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ABSTRACT | Speech is the fundamental mode of human com-

munication, and its synthesis has long been a core prior-

ity in human–computer interaction research. In recent years,

machines have managed to master the art of generating

speech that is understandable by humans. However, the lin-

guistic content of an utterance encompasses only a part of

its meaning. Affect, or expressivity, has the capacity to turn

speech into a medium capable of conveying intimate thoughts,

feelings, and emotions—aspects that are essential for engag-

ing and naturalistic interpersonal communication. While the

goal of imparting expressivity to synthesized utterances has
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so far remained elusive, following recent advances in text-to-

speech synthesis, a paradigm shift is well under way in the

fields of affective speech synthesis and conversion as well.

Deep learning, as the technology that underlies most of the

recent advances in artificial intelligence, is spearheading these

efforts. In this overview, we outline ongoing trends and sum-

marize state-of-the-art approaches in an attempt to provide a

broad overview of this exciting field.

KEYWORDS | Affective computing; deep learning; emotional

voice conversion (EVC); speech synthesis.

I. I N T R O D U C T I O N

We all have the capacity to be creative. We’re all
driven to share our deepest dreams and ideas with
the world. When we think of the most talented
creative people, they speak to us in a unique way.
A phrase we often hear is “Having a creative voice.”

— Val Kilmer

The story of Val Kilmer, a world-renowned actor who lost
his voice to throat cancer at the peak of his career, is a
poignant reminder of the importance of verbal commu-
nication in human societies.1 A voice is more than the
sum of its words; it is a conduit of one’s individuality,

1A video of the reconstruction of Val Kilmer’s voice for
the purposes of Top Gun 2 by SONANTIC can be found in
https://www.youtube.com/watch?v=OSMue60Gg6s
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emotions, and unique worldview. People who suffer from
similar conditions understand that the mere verbalization
of their words using assistive technologies is not enough to
give them back their voices. They need to regain their lost
emotional expressivity [1].

If artificial beings are ever able to attain an equal stand-
ing in human societies, why should they need any less?
While contemporary artificial intelligence (AI) research
has set its sights on more attainable, down-to-earth goals,
the long-standing dream of AI researchers is to simulate,
or perhaps overcome, human intelligence. This goal may
well require machines to have emotions as, to quote one
of the forefathers of the field, Minsky [2]: “the question is
not whether intelligent machines can have any emotions,
but whether machines can be intelligent without any emo-
tions.” Any entity that has emotions requires an avenue to
express them.

Affective computing is the subfield of AI that concerns
itself with the computational modeling, understanding,
and expression of emotions [3]. One of its primary goals
is to facilitate more natural human–computer interaction
(HCI) through the modeling of affect, which is a key
component of human behavior. To that end, language,
and, in particular, spoken language, is the most natural
form of communication. If machines are ever to become
natural conversational partners, they have to master the
art of speech generation—including the prosodic intona-
tions attributable to the expression of affect [4]. This is
the domain of affective speech synthesis, a computational
paradigm that attempts to generate realistic-sounding
affective speech. We define affective speech synthesis as
a subfield of voice transformation [5], which corresponds
to the modification of all potential parameters of speech,
and as a super-field of emotional speech synthesis (ESS),
which corresponds to the modification of emotion. Affec-
tive speech synthesis, in contrast, extends beyond emotions
by covering all aspects that fall under the umbrella of com-
putational paralinguistics [6], such as mood, personality,
and social status. Nevertheless, as emotion is heavily over-
represented in recent deep learning (DL)-based affective
speech synthesis works, our review will be largely geared
toward that particular type of synthesis. We also consider
both the general case of synthesizing an affective utterance
directly from the input text, as well as that of modifying a
neutral one to capture the desired emotion—a subfield of
synthesis generally referred to as affective, or emotional,
voice conversion.

The first attempts to infuse emotion into synthesized
speech were made before the field’s name was even
coined [7], [8], [9], [10], [11], [12]. For a long period,
research on emotional speech synthesis and conversion
has primarily focused on rule-based approaches guided
by experts and listening experiments.2 This is in contrast
to speech emotion recognition (SER)—the ‘opposite end’

2An online “museum” including listening examples of most such
attempts is found at http://emosamples.syntheticspeech.de/

of synthesis—which has been dominated by a data-driven
paradigm [13].

The last few years have seen tremendous progress in the
“sister fields” of speech synthesis and voice conversion. The
landmark work of van den Oord et al. [14] revolutionized
the field of text-to-speech synthesis (TTS), signaling the
advent of the DL era, and, more generally, solidifying the
switch to a data-driven paradigm, where a mapping from
text to speech is learned using data. Similar approaches are
now spearheading research in affective speech synthesis as
well [13].

The TTS approaches have reached such performance
levels that the task is considered by many to be “solved”—
layman users in particular expect commercial TTS systems
to work flawlessly, as seen, for example, in the recent wave
of voice assistants. Accordingly, TTS research has exploded
in recent years. In contrast, the field of affective speech
synthesis has attracted somewhat less attention in the field
of HCI, which is, nevertheless, substantially increasing.
Yet, even though significant progress has been made in
that area as well, the goal of human-level, controllable
emotional expressivity still remains elusive.

In an attempt to summarize recent efforts, synthesize
existing approaches, identify missing gaps, and highlight
promising research directions, we have construed a litera-
ture review of deep, affective speech synthesis, and conver-
sion methods. Our overview, thus, fills the gap between
recent surveys in deep speech synthesis, which focuses
on “mere” TTS [15], and older affective speech synthesis
reviews that have become largely obsolete in the deep
learning era [12], [16] or newer ones that are more limited
in scope [17], [18].

Our review aims to provide a broad overview of different
aspects of affective speech synthesis. This is informed by
the authors’ own knowledge and understanding of the field
(and, thus, unavoidably, our biases). However, to provide
a more balanced overview of the different technical aspects
of DL-based methods, we also conducted a more systematic
review of existing literature. We limited our search to
articles published after January 1, 2012, and until August
31, 2022. We identified a total of 101 relevant works using
IEEE Xplore (76) and Web of Science (25) and search-
ing for articles with one of the following terms in their
title: “affective speech synthesis” (4), “emotional speech
synthesis” (37), “emotional voice conversion (EVC)” (19),
“expressive voice conversion“ (1), “expressive text-to-
speech” (15), and “expressive speech synthesis” (27). From
these, we excluded seven for referring to synthesis for
multimodal data (gestures/video), one for being written
in a non-English language, two for being inaccessible to us,
two for introducing data resources, and 41 for using non-
deep neural network (DNN)-based systems. Furthermore,
aside from [19], [20], and [21] which generate emphatic
speech, all other works (45) focus on generating emotional
speech. This justifies our choice to make this one aspect of
affect a major focal point of our review, especially with
regards to Section IV, which outlines the technical con-
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siderations behind DNN architectures. With that in mind,
the identified works were complemented by searching in
related references and adding works familiar to the authors
but not found with the above search criteria.

The remainder of this work is structured as follows.
We first present an overview of where affective speech
synthesis fits in an affective computing application in
Section II. We then give a brief introduction on (deep)
speech synthesis in general in Section III, followed by
a thorough, technical review of deep emotional speech
synthesis, and conversion (see Section IV). Finally, we sum-
marize major observations and outline potential avenues
for future research in Section V.

II. A F F E C T I V E S P E E C H G E N E R AT I O N
In Section II, we begin by giving a definition of what is
entailed by affective speech generation. We use the term
“generation” to encompass all aspects of a process that
begins with a “decision” on what emotion, style, or stance
needs to be generated, a selection of the appropriate text,
and the final synthesis of the waveform as the last step.
As affect is an overloaded term, we first give a concrete
definition of it for the purposes of our review. After defining
what we mean by it, we continue our overview with a short
introduction to the implicit model, which underlies all
affective computing applications: that of an agent who is
able to respond emotionally to external stimuli. This agent
may be fully artificial, as in the case of an autonomous con-
versational agent that interacts with humans, or “hybrid”
in the case of an EVC system that augments the capabilities
of speech-impaired individuals [1]. We then introduce
the module of that agent responsible for the generation
of affect in speech, followed by an introduction of the
different representation models used in the computational
modeling of affect. Finally, we introduce the acoustic corre-
lates of affect, which have guided related speech research
for decades.

A. What Is Affective Speech?

We begin with a definition of the concepts used here
as, due to their subjective nature, they are often conflated
with one another. We use the term “affect” in its broadest
connotation, as it was introduced in the inaugural work of
Picard [3]. Specifically, we go by the definition of affect
“as a broader term, encompassing all kinds of manifesta-
tions of personality such as mood, interpersonal stances,
or attitudes” [6]. This differs from standard psychological
interpretations that more narrowly define affect as the
manifestation of a subjectively experienced emotion [22].
Thus, in our review, affective speech is speech that encap-
sulates all possible paralinguistic traits and states [6].

Despite the importance of those other aspects of affect,
the majority of recent research in affective speech synthesis
has been actually devoted to ESS, with considerably less
emphasis on personality and other states or traits [6], [23].
This discrepancy is even more pronounced in the ongoing

deep learning era, with far more work devoted to ESS than
any other construct.

We further note that several works are investigating
explicit prosodic or rhythmic control [24], [25], [26],
[27], [28]. Even though prosody and rhythm are critical
components of emotional speech, they are not the only
ones [29]. Moreover, it is often the case that this con-
trol is applied manually to change the speaking style of
the synthesized utterance. It is, thus, missing the explicit
link to affect that we consider critical for ESS. Naturally,
prosody is highly related to it; therefore, any manipulation
of prosody might result in a change in the perceived affect.
Yet, oftentimes, these methods tend to leave out any evalu-
ation of the affective content of the synthesized utterances
and only focus on evaluating the controlled attributes.
For this reason, we only tangentially refer to them in our
review. We also note that, in the earliest affective speech
synthesis papers, expressivity was considered a synonym
to affect [9] or seen as a mechanism with which to express
affect [30]. Therefore, we too use the terms “affective” and
“expressive” speech synthesis interchangeably.

B. Affective Agent Model

While the majority of affective speech generation works
are concerned with the task of endowing a synthesized
utterance with appropriate emotional inflections, this is
but the last step in the pipeline of an affective agent.3

Fig. 1 shows a coarse model of what is at play in an
affective computing application. The agent, rather than
existing in a vacuum, is embedded in an environment (e.g.,
its application or, even, the entire world) and interacts
with an interlocutor (usually a human; in the future,
potentially other artificial entities) [23]. It receives inputs
from this environment—including responses/queries by its
interlocutor—and generates an appropriate response.

An important step in this process is the appraisal of all
input stimuli. According to appraisal theory [31], [32],
inputs from the environment are evaluated with respect
to the agent’s goals and concerns along several dimen-
sions. For example, Ellsworth and Scherer [32] proposed
novelty (how much new information was contained in
the stimulus), intrinsic pleasantness/valence (how positive
or negative the stimulus “feels” for the agent), relevance
(how pertinent is the information to its goals), urgency
(how fast it needs to respond), and power/control (how
much is the situation under its control). While this list
is not exhaustive, and alternative appraisal theories have
been proposed over the years, we believe that it captures
a core component of an affective agent, namely, that the
appropriate text and affect to be synthesized have to
be somehow defined. This includes accounting for the
relationship between the agent and its interlocutor(s) and

3With the word “agent” here, we mean a software component that
simulates a desired behavior in any digital application, not necessarily
an embodied conversational agent.
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Fig. 1. Overview of our affective speech generation model. We assume the presence of an artificial agent who can receive inputs from the

environment (including responses from their interlocutor) and proceed to appraise the situation (an appraisal can be either hardcoded or

learned) and generate an appropriate response. This response is then converted to an appropriate speech signal by an affective speech

generation module and transmitted to the interlocutor.

the role that the agent is required to play in a particular
application.

Of course, in most contemporary affective computing
applications, the appropriate response is dictated by the
creator of the application. Most of them contain hardcoded
behaviors that the agents must follow (e.g., be constantly
“happy” or “pleasing”). However, some recent works are
already experimenting with learned behaviors—for exam-
ple, using reinforcement learning to train a dialog agent
to incorporate emotional responses [33], as these have
been shown to increase subjective scores of dialog rich-
ness [34], [35], [36]. As the field progresses, we expect
more research toward less hardcoded and more learned
(or emerging) behaviors.

C. Computational Models of Affect

As Fehr and Russell [37] famously wrote: “Everyone
knows what an emotion is, until asked to give a defini-
tion. Then, it seems, no one knows,” however, to gener-
ate an emotion, one must, nevertheless, have a proper
representation of it. Several different emotion theories
have emerged over the years, each focusing on differ-
ent, but oftentimes related, aspects of emotion [38]. Two
of those have dominated the computational modeling of
emotion [13]: discrete emotion theories, where emotions
are considered to fall under discrete categories, such as
Ekman’s big six [39], and dimensional ones, such as Rus-
sel’s arousal, valence, and dominance [40]. Most affective

speech synthesis works have adopted the first formulation
and assume emotion to come in discrete categories, thus
transforming one to the other (or neutral to one of them),
while only a few pursue the synthesis of dimensional affect
instead [41], [42], [43]. Our review will accordingly focus
on categorical ESS methods, as these have dominated the
ongoing DL era.

Similar to emotions, there are of course all the other
states and traits that may be desirable for an affective
agent [6]. For example, Scherer et al. [44] discussed
mood, interpersonal stances, attitudes, and personality.
Each of those must be separately operationalized, e.g.,
personality is typically evaluated using a five-factor model
(OCEAN) [45]. It is only after the respective concept has
been appropriately coded that it may be annotated and its
synthesis subsequently learned by data.

D. Acoustic Correlates of Affect

Affective speech synthesis is concerned with adapting
those constituents of a speech signal that conveys affec-
tive information. Thus, progress in this field depends on
progress in the mirror field of affect recognition and anal-
ysis, where considerably more research has been invested
in the last decades [13], [46], [47]. Speech parameters
that are identified as being conducive to the recognition
of affect in speech are readily co-opted by researchers to
control affect during synthesis and vice versa [4].
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A large body of literature has linked the manifestation
of affect in a speech to suprasegmental features, such as
prosody, voice quality (e.g., jitter and shimmer), spectral
and energy features, and temporal patterns, such as tempo
and pausing [46], [47], [48]. For example, anger was
shown to correspond to a higher mean F0 and energy,
while “hot” anger also induced a higher variability and
range of F0 [46]. These features, in turn, became the
main knobs twisted by early affective speech synthesis
models to achieve their required results [7], [8], [9].
Recent approaches have attempted to substitute them with
learned representations, in the hope that those are better
able to capture emotional information [49], [50]. Never-
theless, those features have left their mark on affective
speech synthesis research as several works still use them—
in some form—to guide the generation of emotional utter-
ances. These approaches, therefore, constitute the main
focus of our review.

There has also been some interest in other aspects
of vocalizations impacted by affect. For example,
Tahon et al. [51] investigated the potential of generating
emotional pronunciations to improve expressivity. More
recently, Baird et al. [52] launched the Expressive Vocal-
isations Workshop and Competition (ExVo) to foster more
research in the generation of realistic emotional “vocal
bursts” [53]. Combining such approaches with the synthe-
sis methods removed here has great potential to improve
the expressivity and emotionality of generated utterances,
and we will discuss the potential of such attempts in
Section V-C.

III. S P E E C H S Y N T H E S I S
The goal of a speech synthesis system, also known as
text-to-speech synthesis, is to generate artificial, human-
like speech from a given text input. Speech synthesis
is, thus, naturally, the backbone of affective speech syn-
thesis, as the generation of realistic-sounding utterances
is a prerequisite for enhancing its expressivity. The first
recorded TTS system is Wolfgang von Kempelen’s 18th-
century pipes and bellows machine, which was able to pro-
duce vowel and consonant approximations, which, when
properly combined, allowed visitors in his lab to recognize
certain words [54]. The field has obviously progressed a
lot from those early origins with the introduction of digital
technology. Earlier digital attempts at TTS include artic-
ulatory, formant, and concatenative synthesis. The field
then inherited advances in statistical machine learning and
transitioned to the statistical parametric speech synthesis
(SPSS) paradigm, whose influence is still ripe throughout
contemporary DL-based TTS systems.

As the development of ESS has developed in tandem
with that of TTS, we considered a brief overview of
early synthesis methods necessary. This is followed by a
review of deep speech synthesis methods in Section III-B,
which sets the tone for our deep affective speech synthesis
overview presented in Section IV. Section III is concluded
with an overview of (deep) voice conversion, an applica-

tion field of voice transformation that has a lot in common
with ESS [5].

A. Brief History of Speech Synthesis

The earliest (digital) TTS systems attempted to simulate
the human articulatory system by creating models for
the movement of lips, tongue, glottis, and vocal tract—
thus not differing much in spirit from the mechanical
apparatus of von Kempelen. This came to be known as
articulatory synthesis [55]. This paradigm was met with
severe challenges in the modeling of articulatory behavior
and was abandoned for a simpler, source-filter model that
lends itself better to parameter control: formant synthe-
sis [56], [57]. This type of synthesis relies on a rule-based
modification of the formant amplitudes and frequencies
of an excitation signal to produce the required utterance.
These rules are derived by linguistic analysis. While this
system has more modularity than articulatory synthesis,
the difficulty in identifying an appropriate set of rules has
led to its abandonment in favor of data-driven paradigms.

To overcome the challenges associated with building a
proper articulatory model or assembling a complete list of
formant rules, the community next turned to concatenative
speech synthesis, where the target utterance is constructed
from a set of prerecorded building blocks: words, sylla-
bles, half-syllables, phonemes, diphones, or triphones [58],
[59]. These prerecorded units are concatenated to produce
the utterance of interest. However, concatenative synthesis
required a lot more data to scale for diverse vocabularies
and different speakers.

All these downsides led to the adoption of a learning
paradigm in the name of statistical parametric speech
synthesis (SPSS) [60], [61]. SPSS adopts the three-stage
model presented in Fig. 3, namely, the use of text anal-
ysis to suitable linguistic representations of the target
utterance, the prediction of speech parameters using an
acoustic model, and the final waveform synthesis (vocod-
ing). In particular, the text analysis module includes nec-
essary preprocessing steps (text normalization, grapheme-
to-phoneme conversion, and so on) followed by the extrac-
tion of all relevant features, such as phonemes, duration,
or part-of-speech tags. Those features, along with the
accompanying speech parameters, are fed to a statisti-
cal machine learning (ML) model that learns a mapping
from linguistic to acoustic features (e.g., the fundamental
frequency, spectrum, or cepstrum). Due to the sequential
nature of this data, hidden Markov models (HMMs) have
exceled at this type of modeling [60]. Finally, the acoustic
features are propagated to a suitable vocoder for the syn-
thesis step. Some notable vocoders are WORLD [62] and
STRAIGHT [63]. It is important to emphasize that several
(even all) of those steps are learnable from data—which
is precisely what gave this family of methods its name.
Specifically, to learn any of the mappings from graphemes
to phonemes to acoustics to the waveform, matching data
(i.e., matching text and speech pairs, often obtained from
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several speakers and of high amount) is needed. This fun-
damental attribute of SPSS is what makes it the forefather
of modern-day deep speech synthesis methods.

B. Deep Speech Synthesis

Deep neural network-based synthesis co-opts neural
networks as the models of choice to substitute one or
more components of a traditional SPSS pipeline. First
attempts usually centered around substituting HMMs with
sequential models (RNNs [64] or long short-term memory
networks (LSTMs) [65]) for acoustic modeling, such as
the early DeepVoice systems [66], [67]. WaveNet was the
first neural model to directly generate the waveform from
linguistic features [14]. This was later followed by models
trying to go directly from character/phoneme sequences to
audio, such as Tacotron [68], [69]. Nevertheless, several
DL-based methods are still using the traditional three-step
pipeline but substitute intermediate steps with their DL
counterparts. The defining characteristics of deep speech
synthesis are, thus, threefold: 1) methods follow the SPSS
formulation; 2) all methods utilize deep neural networks
in some, or all, steps of their pipeline; and 3) some
methods subsume some or all of the intermediate step in
a single model—these are the so-called end-to-end (E2E)
approaches.

DL-based methods can be taxonomized along several
categories:

1) autoregressive (AR) [14] versus non-AR (NAR)
structures [70];

2) type of network structure, where we primarily dif-
ferentiated between convolutional neural networks
(CNNs) [66], [67], sequential models (RNNs, gated
recurrent unit networks (GRUs), and LSTMs) [68],
[69], which may or may not include attention, and
self-attention models (i.e., Transformers) [71], [72],
[73];

3) type of generative model (e.g., variational autoen-
coder (VAE) [74] and GAN [75]);

4) degree of E2E behavior, which is characterized by the
steps of the traditional SPSS pipeline that one or more
(jointly trained) models subsume.

While such a categorization is useful for differentiating
between different TTS approaches, and later on under-
standing ESS ones, it is important to stress that the
boundaries between those categories are fluid and con-
stantly changing. For example, while WaveNet was first
introduced as an AR model, which generates a waveform
directly from linguistic features [14], thus integrating the
acoustic model and vocoding aspects of an SPSS pipeline,
it was later extended to NAR synthesis [76] and changed
to produce speech conditioned on (Mel-)spectrograms
rather than linguistic features [69]. These rapid changes
are expected as researchers continually optimize their
pipelines in their quest for E2E synthesis. Nevertheless,
as our focus is on presenting the core ideas that have
revolutionized the TTS field in the last decade, we will

primarily categorize approaches based on their earliest
iterations.

An overview of recent, key TTS contributions from the
deep learning era is shown in Fig. 2. As previously men-
tioned, WaveNet [14] was the first neural model to be pro-
posed for speech synthesis. In its first introduction, it was
conceptualized as a mapping from textual and prosodic
features to a raw waveform—thus integrating the last two
steps of an SPSS pipeline. WaveNet also introduced two
key innovations in the field of audio modeling: 1) the
use of dilated convolutions, which allowed it to increase
its receptive field and model long-range interactions and
2) the ability to globally and locally condition the gener-
ation process, which proved instrumental in controllable
TTS, as well as emotional TTS and voice conversion.
Follow-up iterations adapted the model to accept (Mel)
spectrograms as input [69], thus effectively transforming
it into a more traditional vocoder.

Tacotron [68] approached neural TTS by combining the
two frontends of the SPSS pipeline, text analysis, and
acoustic modeling, using an encoder-attention-decoder
framework. By relying on seq2seq models, optionally
augmented with attention, Tacotron learns a mapping
from phonemes/characters to spectrograms. These spec-
trograms are then fed into a suitable vocoder; for that pur-
pose, Tacotron1 used Griffin-Lim [77], whereas Tacotron2
used WaveNet [69]. Due to the sequential nature of the
encoder and the decoder, the Tacotron series suffers from
slower processing times and difficulties in addressing long-
range dependencies.

Following the recent successes of self-attention architec-
tures in modeling such dependencies [78] and their ability
to generate their output in NAR fashion by processing
their inputs in parallel, Transformers were introduced as
an alternative to RNNs in the FastSpeech series [72], [73].
FastSpeech relies on a series of Transformer blocks for
encoding the input text sequence; another series of blocks
decodes it to the output acoustic features that then serve
as input to a suitable vocoder. While Transformers have
the advantage of processing the entire sequence in paral-
lel, thus reducing runtime during inference, they require
some adaptations to handle the problem of mismatched
sequence lengths, as target acoustic features typically have
a much longer duration than the input text. This is handled
by a duration prediction network, which is trained to
predict this mismatch and upsample the learned represen-
tations of the encoder to the necessary length before prop-
agating them to the decoder. FastSpeech2 is also trained to
jointly predict the pitch and energy of the target speech,
which is then used to further modulate the learned rep-
resentations of the encoder during inference and improve
expressivity; this “variance adaptation” mechanism can be
readily co-opted for ESS by using it to inject emotional
information as well.

Finally, another key contribution to the zoo of neural
TTS approaches is the introduction of generative adver-
sarial networks (GANs). Following the seminal work of
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Fig. 2. Overview of main deep TTS paradigms. WaveNet was first introduced as a text-to-waveform model (thus combining an acoustic

model with vocoding), which could be locally and globally conditioned on additional information; it was later extended to synthesize

waveforms from input spectrograms, thus relegated to the role of a traditional vocoder. generative adversarial networks (GANs) are

commonly used to map spectrograms to waveforms (effectively acting as vocoders), or to “imagine” waveforms from a random input,

as such subsuming all intermediate steps of a TTS pipeline and the mechanism to decide what text to output. Tacotron utilizes

sequence-to-sequence (seq2seq) models to learn a mapping from phonemes/characters to audio features, thus implicitly combining text

analysis with an acoustic model; FastSpeech iterated on that by substituting recurrent neural networks (RNNs) with Transformers.

Goodfellow et al. [75], GANs have become mainstays
in image, video, and audio generation. For TTS, there
are two main categories of GANs. The first one is GAN
vocoders, whose generators accept as input spectrograms
and output the raw waveform, with the waveform sub-
sequently probed via the discriminator for its “realness.”
Key examples of this category are MelGAN [79], Parallel
WaveGAN [80], HiFi-GAN [81], and others.

Sticking closer to the original formulation by Good-
fellow et al. [75], the second category includes models
such as WaveGAN [82], which attempt to generate real-
istic speech from random inputs. They, thus, effectively
substitute the entire speech generation model—including
the selection of the appropriate text to output—with a
single model. While such methods are certainly intriguing,
their opaqueness and lack of controllability make them
unsuitable for current TTS needs; still, it is an interesting
avenue to explore in the search for models that can decide
for themselves what they want to say.

We end Section III with a note that we have omitted
several key advances in deep speech synthesis. As our goal
was not to provide a comprehensive overview, but, instead,
a brief one of core novelties introduced in the deep learn-
ing era, we have focused on those most pertinent to emo-
tional synthesis. Thus, among others, we have excluded
flow- [83] and diffusion-based models [84]. For a thorough

review of neural speech synthesis, which also includes
these advances, we refer the reader to Tan et al. [15].

C. Deep Voice Conversion

The Voice conversion (VC) is the task of making a
speech utterance from a source speaker sound like it
came from a target speaker while keeping the linguistic
content unchanged. To further differentiate it from EVC,
we also require VC to leave the emotion of the utterance
unchanged. Since VC and EVC share many commonalities,
we defer a thorough consideration of speech conversion
methods to Section IV. Nevertheless, we provide a short
synopsis of VC methods here, as it is a vibrant subfield
of speech synthesis, with approaches first introduced there
and later applied to EVC and vice versa. Two recent com-
prehensive reviews of VC can be found in [85] and [86].

Several attributes should be manipulated to make the
speech of one individual sound like that of another. The
first one is the choice of words themselves. Different people
use different vocabularies and styles of speaking [86],
[87]; therefore, to effectively transform the “identity” of
a speech utterance, one should begin with the words
that constitute it. However, as we will later also ignore
changes to vocabulary necessitated by changes in emotion,
we also ignore this important aspect of voice conversion
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as well. Instead, we focus on the other two attributes:
suprasegmental features, such as prosody, and segmental
ones, such as spectrum and formants. Short-time spec-
tral features are correlates of timbre, which captures the
“tone” of an utterance and is highly related to the phys-
iological characteristics of the speaker [87]—though it is
also affected by affect and phonetic content. Prosody also
captures both physiological characteristics and speaking
style [87]. For this reason, several VC works consider only
timbre; this, however, limits the success of those methods
as human impersonators are found to adapt their prosody
as well [87].

VC research has a history of more than 30 years.
Early approaches utilized articulatory synthesis but syn-
thesized speech using the parameters of the target
speaker [88]. More recent attempts used Gaussian mixture
models (GMMs) [89], exemplar-based frameworks based
on nonnegative matrix factorization (NMF) [90], and
HMMs [91]. However, despite several attempts, no notable
progress was made until recent years, which saw the
advent of DNNs. Recently proposed methods exploit the
representation power of DNNs by means of VAEs [92],
[93], GANs [94], [95], and seq2seq models [96], [97].

A key distinction of VC approaches is between those
who use parallel and nonparallel training data. While this
distinction will be further elucidated in our discussion of
EVC, where it plays an equally crucial role, we already
need to touch upon it here. Parallel data mean that utter-
ances of identical linguistic content are available from
both the source and the target speaker. While this type of
data makes it easier to learn a mapping of the features
that capture speaker identity while keeping the content
unchanged, they are harder to procure in sufficient quanti-
ties, especially for the more data-hungry DL methods. For
this reason, algorithms relying on more nonparallel data
have become more prominent in recent years.

In general, the power of DL comes in its ability to
learn complicated mapping functions from data. In voice
conversion, this ability is used to learn a transformation
from an input speech signal to the target, usually by
transforming the features of the source speaker to those of
the target speaker before vocoding. In deep voice conver-
sion, this mapping can be achieved through a conditioning
mechanism like the one introduced by WaveNet [14].
As discussed in Section III-B, WaveNet supports both global
and local conditioning—these conditioning interfaces can
be co-opted by voice conversion algorithms to change
suprasegmental and segmental attributes, respectively. The
representation of speaker identity, thus, becomes an impor-
tant aspect of VC. This can be done either by one-hot
encodings of a fixed set of speakers [93], d-vectors [92],
or bottleneck features as speaker representations from a
DNN [98].

As with TTS, GANs also play a prominent role in deep
voice conversions. A GAN-VC framework is formulated by
using the generator to map an utterance from the source
to the target speaker, with the discriminator used to guide

the training by classifying whether the target speaker is
indeed the correct one. As this mapping can be difficult
to learn from nonparallel data, an additional form of
regularization is proposed by the introduction of a cycle-
consistency loss [99], resulting in CycleGAN [95], [100].
CycleGAN has two generators: one for transforming the
speech of the source speaker to the target one and one
for the inverse conversion. This is utilized to map the
speech of the source/target speaker to the target/source
one and back, and ensure consistency (via the L1 loss)
with the original source/target utterance. In the process,
this ensures that the wanted generator (source to target) is
properly trained. An extension of cycle-consistent genera-
tive adversarial network (CycleGAN) for multiple speakers
is found in StarGAN [94], [101], [102], which extends
the consistent principle to multiple source-target domains.
Finally, seq2seq models, which use an encoder–decoder
architecture, have also been extensively studied in the VC
field [96], [97]. These models have the added benefit of
handling changes in sequence length induced by changes
in features. For example, a change in prosody can make the
utterance of the target speaker shorter or longer than that
of the source speaker, which cannot be easily handled by
frame-to-frame mapping methods.

IV. E M O T I O N A L S P E E C H S Y N T H E S I S
In Section IV, we provide an overview of the different DL
methods found in recent literature on emotional speech
synthesis (ESS). We focus on ESS, rather than broader
affective speech synthesis, because these approaches dom-
inated our structured literature search (cf. Section I).
While this covers only one particular aspect of affect,
we believe that the approaches taken here can inform
the synthesis of other speaker traits and traits, and are,
thus, representative of the broader field of deep affective
speech synthesis. Indeed, the technical mechanisms used
to induce expressivity are almost identical to those used to
induce emotionality, albeit the latter is constrained to one
particular aspect of affect.

ESS is that specific module of an affective agent, which
incorporates emotional information in speech utterances
by controlling those aspects of speech, which are mostly—
ideally exclusively—related to emotion. In its broadest
sense, ESS would include a TTS subcomponent, as gener-
ating emotional speech does in fact entail the generation of
“normal” speech, meaning utterances that are comprehen-
sible both for their intended linguistic and paralinguistic
meaning. However, most contemporary works envision
ESS as an extension of TTS. This is motivated by two
pragmatic reasons. First, TTS is a more “basic” problem
than ESS, as being unable to procure a comprehensible
utterance would make any emotional fluctuations applied
to it utterly meaningless. Second, as a corollary of that fact,
the research efforts placed on TTS vastly outmatch those
placed on ESS. As a result, most approaches are tailored
to the former, and the latter is left as a mere afterthought.
For these two reasons, ESS approaches mostly rely on an
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emotional voice conversion (EVC) paradigm, which, like
VC, consists of modifications applied to an existing TTS
model to control its emotion. Accordingly, the majority of
our review will focus on such efforts. We show an overview
of the standard ESS pipeline in Section IV-A. As for TTS,
we continue with a brief history of earlier works.

A. Emotional Speech Synthesis Pipeline

For present purposes, we focus on the last step of
an affective speech generation agent, as discussed in
Section II-B, which is the synthesis of the speech utterance
itself, after a suitable semantic and affective response have
been determined by other processes [36]. Here, though,
we place an emphasis on emotion. An overview of this
process is shown in Fig. 3, where we present the common
blocks of a TTS system and the adaptations required to
enrich it with emotion. In brief, a TTS system (blue boxes
and lines) comprises three steps: 1) a text analysis module
that converts the input text to appropriate linguistic fea-
tures; 2) an acoustic model that converts those features to
acoustic features; and 3) a vocoder, which generates the
final utterance. While this is the traditional approach to
TTS, the barriers between the different steps have begun
to erode with the advent of DL, with a single architecture
often subsuming several (or even all) steps.

Incorporating emotionality into this pipeline is primar-
ily done in two ways (green boxes and lines): either
an EVC module is tasked with adapting the emotion of
the synthesized speech, or the transformation is made as
an intermediate step before vocoding. Due to the recent
success of TTS architectures, most ESS works are actually
performing EVC; however, there are several works that go
directly from phoneme sequences to acoustic features, thus
incorporating the first two steps of a synthesis pipeline. All
these methods will be reviewed in Section IV. Naturally,
the target affect may influence the generation of the text
response itself, but, as previously mentioned, we ignore
this step for our purposes.

It is worth noting that a large portion of the works
identified in our literature review has focused on acted,
categorical emotions. These more “prototypical” cases
are naturally only useful for specific application domains
(e.g., movie production); this has also informed how the
reviewed methods control the synthesis of emotion and
how they evaluate their methods.

B. Brief History of Emotional Speech Synthesis

Cahn’s Affect Editor [8], [9] and Murray’s HAMLET [7],
[12] represent the first approaches to emotional speech
synthesis. They were both rule-based and relied on the
modulation of acoustic correlates of emotion (primarily
pitch and timing) and providing those to existing speech
synthesizers that took care of the synthesis. The values of
these parameters were usually chosen by experts, and their
suitability was verified by follow-up recognition studies.
A more data-driven study by Burkhardt and Sendlmeier

[103] investigated instead different parameter ranges and
identified those that lead to better recognition rates, rather
than setting them a priori, but, nevertheless, relied on
custom manipulating these parameters for synthesis.

While rule-based ESS brought some initial excitement
to the field, it was later abandoned in favor of concate-
native synthesis [16], [104], [105]. Like its TTS counter-
part, concatenative ESS relied on selecting speech units
uttered with the appropriate emotions from an exist-
ing dataset [29]. As a result, it too suffered from the
same shortcomings that plagued standard speech synthe-
sis, especially considering the fact that different speaking
styles must be incorporated in the available databases.

Finally, following a similar trend as TTS, ESS tran-
sitioned to a data-driven paradigm with the advent of
SPSS [106], [107], which, in turn, formed a predecessor
to deep ESS. In this context, ESS was primarily envisioned
as an intervention on acoustic features before the vocoding
step: those features would be mapped to their emotional
equivalents before being used to synthesize speech. In par-
ticular, mappings between both prosodic and spectral fea-
tures were learned using data [106], [107]. As is the case
for voice conversion, this entailed the presence of parallel
data from whence the mappings can be learned.

C. Taxonomy of Deep ESS Approaches

There are various ways in that to taxonomize deep ESS
approaches, as shown in Fig. 4. The first one is based on
whether they perform TTEFs synthesis, where they go
directly from text to emotionally laden acoustic features,
or emotional voice conversion (EVC), where they rely on
acoustic features that are already generated by a standard
TTS system. Due to the widespread success of TTS, most
ESS systems are essentially performing EVC, as they utilize
existing components that have proven to work well. One
could argue that EVC takes a “shortcut” compared to
TTEF since it endows an existing utterance with emo-
tional intonation, rather than synthesizing one from the
ground up. This allows EVC to be added as an extra step
in a traditional TTS pipeline—first synthesize and then
convert to the target emotion. This decomposition into
two constituents can reduce computational complexity and
dependence on data. Furthermore, vocoding is, to the
best of our knowledge, rarely explicitly adapted for ESS,
but, instead, existing TTS vocoders are used out-of-the-
box.4 However, as the borders between discrete steps of
a traditional SPSS pipeline are eroding with the advent of
deep learning, the distinctions between these two forms
of ESS are also blurring. Still, as most existing works go
under the auspices of EVC, these will form the majority of
our review.

EVC methods can be broken down into further cate-
gories based on the type of data that they require for train-
ing. Approaches relying on parallel data learn a mapping

4One exception is [129], which uses the emotion label to condition
a HiFi-GAN vocoder.

                    9
                                                                                                                                           



                                                                                           

Fig. 3. Overview of an emotional speech synthesis module. Emotional synthesis (green) is superimposed on TTS pipelines (blue), which

traditionally consists of three steps (top): text analysis, acoustic analysis, and vocoding (synthesis). In the standard setup, emotion is used

to modulate the acoustic features before vocoding (emotional voice conversion (EVC)). Deep learning models typically incorporate two

(middle) or even all (bottom) of these steps in a single model. In this case, emotion is used as extra, conditioning information to inform the

generation of the respective outputs of each model.

from neutral to emotional speech (or from one emotion to
another) by keeping all other factors, such as the speaker
or the content, constant; as this approach cannot scale well
due to its strict requirements, we only touch upon them in
brief. Instead, we focus more on approaches that can work
on nonparallel data; these scale better as the data can
be pooled from several heterogeneous sources. However,
they are also more challenging, as the crucial problem of
disentanglement arises. This challenge gives rise to the sec-
ond differentiating factor: how the mapping is performed.
Some approaches choose a direct transformation of one
type of speech to another; others opt for a decompo-
sition of a speech utterance into discrete components—
emotions are one of them, and thus, synthesis can
be controlled by choosing one emotional “style” over
another.

How emotions are represented to achieve this control is
another aspect that we take into account. Here, we dif-
ferentiate between reference-based and reference-free
approaches. The first kind uses an emotional speech sam-
ple to condition an ESS system to the emotion that it needs
to produce. The latter provides instead a nonauditory
representation of emotions, with the choice of representa-
tion being a subcategory of differentiation. Most previous
works focus on a limited set of categorical emotions; they,
therefore, encode them in “one-hot” vectors (“one-hot”
vectors are essentially dummy variables, which transform

categorical labels to a numeric representation by using a
vector of dimension equal to the number of categories and
setting only one of its elements to 1 to represent each
category); some works also rely on “fixed” setups, where
different DNNs are trained for each one-to-one mapping
targeted by the ESS system. Reference-based methods aim
for more fine-grained control: this can be achieved by
transforming emotional labels to a representation space
(usually learned by DNNs) that can be used to increase the
span of covered emotions. This is also related to the type
of features that are manipulated to achieve emotionality:
while most choose to modify spectral features, some also
use prosody; this, in turn, informs the type of vocoder,
which usually follows the feature conversion as it has to
support the explicit control of features that are modified.
The types of features and control are also dependent on the
desired level of granularity; utterance-level control is eas-
ier to achieve using embeddings, but frame- or word-level
controls require more fine-grained approaches.

Finally, as for TTS systems, there are different degrees
in which approaches the transition from a multistep (or
“cascade”) SPSS paradigm, where any one step can be
implemented via a DNN, toward an E2E architecture,
which incorporates all steps in a single model. This degree
of “end-to-endedness” will form our last main differenti-
ating factor for ESS approaches. Naturally, as these meth-
ods typically modify an existing TTS pipeline, they also
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Fig. 4. Taxonomy of deep emotional speech synthesis approaches. Approaches can be primarily differentiated according to the following

ways: 1) how many steps of the synthesis they incorporate, which is in terms determined by their input and output, accordingly categorized

as end-to-end (E2E), text-to-emotional-features (TTEF), or EVC methods; 2) how control is achieved, as well as the level of granularity that

this control can achieve; 3) for EVC methods, on whether they use parallel or nonparallel data; and 4) for nonparallel data EVC methods,

based on whether they rely on disentangling speech components or directly mapping features to capture the target emotion, as all parallel

data methods use the latter form of conversion; TTEF methods, instead, primarily fall under the style-transfer category.

inherit all its properties, such as the type of architecture
or underlying model, as discussed in Section III.

Out of all identified works, we present a selection rep-
resentative of our taxonomy in Table 1, so as to give a
quick overview. Whenever researchers experimented with
more than one disjunct category in their work, we chose to
assign them according to where their major focus lay.

D. Parallel Data Methods

Parallel data approaches rely on datasets where the
same speaker(s) have recorded a set of sentences by acting
the entire set of different emotions [110], [113], [120],
[136]—similar to parallel VC approaches. This simplifies
the conversion problem by keeping all other factors con-
stant; the only thing that needs to be converted is the emo-
tion itself. As such, parallel data methods fall exclusively
under the direct transformation category, where a DNN is
utilized to learn the mapping between acoustic features or
even directly from the text and acoustic features.

However, a major downside of such methods is that
they fail to scale, as collecting datasets of sufficient size is
difficult given the strict requirements. Moreover, they lack
in terms of controllability. As the mapping is dependent
on the existence of parallel data, it is only possible to
map from one emotion, or from neutral speech, to another
type of emotion, and this mapping is fixed. Often, it is

the case that researchers train distinct networks for each
combination in their dataset.

Finally, parallel datasets are often recorded in very con-
trolled conditions. Usually, a single speaker or a small set
of speakers record a small set of sentences in one room
using the same microphone and are acting the required
emotions. This vastly differs from real-world situations
where emotions have to be naturalistic and fit a number of
different environments. Therefore, parallel data methods
cannot generalize well in the scenarios expected for real-
world applications.

In conclusion, while simplifying the conversion problem
by fixing other variables offers several advantages, primar-
ily via simplifying the underlying problem, the downsides
limit the applicability of the developed ESS systems. Thus,
parallel data methods were mostly pursued in the early
days of deep ESS as a means of prototyping.

E. Nonparallel Data Methods

Transitioning to methods capable of handling nonparal-
lel data was a necessary prerequisite for the development
of more naturalistic and generalizable ESS systems. This
enabled the use of larger datasets, often ones used in SER
research, collected in less controlled conditions.

This transition, though, introduced a major challenge:
several factors were now entangled in the utterances to
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Table 1 Major DL-Based Emotional Speech Synthesis Works Categorized According to the Taxonomy Presented in Fig. 4

be processed. In particular, there was now no matching
sentence of the target emotion for the text that needed
to be synthesized (or converted), and sometimes, the data
for the target emotion even came from a different speaker.
This necessitated the disentanglement of those different
factors. This entails the decomposition of an input utter-
ance to a set of independent constituents, the modification
of the emotional style (and, if needed, the speaker iden-
tity), and the reconstruction of the resulting waveform.

As we show in Sections IV-F and IV-G, this decom-
position could be implicitly enforced to the model via
manipulation of its training strategy, leading to a set of
methods that we name direct feature transformation meth-
ods, or explicitly designed into it, leading to disentangle-
ment methods. In either case, the increased complexity
of handling nonparallel data, followed by the concurrent
advancement of TTS systems, resulted in most researchers
adopting an EVC paradigm. They resorted to modifying
the acoustic features to induce emotionality and relied on
existing TTS pipelines for all other aspects of the synthesis
process. Only recently did they transition back to TTEF
approaches, following the success of Tacotron and similar
TTS models. This trend is also reflected in Table 1.

F. Feature Transformation Methods

The first category of EVC methods attempts to learn
a direct transformation between features of one emotion

to another. In its simplest form, the EVC problem can
be formulated as follows. Given a set of input features
XS ∈ RTs×d, with TS being the duration of the utterance
and d the dimensionality of the features, the goal of an EVC
model is to map those to XT ∈ RTt×d, which are the target
features of a potentially different duration but of the same
dimensionality. This mapping takes the form of a function
f(·) :XS → XT , which will be approximated by a DNN as
f̃(·). Concretely

xt = f (xs) ≈ f̃ (xs) (1)

where xs and xt are samples sourced from XS and XT ,
respectively. As we saw in Section IV-D, this mapping is
easier to learn when XT and XS have the same linguistic
content and come from the same speaker; it is then suf-
ficient to train a DNN to estimate the mapping between
paired utterances as all this DNN will capture is the change
in emotion. However, nonparallel methods that rely on
direct transformation still have to deal with the problem
of entangled factors.

The most widespread method that deals with this prob-
lem is generative adversarial networks (GANs). GANs were
first introduced by Goodfellow et al. [75] and follow the
basic idea of having two neural networks that compete
against each other, hence the name adversarial. In the orig-
inally proposed GAN framework, one of those networks,
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the so-called generator, learns a function that transforms
noise vectors z sampled by a particular random distribu-
tion to the data x that follow another distribution, where
this target distribution resembles data of a specific target
domain. The second network, the discriminator, tries to
classify those artificially created instances as “fake” data.
During training, the discriminator is fed with real data
from a given training set and fake data created by the
generator. Its objective is to distinguish between these two
classes of data. On the contrary, the generator’s goal is to
“fool” the discriminator by learning to generate realistic
data. Thus, the two networks have conflicting goals, result-
ing in both of them mutually improving each other during
training. The combined objective function V of the GAN
framework can be formalized as follows:

min
G

max
D

V (D,G) = Ex∼p(x) [logD (x)]

+ Ez∼pz(z) [log (1−D (G (z)))] (2)

where G is the generator network and D is the discrim-
inator. Since the input vectors z were sampled from a
random probability distribution function, the generation of
completely new data is possible by merely feeding different
random vectors into the generator.

An intuitive extension of this principle for EVC would be
to replace the random noise vectors with data that follow
the distribution of a certain speech type, i.e., a dataset of
natural speech, while using the output of the generator
and a dataset of the target speech type as input for the
discriminator. This would lead to the generator transform-
ing the input speech of a certain source domain to the
speech of the respective target domain. However, these
kinds of translation approaches only work well with paired
training data, as, otherwise, the discriminator would easily
detect the distributional changes induced by differences
in the speaker or linguistic content. As a consequence,
the standard GAN paradigm needed to be modified for
nonparallel training data.

One of the most prominent approaches that deal with
the aforementioned problem is the cycle-consistent gen-
erative adversarial network (CycleGAN) [99]. CycleGAN
combines two unique GANs, each consisting of its own
generator and discriminator. The idea is that one GAN
learns to transform data from a domain XS to a domain
XT , whereas the other GAN learns the exact opposite:
converting data from domain XT to domain XS . Thus,
by feeding input data of one domain to one of the GANs,
and subsequently feeding the output of that first GAN
back into the second one, the final result can be com-
pared with the original input. In the case of both GANs
working perfectly, the final result should be exactly the
same as the initial input. During training, CycleGAN uses
a cycle-consistency loss as part of its objective function,
in addition to the adversarial loss that is adopted from
the original GAN architecture. The cycle-consistency loss is

formulated as

Lcycle = Exs∼p(XS)

[
∥GT→S (GS→T (xs))− xs∥1

]
+ Ext∼p(XT )

[
∥GS→T (GT→S (xt))− xt∥1

]
(3)

where GS→T and GT→S are the generators of the two
GANs, and xs and xt are data from the domains XS and
XT , respectively. The full loss function of a CycleGAN is
given as

L = LGAN (GT→S , DS , XS , XT )

+LGAN (GS→T , DT , XT , XS)

+λLcycle (GT→S , GS→T ) (4)

where DS and DT are the discriminators of the two GANs
and λ is a balancing factor.

CycleGAN was first transferred to the speech domain
by Kaneko and Kameoka [95], who used it to perform
voice conversion. In order to do so, they enhanced the
generator networks with gated CNNs [137]. In addi-
tion, they implemented an identity loss [138], which
ensures that samples already belonging to the target
domain are not altered. They formulate the identity
loss as

Lidentity = Ext∼p(XT ) [||GS→T (xt)− xt||1]
+ Exs∼p(XS) [||GT→S (xs)− xs||1] . (5)

A more sophisticated version of their work that introduces
additional discriminator networks that are applied on the
circularly converted voice was presented in [100]. Later,
EVC approaches then adopted this formulation for their
purposes [115], [139], [140], [141].

CycleGAN though is faced with a major limitation,
namely, that it only supports a translation between two
domains. However, it is desirable that EVC methods cover
a wider set of emotions. This would mean separately
training an equal set of CycleGANs, which, aside from
increasing the computational overhead of experiments,
also fails to benefit from the synergistic effects that may
arise from a many-to-many mapping. This problem was
solved by CycleGAN’s successor: StarGAN [101], [121],
[126], [142]. The training concepts of both models are
illustrated in Fig. 5.

The basic concept of StarGAN is to use a single generator
and discriminator, both conditioned on features of multiple
domains during training. The conditioning information,
i.e., the emotion in the case of emotional speech conver-
sion, is given as a domain code c. The discriminator is
fed with this domain code in combination with the input
audio, while the generator is conditioned with a different
domain code c′ representing the target domain. Thus,
the adversarial part of StarGAN’s objective is formulated
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Fig. 5. Overview of the two main GAN paradigms for emotional voice conversion. CycleGAN (top) first converts the source utterance to the

target domain, which is then evaluated by the discriminator, while another generator maps it back to its source domain to compute the

consistency loss. The inverse process is followed to map from the target domain to the source domain, which helps to regularize training.

StarGAN (bottom) extends CycleGAN to handle a many-to-many mapping by training a single generator and discriminator pair, both of which

can be controlled via one-hot labels to perform the correct mapping/check.

as follows:

Lt−adv = E(x,c)∼P (x,c) [logD (x, c)]

+ Ex∼P (x),c′∼P (c′)

[
log

(
1−D

(
G
(
x, c′

)
, c′

))]
.

(6)

In addition, to enforce the model to create audio that
belongs to the target domain, a classification loss is added.
To do so, an auxiliary classifier C is trained alongside the
discriminator and generator to distinguish between the
different domains. This classifier is used to build StarGAN’s
classification loss component

Lcls = Ex∼P (x),c′∼P (c′)

[
−logC

(
c′|G

(
x, c′

))]
. (7)

Furthermore, analogous to CycleGAN, a cycle-consistency
loss and an identity-mapping loss are used.

G. Feature Disentanglement Methods

Disentanglement methods attempt to explicitly decom-
pose into several constituents: emotion, linguistic content,
and, potentially, speaker effects. This is tantamount to
assuming that the speech signal results from an equivalent
number of latent factors, c (for content), e (for emotion),

and s (for speaker), which together forms the latent code
z defined over a representation space Z. This latent code is
mapped to the observation space X ∈ RT×d via a function
f : Z → RT×d. The core idea is to preserve the factors
related to content and speaker while manipulating the
ones related to emotion.

The basic schema, as followed by recent works [50],
[127], [131], are shown in Fig. 6. The source utterance
features are passed to an encoder whose goal is to learn the
content, resulting in an embedding cs; a reference embed-
ding (or some other representation of emotion) is passed to
an emotion encoder, which generates an emotion embed-
ding et; and both embeddings are passed to a decoder,
which attempts to reconstruct the target utterance. If no
voice conversion is required, it is assumed that the content
embedding cs also contains speaker information, which
should be preserved; otherwise, a speaker embedding st

is also created by a speaker encoder. In order to guide
the respective encoders to properly disentangle the infor-
mation that they need, specific losses are introduced.
For example, the embeddings of the emotion encoder
could be compared to embeddings from an SER model or
passed to an SER model themselves such that they learn
to classify the target emotion [50], [132], [133], [143].
This way, they are guided to learn emotional information.
Finally, another way to disentangle speaker and emotion
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Fig. 6. Overview of disentanglement methods for emotional voice conversion. The source utterance is passed through an emotion encoder

to generate an emotion embedding. Content information is additionally provided by encoders operating on the acoustic or linguistic features

or both. Optionally, speaker embeddings are provided by a speaker encoder. All embeddings are fed to a decoder that generates the target

utterance. This utterance and the emotion embeddings are often evaluated with respect to the emotional information that they contain,

usually by a pretrained SER model. Additional information, such as prosody or duration, is often predicted from the joined embeddings and

propagated to the decoder to improve the quality of synthesis. During inference, the source utterance or text is used to provide the content,

while the reference utterance is used to generate an emotion embedding.

information is to explicitly perturb features that are
expected to correlate with emotion (e.g., pitch) and
those related to speaker identity (e.g., formants) [144]
and rely on a model to learn emotion-specific pertur-
bations that help map to the target emotion; however,
this approach is rather limited because both types of
features are related with both variables. This limita-
tion could be combined with adversarial approaches that
attempt to remove speaker information from prosodic
representations [145].

Inspired by advances in TTS, with models such as
Tacotron achieving impressive synthesis results, recent
works have transitioned to conditioning such models on
emotional information [127], [128], [132], [133], [134],
thus moving a step up from EVC methods in the E2E
hierarchy and going directly from the text to audio fea-
tures. These methods have no content encoder relying on
audio inputs; instead, the text encoder acts as the content
encoder to capture linguistic style. While the information
fed to the content encoder is already decoupled from its
expressivity (as it comes in the form of characters or
phonemes), we consider these methods to be relying on
disentanglement, as they still rely on an emotion encoder
to capture emotional information and a content encoder

to capture linguistics. The main difference is that this
decomposition is now implicit in the content part.

We note that some works explicitly attempt to disentan-
gle prosody and timbre, using the former to denote pitch,
tempo (local speaking rate), and intensity (loudness), and
the latter to stand for all other aspects that character-
ize sound [131]. This dichotomy implicitly (sometimes
explicitly) assumes that prosody—as defined by the three
dimensions of pitch, tempo, and intensity—is the only
carrier of affective information. However, several aspects
of timbre have been shown to function as affective cues.
For example, voice quality has been found to vary a lot
depending on speaking style, and to do so independently
of pitch or intonation [48], [146], while also functioning
as a marker of personality [147]. This is also encapsulated
in the design of SER feature sets that incorporate voice
quality measures as markers related to emotion [148].
Usually, timbre is left as the residual information to be
learned by a speaker encoder, whose function is to con-
dition the TTS system on the voice characteristics of the
target speaker (using a reference utterance for unknown
speakers or a hard-coded speaker embedding for known
ones). These models may, thus, inadvertently convey the
affective information included in the reference utterance in
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the form of voice quality or, alternatively, fail to capitalize
on the expressive capacities of timbre by not controlling it.

H. Controlling the Synthesized Emotion

Controlling the generated emotion is a fundamental
aspect of ESS systems. In fact, this is the most impor-
tant differentiating factor between methods falling under
the ESS umbrella and expressive TTS systems, which
impart prosodic fluctuation on the generated signals. With-
out explicit control, these fluctuations influence other
aspects of the output utterance besides emotion, such as
speaker identity or an overall speaking “style” inherited by
the training data (for example, read versus spontaneous
speech). While ESS methods make great efforts to properly
disentangle these aspects, they also need a mechanism to
control the emotion during inference.

Early ESS methods relied on a trivial control mecha-
nism: by independently training conversion systems for
all possible emotion pairs, the inference was simply done
by selecting the appropriate pair. This is essentially super-
seded by methods that use one-hot encodings of emotions,
such as StarGAN [121]; there each emotion is represented
by a one-hot vector [149]. These approaches are better
able to handle many-to-many mappings by jointly learning
from several emotion pairs.

However, relying on fixed codes is far below the level
of control required for successful HCI applications. For
this reason, later methods resort to reference-based “style
transfer” methods, which are inspired by recent advances
in expressive TTS. The core proposition behind style trans-
fer is to learn an encoding for those aspects of speech that
corresponds to emotion in a data-driven way. This idea was
first introduced in [150]. The authors utilized a reference
encoder to capture prosodic variations in the reference sig-
nal and transfer them to the target utterance. This encoder
was jointly trained with the main TTS system; during train-
ing, the reference was identical to the target utterance, so a
mapping could be learned; during inference, the reference
was chosen arbitrarily to impose a specific style on the tar-
get utterance. Their reference encoder was a CNN followed
by a GRU that relied on Mel-spectrogram features; the style
embedding was simply the last state of the GRU, which was
then fed to the decoder. However, according to the authors’
experiments, the learned embeddings captured heavily
entangled information, which is highly undesirable as it
inhibits the fine-grained control of the synthesis process.
For example, transferring from a female voice to a male
voice resulted in an overall lower pitch, which sounded
like a female trying to imitate a deeper voice [150].

To further promote disentanglement between different
factors, Wang et al. [151] introduced global style tokens
(GSTs). Utilizing a similar setup as in [150], they intro-
duced an additional constraint on the reference encoder.
Rather than propagating the last state of the GRU to
the decoder, they first use it as the query in attention
operation over a set of learnable tokens: the GSTs. These

tokens, whose number was fixed a priori to 10, would
be the knobs to be twisted during inference time. During
training, the attention mechanism would “softly” weigh
the contribution of each token to the reference; the con-
tributions would then be combined and fed to the decoder.
During inference, the user can either provide a different
reference, which would be accordingly run through the
reference encoder to generate the GST weights, or directly
manipulate the weights themselves to achieve the required
outcome. Inducing this constraint resulted in more natu-
ralistic control and better disentanglement in the styles.

Both these procedures are often used for EVC. The main
difference is in the type of utterances provided to the
reference encoder. During inference, these are selected to
belong to the target emotion, similar to the expressive TTS
case where a reference is picked to fit the required style.
However, in EVC, it is also to explicitly guide the tokens
to encode the reference emotion during training [127],
[132], [133], [152], [153]. This already biases the refer-
ence encoder to capture the differences in emotion and
results in better controllability during inference as well.
Overall, this draws inspiration from image style transfer;
in fact, in one particular instance, style transfer has been
explicitly used on Mel-spectrograms that have been con-
verted to images [154]. Moreover, it is often the case
that an average style is computed on all training data
and stored as a reference for each category, therefore
sparing the need to select an appropriate reference during
inference though some works attempt to derive more
representative styles than simply averaging the context
vectors [155], [156].

Finally, a particular line of work uses text senti-
ment to control the synthesized emotion [135], [157]
or its strength [123]. This draws inspiration from
Stanton et al. [158], who directly predict GSTs from text
and, thus, do not require an external reference utter-
ance. For some applications, this intermodal consistency
is important; for others, though, it may be too limiting as
it does not allow for expressing a different emotion in the
audio than in the text (e.g., irony). Thus, despite being an
interesting form of control, it is not as widely applicable as
the other instances discussed above.

I. Controlling Emotional Intensity

Another vital aspect of control is that of emotional inten-
sity. Emotions come not in discrete states but in continua,
which define fluid categories that seamlessly transition
from one to the other [53]. As such, controlling the
strength of a required emotion—over a continuous axis—
is of fundamental importance for ESS. In general, this
area has remained relatively underexplored as researchers
grapple with the challenges of discrete ESS. Nevertheless,
there have been important advances in recent years.

Lorenzo-Trueba et al. [110] were probably the first to
investigate it for deep ESS. They used an annotator-driven
representation of emotion, which assigned a relative value
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to each utterance. This relative value was computed using
the confusion between the expected emotion (i.e., what
the actors in their dataset were supposed to act) and the
annotated emotion (i.e., what annotators perceived). This
allowed them to represent emotions via continuous, rather
than discrete, vectors, which, in turn, allowed for the
fine-grained control of emotional synthesis via manually
setting those weights during inference. A similarly manual
setting was also explored by Choi and Hahn [49] and
Li et al. [132].

Being simple in its conception, this form of control is
fundamentally limited by the lack of data or the need
to manually tune parameters. An interesting alternative
is found by Schnell and Garner [124], who use the
saliency maps of pretrained, attention-based SER systems
as guidance for frame-level intensity control. Similarly,
Zhang et al. [131] use the posterior probabilities of an SER
for utterance-level emotional control. Both approaches fol-
low a reference-based paradigm for inference-time control.
Ultimately, those approaches are limited by the effective-
ness of the SER systems, which, although greatly improv-
ing in recent years [159], is still far from perfect. Moreover,
it is not necessarily the case that those references evaluated
by an SER system as more “probable” are necessarily those
of a higher intensity; they could merely be those that are
closest to its training distribution.

A solution is given through exploiting the inherently
ordinal nature of emotions [160]. Lei et al. [123], [134]
and Zhou et al. [50] exploit this fact by learning a
ranking function for the intensity of each emotion. Their
approach relies on assuming that all neutral samples
have an intensity of zero and proceeding to generate
emotional-neutral ranking pairs, as well as neutral–neutral
and emotional–emotional anchor pairs, over which a
max-margin optimization problem is approximated. This
results in a weighting matrix W , which provides a ranking
between [0–1] for each feature vector x. During inference,
this ranking can be manually set to control the intensity of
the synthesized emotion.

J. Granularity of Emotional Control

Most works impose a single emotional category or
style on an entire utterance, assuming that this will
be accordingly “distributed” by the mapping network or
decoder to the appropriate frames. However, achieving a
more fine-grained level of control can help increase the
naturalness of expressed emotions and add the capac-
ity to express more nuanced emotional states. To that
end, some works pursue more granular representations
of emotion. For example, Schnell and Garner [124] are
able to achieve this through their saliency maps, which
assign a level of control to each frame via an attention-
based SER model. Similarly, Wu et al. [128] achieve this
with a capsule network [161], while Kreuk et al. [129],
Liu et al. [133], and Lei et al. [134] achieve this via frame-
level losses. Lu et al. [162] and Lei et al. [123] both

pursue phoneme-level control: the former via learning a
speaker- and emotion-independent phoneme latent code
(using gradient reversal to remove this information from
their reference encoder), while the latter simply maps
their utterance-level emotion intensity to phonemes. This
latter approach is similar to Liu et al. [20], who do
emphatic speech synthesis and linearly interpolate across
the phonemes of emphasized words for more granular
control. As seen in Table 1, this trend is picking up pace
this last year with several very recent works pursuing
higher degrees of granularity.

K. Features Manipulated to Achieve Expressivity

As shown in Table 1, most methods fall under the EVC
category, meaning that they primarily manipulate acoustic
features to achieve expressivity. These features are to a
large extent motivated by the decades of research devoted
to understanding which facets of speech are impacted
by emotion and how. This research is touched upon in
Section II-D. Another factor that influenced the choice
of features is the success of modern TTS architectures.
As we saw, EVC methods heavily rely and often outright
incorporate, existing TTS pipelines. It is only natural that
they then use the same features that those TTS pipelines
support. Previously, this restricted the set of features
to ones supported by SPSS vocoders, such as WORLD
or STRAIGHT, which included F0, spectral/cepstral, and
aperiodicity features [108], [110], [117], [121], [124],
while works that only intended to use EVC as a means
to improve SER performance [115] manipulated feature
vectors used by the downstream models [163]. Nowadays,
with the advances seen in neural vocoders, it is typical
to use those as the last step of the synthesis process;
accordingly, EVC pipelines now concentrate more on mod-
ulating spectral features [50], [109], [112], [113], [120],
[140]. Manipulation of other features, such as F0, is still
done but primarily using simple statistical techniques (e.g.,
by standardizing the F0 curve with the statistics of the
target emotions [121]) and rarely using deep learning
methods [114], [129], [164], [165]. Overall, this shows
that the field is transitioning to a standard of using more
abstract representations (spectrograms) and relying on the
representation power of DNNs for learning to modify the
appropriate signal characteristics.

L. Deep Models Used in ESS Research

In general, from an architecture perspective, the inno-
vation in the field of ESS does not seem targeted to novel
DL models, but rather on finding novel ways of combining
existing modules to achieve desired effects (e.g., disen-
tanglement). This is to be expected following the success
of TTS; adopting best practices from a neighboring field
allows the community to iterate quickly over problems
that are specific to ESS rather than reinventing the wheel.
As seen from Table 1, the majority of EVC models are
relying on seq2seq models [50], [109], [113], [117],
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[120], [124], [125], [131], [153]. This is counter to earlier
methods, which relied on highway networks or simpler
sequential models [108], [110], [112], [114]. The main
downside of those was that they could not handle the
differences in signal duration that resulted from a change
of emotion; thus, this mapping of duration needed to be
handled explicitly. In contrast, seq2seq methods have a
natural way of handling the change in duration as the
decoder can reconstruct sequences of different lengths
than those seen by the encoder [18]. A more thorough
overview of seq2seq models for EVC can be found in [18].
This seq2seq trend is also followed by more recent TTEF
methods, which rely on the Tacotron architecture [127],
[128], [132], [133], [134] and merely condition it with
emotional information. Methods using adversarial models,
such as CycleGAN [115] and StarGAN [121], also stay
close to their original versions, with minor adaptations to
fit the EVC problem. Finally, some works attempt to lever-
age representations learned by large, pretrained models
and, thus, rely on transformer-based architectures, such as
HuBERT [129].

The decomposition of input utterances, either source or
reference, is typically achieved via the use of autoencoders
(AEs); this makes them foundational building blocks of
several EVC methods. They, therefore, warrant a closer
analysis. Traditional AEs are comprised of two parts: 1) an
encoder, which reduces the dimensions of the speech signal
to a latent representation (or code) and 2) a decoder,
which tries to reconstruct the original speech representa-
tion from the code. Mathematically, given the speech frame
of dimension d {x ∈ Rd}, we define the encoder as a
function q : X → Z such that z = qϕ(x) with parameters
ϕ, and the decoder as a function: ψ : Z → X , such that
x̃ = ψθ(z) with parameters θ. The same principles are used
for EVC; however, instead of a single encoder, there are
often multiple ones, one for each latent factor that needs
to be disentangled, while a single decoder takes care of the
inverse mapping to the feature space.

A probabilistic realization of AE that is sometimes used
for EVC as well is the VAE [119], [122], [157], [166],
[167]. A VAE is used to generate the speech representation
of the target domain, where the code of the network
is assumed to be represented by a Gaussian distribution
z ∼ N (z;µ,diag(σ2)). The encoder tries to estimate the
mean and variance of the distribution, and with the use
of the reparameterization trick, we can sample a code
representation. The code is fed to the decoder, which
estimates a new speech representation. The training is
performed by maximizing a variational lower bound of the
log-likelihood

L (θ, ϕ;x) = −DKL (qϕ (z|x) ||p (z)) + Eqϕ [logψθ (x|z)]
(8)

where DKL(q||ψ) denotes the Kullback–Leibler divergence
between the distributions q and p.

M. Evaluation Protocols

Protagoras of Abdera famously claimed that “of all
things the measure is Man, of the things that are, that they
are, and of the things that are not, that they are not,” and
so is the case for the evaluation of ESS approaches as well,
with the employment of human annotators being the gold
standard for judging the effectiveness of ESS approaches.
The most commonly used process is a judgment test,
where annotators are asked to evaluate the similarity of
a generated signal with respect to a reference stimulus
or, in the reference-free variant of those tests, to simply
classify the emotion of the generated signal. Alternatively,
they are asked to evaluate different signals with respect to
different aspects that correspond to emotional speech, such
as likeability, emotional strength, or naturalness. In all
cases, individual ratings are aggregated to procure a final
mean opinion score (MOS) [168]. Usually, these ratings
are on a [0, 5] scale with steps of 0.5, with 5 being the best
score. While there is currently a dearth of well-established
dimensions on which to evaluate emotional speech, the
field is drawing inspiration from the much more mature
metrics for TTS [169]. Some dimensions commonly used
in recent works are naturalness [49], [116], [118], [133],
speech quality [124], [126], emotional strength [110], and
similarity with the target emotion [112], [113], [128],
[131], [132]. ABX tests are also commonly used [116],
[126], where subjects are asked to tell if sample X, which
is randomly chosen from category A or category B, is closer
to a reference from A or a reference from B [170].
If subjects systematically pick the correct category for
sample X, the two categories are considered to be distinct
enough. Finally, some works evaluate ESS approaches by
how well annotators are able to classify the synthesized
emotions [49], [117], [122], [124], [125], [127].

As human evaluations are often costly and time-
consuming, the community has attempted to supplement
them with automatic ones. These evaluations are based on
algorithmic measures that quantify different signal proper-
ties [169]. In the case of TTS, for example, BSD [171],
PESQ [172], POLQA [173], or ITU-T Rec. P.563 [174]
is often used to evaluate the quality of generated sig-
nals. No such standardized procedure exists yet for ESS,
but several researchers are using distance metrics (e.g.,
Euclidean) between generated and target features, such as
Mel spectra, or even using pretrained SER models to judge
whether generated samples are correctly classified [175].
These metrics, though far from error-free, vastly speed up
the development process of ESS approaches by providing
quick feedback to researchers and are, thus, an integral
part of the ESS ecosystem.

N. Datasets of Emotional Speech

In a data-driven paradigm, datasets become the corner-
stone of successful models. A comprehensive overview of
existing datasets of emotional speech used in ESS can be
found in [17]. The authors mention five key desiderata
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for designing datasets that cover all conditions neces-
sary for generalization: 1) increasing lexical variability,
as emotional speech datasets are often recorded using a
limited set of sentences; 2) introducing language vari-
ability, as ESS approaches might be expected to work for
different languages and cultures; 3) promoting speaker
variability, as acted datasets are typically recorded from
a few actors and, thus, do not generalize well to new
speakers; 4) controlling for confounders, such as differ-
ent accents or demographics; and 5) regulating recording
conditions, both to control unwanted confounders and to
safeguard the quality of ground truth samples. However,
this last factor can also act as an inhibiting factor for ESS
applications that should generalize to different background
environments; thus, we consider it a good restriction, while
the field is still in its nascent stages, but one that must
ultimately be abandoned as we transition to more realistic
applications. The authors also introduce a new dataset,
ESD, which is now being increasingly used by the commu-
nity as a standard benchmark. Prior to the introduction of
ESD, researchers used either small-scale datasets created
explicitly for ESS [110], [113], [120] or relied on the
standard SER datasets, such as IEMOCAP [176] and EMO-
DB [177].

Given the small sizes of these datasets, some works
have experimented with data augmentation to account
for the scarcity of data [178]. Another viable way of
dramatically increasing the size of available data is to
utilize open resources. For example, with the advent of
social media platforms, there exists now a vast quantity
of readily available, high-quality, expressive speech data
that could be tapped into for training future architectures.
Furthermore, advances in automatic speech recognition
(ASR) make it possible to obtain reliable transcriptions
for those resources and use them as the input in an ESS
pipeline. We expect these resources to play an increasingly
important role in the synthesis of emotion and affect in
general.

O. State-of-the-Art Performance

At the end of our overview of modern emotional speech
synthesis approaches, one important question remains
open: is ESS a solved problem? Recent works boasting
average emotion similarity MOS scores of 4 for 6 [132],
[134] or 7 [131] emotion categories certainly suggest that
we are approaching a “WaveNet moment” for ESS as well,
as the revolution started by van den Oord et al. [14]
began with such MOS scores for naturalness. Accordingly,
some works are showing subjective emotion recognition
accuracies reaching up to 80% [49], [125]. Other works,
however, feature much lower scores, dropping down to
almost 50% recognition accuracy for four emotions [118],
[122]. While one could easily dismiss the low-performing
approaches as simply inferior, a closer look at the data
used in each work reveals a more nuanced interpretation:
Li et al. [132] and Lei et al. [134] used read speech

datasets recorded by single, female authors specifically
constructed for ESS, while Gao et al. [118] and Cao
et al. [122] both used IEMOCAP [176], which includes
improvized emotional speech.

This begs the question: how do we define success? This
brings us back to the original question of what makes an
affective agent. Success depends on the type of agent and
the environment that they expect to operate. It depends
on the number and kind of emotions that the agent is
expected to support, the languages and cultures that it
needs to cover, its malleability to user input, its robustness
to different noise conditions, and so on. As ESS makes
their journey out of research labs and into the real world,
we expect fluctuations between periods of high perfor-
mance on restricted conditions, followed by low valleys
of MOS scores, as the application field is expanded, and
evaluation criteria get increasingly stricter. Existing works
show that the barrier of single-/few-speaker ESS systems
with limited acted emotions on read speech has been
breached, but we are only now approaching the frontier of
naturalistic emotions, as most recent works are still relying
on acted emotional data.

V. D I S C U S S I O N
Our overview has shown that emotional speech synthesis
is a rapidly growing field, which is being heavily influ-
enced by the deep learning era of AI. In Section IV-O,
we argued that, while DL constitutes an immense leap
forward compared to previous approaches, ESS remains
far from solved. In Section V, we highlight the main limi-
tations, discuss whether the ESS problem should be solved
at all given the ethical considerations that it raises, and,
finally, outline some promising areas of future research.

A. Main Limitations

As seen in Section IV-M, ESS is still plagued by a lack of
holistic, standardized evaluation protocols. In particular,
there is a poignant lack of automatic evaluation bench-
marks that allow a fair comparison of different approaches.
As seen in other fields of AI, benchmarks become the
driving force, which guides new advances. In contrast,
even though significant progress has been made in recent
years in ESS, this progress is hard to distill in a single
leaderboard, which highlights the most promising future
directions. More importantly, for any new algorithm that
needs to be compared with the state of the art, researchers
have to revert to costly human evaluations that hinder the
rapid advance of the field. This makes it harder to iterate
over new ideas and ascertain the impact of a proposed
improvement. It is, however, a problem that can be easily
solved by a focused effort of the community to create those
standardized evaluation benchmarks.

A more serious challenge is achieving the amount of
controllability required by downstream applications. Dis-
entanglement of all confounding factors that influence a
speech utterance remains the “holy grail” of emotional
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speech synthesis (and, for that matter, analysis too). With-
out proper disentanglement, ESS methods will be unable
to yield a suitable set of “knobs” that an end-user can twist
to generate the appropriate emotion. This problem also
plagues state-of-the-art SER architectures [159], where
models learn an entangled representation of linguistics and
acoustics [179]. As ESS is scaled up to naturalistic datasets
with a bigger lexical variability, we expect this issue to arise
there as well.

Overrepresentation of a few “dominant” cultures and
languages is another problem; while it is motivated by
pragmatic reasons, namely, the availability of data; it,
nevertheless, limits the applicability of the developed
approaches. While research in related fields, such as ASR,
shows that algorithms will generalize well to new lan-
guages once trained with data from those languages,
it remains a challenge to procure data of such quantity
for most of those. The use of more data-efficient methods
to drastically cut down on the demand for data is still an
open issue in the deep learning era of AI though we expect
advances in neighboring fields to trickle down to ESS as
well. However, this overall lack of cultural representation
also raises ethical concerns as to whether ESS research
can be universally applied and, thus, should be seriously
considered by the community, besides the point of finding
the data (see Section V-B).

Finally, we would be amiss not to point out the fact that
contemporary affective computing research shies away
from the problem of endowing machines with the capacity
to have emotions. Thus, ESS approaches adhere to the
“fake it until you make it” mantra, whereby HCI agents
simulate the presence of emotions by appropriately modu-
lating their voice. However, as research in human emotions
has shown, there is a noticeable difference between acted
and natural emotions (which can only, if ever, be circum-
vented by the best of actors) [180]. Therefore, it could
be that the gap between humans and machines cannot be
bridged until the latter also acquires the ability to simulate
realistic emotions.

B. Ethical Considerations

In recent years, it has become increasingly evident that,
just because artificial intelligence methods can do some-
thing, it does not necessarily mean that they should do
it. This is also a central question in the field of emo-
tional speech synthesis. While the potential to dramatically
improve human–computer interaction, assist speaking-
impaired individuals, and give voices to the intelligent
agents of tomorrow is thrilling, there are several societal
challenges facing our community in the here and now.

The most poignant of those issues is the rise of “deep
fakes” (AI-fabricated videos of people saying or doing
something that they have never said or done in real
life) [181]. With the rapid advances in emotional speech
synthesis, it is not far-fetched to assume that future “deep
fakes” are not only going to change the linguistic content of

targeted speakers but also their emotional one. This vastly
increases the capabilities of malignant actors to spread
disinformation about, or defame, a particular individual,
even without changing their choice of words. For example,
simply changing the tone of a politician who refers to a par-
ticular demographic group to sound sarcastic or derogatory
could incur substantial damage to their public image.

A similar, more insidious approach would be to adapt
the perceived personality of the target speaker. This can be
used to make a particular candidate more or less appeal-
ing, or even to cast a whole demographic in a particular
light, by manipulating the personalities of its spokespeople,
e.g., to be seen as more aggressive or submissive. One
particular example is that of voice assistants: as criticized
in recent a UNESCO report [182], the initial design of
several voice assistants was to show submissiveness, even
in the face of blatant abuse, reinforcing notions of outdated
“female servility.” This case study shows how biases can be
perpetuated through technological products in particular
when those relate to a simulation of behavior and person-
ality. This potential to transform public opinion through
the use of targeted misinformation represents a major
threat to societies around the world and would be vastly
exacerbated by the improvement of ESS algorithms.

A final aspect of whether we “should” do ESS is whether
we want conversational agents to be emotional. This
will give them the unprecedented capability to influence
our own emotions, perhaps in ways we would prefer to
avoid. For example, agents whose purpose is to elicit more
sales could adapt their voice to appear more trustworthy
or friendly, thus subverting the buyer’s will. Moreover,
a related question is whether artificial agents should be
clearly distinguishable from humans; the EU White Paper
on Artificial Intelligence explicitly states that humans
should be made cognizant of the fact that they are interact-
ing with an artificial entity under all circumstances [183],
but the question remains if that is sufficient to mitigate the
potential dangers that could arise from “overhumanizing”
those entities.

The question of “should” does, however, not cover
the degree to which we “can.” As is evident from
the approaches presented here, full-blown conversational
agents with the capacity to accurately and naturally convey
emotion are increasingly on the way. Still, there are still a
lot of critical considerations to be addressed. The first one
is generalizability: do we cover all different cultures? and
do we accurately represent all individuals? The second one
is privacy: whence do we source our data from? The third
one is correctness: is our evaluation sufficient?

None of these questions can be answered satisfactorily
(yet). Research in ESS is being targeted to a small number
of languages and cultures, the ones typically available in
existing datasets, such as English or Chinese. Moreover,
the emotions in these datasets and the corresponding
synthesized samples are typically annotated by individuals
of particular demographics (often students in the case
of university research). This calls into question whether
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we are accurately capturing all the nuances of emotional
speech across different cultures.

Emotions are also one of the most precious aspects
of human experiences. Sourcing the vast quantities of
those required by contemporary approaches is challenging
without violating privacy. In particular, collecting negative
emotions in realistic scenarios requires us to infringe on
the most private moments of an individual, such as the
heartbreaking loss of a loved one. Acted data can only
get us part of the way there, but how we take the next
step needed for naturalistic emotions remains an open, and
challenging, question.

Evaluation is perhaps the easiest of the three questions.
Decades of research on the perception of emotional speech
provide a solid background from which to start. Co-opting
those approaches for the evaluation of synthesized emo-
tional speech and adopting best practices from the sister
domain of TTS seem like a realistic goal.

Overall, it seems obvious that ESS leads to very serious
ethical, legal, and social impact (ELSI) challenges. A full
consideration of ELSI aspects cannot be given here, as it
is too wide in scope for transformative technology, such as
ESS. However, specifically for the field of computational
paralinguistics, the reader is referred to [184].

C. Future Perspectives

After the tremendous advances that the TTS field saw in
the last few years, ESS seems poised to become the next
frontier for the speech synthesis community. Aside from
tackling existing challenges and addressing the ethical
considerations raised in Sections III and IV, we expect a
few methodological advances to capture the interest of the
community.

Synthesizing emotional vocal bursts is one of them.
In the now famous promotional video for Google Assis-
tant,5 the crowd erupted in cheers as the assistant
assured the hairdresser that “taking one second” to look
for an appointment was fine with a mere “Mm-hmm.”
This illustrates how vocal bursts are essential compo-
nents of emotional responses [53]. Synthesizing them
was already the topic of the 2020 ExVo Challenge.6 The
best-performing approach, which used StyleGAN2, already
achieved promising results that highlight the potential of
this line of research [185].

Similarly, as stated in our introduction, conveying emo-
tions is but one aspect of an affective agent. Endowing
the agent with an artificial personality is another area,
which has been pursued several decades [186]. This topic
has been recently revived in the context of big language
models, which can be adapted to emulate a specific person-
ality [187]. As personality has been also shown to manifest
in speech signals [188], it is an evident next step to intro-
duce it to conversational agents as well [189]. In general,
as exemplified by the tasks featured in the Computational

5https://www.youtube.com/watch?v=yDI5oVn0RgM
6https://www.competitions.hume.ai/exvo2022

Paralinguistics Challenge,7 there exist a plethora of speaker
states and traits, which can be modeled from the speech:
deception, sincerity, nativeness, cognitive load, likability,
interest, and others are all variables that could be added to
the capabilities of affective agents.

Personalization is expected to be another major aspect
of future ESS systems. Both the expression [190], [191],
[192] and the perception [193] of emotion show indi-
vidualistic effects, which are currently underexploited in
the ESS field. Future approaches can benefit a lot from
adopting a similar mindset and adapt the production of
emotional speech to a style that fits both the speaker and
the listener. Such an interpersonal adaptation effect is also
seen in human conversations and is a necessary step to
foster communication [194].

Finally, as future affective agents find their way out of
their academic research sandboxes and into the real world,
they will be forced to interact with other entities—artificial
and human alike. This will form a natural breeding ground
for interactions, which can be accordingly classified as
“successful” or not, depending on the goals of the agent.
Coupled with effective SER capabilities, these interactions
constitute a natural reward signal, which can be further
utilized by their agent to improve their ESS and SER
capacities in a lifelong reinforcement learning setup, which
still remains an elusive goal for the field of affective
computing [195]. An overture to this exciting domain can
already be found in intelligent dialog generation, where
reinforcement learning is already being used to adjust the
linguistic style of an agent [196] or to learn backchannel-
ing responses [197], [198]. We expect this paradigm to be
more widely used in ESS in the near future.

VI. C O N C L U S I O N
We have presented an overview of recent advances in
the synthesis of affective speech, including affective voice
conversion. Deep learning is paving the way for consid-
erable advances in this field and laying the foundation
for the affective conversational agents of tomorrow. Most
work has focused on categorical emotions, using, in par-
ticular, acted datasets of read speech. The community
has mostly concentrated on modifying acoustic features,
a form of affective voice conversion, but there is recently
a renaissance of ESS approaches that directly map text to
acoustics. Accordingly, we are seeing an increasing consol-
idation of advances in TTS and a move toward more “E2E”
affective synthesis. Finally, following recent successes in
the conversion of one emotion category to another, several
works are now focusing on a more granular control of
the intensity, thus increasing the controllability of EVC
methods.

As main challenges to existing approaches, we have
identified the absence of naturalistic emotions in the most
widely used corpora used for emotional speech synthesis,
the overrepresentation of a few cultures and languages in

7www.compare.openaudio.eu
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emotional datasets, the issue of disentangling the differ-
ent latent factors that influence speech, and the inherent
limitations of an approach that tries to imitate, rather
than simulate emotions. Another major challenge is the
adherence to ethical rules, as machines that can simulate

affect in all their manifestations, such as emotion and
personality, can pose serious threats to societies in the era
of “fake news.” Nevertheless, we believe that concentrated
efforts by the community can overcome these barriers and
help realize the full potential of affective agents.
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