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Abstract
The Josephson effect of inter-layer s-wave pairing in a double layer of two
chiral metals with Josephson junctions along the y direction is considered.
Starting from the Bogoliubov de Gennes equations of electron–electron and
electron–hole double layers, we employ the duality transformation between the
two systems to determine the relation of the zero-energy quasiparticle modes at
a Josephson junction in both systems. The appearance of an exceptional point
at zero energy is observed, where the four-dimensional eigenspace coalesces to
a two-dimensional eigenspace. In the second part of the article, the coupling of
the quasiparticle currents and the supercurrent is studied. The coupling is based
on the quasiparticle charge conservation in the form of a continuity equation.
Although the quasiparticle modes differ between the electron–electron and the
electron–hole double layers, their corresponding currents are the same.
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1 INTRODUCTION

One of the most fascinating observations in condensed matter physics is the pairing effect, leading to phenomena such
as superconductivity and superfluidity. Although the pairing effect is of quantum nature, its theoretical description
in terms of a macroscopic order parameter field is given by a mean-field (or Ginzburg-Landau) theory. Excitations
in the form of quasiparticles, on the other hand, are represented by the Bogoliubov de Gennes (BdG) equation that
describes a single-particle quantum wave function.[1] A more comprehensive discussion of this equation can be found in
Ref. [2]. Recent research on layered chiral materials has revived the interest in this approach, in particular, for the special
properties of zero-energy (or mid-gap) modes.[3–9]

An interesting phenomenon related to pairing is the Josephson effect[10] that originates in the coupling between
the macroscopic superfluid or superconducting order parameter with the quasiparticle modes induced by a Joseph-
son junction.[11–16] It has been discussed for different systems, including electron–electron graphene bilayers,[17,18]

systems with spin-orbit coupling,[19] electron–hole bilayers,[20,21] electron–hole double layers[22–24] and electron–hole
double-bilayers.[25,26] An important aspect of the quasiparticles is their sensitivity to the underlying spatial structure in
terms of geometry and topology, in particular, for zero-energy modes.[5,18] The interplay of the Josephson effect with the
topological properties of the quasiparticle modes was recently discussed for an electron–electron double layer (EEDL)[27]

and for an electron–hole double layer (EHDL)[24] separately. One purpose of the present paper is to study the connection
of these two systems through the particle–hole duality and how their corresponding zero-energy modes at a Josephson
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junction are related. Another purpose is to investigate the coupling of the quasiparticle currents to the supercurrent in
the EEDL and in the EHDL, a feature that is directly linked to the Josephson effect.

The article is organized as follows. In Section 2, the BdG equations for the chiral EEDL (Section 2.1) and for the EHDL
(Section 2.2) are separately introduced and their relation through the duality transformation is explained at the end of
Section 2.2. The Josephson current, induced by a Josephson junction along the y direction of the layers, is investigated
in Section 3 on the basis of quasiparticle charge conservation. Finally, in Section 4 we discuss and interpret the results
of Sections 2 and 3. Appendix A provides details of the quasiparticle modes and Appendix B presents some details of the
current calculation.

2 MODEL: BOGOLIUBOV DE GENNES EQUATION/HAMILTONIAN

The EEDL and the EHDL are dual to each other.[28] In the following, we discuss these two cases separately and compare
the resulting Josephson currents in Section 4. Both systems are treated within a BCS-like mean-field approach. This leads
to an order parameter Δ that characterizes the superconducting state of the EEDL and the superfluid state of the EHDL.
Excitations in the form of quasiparticles are obtained from the corresponding BdG Hamiltonian, where the latter describes
the quantum fluctuations about the mean-field approximation. In the following discussion, we consider the inter-layer
pairing but ignore the intra-layer pairing. This is a simplification that is plausible for a small distance of the layers and due
to screening inside the layers but has been debated in the literature.[29,30] Moreover, inter-layer tunnelling is suppressed
by a dielectric between the layers.

2.1 Chiral electron–electron double layer

The EEDL comprises two electronic layers with a positively charged extra layer. The latter can either be an external gate
(as visualized in Figure 1a) or is provided by the positive charges inside the metallic layers. In both cases the entire system
preserves charge neutrality. The electrons in the two layers repel each other due to the Coulomb interaction. The geometric
constraint enables the electrons at a fixed density to form inter-layer Cooper pairs. This is formally supported by the duality
transformation to the EHDL, in which the electron–hole pairs are subject to an attractive Coulomb interaction. In other
words, the formation of inter-layer electron–hole pairs in the EHDL[22] is transformed into inter-layer electron–electron
pairs by the duality transformation.[28] Then the related quasiparticles are described by the BdG Hamiltonian of two layers
with opposite chiralities, as follows.[27]

HEEDL =

(
h1𝜎1 + h2𝜎2 Δ𝜎2

Δ𝜎2 h1𝜎1 − h2𝜎2

)
, (1)

where 𝜎j are Pauli matrices, hj are tight-binding hopping matrices and Δ is the real pairing order parameter. For the
subsequent discussion, we assume a honeycomb lattice for the underlying spatial structure of the tight-binding model,
such that the quasiparticle Hamiltonian describes graphene-like materials. Assuming translational invariance in y
direction, the low-energy BdG Hamiltonian becomes with h1 ∼ iℏvF𝜕x, h2 ∼ ℏvFky

HEEDL ∼

(
iℏvF𝜕x𝜎1 + ℏvFky𝜎2 Δ(x)𝜎2

Δ(x)𝜎2 iℏvF𝜕x𝜎1 − ℏvFky𝜎2

)
, (2)

where vF is the Fermi velocity.
Now we consider a domain wall in y direction at x = 0, as sketched in Figure 2a: Δ(x) = sgn(x)|Δ|. The resulting

eigenvalue problem can be solved. At zero energy there is an exceptional point for the Hamiltonian (2), where the four-fold
degeneracy coalesces to a two-dimensional eigenspace with two independent zero-energy modes (cf. Appendix A):

Ψ1 =
1


⎛⎜⎜⎜⎜⎜⎝

1
0
1
0

⎞⎟⎟⎟⎟⎟⎠
e−|Δ||x|∕ℏvF

, Ψ2 =
1


⎛⎜⎜⎜⎜⎜⎝

0
1
0
− 1

⎞⎟⎟⎟⎟⎟⎠
e−|Δ||x|∕ℏvF (3)
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gate

(a)

(b)

electron
hole

F I G U R E 1 An electron–electron double layer (a) and an electron–hole double layer (b) with inter-layer pairing due to Coulomb
interaction, where the schematic gate in (a) is positively charged and guarantees charge neutrality. Inter-layer tunnelling is suppressed by a
dielectric medium and inter-layer pairing requires a small distance of the layers to make the Coulomb interaction sufficiently strong.

−∆ ∆
−∆ ∆ −∆

(a) (b)

F I G U R E 2 Electronic double layer with domain walls, which is given by a sign jump of the pairing order parameter. The local currents
(blue arrows) flow in the same (opposite) direction in the two layers parallel (perpendicular) to the domain wall.

with the normalization =
√

2vFℏ∕|Δ|. Any superposition of the two zero-energy modes Φ = a1Ψ1 + a2Ψ2 with com-
plex coefficients aj = |aj|ei𝜑j (and normalization |a1|2 + |a2|2 = 1) is also a zero-energy mode. Thus, the zero-energy
eigenmodes are complex in general and only real for a special choice of the coefficients. These two modes are expressed
separately for the top and for the bottom layer as

Φ↑ =

(
a1

a2

)
e−|Δ||x|∕ℏvF


, Φ↓ =

(
a1

− a2

)
e−|Δ||x|∕ℏvF


, (4)

which will be used for the calculation of the Josephson currents in Section 3.

2.2 Chiral electron–hole double layer

The BdG Hamiltonian of the EHDL reads.[24]

HEHDL =

(
h1𝜎1 + h2𝜎2 Δ𝜎3

Δ∗𝜎3 h1𝜎1 + h2𝜎2

)
, (5)

where the chirality of the two layers is the same now and the complex pairing order parameter appears with a Pauli matrix
𝜎3. This means that there is a coupling between the same metallic bands of the two layers with opposite signs though.
The BdG Hamiltonian is dual to the BdG Hamiltonian of the EEDL in Equation (1), and the duality transformation reads

HEHDL(iΔ) = VHEEDL(Δ)V , V =

(
𝜎0 0
0 𝜎1

)
, (6)
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where the order parameter acquires a global imaginary unit. This implies for the eigenvalue equation HEEDL(Δ)ΨE = EΨE

HEHDL(iΔ)VΨE = VHEEDL(Δ)VVΨE = EVΨE, (7)

that is, VΨE is eigenmode of HEHDL(Δ) with eigenvalue E. Thus, the spectrum is invariant under the duality transforma-
tion, whereas the zero-energy eigenmodes are not. In particular, from Equation (3) for the domain wallΔ(x) = isgn(x)|Δ|
an exceptional point at zero energy and a two-dimensional eigenspace of zero-energy modes

VΨ1 =
1


⎛⎜⎜⎜⎜⎜⎝

1
0
0
1

⎞⎟⎟⎟⎟⎟⎠
e−|Δ||x|∕ℏvF

, VΨ2 =
1


⎛⎜⎜⎜⎜⎜⎝

0
1
− 1
0

⎞⎟⎟⎟⎟⎟⎠
e−|Δ||x|∕ℏvF

. (8)

From these modes, we can construct again the zero-energy modes of the individual layers as

VΦ =

(
Φ′↑
Φ′↓

)
with Φ′↑ =

(
a1

a2

)
e−|Δ||x|∕ℏvF


, Φ′↓ =

(
− a2

a1

)
e−|Δ||x|∕ℏvF


. (9)

3 JOSEPHSON CURRENTS

Currents in a superconductor are either carried by paired particles (supercurrent js) or by quasiparticles (quasiparticle
current j). These two types of currents are not independent but coupled through the continuity equation. This was demon-
strated, for instance, in a paper by Blonder et al. who obtained this equation from the conservation of quasiparticle charge
as.[11]

𝜕tΦ ⋅Φ + 𝜕xIx + 𝜕yIy = 0, Ix,y = jx,y + js
x,y (10)

with the time-dependent quasiparticle density Φ ⋅Φ. In the case of double layers, there are only intra-layer currents
because the layers are separated by a dielectric interlayer. In this case, we replace Equation (10) with the two equations
for the ↑ and ↓ layer, respectively

𝜕tΦ𝜎 ⋅Φ𝜎 + 𝜕xIx𝜎 = 0 (𝜎 =↑, ↓). (11)

Here we have assumed that 𝜕yIy𝜎 = 0 due to translational invariance in the y-direction.
The quasiparticle currents jx↑ and jx↓ are directly calculated from the commutator, with the BdG Hamiltonian as

jx = i
ℏ

[HEEDL, x]; for the zero-energy quasiparticle modes of Equation (4) we get

jx↑ = −jx↓ = vFΦ↑ ⋅ 𝜎1Φ↑ =
|Δ|
ℏ

Re
(

a1a∗2
)

e−2|Δ||x|∕ℏvF
. (12)

These current components decay exponentially from the domain wall at x = 0 on the scale ℏvF∕2|Δ|. They flow in
opposite directions in the two layers, as indicated in Figure 2a.

Returning to the continuity equations, we get from integrating along the x direction the x-components of the
supercurrents as (cf. Appendix B)

js
x↑,↓(x) = ∓

|Δ|
ℏ

Re
(

a1a∗2
) (

1 − e−2|Δ||x|∕ℏvF
)
= ∓ |Δ|

ℏ

Re
(

a1a∗2
)
− jx↑,↓(x). (13)

The supercurrent component js
x↑,↓(x) vanishes at the domain wall x = 0 and becomes ∓ |Δ|

ℏ

Re
(

a1a∗2
)

for |x|≫ ℏvF∕|Δ|
with opposite sign for the two layers. Thus, at the domain wall, there is only a quasiparticle current. Moreover,
from jy = i

ℏ

[HEEDL, y], we get the y-components of the quasiparticle currents as

jy↑ = jy↓ = vFΦ↑ ⋅ 𝜎2Φ↑ = −
|Δ|
ℏ

Im
(

a1a∗2
)

e−2|Δ||x|∕ℏvF
. (14)
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4 DISCUSSION AND CONCLUSIONS

The main result of our calculation is the relation between the supercurrent and the quasiparticle current in the two layers,
which is based on the continuity Equation (11). The total current is uniform and reads

Ix↑,↓ = js
x↑,↓(x) + jx↑,↓(x) = ∓

|Δ|
ℏ

Re
(

a1a∗2
)
. (15)

This result implies also a relation between the zero-energy modes of Equation (4) at the Fermi level and their currents
in Equations (12), (13) and (14): The fact that the coefficients a1 and a2 of the zero-energy eigenmodes appear in the
current indicates a coupling between those modes and the currents. This relation is remarkable because it means that we
can tune the coefficients of the zero-energy mode by varying the current in the double layer. The latter can be induced
by an external current, which couples to the current inside the superconductor. The creation and the measurement of
currents in the EHDL was discussed in Ref. [31].

The quasiparticle current is created at the domain wall at x = 0 and decays according to Equations (12) and (14)
exponentially from x = 0 on the scale ℏvF∕2|Δ|. This means that the decay depends on the material through its Fermi
velocity vF . For instance, in graphene and silicon carbide, we have vF ≈ 8.3 × 105 m/s,[32] and vF ≈ 3.5 × 105 m/s for black
phosphorus.[33]

The BdG Hamiltonians HEDDL of the EDDL and HEHDL of the EHDL lead to similar results due to their duality relations
in Equations (6), (7) and (8). In particular, the Josephson currents are the same for both cases, whereas the zero-energy
quasiparticle modes are different. The latter is demonstrated by the transformation of Equation (8). Moreover, both
Hamiltonians get a sign change under the following transformation

HEEDL → THEEDLT = −HEEDL, T =

(
𝜎3 0
0 𝜎3

)
, (16)

and

HEHDL → T′HEHDLT′ = −HEHDL, T′ = VTV =

(
𝜎3 0
0 −𝜎3

)
, (17)

which reflects the chirality of both quasiparticle Hamiltonians and the fact that their chirality transformations are not
identical.

The above results indicate that a domain wall affects the current distribution in the system. Thus, for the general
case, we must take into account all edges and domain walls, where the order parameter changes. On the other hand, we
can avoid edges by choosing proper boundary conditions. In y direction, we have already assumed periodic boundary
conditions to create a uniform mode in this direction. Assuming two domain walls (cf. Figure 2b) and periodic boundary
conditions in x direction for both layers individually, the resulting system is a double torus with one inside the other.
This geometry has no edges except for the domain walls, as visualized in Figure 3. Then the coefficients a1 and a2 of the
zero-energy modes are fixed by the matching condition of Equation (15).

−∆
∆

y

I

x

I

I

(a) (b)

F I G U R E 3 After gluing both layers in Figure 2b) individually, we obtain a double torus with a cross-section visualized in b), where
each torus has two domain walls. Then the currents wind along the two domain walls clockwise and counterclockwise around each torus,
respectively.
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While these considerations give us an idea about the role of the Josephson effect in chiral double layers, a complete
description requires a solution of the entire microscopic model through a self-consistent approach. Then the supercurrent
is induced by an external current or an external magnetic field, which is represented by a vector potential in the BdG
Hamiltonian. This external field also affects the order parameter field Δ. Such a calculation is beyond the framework of
the present approach but might be considered in the future.

In conclusion, we studied pairing in the EEDL and in the EHDL on the basis of the BdG equation. Both systems are
connected by the duality relation (6). Although the systems have different quasiparticle modes in the presence of a domain
wall, they have the same Josephson currents. The duality could be useful to connect two different branches in recent
experiments, namely those with EEDL and with EHDL. Moreover, the Josephson current is related to the coefficients of
the zero-energy mode through Equation (15). This reflects an intimate relationship between the Josephson current and
the quasiparticle mode at zero energy. The coupling of the zero-energy modes and the current due to the Josephson effect
has the potential for the development of new technologies. For instance, it was already used to create and manipulate
qubits in quantum computational devices.[34–36] Finally, an extension of our analysis might be useful for future studies of
more complex, multi-band systems with electron–electron and electron–hole pairing.
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APPENDIX A. COALESCENT EIGENMODES

For the eigenmodes of the BdG Hamiltonian HEEDL, we make the ansatz Ψ(x) = 𝜓e−bx, where 𝜓 is a four-component
spinor and b depends on x. This gives for ky = 0 with b = vFℏb the four-dimensional eigenvalue equation

HEEDL𝜓 =

⎛⎜⎜⎜⎜⎜⎝

0 −ib 0 −iΔ
− ib 0 iΔ 0

0 −iΔ 0 −ib
iΔ 0 −ib 0

⎞⎟⎟⎟⎟⎟⎠
𝜓 = E𝜓, (A1)

which has the eigenvalue E− = −
√|Δ|2 − b

2
with the pair of eigenspinors

𝜓1− =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

b∕Δ

− i
√|Δ|2 − b

2
∕Δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝜓2− =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

i
√|Δ|2 − b

2
∕Δ

− b∕Δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A2)

and the eigenvalue E+ =
√|Δ|2 − b

2
with the pair of eigenspinors

𝜓1+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

b∕Δ

i
√|Δ|2 − b

2
∕Δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝜓2+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

− i
√|Δ|2 − b

2
∕Δ

− b∕Δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)

This indicates a two-fold degeneracy of the eigenvalues E±, respectively. The limit b → Δ yields E = 0 and the pairwise
coalescent eigenspinors as

𝜓1− → 𝜓1+ →

⎛⎜⎜⎜⎜⎜⎝

1
0
1
0

⎞⎟⎟⎟⎟⎟⎠
, 𝜓2− → 𝜓2+ →

⎛⎜⎜⎜⎜⎜⎝

0
1
0
− 1

⎞⎟⎟⎟⎟⎟⎠
. (A4)

Thus, the eigenspace at E = 0 has only two dimensions, which represents an exceptional point.[37] This effect is known
for solutions of the BdG Hamiltonian with point and line defects.[38]
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APPENDIX B. JOSEPHSON CURRENTS IN A DOUBLE LAYER

With the help of the BdG equation, we derive the continuity equation for the two layers separately as.[11]

𝜕tΦ𝜎 ⋅Φ𝜎 + 𝜕xIx𝜎 = 0 (𝜎 =↑, ↓), (B1)

where the total current I = j + js is the sum of the quasiparticle current j and the supercurrent js. For the y component,
we have 𝜕yIy𝜎 = 0 due to the uniform mode in the y direction. The quasiparticle current operator of a BdG Hamiltonian
HBdG reads jx = i

ℏ

[HBdG, x].
The BdG equation of the EEDL yields the continuity Equation (B1) in the top layer

𝜕tΦ↑ ⋅Φ↑ + 𝜕xjx↑ = iΔ
ℏ

Ψ∗↓𝜎2Ψ↑ − iΔ
∗

ℏ

Ψ∗↑𝜎2Ψ↓ = 2sgn(x) |Δ|2
vFℏ

2 Re
(

a1a∗2
)

e−2|Δ||x|∕ℏvF (B2)

and in the bottom layer

𝜕tΦ↓ ⋅Φ↓ + 𝜕xjx↓ = iΔ
∗

ℏ

Ψ∗↑𝜎2Ψ↓ − iΔ
ℏ

Ψ∗↓𝜎2Ψ↑ = −2sgn(x) |Δ|2
vFℏ

2 Re
(

a1a∗2
)

e−2|Δ||x|∕ℏvF
. (B3)

The expressions on the right-hand side of the equations are equal up to a minus sign. The quasiparticle currents jx↑
and jx↓ are directly calculated from the commutator jx = i

ℏ

[HEEDL, x], which gives

jx↑ = −jx↓ = −
|Δ|
ℏ

Re
(

a1a∗2
)

e−2|Δ||x|∕ℏvF
, (B4)

such that we obtain from the continuity equations after integration along the x direction the x-components of the
supercurrents as

js
x↑,↓(x) = ∓

|Δ|
ℏ

Re
(

a1a∗2
) (

1 − e−2|Δ||x|∕ℏvF
)
. (B5)

The supercurrent component js
x↑,↓(x) vanishes at the domain wall x = 0 and becomes∓ |Δ|

ℏ

Re
(

a1a∗2
)

for |x|≫ ℏvF∕|Δ|.
Finally, from jy = i

ℏ

[HEEDL, y] we get the y-components of the quasiparticle currents

jy↑ = jy↓ = −vFΦ↓ ⋅ 𝜎2Φ↓ = −
|Δ|
ℏ

Im
(

a1a∗2
)

e−2|Δ||x|∕ℏvF
. (B6)

The corresponding continuity equation of the EHDL reads for the top layer.[24]

𝜕tΦ↑ ⋅Φ↑ + 𝜕xjx↑ = iΔ
ℏ

Ψ∗↓𝜎3Ψ↑ − iΔ
∗

ℏ

Ψ∗↑𝜎3Ψ↓ = 2sgn(x) |Δ|2
vFℏ

2 Re
(

a1a∗2
)

e−2|Δ||x|∕ℏvF (B7)

and for the bottom layer

𝜕tΦ↓ ⋅Φ↓ + 𝜕xjx↓ = iΔ
∗

ℏ

Ψ∗↑𝜎3Ψ↓ − iΔ
ℏ

Ψ∗↓𝜎3Ψ↑ = −2sgn(x) |Δ|2
vFℏ

2 Re
(

a1a∗2
)

e−2|Δ||x|∕ℏvF
, (B8)

since i (Δ − Δ∗) = −2sgn(x)|Δ|. Together with the commutators jx = i
ℏ

[HEHDL, x] and jy = i
ℏ

[HEHDL, y], we obtain for the
current components of the EHDL the same expression as given in Equations (12)–(14). This agreement of the currents is
a consequence of the duality relation between the EEDL and the EHDL.
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