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Abstract. The ensemble Kalman inversion (EKI) method is a method for the estimation of
unknown parameters in the context of (Bayesian) inverse problems. The method approximates the
underlying measure by an ensemble of particles and iteratively applies the ensemble Kalman update
to evolve (the approximation of the) prior into the posterior measure. For the convergence analysis of
the EKI it is common practice to derive a continuous version, replacing the iteration with a stochastic
differential equation. In this paper we validate this approach by showing that the stochastic EKI
iteration converges to paths of the continuous time stochastic differential equation by considering
both the nonlinear and linear setting, and we prove convergence in probability for the former and
convergence in moments for the latter. The methods employed do not rely on the specific structure
of the ensemble Kalman method and can also be applied to the analysis of more general numerical
schemes for stochastic differential equations.
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1. Introduction. Inverse problems have a wide range of application in sciences
and engineering. The goal is to recover some unknown quantity of interest, which can
only be observed indirectly through perturbed observations. These problems are typi-
cally ill-posed; in particular, solutions often do not depend on the data in a stable way,
and regularization techniques are needed in order to overcome the instability. The
Bayesian approach to inverse problems interprets the problem in a statistical frame-
work, i.e., introduces a probabilistic model on the parameters and measurements in
order to include the underlying uncertainty. The prior distribution on the unknown
parameters reflects the prior knowledge on the parameters and regularizes the problem
such that, under suitable assumptions, well-posedness results of the Bayesian problem
can be shown. The posterior distribution, the solution to the Bayesian inverse prob-
lem, is the conditional distribution of the unknown parameters given the observations.
Since the posterior distribution is usually not directly accessible, sampling methods
for Bayesian inverse problems have become a very active field of research.

We will focus here on the ensemble Kalman filter (EnKF) for inverse problems,
also known as ensemble Kalman inversion (EKI), which is a very popular method
for the estimation of unknown parameters in various fields of application. Originally,
the EnKF was introduced by Evensen [27, 28] for data assimilation problems, and
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3182 D. BL\"OMKER, C. SCHILLINGS, P. WACKER, S. WEISSMANN

more recently, it has been considered to solve inverse problems [42]. The EKI has
been analyzed in the literature as particle approximation of the posterior distribution
as well as a derivative-free optimization method for classical inverse problems. Both
the EnKF and the EKI method have been analyzed in a continuous time formulation
as a coupled system of stochastic differential equations (SDEs). The main focus of
this work is to theoretically verify the convergence of the discrete EKI method to its
continuous time formulation.

We will give an introduction to our mathematical setup after a brief overview of
the existing literature.

1.1. Literature overview. As stated above the EnKF was introduced by Evensen
[28] as a data assimilation method which approximates the filtering distribution based
on particles. This method was first applied in the context of Bayesian inverse problems
in [15, 23] and analyzed in the large ensemble size limit under linear and Gaussian as-
sumptions [54, 48] as well as nonlinear models [53]. In [50] the authors study the mean
field limit of the closely related ensemble square root filter (ESRF). The EnKF has
been formulated in various multilevel formulations [34, 16, 35, 10]. A long time and
ergodicity analysis are presented in [43, 65, 44], including uniform bounds in time and
the incorporation of covariance inflation. Under linear and Gaussian assumptions the
accuracy of the EnKF for a fixed ensemble size was studied in [66, 56], the accuracy
of the ensemble Kalman--Bucy filter was studied in [19, 18]. Beside the large ensemble
size limit, much work has been done in the analysis of the continuous time formulation
[5, 6, 60]. Theoretical verification of the continuous time limits of the EnKF [52] and
the ensemble square root filter [51] have been theoretically verified. In [52], uniform
boundedness and global Lipschitz continuity on the forward and observation model
is assumed. In [49], this assumption could be relaxed to general nonlinear functions
by working with stopping time arguments introducing cut-offs and controlling the the
empirical covariances. The results on the continuous time limits then hold locally
in time with bounding constants growing exponentially in time or in convergence in
probability, but error estimates are not given in any moments uniformly in time.

The application of the EnKF to inverse problems has been proposed in [42]. It
can be viewed as a sequential Monte Carlotype method as well as a derivative-free
optimization method. While in the setting of linear forward maps and Gaussian prior
assumption the posterior can be approximated in the mean field limit, for nonlinear
forward maps this iteration is not consistent with respect to the posterior distribution
[26]. In [20, 32] the authors analyze the mean field limit based on the connection to
the Fokker--Planck equation, whereas in [22] weights have been incorporated in order
to correct the resulting posterior estimate for nonlinear models. Much of the existing
theory for EKI is based on the continuous time limit resulting in a system of coupled
SDEs which was formally derived in [63] and first analyzed in [7]. Furthermore, in
[1] a stabilized continuous time formulation has been proposed. The continuous time
formulation can be regarded as a derivative-free optimization method due to its gra-
dient flow structure [63, 47]. In the literature two variants are typically considered:
the deterministic formulation, which basically ignores the diffusion of the underly-
ing SDE, and the stochastic formulation including the perturbed observations. In
[8] the authors extend the results from [63] by showing well-posedness of the sto-
chastic formulation and deriving first convergence results for linear forward models.
The EKI for nonlinear forward models has been studied in [13] in discrete time with
nonconstant step size. In [9] the dynamical system resulting from the continuous
time limit of the EKI has been described and analyzed by a spectral decomposition.
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CONTINUOUS TIME LIMIT OF THE EKI 3183

In the viewpoint of EKI as an optimization method it naturally turns out that one
has to handle noise in the data. In [64] the authors propose an early stopping cri-
terion based on the Morozov discrepancy, and in [40, 41] discrete regularization has
been considered. Most recently, in [12] the authors include Tikhonov regularization
within EKI. Furthermore, adaptive regularization methods within EKI are studied in
[59, 39].

In comparison to the EKI method studied in the following, a modified ensemble
Kalman sampling method was introduced in [29] and further analyzed in [30, 21, 61].
The basic idea is to shift the noise in the observation to the particle itself and make
use of the ergodicity of the resulting SDE related to the Langevin dynamic in order
to build a sampling method.

1.2. Mathematical setup. We are interested in solving the inverse problem of
recovering the unknown parameter u \in \scrX from noisy data y \in \BbbR K described through
the underlying forward model

y = G(u) + \eta .(1.1)

Here G : \scrX \rightarrow \BbbR K denotes the possibly nonlinear forward map, mapping from a
parameter space \scrX to an observation space \BbbR K , and \eta \sim \scrN (0,\Gamma ) models the noise
incorporated in the measurement. Throughout this article we will assume a finite-
dimensional parameter space \scrX = \BbbR p. Due to the subspace property of the EKI (cp.
[42]) the EKI ensemble stays in the affine subspace spanned by the initial ensemble,
thus rendering the dynamics finite dimensional. Determinstic approaches to inverse
problems typically consider the minimization of a regularized loss functional

min
u\in \BbbR p

\{ \scrL \BbbR K (G(u), y) +\scrR \BbbR p(u)\} ,

where \scrL \BbbR K : \BbbR K \times \BbbR K \rightarrow \BbbR + describes the discrepancy of the mapped parameter
and the data, whereas \scrR \BbbR p : \BbbR p \rightarrow \BbbR + is the regularization function incorporating
prior information on the parameter u \in \BbbR p. Classical choices of regularization include
Tikhonov regularization [25] and total variation regularization [14, 62]. For more
details on the different types of regularization we refer to [24, 4].

In contrast, from a statistical point of view, the Bayesian approach for inverse
problems incorporates regularization through prior information of the underlying un-
known parameter by introducing a probabilistic model. The unknown parameter u is
modeled as an \BbbR p-valued random variable with prior distribution \mu 0 which is stochas-
tically independent of the noise \eta . Hence, we can view (u, y) as a jointly distributed
random variable on \BbbR K \times \BbbR p, and solving the Bayesian inverse problem means condi-
tioning on the event of the realized observation y \in \BbbR K . The solution of the Bayesian
inverse problem is then given by the distribution of u | y, also known as the posterior
distribution:

\mu (du) =
1

Z
exp( - \Phi (u; y))\mu 0(du)(1.2)

with normalization constant Z :=
\int 
\BbbR p exp( - \Phi (u; y))\mu 0(du) and least-squares func-

tional \Phi (\cdot ; y) : \BbbR p \rightarrow \BbbR + defined by \Phi (u; y) = 1
2\| y - G(u)\| 2\Gamma , where \| \cdot \| \Gamma := \| \Gamma  - 1/2 \cdot \| 

and \| \cdot \| denotes the Euclidean norm in \BbbR K . We note that for a linear forward map
G(\cdot ) = A \cdot , A \in \scrL (\BbbR p,\BbbR K) and Gaussian prior assumption \mu 0 = \scrN (0, 1

\lambda C0) the
maximum a posteriori estimate is computed as

min
u\in \BbbR p

\Phi (u; y) +
\lambda 

2
\| u\| 2C0
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3184 D. BL\"OMKER, C. SCHILLINGS, P. WACKER, S. WEISSMANN

which relates the Bayesian approach for inverse problems to the Tikhonov regulariza-
tion with particular choice

\scrL \BbbR K (G(u), y) =
1

2
\| y  - G(u)\| 2\Gamma and \scrR \BbbR p(u) =

\lambda 

2
\| u\| 2C0

.

1.3. EKI: The EnKF applied to inverse problems. The EKI method, as
it was originally introduced in [40], can be viewed as a a sequential Monte Carlo
method for sampling from the posterior distribution (1.2). The basic idea is to draw
an ensemble of samples from the prior distribution and evolve it iteratively through
linear Gaussian update steps in order to approximate the posterior distribution. The
linear Gaussian update steps are based on the introduced tempered distribution

\mu n+1(du) =
1

Zn
exp( - h\Phi (u; y))\mu n(du)(1.3)

with h = 1/N for some N \in \BbbN and normalizing constants Zn. Note that \mu 0 corre-
sponds to the prior distribution and \mu N to the posterior distribution.

To be more concrete, we introduce the initial ensemble (u
(j)
0 )j\in \{ 1,...,J\} of size J

as an independent and identically distributed (i.i.d.) sample from the prior u
(j)
0 \sim \mu 0.

The particle system in the current iteration is used as empirical approximation of the
tempering distribution defined in (1.3):

\mu n(du) \approx 
1

J

J\sum 
j=1

\delta 
u
(j)
n
(du).

Given the current particle system (u
(j)
n )j\in \{ 1,...,J\} we compute the EnKF update for

each particle accordingly to obtain a Gaussian approximation on the distribution
\mu n+1. We define the following empirical means and covariances:

C(un) =
1

J

J\sum 
j=1

(u(j)
n  - \=un)(u

(j)
n  - \=un)

\top , \=un =
1

J

J\sum 
j=1

u(j)
n ,

Cup(un) =
1

J

J\sum 
j=1

(u(j)
n  - \=un)(G(u(j)

n ) - \=Gn)
\top , \=Gn =

1

J

J\sum 
j=1

G(u(j)
n ),

Cpp(un) =
1

J

J\sum 
j=1

(G(u(j)
n ) - \=Gn)(G(u(j)

n ) - \=Gn)
\top .

The ensemble Kalman iteration in discrete time is then given by

u
(j)
n+1 = u(j)

n  - Cup(un)(C
pp(un) + h - 1\Gamma ) - 1(G(u(j)

n ) - y
(j)
n+1), j = 1, . . . , J,(1.4)

where h > 0 is the given artificial step size and y
(j)
n+1 is the artificially perturbed

observation y
(j)
n+1 = y + \xi 

(j)
n+1, where \xi 

(j)
n+1 are i.i.d. samples according to \scrN (0, 1

h\Gamma ).

The above perturbation can also be viewed acting on the mapped particles G(u
(j)
n )

with possible interpretation of randomization. In this context, the scheme might be
connected to sampling via randomized likelihood [2] and sampling via randomize-
then-optimize [3]. Considering the EKI iteration in (1.4) we find the two parameters
h > 0, denoting the artificial step size, and J \geq 2, denoting the number of particles.
To analyze the EKI method, typically at least one of the limits h \rightarrow 0 or J \rightarrow \infty 
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CONTINUOUS TIME LIMIT OF THE EKI 3185

is applied. While the limit J \rightarrow \infty refers to the mean field limit, the limit h \rightarrow 0
corresponds to the continuous time limit of the EKI.

Our aim is to give a rigorous verification of the continuous time limit for fixed
ensemble size 2 \leq J < \infty . Therefore, we first rewrite the discrete EKI formulation
(1.4) as

u
(j)
n+1 = u(j)

n  - hCup(un)(hC
pp(un) + \Gamma ) - 1(G(u(j)

n ) - y)

+
\surd 
hCup(un)(hC

pp(un) + \Gamma ) - 1\Gamma 
1
2 \zeta 

(j)
n+1,

where \zeta 
(j)
n+1 are i.i.d. samples according to \scrN (0, EK\times K), where EK\times K is the identity

matrix in \BbbR K\times K . Taking the limit h \rightarrow 0 leads to (hCpp(un) + \Gamma ) - 1 \rightarrow \Gamma  - 1, and the
continuous time limit of the discrete EKI can formally be written as the system of
coupled SDEs

du
(j)
t = Cup(ut)\Gamma 

 - 1(y  - G(u
(j)
t )) dt+ Cup(ut)\Gamma 

 - 1
2 dW

(j)
t , j = 1, . . . , J,(1.5)

where W (j) = (W
(j)
t )t\geq 0 are independent Brownian motions in \BbbR p. We denote by\widetilde \scrF t = \sigma (W

(j)
s , s \leq t) the filtration introduced by the Brownian motions and the

particle system resulting from the continuous time limit, respectively. Furthermore,
we denote by \scrF n = \sigma (\zeta 

(j)
k , j = 1, . . . , J, k \leq n) the filtration introduced by the

increments of the Brownian motion and the particle system resulting from the discrete
EKI formulation, respectively. In particular, for the rest of this article we will consider
the filtered probability space (\Omega ,\scrF , \widetilde \scrF = ( \widetilde \scrF t)t\in [0,T ],\BbbP ) and (\Omega ,\scrF ,\scrF = (\scrF n)

N
n=1,\BbbP ),

respectively.
We are going to analyze the discrepancy between the discrete EKI formulation and

its continuous time limit. Therefore, we introduce a continuous time interpolation of
the discrete scheme denoted as Y (t), and we describe the error by E(t) = Y (t) - u(t).
We will provide convergence in probability of the discrete EKI for general nonlinear
forward maps, whereas in the linear setting we will provide strong convergence under
suitable assumptions.

1.4. Outline of the paper. The contribution of this paper is a rigorous the-
oretical verification of the continuous time limit of the EKI. We provide two very
general results independent of the structure of the ensemble Kalman method, which
can then be applied to the EKI. In particular, we formulate the strong convergence
result in such a way that it applies to various variants of the EKI. It is only required
to verify the existence of moments up to a certain order.

We make the following contributions:
\bullet We present approximation results for a general class of SDEs. Based on

localization we are able to bound the error of the discretization up to a
stopping time. Removing the stopping time leads to our two main results:

1. convergence in probability with given rate function and
2. convergence in L\theta with given rate function.

\bullet We apply the general approximation results to the EKI method in a general
nonlinear setting, where we can verify convergence in probability under very
weak assumptions on the underlying forward model.

\bullet In the linear setting we are able to prove strong convergence in L\theta of the
discrete EKI method. While for general linear forward maps we obtain L\theta 

convergence for \theta \in (0, 1), we provide various modifications of the scheme in
order to ensure L\theta convergence for \theta \in (0, 2).
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3186 D. BL\"OMKER, C. SCHILLINGS, P. WACKER, S. WEISSMANN

With this manuscript we resolve the question posed in [7]: It is indeed the case
that the specific form of the discrete EKI iteration (in particular the additional term
(hCpp(un) + \Gamma ) - 1 vanishing in the continuous-time limit h \rightarrow 0) can be thought of
as a time discretization for the SDE (1.5) specifically enforcing strong convergence,
which cannot be said for a simple Euler--Maruyama-type iteration of form

u
(j)
n+1 = u(j)

n  - hCup(un)(G(u(j)
n ) - y) +

\surd 
hCup(un)\Gamma 

1
2 \zeta 

(j)
n+1.

Indeed, numerical simulations (not presented in this manuscript, but easily imple-
mented) show that the Euler--Maruyama discretization does not exhibit strong conver-
gence (as already demonstrated for a similar SDE in [37]) due to rare events resulting
in exploding iteration paths. There are connections to taming schemes (which have a
similar effect of cutting off exploding iterations), as in [36], although the specific form
of EKI is not a taming scheme in the narrow sense.

The remainder of this article is structured as follows. In section 2 we present
our general numerical approximation results for SDEs which are then applied to the
solution of general nonlinear inverse problems with the EKI method in section 3. The
application to linear inverse problems is presented in section 4. We close the main part
of the article with a brief conclusion in section 5 discussing possible further directions
to take. Most of our proofs are shifted to the appendix in order to keep the focus on
the key contribution presented in this article.

2. General approximation results for SDEs. In this section we discuss a
general approximation result for SDEs, which is then applied to the EKI. We consider
local solutions (i.e., up to a stopping time) of the following general SDE in \BbbR n in
integral notation:

x(t) = x0 +

\int t

0

f(x(s))dt+

\int t

0

g(x(s))dW (s).(2.1)

Given a step size h > 0, we assume that f and g are approximated by fh and gh,
respectively, and we consider the following discrete numerical approximation to x(t):

Y (t) = x0 +

\int t

0

fh(Y (\lfloor s\rfloor ))ds+
\int t

0

gh(Y (\lfloor s\rfloor ))dW (s),(2.2)

where we round down to the grid \lfloor s\rfloor = max\{ kh \leq s : k \in \BbbN \} and suppress the
index h in this notation.

It may seem strange to allow for the flexibility of approximating f and g by fh
and gh (instead of just using pointwise evaluations of f and g), but this is exactly the
case for the continuous and discrete version of EKI; see section 3. One can check that
Y is a continuous time interpolation of the following discrete scheme:

Yn+1 = Yn + hfh(Yn) + gh(Yn)[W (h(n+ 1)) - W (nh)], Y0 = x(0).

We assume that both the discrete and the continuous scheme start at the same initial
value, i.e., x(0) = Y (0) = x0. Note that for every fixed h > 0 the discrete scheme
exists for all times and cannot blow up in finite time. For the nonlinearities we assume
that the limiting drift terms f and the limiting diffusion matrix g are locally Lipschitz
and that the nonlinearities fh and gh have a local uniform bound in h on the growth
and approximate f and g again in a local sense. To be more precise we formulate the
following assumption.
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CONTINUOUS TIME LIMIT OF THE EKI 3187

Assumption 2.1. Assume that the functions f, fh : \BbbR p \rightarrow \BbbR p and g, gh : \BbbR p \rightarrow 
\BbbR p\times K , h \in (0, 1), are locally Lipschitz such that for all radii R > 0 there exist
constants Ca, L, and B such that for all u, v \in \BbbR n with norm less than R the following
properties hold:

1. uniform approximation on compact sets

\| fh(u) - f(u)\| \leq Ca(R, h), \| gh(u) - g(u)\| HS \leq Ca(R, h)

with Ca(R, h) \rightarrow 0 for h \rightarrow 0;
2. local Lipschitz continuity

\| f(u) - f(v)\| \leq L(R)\| u - v\| , \| g(u) - g(v)\| HS \leq L(R)\| u - v\| ;

3. growth condition

\| fh(u)\| \leq B(R), \| gh(u)\| HS \leq B(R).

Moreover, we can assume without loss of generality that all R -dependent con-
stants are nondecreasing in R.

Remark 2.2. Note that item 3 of Assumption 2.1 just means local boundedness,
but we will use the specific growth factor B(R) in the proofs later and have to compute
the dependence of B on R. To be more precise, we will fix R depending on h such
that various terms depending on h, B(R), L(R), and Ca(R, h) are small. See, for
example, (2.7).

Here and in the following we used \| \cdot \| and \langle \cdot , \cdot \rangle for the norm and the standard
inner product in \BbbR p, while \| \cdot \| HS is the standard Hilbert--Schmidt norm on matrices
in \BbbR p\times p which appears in Itos formula.

Using the Lipschitz property, we immediately obtain the following statement re-
garding the one-sided Lipschitz property.

Lemma 2.3. Under Assumption 2.1 we have for a small \epsilon > 0 that

2\langle f(u) - f(y), u - v\rangle + c\| g(u) - g(v)\| 2HS \leq (\delta (R) - \epsilon )\| u - v\| 2

for all u, v \in \BbbR n with norm less than R with

\delta (R) := 2L(R) + cL(R)2 + \epsilon .(2.3)

This estimate with c = 1 + \epsilon is needed if we want to bound second moments of
the error. The higher the moment we want to bound, the higher c has to be.

Convergence of the Euler--Maruyama scheme for SDEs was postulated under con-
dition of finite exponential moment bounds of the discretization in [33], but this
condition was soon after proven to be too restrictive: Divergence of the vanilla Euler--
Maruyama scheme for non-Lipschitz-continuous coefficients was demonstrated in [37]
due to an exponentially rare (in h) family of events with biexponentially bad behavior,
which is why standard textbooks about numerical approximations of SDEs [46, 55,
57] generally assume globally Lipschitz-continuous coefficients. This led to the devel-
opment of ``taming schemes"" in [38, 36] which are able to cut off the rare tail events
leading to exploding moment bounds. The idea is to replace the Euler--Maruyama
iteration for an SDE of form dx = \mu (x)dt+ \sigma (x)dW of type

xn+1 = xn + h \cdot \mu (xn) + \sigma (xn)\Delta Wn
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3188 D. BL\"OMKER, C. SCHILLINGS, P. WACKER, S. WEISSMANN

by something of the form

xn+1 = xn +
h \cdot \mu (xn) + \sigma (xn)\Delta Wn

1 + | h \cdot \mu (xn) + \sigma (xn)\Delta Wn| 
.

The denominator is close to 1 for small (well-behaving) increments, and it bounds large
deviations (which have very small probability anyway) to avoid exploding paths. Our
method of using stopping times to bound (stopped) moments and then remove the
stopping times is based on ideas in [33].

2.1. Residual. We want to bound the error E(t) = x(t) - Y (t) solving

dE = [f(x) - f(x - E)]dt+ [g(x) - g(x - E)]dW + dRes,(2.4)

where we define the residual Res, which is an \BbbR p-valued process solving

dRes(t) = [ - fh(Y (\lfloor t\rfloor )) + f(Y (t))]dt+ [ - gh(Y (\lfloor t\rfloor )) + g(Y (t))]dW.(2.5)

Note that the scheme is set up in such a way that E(0) = 0. Our strategy of proof is
to first bound the error assuming that E, x, and Y are not too large. Later we will
show that this is true with high probability.

Definition 2.4 (cut-off). For a fixed time T > 0 and sufficiently large radius R
(which will depend on h later) we define the stopping time

\tau R,h = T \wedge inf\{ t > 0 : \| x(t)\| > R - 1, or \| E(t)\| > 1\} .

Obviously, we have

sup
[0,\tau R,h]

\| x(t)\| \leq R and sup
[0,\tau R,h]

\| Y (t)\| \leq R.

Moreover, \tau R,h > 0 a.s. if \| x(0)\| < R  - 1, as both x and E are stochastic processes
with continuous paths. We first bound the residual in (2.5).

Lemma 2.5. For t \in [0, \tau R,h] one has dRes(t) = Res1(t)dt + Res2(t)dW with
Res1 =  - fh(Y (\lfloor t\rfloor )) + f(Y (t)) and Res2 =  - gh(Y (\lfloor t\rfloor )) + g(Y (t)). Then for i = 1, 2

\BbbE sup
t\in [0,\tau R,h]

\| Resi(t)\| p \leq CpK(R, h)p

with a constant Cp > 0 depending only on p and

K(R, h) := Ca(R, h) + L(R)h1/2B(R) .(2.6)

As the residual needs to be small in order to prove an approximation result, in
the applications we will need to choose a radius R = R(h) with R(h) \rightarrow \infty for h \rightarrow 0
such that

K(R(h), h) \rightarrow 0 for h \rightarrow 0.(2.7)

Proof. For the proof see Appendix A.
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CONTINUOUS TIME LIMIT OF THE EKI 3189

2.2. Moment bound of the error. For the error we first prove the following
lemma.

Lemma 2.6. We have for K from (2.6)

\BbbE \| E(t \wedge \tau R,h)\| 2 \leq CK(R, h)2 max\{ 1, e\delta (R)t\} for all t \geq 0.

Sketch of the proof. The main idea here is to apply It\^o's formula in order to derive

d\| E\| 2 = 2\langle E, dE\rangle + \langle dE, dE\rangle 
= 2\langle E, [f(x) - f(x - E)] + Res1\rangle dt
+ 2\langle E, [g(x) - g(x - E) + Res2]dW \rangle + \| [g(x) - g(x - E)] + Res2\| 2HSdt

and imply

\BbbE \| E(t \wedge \tau R,h)\| 2 \leq \| E(0)\| 2 + \delta (R)\BbbE 
\int t

0

\| E(s \wedge \tau R,h)\| 2dt+ CK(R, h)2.

The assertion follows by application of Gronwall's lemma. For full details of the proof
see Appendix A.

Remark 2.7. Note that for \delta (R) \leq C (which implies global Lipschitz continuity of
fh and gh by its definition (2.3)), we have a valid error bound as soon as the residuals
are small determined by K(R, h). In the contrast to that, in the case \delta (R) \nearrow \infty for
R \rightarrow \infty , we might have an additional exponential in the bound. Thus we will have
to take R(h) much smaller in h, and we expect it to be some logarithmic term in h
at most.

We could now proceed and extend this result to arbitrarily high moments; i.e.,
we can do estimates of \BbbE \| E(t \wedge \tau R,h)\| p by using

d\| E\| p = d(\| E\| 2)p/2 = p\| E\| p - 2\langle E, dE\rangle + p

2
\| E\| p - 2\langle dE, dE\rangle 

+
1

2
p(p - 2)\| E\| p - 4\langle E, dE\rangle 2.

Each power is now sort of straightforward but needs a different one-sided Lipschitz
condition. To avoid having too many technicalities, we only go up to the fourth power.
We obtain as before

d\| E\| 4 \leq 4\| E\| 2\langle E, f(x) - f(x - E) + Res1\rangle dt
+ 3\| E\| 2\| g(x) - g(x - E) + Res2\| 2HSdt

+ 2\| E\| 2\langle E, [g(x) - g(x - E) + Res2]dW \rangle 
\leq 
\bigl[ 
2\delta (R)\| E\| 4 + C\epsilon \| Res2\| 4HS + C\epsilon \| Res1\| 4

\bigr] 
dt

+ 2\| E\| 2\langle E, [g(x) - g(x - E) + Res2]dW.

Note that for the fourth power we need a slightly different one-sided Lipschitz condi-
tion than for the square. This would yield a different \delta (R). Nevertheless, we slightly
abuse notation and consider the same \delta (R), i.e., the larger one, for both cases. Finally
from Lemma 2.5, using the martingale property of the stopped integrals,

\BbbE \| E(t \wedge \tau R,h)\| 4 \leq 2\delta (R)\BbbE 
\int t\wedge \tau R,h

0

\| E\| 4dt+ C\epsilon TK(R, h)4

\leq 2\delta (R)\BbbE 
\int t

0

\| E(s \wedge \tau R,h)\| 4dt+ CK(R, h)4,

and again Gronwall's lemma implies:
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3190 D. BL\"OMKER, C. SCHILLINGS, P. WACKER, S. WEISSMANN

Lemma 2.8. We have for K from (2.6)

\BbbE \| E(t \wedge \tau R,h)\| 4 \leq CK(R, h)4 max\{ 1, e2\delta (R)t\} for all t \geq 0.

2.3. Uniform moment bound of the error. With our moment bounds we
now obtain a bound on \BbbE sup[0,\tau R,h]

\| E\| 2. Recall that \tau R,h \leq T by definition.

Lemma 2.9. For all T > 0 there is a constant C > 0 such that for K from (2.6)

\BbbE sup
[0,\tau R,h]

\| E\| 2 \leq CK(R, h)2(L(R)2 + 1)max\{ 1, e\delta (R)T \} .

Proof. For the proof see Appendix A.

Now we can finally fix in applications R(h) \rightarrow \infty for h \rightarrow 0 (but sufficiently slow)
such that

\BbbE sup
[0,\tau R(h),h]

\| E\| 2 \rightarrow 0 for h \rightarrow 0.

Let us remark that we could also treat \BbbE sup[0,\tau R,h]
\| E\| p for p > 2, but this will be

quite technical and lengthy, using Burkholder--Davis--Gundy.

2.4. Removing the stopping time. We present two results depending on how
good our bounds are on x and Y.

Convergence in probability. For convergence in probability we only need stopped
moments of x, as we do not control the error beyond the stopping time. Moreover,
these moments can be very weak, for example, logarithmic.

Theorem 2.10. Assume that there is a radius R(h) \rightarrow \infty and a \gamma (h) \rightarrow 0 such
that

\gamma (h) - 2\BbbE sup
[0,\tau R(h),h]

\| E\| 2 \rightarrow 0 for h \rightarrow 0.

Moreover suppose that for an unbounded monotone growing function \varphi : [0,\infty ) \rightarrow 
[0,\infty ) we have uniformly in h \in (0, 1) that \BbbE \varphi (\| x(\tau R(h),h)\| ) \leq C. Then

\BbbP 

\Biggl( 
sup
[0,T ]

\| E\| > \gamma (h)

\Biggr) 
\rightarrow 0 for h \rightarrow 0.

Proof. Consider first using the definition of \tau R,h (where R = R(h) \rightarrow \infty for
h \rightarrow 0):

\BbbP (\tau R,h < T ) \leq \BbbP (\| E(\tau R,h)\| \geq 1 or \| x(\tau R,h)\| \geq R - 1)

\leq \BbbP (\| E(\tau R,h)\| \geq 1) + \BbbP (\| x(\tau R,h)\| \geq R - 1)

\leq \BbbE \| E(\tau R,h)\| 2 + \BbbP (\| x(\tau R,h)\| \geq R - 1) .

Using this we thus obtain

\BbbP 

\Biggl( 
sup
[0,T ]

\| E\| > \gamma (h)

\Biggr) 
\leq \BbbP 

\Biggl( 
sup
[0,T ]

\| E\| > \gamma (h); \tau R,h = T

\Biggr) 

+ \BbbP 

\Biggl( 
sup
[0,T ]

\| E\| > \gamma (h); \tau R,h < T

\Biggr) 
\leq \BbbE sup

[0,\tau R,h]

\| E\| 2(1 + \gamma (h) - 2) + \BbbP (\| x(\tau R,h)\| \geq R - 1).
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CONTINUOUS TIME LIMIT OF THE EKI 3191

Using the first assumption of the theorem for the first term, together with

\BbbP (\| x(\tau R,h)\| \geq R - 1) \leq \varphi (R - 1) - 1\BbbE \varphi (\| x(\tau R,h)\| ) \rightarrow 0 as R = R(h) \rightarrow \infty 

by Markov inequality and the second assumption, finishes the proof.

Convergence in moments. In order to bound the moments, we need control of the
error beyond the stopping time \tau R,h. Thus, we need a control on the moments of x
and Y . Consider, for \theta > 0 to be fixed later, and p > 1,

\BbbE \| E(t)\| \theta =

\int 
\{ \tau R,h\geq t\} 

\| E(t)\| \theta d\BbbP +

\int 
\{ \tau R,h<t\} 

\| E(t)\| \theta d\BbbP 

=

\int 
\{ \tau R,h\geq t\} 

\| E(t \wedge \tau R,h)\| \theta d\BbbP + \BbbE \chi \{ \tau R,h<t\} \| E(t)\| \theta d\BbbP 

\leq \BbbE \| E(t \wedge \tau R,h)\| \theta + \BbbP \{ \tau R,h < t\} (p - 1)/p
\Bigl( 
\BbbE \| E(t)\| p\theta 

\Bigr) 1/p
.

Now we use first
\Bigl( 
\BbbE \| E(t)\| p\theta 

\Bigr) 1/p
\leq C

\Bigl( \Bigl( 
\BbbE \| x(t)\| p\theta 

\Bigr) 1/p\theta 
+
\Bigl( 
\BbbE \| Y (t)\| p\theta 

\Bigr) 1/p\theta \Bigr) \theta 
.

Secondly, we already saw (here t \in [0, T ])

\BbbP (\tau R,h < t) \leq \BbbP (\tau R,h < T ) \leq \BbbE sup
[0,\tau R,h]

\| E\| 2 + \BbbP (\| x(\tau R,h)\| \geq R - 1).

We fix q > \theta , \theta \leq 2 and p = q/\theta to obtain the following theorem.

Theorem 2.11. Assume that there is a radius R(h) \rightarrow \infty such that

\BbbE sup
[0,\tau R(h),h]

\| E\| 2 \rightarrow 0.

Moreover suppose that for an unbounded monotone growing function \varphi : [0,\infty ) \rightarrow 
[0,\infty ) we have, uniformly in h \in (0, 1),

\BbbE \varphi (\| x(\tau R(h),h)\| ) \leq C

and suppose the following moment bounds for some q > 0:

sup
t\in [0,T ]

\BbbE \| x(t)\| q + sup
t\in [0,T ]

\BbbE \| Y (t)\| q \leq C.

Then we have for any \theta \in (0, q) \cap (0, 2] that limh\searrow 0 supt\in [0,T ] \BbbE \| E(t)\| \theta = 0.

Remark 2.12. In Lemma 2.3 we have provided a weak one-sided Lipschitz prop-
erty which is enough to prove convergence of the error. Nevertheless, we remark
without proof that all the error terms are much smaller if \delta (R) is negative or at least
bounded uniformly in R. We are even able to obtain rates of convergence in that
case. For optimal rates we would also need arbitrarily high moments of both x and
Y leading to quite technical estimates. See, for example, [33]. Since determining an
optimal \delta (R) is quite delicate in theapplication we have in mind, we postpone these
questions to further research.

Remark 2.13. Furthermore, we remark without proof that we expect to be able
to exchange the supt\in [0,T ] and expectation in the statements. Actually, many strong

convergence results are formulated as \BbbE supt \| E(t)\| \theta \rightarrow 0.
For this we anyway have to first prove the result that we stated in the theorem

above and then, in a second step, improve the estimate by using Burkholder inequality.
As this would add further technical details and usually halves the order of convergence,
we refrain from giving further details here.
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3192 D. BL\"OMKER, C. SCHILLINGS, P. WACKER, S. WEISSMANN

3. Application to EKI: The nonlinear setting. After deriving approxima-
tion results for a general class of SDEs, we want to apply the proposed methods in
order to quantify the convergence of the discrete EKI algorithm to its continuous
version. We start the discussion by recalling our general nonlinear inverse problem
y = G(u)+ \eta , where u \in \BbbR p, \eta \sim \scrN (0,\Gamma ) for \Gamma \in \BbbR K\times K and y \in \BbbR K . We suppose for
simplicity that the forward model G : \BbbR p \rightarrow \BbbR K is differentiable and grows at most
polynomially. To be more precise we assume that there is an m > 0 and a constant
such that for all u

\| G(u)\| \leq C(1 + \| u\| m) and \| DG(u)\| \leq C(1 + \| u\| m - 1).(3.1)

Recall that the discrete algorithm of the EKI is given by

u
(j)
n+1 = u(j)

n  - hCup(un)(hC
pp(un) + \Gamma ) - 1(G(u(j)

n ) - y)

+ h1/2Cup(un)(hC
pp(un) + \Gamma ) - 1\Gamma 1/2W

(j)
n+1),

while the continuous time limit is given by the system of coupled SDEs

du
(j)
t = Cup(ut)\Gamma 

 - 1(y  - G(u
(j)
t )) dt+ Cup(ut)\Gamma 

 - 1
2 dW

(j)
t ,(3.2)

where the sample covariances are defined in section 1.3 with ensemble size J \geq 2 and
W

(j)
n are i.i.d. \scrN (0, 1) random variables in both j and n. Now consider u \in \BbbR pJ as

u = (u(1), . . . , u(J))T with u(j) \in \BbbR p, and define the drift f : \BbbR pJ \rightarrow \BbbR pJ and the
diffusion g : \BbbR pJ \rightarrow \BbbR pJ\times pJ by

f (j)(u) = Cup(u)\Gamma  - 1(y  - G(u(j))) and [g(u)z]j = Cup(u)\Gamma  - 1
2 zj .

The drift and diffusion in the discrete model aregiven by f
(j)
h (u) = Cup(u)(hCpp(u)+

\Gamma ) - 1(G(u(j)) - y) and [gh(u)z]j = Cup(u)(hCpp(u)+\Gamma ) - 1\Gamma 1/2zj , while the continuous
interpolation Y is defined in (2.2) such that Y (nk) = un. Consider as before the error
E = u  - Y between the continous solution u and the continuous interpolation Y of
un.

We first observe that Assumption 2.1 is satisfied:

1. Obviously, both nonlinear terms are locally Lipschitz, since G is.
2. The matrix (hCpp(u)+\Gamma ) - 1 is uniformly bounded such that we have B(R) =

C(R1+2m + 1) in Assumption 2.1 (f contains G twice).
3. Similarly, by computing the derivative we obtain that L(R) = C(R2m +1) in

Assumption 2.1.
4. For the approximation, we mainly have to bound

\| (hCpp(u) + \Gamma ) - 1  - \Gamma  - 1\| HS = \| h\Gamma  - 1Cpp(u)(hCpp(u) + \Gamma ) - 1\| HS

\leq Ch(R2m + 1).

Therefore we can choose Ca(R, h) = Ch(R4m+1 + 1) in Assumption 2.1.
Thus we obtain for h \in (0, 1)

K(R, h) := Ch(R4m+1 + 1) + h1/2C(R2m + 1)C(R1+2m + 1) \leq Ch1/2(R4m+1 + 1).

Moreover, we can choose a trivial bound with \delta (R) = C(R4m+1). Thus, for any fixed
\gamma \in (0, 1/2), we can fix a radius R(h) \nearrow \infty growing very slowly (logarithmically) in
h such that using Lemma 2.6 (for small h \rightarrow 0)
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CONTINUOUS TIME LIMIT OF THE EKI 3193

h - 2\gamma \BbbE \| E(t \wedge \tau R,h)\| 2 \leq Ch - 2\gamma K(R(h), h)2e\delta (R(h))T

\leq Ch1 - 2\gamma R(h)8m+2eCR(h)4m \rightarrow 0 for h \rightarrow 0.

We are now ready to rewrite Theorem 2.10 for the EKI.

Theorem 3.1. Consider for the EKI with G satisfying (3.1). Define the error
E = u  - Y as above, and fix R(h) \nearrow \infty as above. Suppose that for a monotone
growing function \varphi : [0,\infty ) \rightarrow [0,\infty ) and every T > 0 in the definition of the stopping
time \tau R,h we have uniformly for h \in (0, 1) that \BbbE \varphi (\| u(\tau R(h),h)\| ) \leq C. Then for any
fixed \gamma \in (0, 1/2) and T > 0

lim
h\searrow 0

\BbbP 

\Biggl( 
sup
[0,T ]

\| E\| > h\gamma 

\Biggr) 
= 0 .

In the nonlinear setting based on Theorem 3.1 we will now prove the following
main theorem for globally Lipschitz G. Later in the next section, we will use Theorem
3.5 in the case when G is linear.

Theorem 3.2. Consider for the EKI with G satisfying (3.1) with m = 1. Let

u0 = (u
(j)
0 )j\in \{ 1,...,J\} be \scrF 0 -measurable maps \Omega \rightarrow \BbbR p such that \BbbE [\| u(j)

0 \| 2] < \infty , and
suppose \| y\| \| \Gamma  - 1/2\| HS \leq C. For the error E = u - Y as above we have for any fixed
\gamma \in (0, 1/2) and T > 0

lim
h\searrow 0

\BbbP 

\Biggl( 
sup
[0,T ]

\| E\| > h\gamma 

\Biggr) 
= 0 .

Proof. For the proof see Appendix B.

We note that the above result can be used to verify unique strong solutions of the
coupled SDEs (3.2). The proposed function \varphi (\| \=u\| 2) = ln(1 + \| \=u\| 2) can be used as a
stochastic Lyapunov function. With the computations given in the proof of Theorem
3.2, it is easy to verify that for V (u) = \varphi (\| \=u\| 2) it holds true that LV (u) \leq CV (u)
for some constant C > 0, where LV denotes the V defined as

LV (u) := \nabla V (u) \cdot f(u) + 1

2
Tr(g\top (u)\nabla 2[V ](u)g(u)).

Thus, by Theorem 3.5 in [45] we obtain global existence of unique strong solutions.

Corollary 3.3. Under the same assumptions of Theorem 3.2 for all T \geq 0
there exists a unique strong solution (ut)t\in [0,T ] (up to \BbbP -indistinguishability) of the
set of coupled SDEs (3.2).

Remark 3.4. We note that assuming that the forward map G takes values G(u) =
0 for \| u\| \geq M , where M is a certain tolerance value, we can directly apply Theorem
2.11 in order to prove strong convergence of the EKI iteration. This assumption forces
the particle system in discrete and continuous time to be bounded, and is reasonable if
it is known that proper solutions of the underlying inverse problem should be bounded.
This assumption can be implemented by modifying the underlying forward map with
a smooth shift to 0 close to the boundary of \| u\| \in ( - M,M). The EKI has been
analyzed under this assumption, for example, in [13, 12].

Moreover, we can rewrite Theorem 2.11.

Theorem 3.5. Under the setting of Theorem 3.1 suppose we additionally have
for p > 0 uniform bounds on the p-th moments of u and Y , i.e., there exists a C > 0
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3194 D. BL\"OMKER, C. SCHILLINGS, P. WACKER, S. WEISSMANN

such that for all h \in (0, 1)

sup
t\in [0,T ]

\BbbE \| u(t)\| p + sup
t\in [0,T ]

\BbbE \| Y (t)\| p \leq C;

then we have for any \theta \in (0,min\{ 2, p\} )

lim
h\searrow 0

sup
[0,T ]

\BbbE \| E(t)\| \theta = 0.

We note that we only need to prove supn\in \{ 0,\lfloor T/h\rfloor \} \BbbE \| un\| 2 \leq C in the linear case
later. As we have

Y (t) =

\int t

0

fh(Y (\lfloor s\rfloor ))ds+
\int t

0

gh(Y (\lfloor s\rfloor ))dW (s)

with d\| Y (t)\| 2 = 2\langle Y (t), fh(Y \lfloor t\rfloor )\rangle dt + \| gh(Y \lfloor t\rfloor )\| 2HSdt + \langle Y (t), gh(Y \lfloor t\rfloor )dW \rangle , we
provide the following interpolation result verifying that it is sufficient to derive bounds
on the discretization scheme \BbbE \| un\| 2.

Lemma 3.6 (an interpolation lemma for lower moments). Let u(t) = u0 +
t \cdot f(u0) + g(u0)Wt with u0, Wt independent and p \in (0, 2). Assume further that
\BbbE \| u0\| p < C and \BbbE \| u(1)\| p < C; then \BbbE \| u(t)\| p < Cp [\BbbE \| u0\| p + \BbbE \| u(1)\| p] for all
t \in [0, 1].

Proof. The proof for this statement can be found in the appendix.

We note that we can extend the above result to the whole time interval [0, T ] by
a shift in time. We leave the details to reader.

4. Application to EKI: The linear setting. We consider the linear inverse
problem of recovering an unknown parameter u \in \BbbR p, given noisy observations y =
Au+ \eta \in \BbbR K , where \eta \sim \scrN (0,\Gamma ) for \Gamma \in \BbbR K\times K . The ensemble Kalman iteration in
discrete time is then given by

u
(j)
n+1 = u(j)

n  - C(un)A
T (AC(un)A

T + h - 1\Gamma ) - 1(Au(j)
n  - y

(j)
n+1)

= u(j)
n  - hC(un)A

T\Gamma  - 1
2 (h\Gamma  - 1

2AC(un)A
T\Gamma  - 1

2 + I) - 1\Gamma  - 1
2 (Au(j)

n  - y
(j)
n+1),

where we consider perturbed observations y
(j)
n+1 = y + h - 1

2\Gamma 
1
2W

(j)
n+1 with W

(j)
n+1 being

i.i.d. \scrN (0, 1) random variables, and we denote by \scrF n = \sigma (W
(j)
m ,m \leq n, j = 1, . . . , J)

the filtration introduced by the pertubation.
Further, we denote the identity matrix I \in \BbbR p, we define the scaled forward model

B := \Gamma  - 1
2A, and we write the ensemble Kalman iteration for simplicity as

u
(j)
n+1 = u(j)

n  - hC(un)B
TM(un)(Bu(j)

n  - \Gamma  - 1
2 y) +

\surd 
hC(un)B

TM(un)W
(j)
n+1,

where we have introduced the notation M(un) = (hBC(un)B
T + I) - 1.

We can decompose \Gamma  - 1
2 y = \^y+\~y, where \^y \in range\Gamma  - 1

2A and \~y is in the orthogonal
complement, such that the iteration reads as

u
(j)
n+1 = u(j)

n  - hC(un)B
TM(un)(Bu(j)

n  - \^y) + hC(un)B
TM(un)\~y

+
\surd 
hC(un)B

TM(un)W
(j)
n+1.

Our first result states that the EKI dynamic ignores the part of observation which
takes place in the orthogonal complement of the range of B.
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CONTINUOUS TIME LIMIT OF THE EKI 3195

Lemma 4.1. Let \~y \in range(B)\bot ; then for all n \in \BbbN we have C(un)B
TM(un)

\~y = 0.

Proof. For the proof see Appendix C.

Our goal is to apply Theorem 3.5 in order to prove strong convergence of the
ensemble Kalman iteration. To do so, we have to derive bounds on the moments of
the continuous time limit u(t) and on the continuous time interpolation of the discrete
iteration Y (t). We formulate our main result in the following theorem.

Theorem 4.2. Let u0 = (u
(j)
0 )j\in \{ 1,...,J\} be \scrF 0-measurable maps \Omega \rightarrow \BbbR p such

that \BbbE [\| u(j)
0 \| 2] < \infty . Furthermore, we assume that the discrete ensemble Kalman

iteration can be bounded uniformly in h, i.e., there exists a C > 0 such that for all
j \in \{ 1, . . . , J\} it holds true that

sup
n\in \{ 1,...,T \cdot N\} 

\BbbE [\| u(j)
n \| p] \leq C.

Then we have strong convergence of the approximation error of the EKI method:

lim
h\searrow 0

sup
[0,T ]

\BbbE \| E(t)\| \theta = 0 for all \theta \in (0,min\{ 2, p\} ).

Proof. In order to apply Theorem 3.5 we have to verify that

sup
t\in [0,T ]

\BbbE \| u(t)\| p + sup
t\in [0,T ]

\BbbE \| Y (t)\| p

is bounded uniformly in h. Much work has been investigated in the solution of the
continuous formulation in [20, 8], where supt\in [0,T ] \BbbE \| u(t)\| p can be bounded as the
ensemble spread can be bounded in high moments up to p < J + 3 and moreover the
bound follows by application of It\^o's formula and H\"older's inequality [20, Lemma 5].
Note that this can be seen better in the continuous time formulation

du
(j)
t =

1

J

J\sum 
k=1

\langle B(u
(j)
t  - \=ut), y  - Bu

(j)
t + dW

(j)
t \rangle (u(k)

t  - \=ut).

Secondly, we have to bound supt\in [0,T ] \BbbE \| Y (t)\| p. We apply the interpolation lemma
for the p-th moments as the nodes of the interpolation are assumed to be bounded
uniformly in h and, hence, supt\in [0,T ] \BbbE \| Y (t)\| p \leq C.

The update of the ensemble mean is governed by

\=un+1 = \=un  - hC(un)B
TM(un)(B\=un  - \^y) +

\surd 
hC(un)B

TM(un) \=Wn+1

with \=Wn+1 = 1
J

\sum J
j=1 W

(j)
n+1. Further, we set e

(j)
n := u

(j)
n  - \=un, the particle deviation

from the mean. Here we get the update formula

e
(j)
n+1 = e(j)n  - hC(un)B

TM(un)Be(j)n +
\surd 
hC(un)B

TM(un)(W
(j)
n+1  - \=Wn+1).

We have seen that the update can be written as

u
(j)
n+1 = u(j)

n  - hC(un)B
TM(un)(Bu(j)

n  - \^y) +
\surd 
hC(un)B

TM(un)W
(j)
n+1,(4.1)
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3196 D. BL\"OMKER, C. SCHILLINGS, P. WACKER, S. WEISSMANN

where \^y \in range(B), i.e., there exists \^u such that \^y = B\^u. We define the residuals

r
(j)
n = u

(j)
n  - \^u, where the update of the residuals can be written as

r
(j)
n+1 = r(j)n  - hC(un)B

TM(un)Br(j)n +
\surd 
hC(un)B

TM(un)W
(j)
n+1.(4.2)

We note that all of the derived auxiliary results below crucially depend on the taming
through

M(un) = (hBC(un)B
T + I) - 1,(4.3)

suggesting that ignoring hBC(un)B
T (which corresponds to an Euler--Maruyama

scheme) does not lead to a stable discretization scheme.
We note that the result of Theorem 4.2 can be used as a general concept in order

to prove the strong convergence for different variants of the EKI method as Tikhonov
regularized EKI [12], ensemble Kalman one-shot inversion [31], or EKI under box-
constraints [11]. Here, the main task is to derive bounds on the discrete ensemble
Kalman iteration. To do so, we present a series of properties which can be used to
bound the discrete iteration in moments.

Our first useful auxiliary result is a bound on the ensemble spread. In particular,
we prove that the spread of the particle system is monotonically decreasing in time.
This property is very useful from various perspectives. First, this property can be used
to derive bounds on the particle system itself as we can describe the decrease of the
spread through a concrete Lyapunov-type bound. Hence, by adding 1

J

\sum J
j=1 \| e

(j)
n \| 2

to the target value to bound, the increments of the target value decrease. We will see
how to apply this approach in Proposition C.4. Second, in the interpretation of EKI
as an optimization method we are interested in a convergence of the EKI to a point
estimate. Hence, we expect each of the particles to converge to the same point. In
particular, we will need to prove the following statements (see Appendix C):

\bullet We provide a bound on the spread of the particles, i.e., we prove
supn\in \{ 1,...,N\} \BbbE [\| e

(j)
n \| 2] < const, where e

(j)
n := u

(j)
n  - \=un.

\bullet We extend this result by bounding the spread of the particles mapped by B,
i.e., we prove supn\in \{ 1,...,N\} \BbbE [\| Be

(j)
n \| 2] < const.

\bullet We provide a bound on the residuals mapped by B, i.e., we prove that the
data misfit is bounded in the sense that supn\in \{ 1,...,N\} \BbbE [\| Br

(j)
n \| 2] < const.

Using these auxiliary results we are then able to provide various strong conver-
gence results under certain assumptions, which are summarized in the following:

\bullet In the first main result we do not state specific assumptions on the forward
model without being linear. However, the strong convergence in Theorem 3.5
only holds for \theta \in (0, 1).

\bullet Our second main result is based on the assumption that the initial ensemble
lies outside the kernel of the forward map. While the moments of the dy-
namical system can be controlled in the image space of B, we are not able to
control the unobserved part of the system, which is moving in the kernel of
B. We again obtain strong convergence in the sense that Theorem 3.5 holds
for all \theta \in (0, 2).

\bullet Furthermore, including Tikhonov regularization within EKI we can verify the
strong convergence for \theta \in (0, 2).

4.1. Strong convergence for general linear forward maps. In this section
we consider general linear forward models B = \BbbR K\times p. In the following we derive
bounds for \BbbE [\| un\| \theta ] for any \theta \in (0, 1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

6/
23

 to
 1

37
.2

50
.1

02
.7

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



CONTINUOUS TIME LIMIT OF THE EKI 3197

Lemma 4.3. There exists a constant C > 0 independent of h and J but depending
on T such that for all j \in \{ 1, . . . , J\} 

sup
n\in \{ 1,...,T \cdot N\} 

\BbbE [\| u(j)
n \| ] \leq C.(4.4)

Proof. For the proof see Appendix C.

Corollary 4.4. Let u0 = (u
(j)
0 )j\in \{ 1,...,J\} be \scrF 0-measurable maps \Omega \rightarrow \BbbR p such

that \BbbE [\| u(j)
0 \| ] < \infty . Then we have strong convergence of the approximation error of

the EKI method

lim
h\searrow 0

sup
[0,T ]

\BbbE \| E(t)\| \theta = 0 for all \theta \in (0, 1).

Proof. The proof is a direct implication of Lemma 4.3 and Theorem 4.2.

Remark 4.5. We note that the bound on \theta < 1 is due to technical reasons and
does not come from a fact that there exist no uniform bounds on the moments of
the discrete time system. In particular, we expect existence of uniformly bounded
moments

sup
n\in \{ 1,...,T \cdot N\} 

\BbbE [\| u(j)
n \| p] \leq C(4.5)

up to p = 2 and hence strong convergence up to \theta < 2. However, for proving bounds
in L2 one needs to derive bounds on moments of the ensemble spread in discrete time
up to power 4, which is a challenging task in itself. Furthermore, we note that the
derived bound is increasing in time with

\surd 
T .

4.2. Strong convergence for the particle system initialized in the or-
thogonal complement of the kernel. The key idea of the following proof is to
divide the particles dynamics into the dynamics in the kernel of the forward map B
and its orthogonal complement. To do so, we introduce the orthogonal projection
onto the orthogonal complement of the kernel P = B\top (BB\top ) - B, where (BB\top ) - 

denotes the generalized Moore--Penrose inverse of BB\top . The idea is to split

r(j)n = Pr(j)n + (I  - P )r(j)n

and provide bounds for each term separately. We can verify bounded second moments
of the particle system for the discrete EKI iteration initialized in the image space.

Lemma 4.6. Let u0 = (u
(j)
0 )j\in \{ 1,...,J\} be \scrF 0-measurable maps \Omega \rightarrow \BbbR p such that

\BbbE [\| Br
(j)
0 \| 2] < \infty , \BbbE [\| (I  - P )r

(j)
0 \| 2] < \infty and (I  - P )e

(j)
0 = 0 for all j \in \{ 1, . . . , J\} .

Then there exists a constant C > 0 independent of h, J, and T such that for all
j \in \{ 1, . . . , J\} 

sup
n\in \{ 1,...,T \cdot N\} 

\BbbE [\| r(j)n \| 2] \leq C.(4.6)

Proof. For the proof see Appendix C.

Corollary 4.7. Let u0 = (u
(j)
0 )j\in \{ 1,...,J\} be \scrF 0-measurable maps \Omega \rightarrow \BbbR p such

that \BbbE [\| u(j)
0 \| 2] < \infty and (I  - P )e

(j)
0 = 0 for all j \in \{ 1, . . . , J\} . Then we have strong

convergence of the approximation error of the EKI method

lim
h\searrow 0

sup
[0,T ]

\BbbE \| E(t)\| \theta = 0 for all \theta \in (0, 2).
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3198 D. BL\"OMKER, C. SCHILLINGS, P. WACKER, S. WEISSMANN

Proof. The proof is a direct implication of Lemma 4.6 and Theorem 4.2.

Remark 4.8. We note that the assumption (I  - P )e
(j)
0 = 0 for all j \in \{ 1, . . . , J\} 

could, for example, be ensured if the particle system is initialized with u
(j)
0 \mapsto \rightarrow Pu

(j)
0 .

However, we mention that through the projection P much information about the
forward map is necessary, which makes this result quite restrictive.

4.3. Strong convergence for Tikhonov regularized EKI and general lin-
ear forward maps. Much of the theoretical analysis of EKI is based on viewing it
as an optimization method. The analysis is based on the long time behavior of the
scheme, which is the study of the system of coupled SDEs (3.2) or the simplified ODE
system suppressing the diffusion term for increasing time T . In particular, the aim of
EKI in the long time behavior is to solve the minimization problem

min
u

1

2
\| G(u) - y\| 2\Gamma (4.7)

iteratively. For a linear forward map the motivation behind the EKI as optimization
method can be seen by writing the drift term of (1.5) in a preconditioned gradient
flow structure:

Cup(ut)\Gamma 
 - 1(y  - Au

(j)
t ) = C(ut)A

\top \Gamma  - 1(y  - Au
(j)
t ) =  - C(ut)\nabla u

\biggl( 
1

2
\| Au(j)  - y\| 2\Gamma 

\biggr) 
.

Similarly, in the nonlinear setting, using a second-order approximation, we can view
the drift term of (1.5) as approximation of a preconditioned gradient flow [47]:

Cup(ut)\Gamma 
 - 1(y  - G(u

(j)
t )) \approx C(ut)(DG(u

(j)
t ))\top \Gamma  - 1(y  - G(u

(j)
t ))

=  - C(ut)\nabla u

\biggl( 
1

2
\| G(u(j)) - y\| 2\Gamma 

\biggr) 
.

Solving the inverse problem through the optimization problem (4.7) is typically ill-
posed, and regularization is needed. In [64] the authors propose an early stopping
criterion based on the Morozov discrepancy principle [58], whereas in [12] Tikhonov
regularization has been included into the scheme. We will focus on the Tikhonov
regularized EKI (TEKI) and prove the strong convergence of the discrete TEKI.
While the TEKI can also be formulated for nonlinear forward maps, we we will focus
on the linear setting.

The basic idea of the incorporation of Tikhonov regularization into EKI is to
extend the underlying inverse problem (1.1) by prior information. This extension
reads as follows:

y = Au+ \eta , 0 = u+ \xi ,

where \eta \sim \scrN (0,\Gamma ) and \xi \sim \scrN (0, 1
\lambda C0). Introducing the variables

\~A =

\biggl( 
A
I

\biggr) 
, \~y =

\biggl( 
y
0

\biggr) 
, \~\eta \sim \scrN 

\Bigl( 
0, \~\Gamma 
\Bigr) 
, \~\Gamma =

\biggl( 
\Gamma 0
0 1

\lambda C0

\biggr) 
we can write the extended inverse problem as \~y = \~Au+ \~\eta .

For TEKI we now apply EKI to the extended inverse problem which then reads
as

u
(j)
n+1 = u(j)

n  - C(un) \~A
T ( \~AC(un) \~A

T + h - 1\~\Gamma ) - 1( \~Au(j)
n  - \~y

(j)
n+1)
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CONTINUOUS TIME LIMIT OF THE EKI 3199

with corresponding continuous time limit

du
(j)
t = C(ut) \~A

T \~\Gamma  - 1(\~y  - \~Au
(j)
t ) dt+ C(ut) \~A

T \~\Gamma  - 1
2 dW

(j)
t ,(4.8)

where W (j) are independent Brownian motions in \BbbR K \times \scrX . In the long time behavior
TEKI can be viewed as optimizer of the regularized objective function

\Phi R(u, y) =
1

2
\| \~Au - \~y\| 2\BbbR K\times \scrX =

1

2
\| Au - y\| 2 + \lambda 

2
\| C - 1/2

0 u\| 2\scrX .

The motivation behind this viewpoint can be seen by writing out the drift term of
(4.8) as

C(ut) \~A
T \~\Gamma  - 1(\~y  - \~Au(j)) = C(ut)

\Bigl( 
AT\Gamma  - 1(y  - Au

(j)
t ) - \lambda C - 1

0 u
(j)
t

\Bigr) 
=  - C(ut)\nabla u

\biggl( 
1

2
\| Au

(j)
t  - y\| 2\Gamma +

\lambda 

2
\| u(j)

t \| 2C0

\biggr) 
.

For a detailed convergence analysis of the TEKI as optimization method we refer
to [12]. Since \~A and \~B := \~\Gamma  - 1/2 \~A, respectively, are linear operators, we can directly
apply the resultspresented above. In particular, we are going to apply Proposition C.4
in order to verify the strong convergence of the discrete TEKI to its continuous time
formulation. We prove that the second moments of the particle system are bounded.

Lemma 4.9. Let u0 = (u
(j)
0 )j\in \{ 1,...,J\} be \scrF 0-measurable maps \Omega \rightarrow \BbbR p such that

\BbbE [\| u(j)
0 \| 2] < \infty for all j \in \{ 1, . . . , J\} . Then there exists a constant C > 0 independent

of h, J, and T such that for all j \in \{ 1, . . . , J\} 

sup
n\in \{ 1,...,T \cdot N\} 

\BbbE [\| u(j)
n \| 2] \leq C.(4.9)

Proof. For the proof see Appendix C.

As we can ensure the bound on the second moments of the particle system we
are ready to formulate our main result of strong convergence for the discrete TEKI
iteration.

Corollary 4.10. Let u0 = (u
(j)
0 )j\in \{ 1,...,J\} be \scrF 0-measurable maps \Omega \rightarrow \BbbR p such

that \BbbE [\| u(j)
0 \| 2] < \infty . Then we have strong convergence of the approximation error of

the TEKI method: limh\searrow 0 sup[0,T ] \BbbE \| E(t)\| \theta = 0 for all \theta \in (0, 2).

5. Conclusion. We have shown that on finite time scales [0, T ], the discrete
EKI dynamics can be used to approximate the continuous EKI. Or, the other way
around, we have established the legitimacy of analyzing the EKI dynamics with a time-
continuous model and draw conclusions about the discrete EKI dynamics implemented
in practice. For the general nonlinear model, we were able to prove convergence of the
discretization in probability, while for the linear setting, we were even able to prove
convergence in the L\theta sense, for \theta \in (0, 1), with higher exponents in more favorable
settings. We note that the constant derived in the proof still depends on time in the
form of

\surd 
T . Due to the fact that we were able to eliminate dependence on T in the

other settings considered (TEKI, convergence in probability for the nonlinear model),
we believe that this can be done similarly in the linear setting as well, maybe under
additional assumptions, and we leave this as a task for future work.

The methods which we have employed can be used very generally in an SDE set-
ting and can be applied to the analysis of discretization schemes for SDEs in different
contexts.
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Appendix A. Proofs of section 2.

Proof of Lemma 2.5. We start by bounding the error between Y (t) for t \in 
[kh, (k + 1)]h and Yk. By the SDE for the approximation,

\| Y (\lfloor t\rfloor ) - Y (t)\| = \| 
\int t

\lfloor t\rfloor 
fh(Y (\lfloor s\rfloor ))ds+

\int t

\lfloor t\rfloor 
gh(Y (\lfloor s\rfloor ))dW (s)\| 

\leq hB(R) +B(R)\| W (t) - W (\lfloor t\rfloor )\| .

Thus, by the Burkholder--Davis--Gundy inequality and by merging the higher-order
term hp into the lower-order term hp/2 with an appropriate constant,

\BbbE sup
[0,\tau R,h]

\| Y (\lfloor t\rfloor ) - Y (t)\| p \leq Cph
p/2B(R)p.

In order to bound the residual, we consider t \in [0, \tau R,h] and thus \lfloor t\rfloor \in [0, \tau R,h] with
\| Y (\lfloor t\rfloor )\| \leq R. Now \| fh(Y (\lfloor t\rfloor )) - f(Y (\lfloor t\rfloor ))\| \leq Ca(R, h) and \| f(Y (\lfloor t\rfloor )) - f(Y (t))\| \leq 
L(R)\| Y (\lfloor t\rfloor ) - Y (t)\| . Thus we have

\BbbE sup
[0,\tau R,h]

\| Res1(t)\| p \leq Cp

\Bigl[ 
Ca(R, h) + L(R)h1/2B(R)

\Bigr] p
.

The bound for Res2 follows in a similar way.

Proof of Lemma 2.6. Recall that the error is given by

dE = [f(x) - f(x - E)]dt+ [g(x) - g(x - E)]dW +Res1dt+Res2dW.

Thus, using Itos-formula we obtain for some constant C\epsilon depending only on \epsilon 

d\| E\| 2 = 2\langle E, dE\rangle + \langle dE, dE\rangle 
= 2\langle E, [f(x) - f(x - E)] + Res1\rangle dt+ 2\langle E, [g(x) - g(x - E) + Res2]dW \rangle 
+ \| [g(x) - g(x - E)] + Res2\| 2HSdt

\leq 2\langle E, [f(x) - f(x - E)]\rangle dt+ (1 + \epsilon )\| g(x) - g(x - E)\| 2HSdt+ \epsilon \| E\| 2dt
+
\bigl[ 
C\epsilon \| Res2\| 2HS + C\epsilon \| Res1\| 2

\bigr] 
dt+ 2\langle E, [g(x) - g(x - E) + Res2]dW \rangle 

\leq 
\bigl[ 
\delta (R)\| E\| 2 + C\epsilon \| Res2\| 2HS + C\epsilon \| Res1\| 2

\bigr] 
dt

+ 2\langle E, [g(x) - g(x - E) + Res2]dW \rangle .(A.1)

This yields from Lemma 2.5 using the martingale property of the stopped integrals

\BbbE \| E(t \wedge \tau R,h)\| 2 \leq \| E(0)\| 2 + \delta (R)\BbbE 
\int t\wedge \tau R,h

0

\| E\| 2dt+ C\epsilon TK(R, h)2

\leq \| E(0)\| 2 + \delta (R)\BbbE 
\int t

0

\| E(s \wedge \tau R,h)\| 2dt+ CK(R, h)2,

where the constant depends on T and the choice of \epsilon . Assume first that \delta (R) > 0.
Using Gronwall's lemma and E(0) = 0 we obtain the bound

\BbbE \| E(t \wedge \tau R,h)\| 2 \leq Ce\delta (R)tK(R, h)2.

Assume now that \delta (R) \leq 0. This yields from (A.1) using the martingale property of
the stopped integrals

\BbbE \| E(t \wedge \tau R,h)\| 2 + | \delta (R)| \BbbE 
\int t\wedge \tau R,h

0

\| E\| 2dt \leq CK(R, h)2.
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CONTINUOUS TIME LIMIT OF THE EKI 3201

Proof of Lemma 2.9. Recall from (A.1) for t \leq \tau R,h

\| E(t)\| 2 \leq 
\int t

0

\bigl[ 
\delta (R)\| E\| 2 + C\| Res2\| 2HS + C\| Res1\| 2

\bigr] 
dt

+ 2

\int t

0

\langle E, [g(x) - g(x - E) + Res2]dW \rangle .

Thus, using Burkholder--Davis--Gundy (recall \tau R,h \in [0, T ]) assuming \delta (R) > 0

\BbbE sup
[0,\tau R,h]

\| E\| 2 \leq \BbbE 
\int \tau R,h

0

\bigl[ 
\delta (R)\| E\| 2 + C\| Res2\| 2HS + C\| Res1\| 2

\bigr] 
ds

+ 2\BbbE 
\Bigl( \int \tau R,h

0

\bigl[ 
L(R)2\| E\| 4 + \| E\| 2\| Res2\| 2HS

\bigr] 
dt
\Bigr) 1/2

\leq \delta (R)

\int T

0

\BbbE \| E(s \wedge \tau R,h)\| 2ds+ C\BbbE sup
[0,\tau R,h]

\| Res2\| 2HS + C\BbbE sup
[0,\tau R,h]

\| Res1\| 2

+ C
\Bigl( 
(L(R)2 + 1)

\int T

0

\BbbE \| E(s \wedge \tau R,h)\| 4ds+ \BbbE sup
[0,\tau R,h]

\| Res2\| 4HS

\Bigr) 1/2
.

Using Lemma 2.5 we obtain

\BbbE sup
[0,\tau R,h]

\| E\| 2 \leq \delta (R)

\int T

0

\BbbE \| E(s \wedge \tau R,h)\| 2ds

+ C(L(R)2 + 1)
\Bigl( \int T

0

\BbbE \| E(s \wedge \tau R,h)\| 4ds
\Bigr) 1/2

+ CK(R, h)2.

Moreover in the case \delta (R) \leq 0 we have similarly

\BbbE sup
[0,\tau R,h]

\| E\| 2 \leq C(L(R)2 + 1)
\Bigl( \int T

0

\BbbE \| E(s \wedge \tau R,h)\| 4ds
\Bigr) 1/2

+ CK(R, h)2.

We obtain the assertion by using Lemmas 2.6 and 2.8.

Appendix B. Proofs of section 3.

Lemma B.1 (an interpolation lemma for second moments). Let u(t) = u0 + t \cdot 
f(u0) + g(u0)Wt with u0, Wt independent. Assume further that \BbbE \| u0\| 2 < C and
\BbbE \| u(1)\| 2 < C; then \BbbE \| u(t)\| 2 < C for all t \in [0, 1].

Proof. Note first that by independence, \BbbE [h(u0)Wt] = 0 and

\BbbE [h(u0)
2W 2

t ] = \BbbE [h(u0)]
2\BbbE [Wt]

2 = \BbbE [h(u0)]
2t

for (suitably integrable) functions h. We compute first

\BbbE [u(1)]2 = \BbbE [u0 + f(u0) + g(u0)W1]
2 = \BbbE [u0 + f(u0)]

2 + 2 \cdot 0 + \BbbE [g(u0)]
2 \cdot 1

.
Thus,

\BbbE [u0 + f(u0)t+ g(u0)Wt]
2 = \BbbE [u0 + f(u0)t]

2 + 2 \cdot 0 + \BbbE [g(u0)Wt]
2

= \BbbE [(1 - t)u0 + t(u0 + g(u0))]
2 + \BbbE [g(u0)]

2t.
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3202 D. BL\"OMKER, C. SCHILLINGS, P. WACKER, S. WEISSMANN

Now we note that ((1 - t)a+ tb)2 \leq (1 - t)a2 + t(a+ b)2 by Jensen's inequality

\BbbE [u0 + f(u0)t+ g(u0)Wt]
2 \leq (1 - t)\BbbE u2

0 + t\BbbE [u0 + f(u0)]
2 + t\BbbE [g(u0)]

2

= (1 - t)\BbbE u2
0 + t\BbbE [u(1)]2

from which the statement follows.

We will need the following fundamental lemmata.

Lemma B.2. Let W \sim N(0, \sigma 2) be a centered Gaussian random variable. Then

\BbbE | W | p = Cp \cdot 
\bigl( 
\BbbE | W | 2

\bigr) p
2 .

Proof. See Proposition 2.19 in [17].

For non-centered Gaussian random variables we can show the following lemma.

Lemma B.3. Let Z \sim N(a, \sigma 2) be a Gaussian random variable. Then there is a
constant Cp > 0 such that \bigl( 

\BbbE | Z| 2
\bigr) 1

2 \leq Cp (\BbbE | Z| p)
1
p .

Proof. We can assume \sigma = 1 by rescaling and setting Z = a + W with W \sim 
N(0, 1). Now we consider

(\BbbE | Z| p)
1
p

(\BbbE | Z| 2)
1
2

=
(\BbbE | a+W | p)

1
p

(\BbbE | a+W | 2)
1
2

=: fp(a)

as a function of a. If we can show that infa fp(a) > 0, then the statement follows with
Cp = (infa fp(a))

 - 1
. Evidently fp(a) > 0 for all a \in \BbbR , also fp( - a) = fp(a), and fp is

a continuous map. Thus, if we can show that lima\rightarrow \infty fp(a) > 0, then infa fp(a) > 0.
We start by noting that \BbbE | a+W | 2 = a2 + 1. Then

lim
a\rightarrow \infty 

(fp(a))
p = lim

a\rightarrow \infty 
\BbbE 
\bigm| \bigm| \bigm| \bigm| a+W\surd 

1 + a2

\bigm| \bigm| \bigm| \bigm| p = lim
a\rightarrow \infty 

\BbbE 
\bigm| \bigm| \bigm| \bigm| a+W

a

\bigm| \bigm| \bigm| \bigm| p \bigm| \bigm| \bigm| \bigm| a\surd 
1 + a2

\bigm| \bigm| \bigm| \bigm| p
= lim

a\rightarrow \infty 
\BbbE 
\bigm| \bigm| 1 + a - 1W

\bigm| \bigm| p \geq lim
a\rightarrow \infty 

(1 - \epsilon ) - p \cdot \BbbP 
\bigl( 
| 1 + a - 1W | \geq 1 - \epsilon 

\bigr) 
= (1 - \epsilon ) - p,

where we used Chebyshev's inequality and

\BbbP 
\bigl( 
| 1 + a - 1W | \geq 1 - \epsilon 

\bigr) 
\geq \BbbP 

\bigl( 
1 + a - 1W \geq 1 - \epsilon 

\bigr) 
\geq \BbbP (W \geq  - a\epsilon ) .

As lima\rightarrow \infty (fp(a))
p \geq sup\epsilon \in (0,1)(1 - \epsilon ) - p = 1 > 0, we have shown the statement.

Lemma B.4. Let W \sim N(0, 1). Then for a, b \in \BbbR , p \in (0, 2) and t \in (0, 1), we
have

\BbbE | a+ tb+
\surd 
tcW | p \leq Cp \cdot [| a| p + \BbbE | a+ b+ cW | p] .

Proof. We note that for for random variables \BbbE | X| p \leq 
\bigl( 
\BbbE | X| 2

\bigr) p
2 by H\"older's

inequality. Also, | w + z| 
p
2 \leq | w| 

p
2 + | z| 

p
2 . Thus, using Lemma B.1,

\BbbE | a+ tb+
\surd 
tcW | p \leq 

\Bigl( 
\BbbE | a+ tb+

\surd 
tcW | 2

\Bigr) p
2 \leq 

\bigl( 
a2 + \BbbE | a+ b+ cW | 2

\bigr) p
2

\leq | a| p +
\bigl( 
\BbbE | a+ b+ cW | 2

\bigr) p
2 \leq | a| p + Cp\BbbE | a+ b+ cW | p

with the last step being due to Lemma B.3.
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CONTINUOUS TIME LIMIT OF THE EKI 3203

Proof of Lemma 3.6. We first consider the case where all stochastic processes and
random variables involved are one-dimensional. Then the statement is a consequence
of Lemma B.4 after seeing that

\BbbE | u0 + tf(u0) + g(u0)Wt| p = \BbbE [\BbbE [| u0 + tf(u0) + g(u0)Wt| p| \scrF 0]]

and identifying a = u0, b = f(u0),
\surd 
tcW = g(u0)Wt (where we can use

\surd 
tW = Wt

in distribution for W \sim N(0, 1)). The higher-dimensional case then follows from the
one-dimensional considerations by seeing that for a random vector Z,

\BbbE \| Z\| p = \BbbE 

\Biggl( 
d\sum 

i=1

| zi| 2
\Biggr) p

2

\simeq 

\Biggl( 
d\sum 

i=1

\BbbE | zi| p
\Biggr) 
,

\bigl( 
\BbbE \| Z\| 2

\bigr) p
2 =

\Biggl( 
\BbbE 

d\sum 
i=1

| zi| 2
\Biggr) p

2

\simeq 
d\sum 

i=1

\BbbE 
\bigl( 
| zi| 2

\bigr) p
2 ,

where x \simeq y means that there exist constants a,A > 0 such that ax \leq y \leq Ax.

Proof of Theorem 3.2. Recall that by Theorem 3.1, we just have to verify that
there exists \varphi (monotone growing) such that \BbbE \varphi (\| u(\tau R,h)\| ) \leq C. We first introduce
the shorthand notation \scrF (u) = Cup(u)\Gamma  - 1/2 and rewrite

du(j) =  - \scrF (u)\Gamma  - 1/2(G(u(j)) - y)dt+ \scrF (u)dW.

Denote by u, W and G the mean values of u(j), W (j), and G(u(j)) with respect to j.
Thus,

du =  - \scrF (u)\Gamma  - 1/2(G - y)dt+ \scrF (u)dW

and

d(u(j)  - u) =  - \scrF (u)\Gamma  - 1/2(G(u(j)) - G)dt+ \scrF (u)d(W (j)  - W ).

By It\^o-s formula we obtain

d\| u(j)  - u\| 
2
= 2\langle u(j)  - u, d(u(j)  - u)\rangle + \langle d(u(j)  - u), d(u(j)  - u)\rangle 
=  - 2\langle u(j)  - u,\scrF (u)\Gamma  - 1/2(G(u(j)) - G)\rangle dt
+ 2\langle u(j)  - u,\scrF (u)d(W (j)  - W )\rangle 
+ \langle \scrF (u)d(W (j)  - W ),\scrF (u)d(W (j)  - W )\rangle .

Now we use that

1

J

\sum 
j

\langle u(j)  - u,\scrF (u)\Gamma  - 1/2(G(u(j)) - G)\rangle 

=
1

J

\sum 
j

Tr(\scrF (u)\Gamma  - 1/2(G(u(j)) - G)(u(j)  - u)\top )

= Tr(F (u)F (u)\top ) = \| \scrF (u)\| 2HS

and \langle \scrF (u)d(W (j)  - W ),\scrF (u)d(W (j)  - W )\rangle = 2(1 - 1
J )\| \scrF (u)\| 2HSdt to obtain

d
1

J

\sum 
j

\| u(j)  - u\| 2 =  - 2

J
\| \scrF (u)\| 2HSdt+ 2

1

J

\sum 
j

\langle u(j)  - u,\scrF (u)d(W (j)  - W )\rangle .
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3204 D. BL\"OMKER, C. SCHILLINGS, P. WACKER, S. WEISSMANN

The martingale term vanishes in expectation if we intergrate up to stopping times
such that u remains bounded. Thus, we obtain the first main result of this proof.

For all t \in [0, T ], R > 1 and h \in (0, 1) we have

\BbbE 
1

J

\sum 
j

\| u(j)  - u\| 2(t \wedge \tau R,h) +
2

J

\int t\wedge \tau R,h

0

\| \scrF (u)\| 2HSds \leq \BbbE 
1

J

\sum 
j

\| u(j)  - u\| 2(0).

(B.1)

In this result we did not use any particular property of G. It remains to bound u
now, which is the crucial point that leads to restrictions. First by It\^o-s formula

d\| u\| 2 = 2\langle u, du\rangle + \langle du, du\rangle 

= 2\langle u,\scrF (u)\Gamma  - 1/2(G - y)\rangle dt+ 1

J
\| \scrF (u)\| 2HSdt+ 2\langle u,\scrF (u)dW \rangle .

Here, we cannot use cancellations as in the step before. Therefore, we define for z \geq 0
the function

\varphi (z) = ln(1 + z) with 0 < \varphi \prime (z) \leq min\{ 1, z - 1\} and | \varphi \prime \prime (z)| \leq min\{ 1, z - 2\} .

Again using It\^o-s formula, we have

d\varphi (\| u\| 2) = \varphi \prime (\| u\| 2)d\| u\| 2 + 1

2
\varphi \prime \prime (\| u\| 2)d\| u\| 2d\| u\| 2

= 2\varphi \prime (\| u\| 2)\langle u,\scrF (u)\Gamma  - 1/2G\rangle dt(B.2)

 - 2\varphi \prime (\| u\| 2)\langle u,\scrF (u)\Gamma  - 1/2y\rangle dt(B.3)

+
1

J
\varphi \prime (\| u\| 2)\| \scrF (u)\| 2HSdt(B.4)

+ 2\varphi \prime (\| u\| 2)\langle u,\scrF (u)dW \rangle (B.5)

+
2

J
\varphi \prime \prime (\| u\| 2)\langle u,\scrF (u)\scrF (u)Tu\rangle .(B.6)

Now we have to bound all terms separately. The martingale term in (B.5) vanishes
in expectation if we integrate up to t \wedge \tau R,h. Now (B.4) \leq C\| \scrF (u)\| 2HSdt, which is
integrated up to t \wedge \tau R,h in expectation bounded by (B.1). We bound similarly

(B.6) \leq 2

J
| \varphi \prime \prime (\| u\| 2)| \| u\| 2\| \scrF (u)\| 2HSdt \leq C\| \scrF (u)\| 2HSdt

and

(B.3) \leq 2\varphi \prime (\| u\| 2)\| u\| \| y\| \| \scrF (u)\| HS\| \Gamma  - 1/2\| HSdt \leq C(1 + \| \scrF (u)\| 2HS)dt.

The crucial term is (B.2). Here, we have

(B.2) \leq 2
\| u\| \| G\| 
1 + \| u\| 2

\| \scrF (u)\| HS\| \Gamma  - 1/2\| HS \leq \| G\| 2

1 + \| u\| 2
+ C\| \scrF (u)\| 2HS.

Now we need to use that G is Lipschitz to obtain

\| G\| \leq C(
1

J

\sum 
j

\| u(j)\| + 1) \leq C(
1

J

\sum 
j

\| u(j)  - u\| + \| u\| + 1)
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CONTINUOUS TIME LIMIT OF THE EKI 3205

which implies (for constants depending on J)

(B.2) \leq C

\left(  1 +
1

J

\sum 
j

\| u(j)  - u\| 2 + \| \scrF (u)\| 2HS .

Integrating from 0 to t \wedge \tau R,h we finally obtain together with the bound from (B.1)
for all R > 1 and h \in (0, 1) that \BbbE \varphi (\| u(t \wedge \tau R,h)\| 2) \leq C.

But as \varphi satisfies \varphi (x+ y) \leq \varphi (x) + y we obtain, again using (B.1),

\BbbE \varphi (
1

J

\sum 
j

\| u(j)(t \wedge \tau R,h)\| 2) \leq C,

which finishes the proof.

Appendix C. Proofs of section 4. We first refer to the following useful
auxiliary result which we will apply at several points.

Lemma C.1 (see [8, Lemma A.2]). Let S be a symmetric and nonnegative d\times d-

matrix; then for all choices of (z(k))k=1,...,J in \BbbR d we have
J\sum 

k,l=1

\langle z(k), z(l)\rangle \langle z(k), Sz(l)\rangle 

\geq 0.

Proof of Lemma 4.1. First we define the operator

M\varepsilon (un) := (hB(C(un) + \varepsilon Ip)B
T + IK) - 1,

for which it holds true that lim
\varepsilon \rightarrow 0

M\varepsilon (un) = M(un), since the mapping \Sigma \mapsto \rightarrow \Sigma  - 1 is

continuous over the set of invertible matrices. By

C(un)B
TM(un)\~y =

1

J

J\sum 
k=1

\langle B(u(k)
n  - \=un),M(un)\~y\rangle (u(k)

n  - \=un),

it is sufficient to prove \langle B(u
(k)
n  - \=un),M(un)\~y\rangle = 0. We introduce C\varepsilon (un) := C(un)+

\varepsilon Ip and apply the Woodbury matrix identity

\langle B(u(k)
n  - \=un),M

\varepsilon (un)\~y\rangle 
= \langle B(u(k)

n  - \=un),
\bigl[ 
I - 1
K  - hI - 1

K B((C\varepsilon (un))
 - 1 + hBT I - 1

K B) - 1BT I - 1
K )
\bigr] 
\~y\rangle 

= \langle B(u(k)
n  - \=un), \~y\rangle  - \langle B(u(k)

n  - \=un), hB((C\varepsilon (un))
 - 1 + hBTB) - 1BT )\~y\rangle 

= 0 - \langle hB
\bigl[ 
((C\varepsilon (un))

 - 1 + hBTB) - 1
\bigr] T

BTB(u(k)
n  - \=un), \~y\rangle = 0,

where we have used that \~y \in range(B)\bot . Thus

\langle B(u(k)
n  - \=un),M(un)\~y\rangle = lim

\varepsilon \rightarrow 0
\langle B(u(k)

n  - \=un),M
\varepsilon (un)\~y\rangle = 0,

which concludes the proof.

Lemma C.2. Let u0 = (u
(j)
0 )j\in \{ 1,...,J\} be \scrF 0-measurable maps \Omega \rightarrow \BbbR p such that

\BbbE [\| e(j)0 \| 2] < \infty . Then for all n \in \BbbN it holds true that

\BbbE 

\left[  1

J

J\sum 
j=1

\| e(j)n+1\| 2
\right]  \leq \BbbE 

\left[  1

J

J\sum 
j=1

\| e(j)n \| 2
\right]  .
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3206 D. BL\"OMKER, C. SCHILLINGS, P. WACKER, S. WEISSMANN

Furthermore, there exists the constant C = \BbbE [ 1J
\sum J

j=1 \| e
(j)
0 \| 2] independent of h, J,

and T such that

\BbbE 

\left[  1

J

J\sum 
j=1

\| e(j)n \| 2
\right]  \leq C for all n \in \BbbN .

Proof. We can derive the evolution of the Euclidean norm by

\| e(j)n+1\| 2 = \| e(j)n \| 2 - 2h\langle e(j)n , C(un)B
TM(un)Be(j)n \rangle 

+ 2
\surd 
h\langle e(j)n , C(un)B

TM(un)(W
(j)
n+1  - \=Wn+1)\rangle 

 - 2h3/2\langle C(un)B
TM(un)Be(j)n , C(un)B

TM(un)(W
(j)
n+1  - \=Wn+1)\rangle 

+ h2\| C(un)B
TM(un)Be(j)n \| 2

+ h\| C(un)B
TM(un)(W

(j)
n+1  - \=Wn+1)\| 2.

We first write, after plugging in the definition of C(un) and inserting

M(un)(hBC(un)B
T + I) = I,

also abbreviating M = M(un) and C = C(un),

 - 2h\langle e(j)n , C(un)B
TMBe(j)n \rangle =  - 2h \cdot 1

J

\sum 
j

\langle e(j)n , CBTMBe(j)n \rangle 

=  - 2h
1

J

\sum 
j

\langle e(j)n , CBT \cdot M [hBCBT ]\cdot MBe(j)n \rangle  - 2h
1

J

\sum 
j

\langle e(j)n , CBT \cdot M \cdot MBe(j)n \rangle 

=  - 2h2 1

J

\sum 
j

\langle BTMBCe(j)n , CBTMBe(j)n \rangle  - 2h
1

J

\sum 
j

\langle MBCe(j)n ,MBe(j)n \rangle .

Defining Z = BTMB (this proof works for any self-adjoint matrix) it is easy to verify

1

J

\sum 
j

\langle ZCe(j), CZe(j)\rangle = 1

J

\sum 
l

\| CZe(l)\| 2

and we can continue to write

 - 2h \cdot 1
J

\sum 
j

\langle e(j)n , CBTMBe(j)n \rangle =  - 2h2 1

J

\sum 
j

\| CBTMBe(j)n \| 2

 - 2h
1

J

\sum 
j,k

\langle e(k)n , e(j)n \rangle \langle MBe(k)n ,MBe(j)n \rangle ,

where we have used the definition of C(un) for the second term.
We define S := MB and use \BbbE \langle a,Wi\rangle \langle b,Wj\rangle = \delta i,j\langle a, b\rangle in order to derive

\BbbE 
\biggl[ \bigm\| \bigm\| \bigm\| CBTM(W

(j)
n+1  - \=Wn+1)

\bigm\| \bigm\| \bigm\| 2 | \scrF n

\biggr] 

= \BbbE 

\left[  1

J2

\sum 
k,l

\Bigl\langle 
e(k)\langle e(k), ST (W

(j)
n+1  - \=Wn+1)\rangle , e(l)\langle e(l), ST (W

(j)
n+1  - \=Wn+1)\rangle 

\Bigr\rangle 
| \scrF n

\right]  
=

1

J

\sum 
k,l

\langle e(k), e(l)\rangle 
\biggl[ 
J  - 1

J2
\langle Se(k), Se(l)\rangle + (J  - 1)2

J2
\langle Se(k), Se(l)\rangle 

\biggr] 
=

1

J

\sum 
l,k

\langle e(l), e(k)\rangle \langle MBe(l),MBe(k)\rangle \cdot J  - 1

J
.
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CONTINUOUS TIME LIMIT OF THE EKI 3207

We take the expectation up to step n above to obtain

\BbbE 

\left[  1

J

\sum 
j

\| e(j)n+1\| 2  - \| e(j)n \| 2 | \scrF n

\right]  
=  - 2h2 1

J

\sum 
j

\| CBTMBe(j)n \| 2  - 2h
1

J

\sum 
j,k

\langle e(k)n , e(j)n \rangle \langle MBe(k)n ,MBe(j)n \rangle 

+ 0 + 0 + h2 1

J

\sum 
j

\| CBTMBe(j)n \| 2 + J  - 1

J2
\cdot h
\sum 
j,k

\langle e(k)n , e(j)n \rangle \langle MBe(k)n ,MBe(j)n \rangle 

=  - h2 1

J

\sum 
j

\| CBTMBe(j)n \| 2  - J + 1

J
h\| CB\top M\| 2HS \leq 0,

where positivity of the last sum follows from lemma C.1 by setting S = BTM2B.
The process ( 1

J

\sum J
j=1 \| e

(j)
n \| )n\in \BbbN is a supermartingale, and the assertion follows.

Similarly, the next result states the bound of the particle deviation mapped
by B.

Corollary C.3. Let u0 = (u
(j)
0 )j\in \{ 1,...,J\} be \scrF 0-measurable maps \Omega \rightarrow \BbbR p such

that \BbbE [\| Be
(j)
0 \| 2] < \infty . Then for all n \in \BbbN it holds true that

\BbbE 

\left[  1

J

J\sum 
j=1

\| Be
(j)
n+1\| 2

\right]  \leq \BbbE 

\left[  1

J

J\sum 
j=1

(\| Be(j)n \| 2
\right]  .

Proof. The proof follows by similar computations as in the proof of Lemma C.2.

For our last auxiliary result, we recall that the update of the residuals can be
written as r

(j)
n+1 = r

(j)
n  - hC(un)B

TM(un)Br
(j)
n +

\surd 
hC(un)B

TM(un)W
(j)
n+1 and pro-

vide the boundedness of the residuals in the observation space, which is formulated
in the following lemma.

Proposition C.4. For all n \in \BbbN it holds true that

1

J

J\sum 
j=1

\BbbE [\| Br
(j)
n+1\| 2 + \| Be

(j)
n+1\| 2] \leq 

1

J

J\sum 
j=1

\BbbE [(\| Br(j)n \| 2 + \| Be(j)n \| 2)].

Proof. The update of the mapped residuals is given by

Br
(j)
n+1 = Br(j)n  - hBC(un)B

TM(un)Br(j)n +
\surd 
hBC(un)B

TM(un)W
(j)
n+1 .

Using M(un)(hBC(un)B
\top + I) = I and abbreviating again M = M(un) and C =

C(un), we obtain

\BbbE [\| Br
(j)
n+1\| 2  - \| Br(j)n \| 2 | \scrF n]

=  - 2h\langle Br(j)n , BCBTMBr(j)n \rangle + 0 + 0 + h2\| BCBTMBr(j)n \| 2

+ h\| BCBTMW
(j)
n+1\| 2

=  - 2h\langle Br(j)n ,M(hBCB\top + I)BCBTMBr(j)n \rangle 

+ h2\| BCBTMBr(j)n \| 2 + h\BbbE 
\Bigl[ 
\| BCBTMW

(j)
n+1\| 2 | \scrF n

\Bigr] 
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3208 D. BL\"OMKER, C. SCHILLINGS, P. WACKER, S. WEISSMANN

=  - 2h2\langle Br(j)n ,MBCB\top BCBTMBr(j)n \rangle  - 2h\langle Br(j)n ,MBCBTMBr(j)n \rangle 

+ h2\| BCBTMBr(j)n \| 2 + h\BbbE 
\Bigl[ 
\| BCBTMW

(j)
n+1\| 2 | \scrF n

\Bigr] 
=  - 2h2\langle BCB\top MBr(j)n , BCBTMBr(j)n \rangle 
 - 2h\langle C1/2B\top MBr(j)n , C1/2BTMBr(j)n \rangle 

+ h2\| BCBTMBr(j)n \| 2 + h\BbbE 
\Bigl[ 
\| BCBTMW

(j)
n+1\| 2 | \scrF n

\Bigr] 
=  - 2h2\| BCB\top MBr(j)n \| 2  - 2h\| C1/2B\top MBr(j)n \| 2

+ h2\| BCBTMBr(j)n \| 2 + h\BbbE 
\Bigl[ 
\| BCBTMW

(j)
n+1\| 2 | \scrF n

\Bigr] 
.

We note that

\BbbE 
\Bigl[ 
\| BCBTMW

(j)
n+1\| 2 | \scrF n

\Bigr] 
= h

1

J2

J\sum 
l=1

\| C1/2B\top MBe(l)n \| 2.

Similarly as in the proof of Lemma C.2 we obtain

1

J

J\sum 
j=1

\BbbE [\| Be
(j)
n+1\| 2  - \| Be(j)n \| 2 | \scrF n] =  - h2 1

J

J\sum 
j=1

\| CBTMBe(j)n \| 2

 - h
J + 1

J2

J\sum 
j=1

\| C1/2B\top MBe(j)n \| 2.

We conclude with

\BbbE [
1

J

J\sum 
j=1

(\| Br
(j)
n+1\| 2 + \| Be

(j)
n+1\| 2) - 

1

J

J\sum 
j=1

(\| Br(j)n \| 2 + \| Be(j)n \| 2) | \scrF n]

=  - h2 1

J

J\sum 
j=1

\| BCB\top MBr(j)n \| 2  - 2h
1

J

J\sum 
j=1

\| C1/2B\top MBr(j)n \| 2

 - h2 1

J

J\sum 
j=1

\| CBTMBe(j)n \| 2  - h
1

J2

J\sum 
j=1

\| C1/2B\top MBe(j)n \| 2 \leq 0.(C.1)

While proving the above two auxiliary results, we have derived explicit update
formulas for 1

J

\sum J
j=1 \BbbE [\| e

(j)
n \| 2] and 1

J

\sum J
j=1 \BbbE [\| Br

(j)
n \| 2] + 1

J

\sum J
j=1 \BbbE [\| Be

(j)
n \| 2]. Using

these explicit update formulas, we are further able to bound the following summations.

Corollary C.5. For all n \in \BbbN it holds true that

J + 1

J

n - 1\sum 
k=0

h\BbbE [\| C(uk)B
\top M(uk)\| 2HS] \leq 

1

J

J\sum 
j=1

\BbbE 
\Bigl[ 
\| e(j)0 \| 2

\Bigr] 
,

and

n - 1\sum 
k=0

h
1

J

J\sum 
j=1

\BbbE [\| C(uk)
1/2B\top M(uk)Br

(j)
k \| 2] \leq 1

2J

J\sum 
j=1

\BbbE [\| Br
(j)
0 \| 2 + \| Be

(j)
0 \| 2].
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CONTINUOUS TIME LIMIT OF THE EKI 3209

Proof. From the proof of Lemma C.2 we know that

0 \leq 1

J

J\sum 
j=1

\BbbE 
\Bigl[ 
\| e(j)n \| 2

\Bigr] 
= \BbbE 

\Bigl[ 
\| e(j)0 \| 2

\Bigr] 
 - 

n - 1\sum 
k=0

h2 1

J

J\sum 
j=1

\BbbE [\| CBTMBe
(j)
k \| 2]

 - 
n - 1\sum 
k=0

J + 1

J
h\BbbE [\| CB\top M\| 2HS],

and it implies that for all n \in \BbbN we have that

n - 1\sum 
k=0

J + 1

J
h\| CB\top M\| 2HS \leq \BbbE 

\Bigl[ 
\| e(j)0 \| 2

\Bigr] 
.

The other bound follow similarly by using the update formula

0 \leq 1

J

J\sum 
j=1

\BbbE [\| Br(j)n \| 2 + \| Be(j)n \| 2 | \scrF n]

=
1

J

J\sum 
j=1

\BbbE [\| Br
(j)
0 \| 2 + \| Be

(j)
0 \| 2]

n - 1\sum 
k=0

h2 1

J

J\sum 
j=1

\| BCB\top MBr
(j)
k \| 2

 - 2

n - 1\sum 
k=0

h
1

J

J\sum 
j=1

\BbbE [\| C1/2B\top MBr
(j)
k \| 2] - 

n - 1\sum 
k=0

h2 1

J

J\sum 
j=1

\BbbE [\| CBTMBe
(j)
k \| 2]

 - 
n - 1\sum 
k=0

h
1

J2

J\sum 
j=1

\BbbE [\| C1/2B\top MBe
(j)
k \| 2].

We emphasize that it is not true that the quantity 1
J

\sum J
j=1 \BbbE \| r

(j)
n \| 2 is decreasing.

This can be seen directly in the continuous and deterministic setting: Here it can be
proven that 1

J

\sum J
j=1 \| Br(j)(t)\| 2 is decreasing, but 1

J

\sum J
j=1 \| r(j)(t)\| 2 does not have

this property.
First, the mapping via B only keeps track of the data-informed parameter di-

mensions, i.e., those orthogonal to the kernel of A. And secondly, even invertibility
of B still does not imply monotonicity of \| u(t)  - \^u\| as the mapping B can warp
the coordinate system in such a way that this property is lost, with \^u defined as in
(4.1). This can be seen in an elementary example unrelated to the EKI: Consider the
curve x(t) = (cos(t), sin(t)) for which V (t) := \| x(t)\| 2 is constant, i.e., monotonously
decreasing. On the other hand, with A = diag(2, 1) and \Gamma = E2\times 2, the mapping
\~V (t) = \| Ax(t)\| 2 is not monotonous.

As a concrete example for the nonmonotonicity of the mean and the residual,
we can consider the forward operator A = diag(100, 1), observation noise covariance
\Gamma = I2\times 2, observation y = (0, 0)T , and an initial ensemble with mean u0 = (100, 100)T

and empirical covariance C(u(0)) =
\bigl( 

25  - 24
 - 24 25

\bigr) 
, whose eigenvectors are ( - 1, 1)T and

(1, 1)T with eigenvalues 49 and 1, respectively.
Figure 1 shows the initial ensemble and the trajectories of the ensemble and

its sample mean in the parameter space. Clearly, the sample mean and the whole
ensemble move away from their final limit (0, 0)T for quite some time until they
finally ``change direction"" and converge towards their limit. The initial shearing of
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3210 D. BL\"OMKER, C. SCHILLINGS, P. WACKER, S. WEISSMANN

Fig. 1. Trajectories of the EKI (starting at the lower right corner; black curve is the mean u(t))
for t \in [0, 1]. Dotted sphere is the Euclidean sphere through u0, demonstrating non-monotonicity of
the mean.

the ensemble combined with the strong weighting of the horizontal direction, which is
encoded in the forward operator, leads to an initial movement of the ensemble along
its principal axis to the top left, increasing the value of \| r(t)\| 2.

In other words, the Euclidean norm is not the natural norm with respect to
which we should view the dynamics of the ensemble, and either we need to settle
for nonmonotonous convergence of the residuals \| u(t)  - \^u\| in parameter space, or
we need to pick a more problem-adapted norm. In the deterministic setting, the
latter can be done by diagonalizing C(u(0))BTB: It can be shown that this yields a
basis of eigenvectors which diagonalize C(u(t))C(u(0)) - 1 for all times; see [9]. In the
stochastic setting, this favorable property is lost.

Proof of Lemma 4.3. Let p = 1, and write

\| rn+1\| Lp
:= \BbbE [\| r(j)n+1\| p]1/p

= \| r(j)n  - hC(un)B
\top M(un)Br(j)n +

\surd 
hC(un)B

\top M(un)W
(j)
n+1\| Lp

\leq \| r(j)n \| L1
+ \| C(un)

1/2\| L2
\| hC(un)

1/2B\top M(un)Br(j)n \| L2

+ \| 
\surd 
hC(un)B

\top M(un)W
(j)
n+1\| L1

.

First, note that we can write

(C(un))
1/2 = (1/J \cdot (e(1)n , e(2)n , . . . , e(J)n )(e(1)n , e(2)n , . . . , e(J)n )\top )1/2

and hence, it holds true that

\| C(un)
1/2\| L2

\leq 

\left(  1

J

J\sum 
j=1

\BbbE \| e(j)n \| 2
\right)  1/2

\leq 

\left(  1

J

J\sum 
j=1

\BbbE \| e(j)0 \| 2
\right)  1/2

=: C1.

Furthermore, we can bound

\| r(j)n \| L1
\leq \| r(j)0 \| L1

+ C1

n\sum 
k=0

\| hC(uk)
1/2B\top M(uk)Br

(j)
k \| L2

+

n\sum 
k=0

\| 
\surd 
hC(un)B

\top M(un)W
(j)
n+1\| L1 .
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CONTINUOUS TIME LIMIT OF THE EKI 3211

From Corollary C.5 we have that for all n \geq 1

2

n\sum 
k=0

h\BbbE [\| C(uk)
1/2B\top M(uk)Br

(j)
k \| 2] \leq \BbbE [

1

J

J\sum 
j=1

\| Br
(j)
0 \| 2 + \| Be

(j)
0 \| 2],

and it follows by Jensen's inequality that

n\sum 
k=0

\| hC(uk)
1/2B\top M(uk)Br

(j)
k \| L2 \leq 

N \cdot T\sum 
k=0

\| hC(uk)
1/2B\top M(uk)Br

(j)
k \| L2

\leq T \cdot 

\Biggl( 
N \cdot T\sum 
k=0

1

T
h\BbbE [\| C(uk)

1/2B\top M(uk)Br
(j)
k \| 2]

\Biggr) 1/2

\leq 
\surd 
T \cdot \BbbE 

\left[  1/2 1
J

J\sum 
j=1

\| Br
(j)
0 \| 2 + \| Be

(j)
0 \| 2

\right]  1/2

providing a uniform bound in h for all n. Similarly, we obtain from Corollary C.5
that

J + 1

J

n\sum 
k=0

\BbbE [\| 
\surd 
hC(uk)B

\top M(uk)W
(j)
k+1\| 

2] =
J + 1

J

n\sum 
k=0

\BbbE [h\| C(uk)B
\top M(uk)\| 2HS]

\leq \BbbE [
1

J

J\sum 
j=1

\| e(j)0 \| 2],

and applying again Jensen's inequality gives

n\sum 
k=0

\| 
\surd 
hC(un)B

\top M(un)W
(j)
n+1\| L1 \leq 

N \cdot T\sum 
k=0

\BbbE [\| 
\surd 
hC(un)B

\top M(un)W
(j)
n+1\| 2]1/2

\leq T \cdot 

\Biggl( 
N \cdot T\sum 
k=0

1

T
h\BbbE [\| C(uk)B

\top M(uk)\| 2HS]

\Biggr) 1/2

\leq 
\surd 
T \cdot 

\left(  J

J + 1

1

J

J\sum 
j=1

\BbbE [\| e(j)0 \| 2]

\right)  1/2

.

We conclude the proof by

\| r(j)n \| L1
\leq \| r(j)0 \| L1

+
\surd 
T \cdot 

\left(  1

J

J\sum 
j=1

\BbbE \| e(j)0 \| 2
\right)  1/2

\cdot 

\left(  1

2J

J\sum 
j=1

\BbbE [\| Br
(j)
0 \| 2 + \| Be

(j)
0 \| 2]

\right)  1/2

+
\surd 
T \cdot 

\left(  J

J + 1

1

J

J\sum 
j=1

\BbbE [\| e(j)0 \| 2]

\right)  1/2

.

Proof of Lemma 4.6. We first note that \BbbE [\| r(j)n \| 2] = \BbbE [\| Pr
(j)
n \| 2] + \BbbE [\| (I  - 

P )r
(j)
n \| 2], and we consider both terms separately.
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3212 D. BL\"OMKER, C. SCHILLINGS, P. WACKER, S. WEISSMANN

Step 1: Bounding \BbbE [\| Pr
(j)
n \| 2].

We observe that

\| Pr(j)n \| 2 = \| B\top (BB\top ) - Br(j)n \| 2 \leq \| B\top (BB\top ) - \| 2HS\| Br(j)n \| 2.

Application of Proposition C.4 gives the uniform bound in n and h, i.e., \| Pr
(j)
n \| 2 \leq c1

for some c1 > 0 independent of n and h.
Step 2: Bounding \BbbE [\| (I  - P )r

(j)
n \| 2].

For the update of (I  - P )r
(j)
n we have that

(I  - P )r
(j)
n+1 = (I  - P )r(j)n  - h(I  - P )C(un)B

\top M(un)Br(j)n

+
\surd 
h(I  - P )C(un)B

\top M(un)W
(j)
n+1

= (I  - P )r(j)n

+
1

J

J\sum 
k=1

\langle  - hM(un)Br(j)n +
\surd 
hM(un)W

(j)
n+1, Be(k)n \rangle (I  - P )e(k)n .

Similarly, we have that

(I  - P )e
(j)
n+1 = (I  - P )e(j)n

+
1

J

J\sum 
k=1

\langle  - hM(un)Be(j)n +
\surd 
hM(un)W

(j)
n+1, Be(k)n \rangle (I  - P )e(k)n

= (I  - P )e
(j)
0 .

Hence, we imply that (I  - P )e
(k)
n = 0 for all k, i.e., e

(k)
n is in the range of P , and it

follows that

(I  - P )r
(j)
n+1 = (I  - P )r(j)n = (I  - P )r

(j)
0 .

Finally, we conclude with

\| (I  - P )r
(j)
n+1\| 2 = \| (I  - P )r

(j)
0 \| 2 \leq c2.

Proof of Lemma 4.9. We again decompose \~y = \^y + y\prime , where \^y \in range( \~B) and
y\prime \in range( \~B)\bot . By Lemma 4.1 there exists \^u (not necessarily unique), such that we

can write the update for r
(j)
n = u

(j)
n  - \^u by

r
(j)
n+1 = r(j)n  - hC(un) \~B

TM(un) \~Br(j)n +
\surd 
hC(un) \~B

TM(un)W
(j)
n+1.

By Proposition C.4 it follows that

sup
n\in \{ 1,...,N\} 

1

J

J\sum 
j=1

\BbbE [\| \~Br
(j)
n+1\| 2\BbbR K\times \scrX + \| \~Be

(j)
n+1\| 2\BbbR K\times \scrX ]

\leq \BbbE [
1

J

J\sum 
j=1

(\| \~Br(j)n \| 2\BbbR K\times \scrX + \| \~Be(j)n \| 2\BbbR K\times \scrX )].

The definition of \~B implies that

\| \~Br
(j)
n+1\| 2\BbbR K\times \scrX = \| B(u

(j)
n+1  - \^u)\| 2\BbbR K + \| (u(j)

n+1  - \^u)\| 2\scrX ,
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and hence, we conclude with

sup
n\in \{ 1,...,N\} 

\BbbE [\| u(j)
n \| 2] \leq C

for all j \in \{ 1, . . . , J\} , where C > 0 is independent from h.
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