independent and iden-
tically distributed. In a way, it can be thought of as interacting with data like an 
offline method would. These changes result in the RMSE value for the samples 
being smaller than that of ODL. ER inherits the problems of parametrization from 
ODL. In addition, computation time and memory usage increase with the size of the 
buffer. Storing the experience in the buffer negates the advantage of online learning 
that less memory is required. The increasing memory requirements and high com-
putational effort mean that ER cannot be trained directly on the embedded system.

9.3.5 � Hedge backpropagation

HBP solves the problem of model architecture faced by ODL and ER by design. 
Due to the adaptive complexity, no fixed depth and width of the DNN has to be 
determined in advance. A disadvantage of the HBP architecture is that the adaptive 
capacity and the weighted predictions may not fully exploit the potential of a DNN. 
It requires additional parameter optimization and cannot be trained on-chip. Addi-
tionally, as all neural network–based methods, it suffers from poor explainability of 
predictions.

9.3.6 � Statistical analysis

Using frequentist statistical testing, the null hypothesis is rejected for all RMSE val-
ues of the different models except for ODL and HBP, which are trained and evalu-
ated with the winter months data. Therefore, the quantities of the RMSE values or 
the forecast quality of all models differ significantly and are probably not based on a 
statistical coincidence. However, as those tests can offer misleading results, we fur-
ther investigate the distributions of the results in the following.

Figure  3 compares the distribution of RMSE values for RLS, ODL, ODL-ER, 
and HBP (excluding SGD as it was clearly not competitive). It is clear that ODL-
ER shows the lowest prediction errors for the online ML models and that statisti-
cal coincidences are highly unlikely. Note that no probability density function is 
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calculated for the RLS since its RMSE values have no variance. The distributions of 
RMSE values for ODL and HBP are very close and, while formed differently, it is 
unclear if differences (and advantages) are practically significant.

The models do not predict peak load demand in winter, a critical limitation for 
practical application. The naive model for the calculation of the MASE shows that, 
on average, the heat demand 1 h before is a better forecast than the prediction made 
by the model, especially in the winter months. This is primarily related to the poor 
peak load predictions but discourages real-world application of those models.

Different models are recommended for different application scenarios. Given its 
low error values and forecast quality, ODL-ER is preferred if the forecasts can be 
calculated externally and data for parametrization is available. Due to its adaptive 
model capacity, HBP should be used when validation data is unavailable. For this 
model, the calculation must be carried out externally. RLS can be used if the calcu-
lation has to be performed directly on the controllers.

In real-world scenarios, the online ML methods are the most suitable models for 
projects with insufficient data due to their adaptability. They can learn unknown 
situations and grasp concept drifts. If the data situation is sufficient, an online ML 
model can be replaced in the project process by an offline model, which provides a 
better prediction quality.

10 � Prediction of anomalous heat consumption

In addition to the main experiment, we investigated how well the offline and online 
ML methods can predict anomalies in consumption. An anomaly is a data point sig-
nificantly different from the other observations. Predicting anomalous data, such as 
sudden cold snaps, is essential for a critical task such as predicting heating demand, 
as an adequate heat supply to the occupants must be guaranteed and not interrupted 
due to an incorrect model prediction. This could, in turn, also lead to legal conse-
quences for the heating system operator. A model cannot make reliable predictions 
if it cannot deal with anomalous consumption. One possible scenario would be for 
a model to fail to respond to a cold snap. The heat consumption increases dramati-
cally, and the model predicts too low heat consumption so that the heat supply to the 
residents can no longer be guaranteed.

10.1 � Detection of anomalies

The anomalies are detected using the isolation forest algorithm (IF) [73]. IF can 
detect anomalies in a multidimensional space. The idea of IF is that anomalous 
instances in a data set can be more easily separated or isolated from the rest of the 
samples than normal instances. Anomalies occur less frequently than normal data 
points and are further away from regular observations in the feature space.

The IF identifies 1597 anomalies, which corresponds to a percentage of 10.49 %. 
Of the anomalies, 320 (20.04 %) are in the summer, and 1277 (79.96 %) are in the 
winter months.
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10.2 � Results

The RMSE for anomalies (cf. Table 9) is comparable to the RMSE values for all 
data points. KRR has the lowest values, and LSTM has the highest.

Unlike the offline ML models, the RMSE values of online ML models are 
higher for anomalies than for the entire data set (cf. Table 10). Again, ODL-ER 
is among the online ML models and has the lowest RMSE values for the anoma-
lies. However, the RMSE values are higher than for the DNN or CNN of offline 
ML models. RLS has lower RMSE values for anomalies than ODL or HBP, 
which have comparable values. As for general prediction, SGD is not performing 
competitively.

10.3 � Discussion

All investigated offline ML methods cope well with anomalies. RMSEs for anom-
alies of the models are in the same order of magnitude as for the whole sample. 
KRR is robust against anomalies due to its L2 regularization preventing overfit-
ting. In addition, RMSE values of the anomalies for the three ANNs are very 
high, indicating too low generalization.

For the online ML models, it is worthwhile to look at the time course of the 
prediction error for further investigation of the anomalies. For the time course of 
the RMSE values for the five online machine learning models trained and evalu-
ated on the whole data set, see supplementary information Sect. 7.

Table 9   Comparison of the 
RMSE values of the anomalies 
in kWh of the seven offline ML 
methods for the different periods 
summer, winter, and all year

Offline machine learning - Anomaly (RMSE [kWh])

LR KRR SVR RFR DNN CNN LSTM

Summer 4.02 3.52 3.67 3.55 3.91 3.83 5.45
Winter 9.26 7.19 8.05 7.59 9.21 8.44 16.07
All 7.86 6.15 6.83 6.53 7.81 7.26 17.82
All-summer 4.26 3.4 3.59 3.59 4.28 8.38 15.38
All-winter 9.53 7.36 8.3 7.53 9.45 8.87 18.97

Table 10   Comparison of the 
RMSE values in kWh for the 
anomalies of the five online 
ML methods for the forecast 
horizons of 24 h and for the 
different periods summer, 
winter, and all year

Online machine learning - Anomaly (RMSE [kWh])

RLS SGD ODL ODL-ER HBP

Summer 6.27 9.62 8 5.25 7.21
Winter 12.18 40.44 15.71 9.95 16.57
All 11.58 33.43 14.49 9.53 14.73
All-summer 5.88 9.71 7.58 5.34 6.46
All-winter 12.55 36.86 15.68 10.26 16.07
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All models have a very similar course of RMSE values; only the magnitude 
differs. The plots show that the RMSE values for the second winter are higher 
than for the first winter. There is little difference in the magnitude of the RMSE 
values between the first and second summer. Throughout the year, there are 
always smaller and larger peaks of the RMSE values that are also in the same 
time frames for all models. The peak around 30. November 2021 is particularly 
noticeable. During this period, all models have a problem making an accurate 
forecast. All data points from 29. November 2021, 21:00 to 01. December 2021 
20:00 have been classified as anomalies. Therefore, this period is examined in 
more detail to determine how the individual online ML models react to and deal 
with anomalies.

As can be seen in Fig. 4, there is a sharp increase in heat consumption around 
08:00 on 29. November, 2021. The high heat consumption persists throughout the 
day and slowly decreases over the next two days. The forecast for 29. November is 
still relatively similar for all models. Only when the models are updated with the 
data of the day with the abrupt increase in heat demand, the predictions for the next 
day differ, sometimes significantly. The SGD, ODL, and HBP are overcompensating 
for the new situation and making far too high predictions for 30. November 2021. 
RLS and ODL-ER are slow to adapt to the new situation. Their error values are 
lower than those of the SGD, ODL, or HBP, although they overcompensate later, 
and if heat demand had risen or stayed similarly high, they might have reacted too 

Fig. 4   Comparison of the prediction of the five online machine learning models with the measured heat 
consumption from 29. November 2021 to 01. December 2021
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little or at least too late. After another update, the predictions of the models for the 
01. December 2021 converge again.

11 � Conclusion and outlook

The paper investigated simple time series analysis methods and offline and online 
machine learning (ML) methods for predicting the heat demand of residential units 
in a specific scenario for which hardware specifications and also first data were 
available. The possibility of application in this real-world use case influenced the 
selection of methods. The new quarter we selected as a case study is comparatively 
small with only 66 units connected to the centralized heating system, and data has 
been available for 1.75 years. The results of this study will soon be used in the field 
in the form of a cloud application with distributed edge devices to enable remote 
training.

We found that, for this use case, a comparably high deviation of forecast and con-
sumption in the summer months, where heat demand is fully based on hot water 
usage, is unavoidable with the available features due to erratic usage patterns among 
the limited number of occupants. The methods cannot model domestic hot water 
demand well and are therefore not perfectly suited for summer. Although, we want 
to stress that they do outperform a naive model. If the number of residents was 
higher, individual deviations in consumption patterns would not affect the hot water 
demand as much, making the methods more suitable. However, the additional space 
heating demand in the winter months is predictable as it is dependent on features 
such as daytime and outside weather. Interestingly, models trained and evaluated 
only on one seasonal subset do not outperform models trained on all data but evalu-
ated on the same subset.

Additionally, we investigated whether there is a significant difference between a 
24 and a 48 h forecasting window, finding that all methods performed comparably 
on the longer forecasting window.

In general, we investigated three families of methods:
Time Series models (Holt-Winter Smoothing and Seasonal ARIMA) were unable 

to convincingly perform on the data available and did not even beat a naive model, 
which takes as a prediction the heat consumption of 24 h ago.

Offline ML models performed the best out of the three. Interestingly, the more 
complex deep learning methods were outperformed by much simpler kernel-based 
(kernel ridge regression (KRR) and support vector regression) and ensemble-based 
(random forest regression) approaches. This might be due to the limited data avail-
ability or simply because underlying patterns between available features and heat 
demand are not so complex that they would warrant those methods. Given the 
remaining prediction errors, we can, however, suspect that the features that were 
gathered over the selected time period are not sufficient to describe all usage. Based 
on civil engineering knowledge, we are unaware of specific features that might have 
improved this other than more weather data and better forecasting thereof.
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The kernel-based approaches are not only easier to implement but also to 
understand for engineers. An easier implementation allows engineers without a 
strong computer science background to debug and maintain the code base while 
still getting useful forecasts in return. Moreover, such an interpretable/compre-
hensible approach allows us to improve the energy management systems (its 
overall installation) rather than only the prediction system and, overall, gain a 
better understanding of the relationships between feature characteristics and heat 
demand needs. The great disadvantage of offline ML models is that they need 
large amounts of data before they can be first deployed and can, therefore, not 
go online with the energy management system itself. They are also vulnerable 
to concept and sensor drifts as they do not prioritize newer information over old 
data.

Theoretically, this is where online ML models should shine. However, in our 
data, drifts (besides the obvious seasonalities) seem to not have occurred yet. In gen-
eral, the online methods did not perform competitively to their offline counterparts 
in terms of prediction errors and the critical peak demand forecasting. In a more 
detailed analysis, we found that all of the methods do lack behind in their forecast, 
while some overcompensate heavily. The best performing methods were the sim-
ple recursive least squares (RLS) algorithm and a deep learning approach where 
we used an experience replay–like buffer to sample mini-batches from for training 
whenever a new data point became available to the model.

In addition, it should be noted that the data was gathered during the COVID-19 
pandemic period. To contain the pandemic, various measures were enacted in Ger-
many, causing people to spend more time at home (e.g., increased work from home, 
lockdowns, or closed restaurants, bars, and clubs). These non-static restrictions had 
obvious impacts on the consumption patterns. Therefore, future examinations into 
how consumption patterns have changed after the enactment of restrictions and 
whether the models can cope with such strong concept drifts can be important. Like-
wise, it should be critically investigated to what extent our data can be useful in a 
post-pandemic world.

Another extreme situation, but not yet represented in the data, is the Russian 
invasion of Ukraine, which started on 24. February, 2022. Undoubtedly, this will 
strongly impact usage patterns (and energy supply) in Germany, with many users 
likely keeping the heating below previous thermal comfort levels to save energy as 
well as money. Again, the resulting consumption patterns and models need to be 
re-examined.

Besides the already investigated methods, a wide variety of other approaches is 
available with many having been explored in other settings in the existing literature. 
For this specific case study, the effect of other environmental parameters, such as 
wind speed, cloud cover, or humidity, on the heat demand should be evaluated. A re-
examination of time series analysis techniques could be considered when data repre-
senting long-term seasonal patterns becomes available in a few years.

Also, the forecast accuracy of the models for a 48 and 72-h period should be 
analyzed again in more detail. However, our initial findings are that the forecasting 
horizon does not play a major role. For a safe application in the real world, a 24-h 
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forecast might be too short-term as power plants might exhibit substantially longer 
lead times. Even if it is just about energy storage needs, e.g., in pumped-storage 
hydroelectricity plants rather than hydrogen gas or nuclear power plants.

Models that operate according to the divide-and-conquer principle in offline ML 
can be further investigated. The problem space can be divided into smaller spaces 
for which individual models, called experts, are trained. Another model or function 
can be used as a transition. This requires a more detailed data analysis to partition 
the problem space appropriately. One approach is Mixture of Experts (MoE), which 
divides the problem space between a few experts monitored by a gating network. 
Typically, these experts are individual smaller neural networks. This could allow for 
the more obvious expert models for summer, winter, and transition periods but also 
for models that are good at forecasting in certain weather settings or after certain 
usage patterns.

Additional methods can also be evaluated for online ML, e.g., XCSF [74], a 
highly interpretable rule set learning algorithm, or Online Random Forests [75], an 
incremental version of the Extreme Random Forest. Another promising approach is 
an online error correction presented in [76]. ANNs are used for prediction, which is 
combined with error correction methods.

The immediate next step will be to test selected methods in online applications, 
for example, starting with RLS, which is then later replaced by KRR. With these 
models, no data science experts are required for commissioning and maintenance.

Overall, we conclude that in this and similar settings online ML methods should 
only be used in the beginning and soon be replaced by offline ML approaches. How-
ever, engineers should keep the models in semi-regular observation in case of drifts 
(or directly deploy mechanisms to detect those). In a cloud-based training scenario, 
the algorithmic complexity is less important, as long as the models can run on the 
non-allocated hardware. Whether explainability is important needs to be determined 
on a case-by-case basis, but explainable methods are available and competitive.

12 � Supplementary information

The supplementary information for this paper is available at https://​github.​com/​
Neele​Kemper/​resid​ential-​unit-​heat-​forec​ast/​tree/​main/​suppl​ement​ary_​infor​mation.
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