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Background: Artificial intelligence (AI) and machine learning (ML) models continue 
to evolve the clinical decision support systems (CDSS). However, challenges arise 
when it comes to the integration of AI/ML into clinical scenarios. In this systematic 
review, we  followed the Preferred Reporting Items for Systematic reviews and 
Meta-Analyses (PRISMA), the population, intervention, comparator, outcome, 
and study design (PICOS), and the medical AI life cycle guidelines to investigate 
studies and tools which address AI/ML-based approaches towards clinical 
decision support (CDS) for monitoring cardiovascular patients in intensive care 
units (ICUs). We further discuss recent advances, pitfalls, and future perspectives 
towards effective integration of AI into routine practices as were identified and 
elaborated over an extensive selection process for state-of-the-art manuscripts.

Methods: Studies with available English full text from PubMed and Google 
Scholar in the period from January 2018 to August 2022 were considered. 
The manuscripts were fetched through a combination of the search keywords 
including AI, ML, reinforcement learning (RL), deep learning, clinical decision 
support, and cardiovascular critical care and patients monitoring. The manuscripts 
were analyzed and filtered based on qualitative and quantitative criteria such as 
target population, proper study design, cross-validation, and risk of bias.

Results: More than 100 queries over two medical search engines and subjective 
literature research were developed which identified 89 studies. After extensive 
assessments of the studies both technically and medically, 21 studies were 
selected for the final qualitative assessment.

Discussion: Clinical time series and electronic health records (EHR) data were 
the most common input modalities, while methods such as gradient boosting, 
recurrent neural networks (RNNs) and RL were mostly used for the analysis. 
Seventy-five percent of the selected papers lacked validation against external 
datasets highlighting the generalizability issue. Also, interpretability of the AI 
decisions was identified as a central issue towards effective integration of AI in 
healthcare.
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1. Introduction

Complications due to clinical deterioration and medical errors are 
often caused by human error, either due to forgetfulness, inattention, 
or inexperience and are far greater than technical failures (1, 2). 
Furthermore, intensive care units (ICUs) are prominent sources of 
large bulk of data collected from each patient. For the special case of 
cardiovascular ICU patients who mostly attribute higher complication 
rates and longer ICU stays (3, 4), it becomes even more challenging 
for the medical staff to spot certain complications or symptoms of 
patients. Considering the promising impact of artificial intelligence 
(AI) for clinical decision support (CDS) (5, 6), implementing AI into 
the cardiovascular ICUs could help minimize the number of medical 
errors by being able to guide the clinician to the correct diagnosis and 
ultimately to an appropriate therapy.

In the context of medical AI, the two major disciplines of 
Medicine and AI need to come together. Recent discoveries in 
medicine and medical technology as well as new advancement in AI 
modeling and computational power increased the application of 
ML-based methodologies in healthcare domains, such as disease 
diagnosis, prognosis and treatment planning (7–10), and overall/
disease-free survival prediction (11–13). In particular, in intensive 
patient monitoring, AI methods have been used for different purposes 
such as prediction of readmission (3, 14–16) and sepsis (17–19) and 
mortality risk assessment (20, 21).

Despite the large body of evidence illustrating the promising 
relevance of AI methodologies in medical domains, there are some 
common challenges which limit the integration of AI-based 
methodologies in daily routines. For instance, trained classifiers may 
make biased predictions due to various sources of bias, such as gender 
bias, present in medical datasets (22, 23). Another challenge is the 
‘black box’ nature of most of the modern deep and recurrent neural 
network models, which necessitates solutions to address explainability 
of these methods when applied to medical domains (24). Furthermore, 
ensuring consistency between the characteristics of open access data 
sets used for training and real clinical data is crucial for the successful 
integration of AI in intensive care routine practice (25). We aimed to 
draw attention to the limitations stemming from bias, interpretability, 
and data set shift issues, which expose a gap in the integration of AI 
in clinical decision making. This gap is mostly caused by medical 
staff ’s lack of trust in AI.

There are already a number of impactful articles which closely 
relate to the current systematic review. Fleuren et al. (26) conducted 
a systematic review and meta-analysis of AI models to predict sepsis 
onset in different wards including normal, emergency and ICU 
stations. Although their findings illustrate that ML models can 
achieve high accuracy in predicting sepsis in their corresponding 
experimental setups and might be considered as alternatives to some 
established scoring systems in clinical routines, they identify a lack 
of systematic reporting and clinical implementation studies in the 
domain which should be overcome in the future. Giordano et al. (27) 

argued that patient risk stratification and patient outcome 
optimization would be the first venues in which AI can practically 
contribute to routine practices. However, the mentioned work 
emphasizes the necessity for medical staff to receive extracurricular 
training on the mechanics of AI decision making and improved 
interpretability. This can ultimately lead to increased trust in AI in 
healthcare scenarios. Syed et  al. (28) identified that predicting 
mortality, sepsis, acute kidney injury (AKI), and readmissions were 
the most common tasks for applied AI in patient monitoring in 
ICUs. Greco et al. (29) identified inconsistencies in diagnosis and 
treatment protocols between different health centers and countries 
as well as the lack of emotional intelligence to be the most critical 
aspects which confine the successful integration of AI driven 
approaches for patient monitoring. Antoniadi et al. (24) addressed 
interpretability as one of the most critical issues towards integration 
of ML-based approaches for CDS, identifying tabular data processing 
XAI-enabled systems and XAI-enabled CDS tools for text analysis 
as the most and the least common approaches in the literature, 
respectively. Also, Yang et al. (30) addressed the medical XAI aspects 
in multi-modal and multi-center scenarios in a mini-review study. 
They further showcased an XAI framework integrated for automated 
classification of corona virus disease (COVID)-19 patients and 
ventricle segmentation using computed tomography (CT) and 
magnetic resonance imaging (MRI) scans. Finally, Abdellatif et al. 
(31) reviewed the applications of reinforcement learning (RL) for 
intelligent healthcare (I-Health) systems, focusing on large networks 
of Internet of mobile things (IoMT) and software defined networks 
(SDNs) producing big data. In the realm of this evolving field, our 
work distinguishes itself by emphasizing the strategies and 
knowledge necessary to bridge the gap and successfully integrate AI 
for clinical decision support in daily intensive care routines, with a 
particular focus on cardiac diseases.

In this systematic review, following the PRISMA (32) and PICOS 
(33) guidelines, we  designed the study in four steps including: 
identification of initial manuscripts through search engine queries and 
subjective searches, screening of original articles upon availability of 
full text in English, eligibility with regard to domain of interest and 
technical significance as well as medical relevance of the studies. 
We  considered the most well-known publisher databases in the 
clinical and medical research domains to search and select high 
quality original research articles. We mainly focused on shortlisting 
the works that aimed at analyzing the applications of AI-assisted 
methodologies for automated patient monitoring in cardiovascular 
ICUs. We further analyzed most common data types as well as mostly 
applied AI algorithms for decision support in patient monitoring. The 
main contributions of this manuscript can be listed as following:

 • Performing a systematic review over patient monitoring articles 
following PRISMA and PICOS guidelines

 • Covering the technical foundations according to the medical AI 
life cycle (34)
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 • Providing an extensive factual and narrative analysis of the 
selected articles

 • Providing expertise from both data science and medical science 
points of view

 • Discussing limitations and insights for the successful integration 
of AI-driven methods for decision making in cardiac ICUs

 • Recommending additional standardization and risk of bias 
criteria applicable to novel medical AI tools with regards to 
generalization and external validation aspects.

In the next sections, first, we discuss the basic concepts which are 
fundamental to be  able to follow the reported findings from the 
selected articles. The Methods section provides the details on the 
screening and selection criteria of the papers followed by the Results 
and Discussion sections which provide a comprehensive outline of the 
findings from the selected contributions. Finally, a short conclusion of 
the findings is given.

2. Background and fundamental 
concepts

According to the best practices (34), the life cycle of medical AI 
includes (a) model development and evaluation, (b) data creation and 
collection, and (c) AI Safety. Therefore, we covered the current state 
of the methods used in major related work, the data used in the 
studies, and the recent advances in the interpretability and explainable 
AI for medicine. The rest of this section briefly describes some of the 
most important concepts in these three aspects which are critical for 
better understanding of the topics that are covered in the next sections. 
Note that, the choice of methods which are discussed in this section 
reflects the methodology implemented in the selected articles as a 
result of the systematic review process.

2.1. Common AI methods applied to 
clinical data for patient monitoring

From a high-level perspective, machine learning (ML) techniques 
can be categorized in three main groups: supervised, unsupervised 
and reinforcement learning. If ground truth labels are available and 
used to train and fit the model (e.g., binary classification using known 
classes), the model corresponds to supervised ML paradigm. 
Otherwise, if the model is trained without prior knowledge on the 
target variable (e.g., clustering), the model corresponds to 
unsupervised ML paradigm. Another ML paradigm that has been 
frequently used for clinical decision support is Reinforcement 
Learning (RL).

Reinforcement learning: In RL, a computational agent is trained 
to maximize the cumulative reward it receives over a series of time-
steps by taking observations of the current state of the environment 
and by evaluating the feedback it receives after taking an action in 
that state (35). More formally, RL is founded on a Markov Decision 
Process (MDP) (36), where the RL agent is trained to learn an 
optimal policy pi* that maximizes the cumulative reward by 
exploring the environment defined by p(s, a, s’) and r, and exploiting 
its knowledge of the environment represented by V_pi or Q_
pi and y.

There is a long history of clinical decisions being formulated as an 
MDP. Initial efforts in this direction focused on dynamic programming 
solutions, while in recent work, variations of the Q-Learning 
algorithm have become more prominent, such as fitted-Q-iteration 
(FQI) (37) or deep Q-networks (DQN) (38). Areas where RL has been 
applied, that are relevant for cardiovascular monitoring include 
targeting of measurements during monitoring and choosing, timing 
and dosing of treatment steps. Many diagnostic and prognostic tasks 
in the healthcare domain are facilitated through the use of a variety of 
supervised ML models including logistic regression (LR), support 
vector machines (SVM), and ensemble methods such as random 
forest (RAF) and extra trees (39–42). This group of AI algorithms are 
often applied on time-independent tabular patient information. For 
textual, higher dimensional data, and grid like data types such as time 
series data and medical images, natural language processing (NLP), 
deep learning, convolutional neural networks (CNNs), and recurrent 
neural networks (RNNs) models are widely applied (25, 43, 44). It is 
quite common in this domain that basic classifiers such as LR and 
decision tree based methods are applied to simplified representations 
of datasets to provide baselines for comparison to more sophisticated 
methods (3, 14).

Logistic regression: As a supervised ML algorithm, logistic 
regression (LR) (45) is a predictive model leveraging the concept of 
probability to solve binary classification problems. Fundamentally, LR 
is a linear regression model with a special type of activation function, 
the so-called sigmoid function or logistic function which, based on a 
given decision boundary, quantifies the probability of belonging to 
each of the binary labels.

Support vector machines: Support vector machines (SVMs) (46) is 
a supervised ML algorithm that aims to find the optimal hyperplane 
which separates data points in one, two, or multi-dimensional space, 
depending on the complexity of the feature space. To maximize the 
probability of true classification of unseen data points, the chosen 
hyperplane has to expose the maximum possible distance, i.e., margin, 
between the data points of different classes, increasing the impact of 
the data points locating nearest to the hyperplane (i.e., support vectors).

Decision trees and ensemble algorithms: Decision trees employ 
tree-structured flowcharts of decisions based on the values of the 
input features to solve classification problems (47). At each node of 
such trees, a decision is made based on a single feature whether to 
make the final prediction or make another decision based on another 
feature. The leaves of a decision tree are the target labels. Ensemble 
algorithms such as random forest (RAF) (48) apply different 
randomized groups of decision trees, denoted as ensembles of trees, 
as well as different bootstrapping mechanisms to come up with the 
final decision on the target labels.

Gradient boosting and categorical boosting: Gradient boosting, 
which is used for classification and regression tasks, draws predictions 
as ensembles of some weak learners, mostly decision trees or random 
forests (49). When it comes to the analysis of categorical data, 
categorical boosting or CatBoost algorithm outperforms other 
gradient boosting methods (50).

Recurrent neural networks: In contrast to conventional feed-
forward neural network models which are mostly used for 
processing time-independent datasets, RNNs are well-suited to 
extract non-linear interdependencies in temporal and longitudinal 
data as they are capable of processing sequential information, 
taking advantage of the notion of hidden states h. In such a model, 
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at each timestamp t, the input data is processed alongside the 
information which was processed in the previous timestamp t-1 
(51). Also, for patient monitoring, a variety of RNN-based models 
such as long short-term memory (LSTM) and gated recurrent unit 
(GRU) are commonly applied.

First introduced by Hochreiter and Schmidhuber in 1997, 
LSTM (52) aims at identifying both short-term and long-term 
dependencies in the sequential data such as clinical time series data. 
LSTMs consist of cells with input, output, and forget gates which 
regulate the flow of information to remember values over arbitrary 
time intervals.

Natural language processing: When it comes to automated 
processing of textual patient data, such as electronic health records 
(EHRs), natural language processing (NLP) comes into action. NLP 
[Allen2003] denotes the set of AI based approaches which are capable 
of identifying underlying patterns in the textual data, hence 
understanding human languages. Taking the examples of EHRs and 
temporal textual patient information stored in medical databases such 
as Medical Information Mart for Intensive Care (MIMIC) (53, 54), 
clinical and medical domains also take advantage of NLP (15).

2.2. Established conventional scoring 
systems used in critical care

Alongside continuous monitoring of patients by the intensivists 
and medical staff during patients stays at ICUs, several scoring systems 
are widely used in critical care units to monitor and manage patients 
states such as the acute physiologic and chronic health evaluation 
(APACHE), the sequential organ failure assessment (SOFA), and the 
mortality prediction model (MPM) (55–57). Such scoring systems 
become handy in studies which aim at analyzing emerging AI 
methods for clinical decision making as they provide established 
baselines for comparison.

Mortality Prediction Models (MPMs) (56) and APACHEs (55) 
are mathematical models that estimate the probability of death for 
critically ill patients in ICUs based on patient data such as 
demographics, diagnoses, and physiological measurements. Each 
of MPM and APACHE use a different set of variables and algorithms 
to predict mortality risk. These models are useful in guiding clinical 
decision-making, evaluating ICU performance, and identifying risk 
factors for mortality. However, they have limitations and should 
be used alongside clinical judgment as they are not designed to 
replace it or provide definitive prognoses. The accuracy of MPMs 
may vary depending on the patient population and the specific 
model used, and they should be validated and calibrated before use 
in clinical practice.

Sequential Organ Failure Assessment (SOFA) (57) is a scoring 
system used to track the progression of organ dysfunction in critically 
ill patients in the intensive care units. It is based on the evaluation of 
six organ systems: respiratory, cardiovascular, hepatic, renal, 
coagulation, and neurological, with the score ranging from 0 to 4 for 
each organ system, and higher scores indicating greater dysfunction. 
The total SOFA score is the sum of the scores for all six organ systems, 
ranging from 0 to 24, and is calculated daily for each patient in the 
ICU. SOFA score is often used in clinical research and quality 
improvement initiatives in ICUs, and it has been shown to be a useful 
predictor of mortality in critically ill patients.

2.3. Medical data modalities for intensive 
patient care

From a general perspective, one can subdivide medical data 
modalities into the following subgroups: structured data (with and 
without timestamp) and unstructured data such as medical image 
modalities and electronic health records (EHR). Like other fields of 
data science, numerical tabular information such as patient 
demographic information (e.g., age and weight) can be used to form 
feature vectors for AI- and ML-based methods. In case of time-
dependent measurements such as lab values and vital signs, the 
dimension of time (i.e., timestamp) should be  integrated in the 
corresponding analysis pipeline, hence the clinical time series data. 
This section provides a brief overview of different data modalities used 
in the scope of this systematic review.

Numerous kinds of data in diverse modalities are processed by 
medical experts and intelligent systems for patient monitoring in 
ICUs. Clinical time series and electrocardiograms (ECGs) are among 
the most common types of data applied in this domain. Furthermore, 
open access databases facilitate objective performance analyses of the 
implemented AI methods.

Clinical time series data: Continuous patient monitoring leads to 
a magnitude of measurements captured and stored at discrete 
timestamps. Regardless of the disease type, a variety of temporal 
datasets such as Electronic health records (EHR), lab values, vital 
signs, diagnoses and treatments records can be  used for patient 
monitoring (58).

Electrocardiograms (ECGs): First invented by William Eindhoven 
in 1902, electrocardiograms (ECGs) (59) are recorded non-invasively 
from the patient’s body surface and are used to represent the heart’s 
electrical activity. ECGs are widely applied for diagnosing heart 
complications also in cardiac ICUs.

2.3.1. Open access datasets
Ensuring that methodology can be  replicated is a key 

consideration in data science, which typically necessitates the sharing 
of data. However, in the medical and clinical field, there are often 
additional ethical limitations and considerations when it comes to 
sharing patient data, which is considered highly sensitive and 
confidential. These ethical concerns must be balanced with the need 
for reproducibility in research. This highlights the importance of open 
access datasets for medical and clinical research. This subsection 
briefly introduces some of the most applied publicly available datasets 
for intensive patient care.

One of the majorly used information platforms in biomedical 
research and education is PhysioNet which offers free access to large 
collections of physiological and clinical data and related open-source 
software, and educational tutorials (60). Among the recently published 
extensive clinical data collections that are present in PhysioNet, 
datasets of High time-Resolution ICU Dataset (HiRID) (61), Medical 
Information Mart for Intensive Care (MIMIC-II, MIMIC-III and 
MIMIC-IV) (53, 54, 62), and eiCU (63) are the ones majorly used for 
studies about intensive care units.

MIMIC is a public database of de-identified electronic health 
records of over 60,000 adult patients admitted to the intensive care 
units at the Beth Israel Deaconess Medical Center. It contains 
information on demographics, diagnoses, laboratory tests, 
medications, and clinical notes collected from various sources such as 
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bedside monitors, clinical documentation, and hospital information 
systems. The database has been widely used in clinical research and 
machine learning applications to develop predictive models, identify 
risk factors, and improve clinical outcomes. Access to the database 
requires an application process and approval from the Institutional 
Review Board at BIDMC, but it is publicly available through 
PhysioNet, a repository of physiological data and clinical information 
maintained by MIT.

Intensive care units (ICU) are a prominent source of time series 
data, as the nature of intensive care usually requires close and regular 
monitoring of patients and thereby produce a high density of 
measurements. Instances of time-dependent measurement data that 
can be found in publicly available ICU datasets include time-stamped 
nurse-verified physiological measurements such as hourly 
documentation of heart rate, arterial blood pressure, or respiratory 
rate. Other examples include documented progress notes by care 
providers, continuous intravenous drip medications, and fluid 
balances (53).

2.4. Interpretability and explainability of AI 
in healthcare

Usually, in intensive patient care, the mission of AI systems is to 
provide risk estimates and assist in decisions by providing predictions, 
which then need to be  understood, interpreted and validated by 
clinicians. To assess the trustworthiness, the AI developers together 
with clinicians have different sorts of higher-order evidence at hand 
(64). Most importantly, as identified by related work (24) and 
discussed in some of the selected manuscripts (25, 65–67), before an 
AI system is being implemented in clinical settings, it is being 
technically and clinically validated. The validation yields evidence of 
a system’s accuracy and reliability through a standard procedure. 
Besides these evaluations, it is important to transfer the knowledge 
about what the AI system has focused its attention on through some 
post hoc explanations. This AI transparency is crucial in medical AI, 
especially in the use case of patient monitoring (68). Transparency 
refers to algorithmic procedures that make the inner workings of a 
‘black box’ algorithm interpretable to humans (69). Another factor is 
traceability that intersects with the concepts of method and results in 
reproducibility and replicability of underlying data analysis. Covering 
these aspects relates to providing sufficient detail about procedures 
and data so that the same procedures could be  exactly repeated. 
Auditability of AI shapes itself more and more as a necessary tool in 
achieving innovation in a secure, transparent way.

To interpret decisions made by AI models with deep architectures 
and to cope with their ‘black box’ nature, recursive feature elimination 
(RFE) and SHapley Additive exPlanations (SHAP) methods are 
commonly applied also in the medical AI domain. RFE takes an ML 
classifier and the desired number of features as input and starts from 
the entire input feature set. Then at each recursion step, the features 
are ranked based on an importance metric and the least relevant 
variables are removed. This procedure continues until the desired 
number of features are chosen (70). Inspired by game theory, SHAP is 
used to explain the output of any machine learning model by 
connecting optimal credit allocation with local explanations, assigning 
each input feature an importance value for a particular prediction 
(71). Nevertheless, the explainability provided by most of conventional 

methods such as RFE and SHAP is rather located on model level and 
addresses understanding of how a model derives a certain result, 
lacking the semantic context which is required for providing human-
understandable explanations. In medical applications, the quest for 
explainability is usually motivated by medical semantic understanding, 
thus explainability on e.g., syndrome level which is the language of 
physicians (72).

3. Methods

3.1. Search strategy and screening

We followed the preferred reporting items for systematic reviews 
and meta-analyses (PRISMA) (32) and the population, intervention, 
comparator, outcome, and study design (PICOS) (33) guidelines. 
However, as meta-analysis was not originally intended for this study, 
we only followed the parts of PRISMA that only apply to systematic 
reviews. As this had led to a group of studies covering a diverse 
selection of datasets and algorithms, a comprehensive meta-analysis 
was not feasible. From the PubMed and Google Scholar databases, the 
following keywords are searched: (“artificial intelligence” OR “AI” OR 
“machine learning” OR “ML”) AND (“ICU” OR “intensive care” OR 
“intensive care unit” OR “intermediate care unit” OR “IMC” OR 
“IMU” OR “patient monitoring”) AND (“cardiovascular” OR 
“cardiac”). Moreover, a subjective literature research according to most 
relevant related studies complement results of the search engine 
queries. The publications dated from January 2018 to August 2022.

In the screening phase, original studies focusing on clinical 
decision support for adult subjects (age ≥17 years) visiting 
cardiovascular ICUs were analyzed. Thus, studies focusing on 
pediatric cohorts and review articles were removed from the results of 
search in the screening process. The summary of PICOS scheme 
containing the inclusion as well as exclusion criteria is outlined in 
Table 1.

3.2. Quality assessment, selection criteria, 
and risk of bias assessment

All the papers collected as results of search engine queries were 
assessed whether they held enough significance and relevance from 
both data science and medical points of view. First, each of the 
papers underwent qualitative reviews by two independent reviewers 
which were selected randomly from a group of reviewers with data 
science and AI background. In case of agreement about selecting the 
manuscript between the two assigned reviewers, the manuscript 
would be  short-listed or eliminated from the systematic review 
accordingly. On the contrary, in case of a mismatch between the 
assessments carried out by the first two reviewers, a third reviewer 
with higher qualification would decide whether to select or reject the 
manuscript. Consecutively, the selected papers underwent another 
assessment step by a group of medical experts whether they fit 
within the scope of this study: patient monitoring in cardiovascular 
ICUs. The technical criteria to assess the manuscripts qualitatively 
include proper research concept, representative train/test cohorts, 
and proper cross-validation either within the dataset or against 
external cohorts.
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To visualize the risk of bias assessment results, the robvis 
package (73) is used. As the criteria for risk of bias, the following 
seven items have been considered: reasonable cohort size (D1), 
proper cross-validation (D2), external validation set (D3), blinding 
of participants and personnel (D4), blinding of outcome assessment 
(D5), incomplete outcome data (D6), and selective reporting (D7). 
To account for subjectivity, the bias assessment was conducted with 
the same approach as for the study selection, i.e., with random 
assignments to two reviewers followed by a final validation by a 
third expert.

4. Results

In this section, the results of the systematic review are 
elaborated. First, a summary of the screening step is given followed 
by narrative reviews of the selected papers. Afterwards, a 
comprehensive analysis of the papers is provided which comprise a 
risk of bias analysis and assessments of studies outcomes, used 
datasets, and applied algorithms. Furthermore, if existing, relevant 
discussions on the integration of AI in cardiovascular ICUs 
are reported.

4.1. Study selection

The search engine queries have resulted in 89 papers in total. 
Out of these papers, 60 were from PubMed database and 25 were 
from Google Scholar. Another four papers were selected from 
subjective literature research from most relevant related articles. In 
the screening phase, 12 papers were excluded due to not available 
full text and three studies were excluded because of being review 
articles. In the eligibility assessment step, 11 papers were eliminated 
as they analyzed non-adult cohorts, 27 studies were excluded as 
considered not to be of proper significance from data science point 
of view, and 15 papers eliminated because they did not particularly 
focus on cardiovascular ICU cohorts (see Figure 1). As a result, 21 
papers have been selected for the qualitative and 
quantitative analyses.

4.2. Summary of the included studies

Table 2 provides a summary of the important contents of the 21 
included papers. This subsection presents a narrative review of 
these studies.

Zhao et al. (65) integrated a categorical boosting ML model to 
predict extubation failure resulting in in-hospital or 90-day mortality 
in patients visiting ICUs. To train their model, they used clinical time 
series data from the MIMIC-IV database. For the test purposes, they 
applied an external data set. To identify the most important predictive 
factors, they applied RFE and SHAP methods. Their results suggest 
that critically ill patients might benefit from AI assisted mechanical 
ventilation. They also provide an UI for model validation which is 
freely accessible online. They mention interpretability and 
inconsistency in train and test datasets as the most critical challenges 
towards integrating AI in clinical practice.

Jentzer et  al. (66) used multivariate logistic regression on 
numerical clinical variables extracted from ECGs from their own 
facilities to quantify mortality risk due to left ventricle systolic 
dysfunction in patients staying at ICUs. Their findings suggest the 
relevance of the AI-driven methodology for the quantification of 
cardiac patients’ survival potential and identify lack of explainability 
as a challenge to be  handled before it can be  integrated in 
prognostic pipelines.

Gandin et al. (74) investigated the interpretability of an RNN 
model with long short-term memory (LSTM) architecture as used for 
survival prediction in a cohort of patients visiting cardiovascular 
ICUs. They analyzed the MIMIC-III dataset for both training and test 
purposes. The results of their study demonstrate that incorporating an 
attention layer into the LSTM model can enhance the interpretability 
of the AI model’s decisions, leading to greater reliability in AI 
decision making.

Andersson et al. (67) took advantage of artificial neural networks 
(ANNs) to anticipate neurological outcomes due to out-of-hospital 
cardiac arrest (OHCA). They analyzed clinical variables and 
biomarkers from a cohort of patients from their own hospital and used 
SHAP method for identifying the most relevant factors. They showed 
that the clinical parameters captured in the first 3 days of ICU stay 
contribute to OHCA prognostication. Although their results suggest 

TABLE 1 Population, intervention, comparator, outcome, and study design (PICOS) criteria for the systematic review.

Parameter Inclusion criteria Exclusion criteria

Population
 • Adults (age ≥ 17)

 • Patients admitted to cardiovascular ICU

 • Age < 17

 • No cardiovascular patients

 • No ICU patients

Intervention Any No restriction

Comparator
 • At least one AI/ML algorithm

 • At least one control group

 • No AI/ML algorithm

 • No control group

Outcomes Any No restriction

Study designs
 • Retrospective, prospective, or ambispective data analysis

 • Hold enough data scientific significance

 • Hold enough medical relevance

 • No proper statistical analysis significance

 • No proper cross-validation

 • No enough medical relevance
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reliable predictions, they insist on external validation with larger 
cohorts to assess generalizability of their methods.

Parsi et al. (39) took advantage of supervised machine learning 
methods such as support vector machines (SVM) to analyze data 
extracted from ECGs to predict paroxysmal atrial fibrillation in ICU 
patients with high accuracy. For their training and test, they applied 
open access data from the atrial fibrillation prediction database 
(AFPDB) of PhysioNet. Their primary contribution involves 
integrating an AI model with high performance onto implantable 
devices with low computational power.

Yu et  al. (40) evaluated several ML models including logistic 
regression, random forest, and adaptive boosting (Ada) as applied to 
clinical time series data (from MIMIC-III database) for the prediction 
of long-term survival of patients after cardiac surgery, highlighting the 
significance of Ada model. As the generalizability plays an important 
role in integration of AI-assisted methods, they also provide a freely 
accessible online platform for the validation of their model against 
external sets of data.

To predict noninvasive ventilation (NIV) failure in cardiac ICU 
patients, Wang et  al. (75) took advantage of categorical boosting 
alongside RFE and SHAP methods for analyzing most important 
factors among clinical time series data. They used open access data 
from the eICU-CRD database for training and data from their own 
hospital for test purposes. They have shown the relevance of the AI 
model and provide an online tool for model validation, while 
identifying lower specificity in predictions of AI as the most 
challenging issue which limits generalizability of their findings.

Chen et  al. (41) analyzed different supervised ML classifiers 
(including logistic regression, SVM, random forest, artificial neural 

networks and XGBoost) for the task of predicting ventilator weaning 
in the next 24-h time windows, given non-time series clinical data 
corresponding to a cohort of cardiac ICU stays in their facilities. Their 
key finding is that ventilator weaning can be  anticipated using a 
limited number of clinical factors such as expiratory minute 
ventilation, expiratory tidal volume, ventilation rate set, and heart rate. 
As they only applied data from their own center, generalizability of 
their findings remains in question.

Dutra et al. (76) applied a variety of statistical and ML methods 
including Cox and Kaplan–Meier estimators as well as ElasticNet (85) 
and survival trees to quantify mortality risks of ICU patients due to 
heart failure with mid-range ejection fraction (EF). Their findings 
suggest that there is no significant correlation between EF and survival 
probability of the patients. As they only analyzed data from a single 
center, their findings are subject to bias, hence the need for follow-up 
generalizability assessments.

Bodenes et al. (42) applied and compared AI classifiers such as 
k-NN, SVM, and decision trees to predict survival of the ICU patients 
due to heart rate variability (HRV). They analyzed clinical time series 
from a single center and proposed a low cost and efficient model for 
HRV analysis. However, their findings are subject to further 
assessments against external data cohorts. They also identified the lack 
of global standardization of HRV measurement methods and 
interpretability of AI models as limitations to overcome in the future.

Moazemi et al. (25) evaluated two alternative long short-term 
memory (LSTM)-based models to predict readmission risks in 
cohorts of cardiovascular ICU patients, analyzing clinical time series 
data as well as patient level information. They used a cohort of cardiac 
ICU stays from MIMIC-III as well as a dataset from their own hospital 

FIGURE 1

The PRISMA diagram. From a total of 89 papers identified by the search queries from the three sources, 15 and 53 papers were excluded in the 
screening and eligibility assessment phases, respectively. Accordingly, 21 papers were included to be reported.
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TABLE 2 The summary of the included studies. The most important contents of the 21 studies are summarized.

Study Population Study 
designs

Predicted 
outcome(s)

Data 
type(s)

Method(s) Main 
contribution(s)

Identified 
challenge(s) 
towards 
integration of 
AI in practice

Zhao et al. 

(65)

16,189 adult 

(age > 18) patients 

from MIMIC-IV

Retrospective 

training, 

prospective 

validation

Extubation 

failure

Clinical time 

series 

(MIMIC-IV 

and domestic)

Categorical 

boosting with 

SHAP and RFE

Well-performing AI 

model (up to 0.83 

AUROC), increased 

interpretability, open 

access UI for model 

validation

Interpretability, 

dataset shift 

problem

Jentzer et al. 

(66)

11,266 adult (Mean 

age 68 ± 15 years) 

patients from 

Mayo Clinic ICU

Retrospective 

data analysis

Mortality risk Numerical 

clinical data 

extracted from 

ECGs 

(domestic)

Multivariate 

logistic regression

Well-performing AI 

model (up to 0.83 

AUROC)

Interpretability

Gandin et al. 

(74)

10,616 patients 

from MIMIC III

Retrospective 

data analysis

Mortality risk EHR (MIMIC-

III)

RNN (LSTM with 

attention layer)

Well-performing AI 

model (up to 0.79 

AUROC), attention layer 

to increase the 

interpretability of LSTM

Interpretability and 

reliability

Andersson 

et al. (67)

932 adult 

(age ≥ 18) patients 

from 36 ICUs 

across Europe and 

Australia

Retrospective 

data analysis

Neurological 

outcome 

following out-of-

hospital cardiac 

arrest (OHCA)

Clinical 

variables and 

biomarkers 

(domestic-

multicenter)

ANN with SHAP Reliable AI model (up to 

0.94 AUROC) using 

cumulative clinical data 

from first 3 days of ICU 

stay

Generalizability, 

effect of outliers

Parsi et al. 

(39)

53 patients from 

PhysioNet

Retrospective 

data analysis

Paroxysmal atrial 

fibrillation

ECG 

(PhysioNet)

SVM, k-NN, RF, 

MLP

High performance AI (up 

to 0.79 accuracy) on 

implantable defibrillator 

with low computation 

power

Low computational 

power on wearable 

and implantable 

devices

Yu et al. (40) 7,368 adult 

(age > 18) patients 

from MIMIC-III

Retrospective 

data analysis

4-year mortality 

risk after cardiac 

surgery

Clinical time 

series 

(MIMIC-III)

LR, ANN, Ada, 

NB, RF, etc. with 

RFE

Well-performing AI 

model (up to 0.80 

AUROC), open access UI 

for model validation

Generalizability

Wang et al. 

(75)

929 adult (age > 18) 

patients from 

eICU-CRD

Retrospective 

training, 

prospective 

validation

Noninvasive 

ventilation (NIV) 

failure

Clinical time 

series (eICU-

CRD and 

domestic)

Categorical 

boosting with RFE 

and SHAP

Well-performing AI 

model (up to 0.87 

AUROC) applied to easily 

available clinical variables, 

open access UI for model 

validation

Generalizability, 

low specificity of AI 

predictions

Chen et al. 

(41)

1,439 adult (mean 

age 

65.05 ± 12.53 years) 

patients from 

Cheng Hsin 

General Hospital

Retrospective 

data analysis

Ventilator 

weaning time

Non-time 

series clinical 

data 

(domestic)

LR, SVM, RF, 

ANN, XGBoost

Well-performing AI 

model (up to 0.88 

AUROC), identify most 

simplified key parameters

Generalizability

Dutra et al. 

(76)

519 adult (age > 18, 

mean age, 

74.87 ± 13.56 years) 

patients admitted 

to a Brazilian 

cardiac ICU

Ambispective 

data analysis

Mortality risk 

from heart failure 

with mid-range 

ejection fraction 

(EF)

Non-time 

series clinical 

data 

(domestic)

Cox, Kaplan–

Meier, ElasticNet, 

survival tree

EF is not significantly 

correlated with mortality

Generalizability

(Continued)
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TABLE 2 (Continued)

Study Population Study 
designs

Predicted 
outcome(s)

Data 
type(s)

Method(s) Main 
contribution(s)

Identified 
challenge(s) 
towards 
integration of 
AI in practice

Bodenes 

et al. (42)

540 adult patients 

admitted to Brest 

University 

Hospital’s cardiac 

ICU

Prospective data 

analysis

Mortality risk 

and heart rate 

variability (HRV)

Clinical time 

series 

(domestic)

k-NN, SVM, LR, 

decision trees

Low cost and efficient AI 

model for HRV analysis

Generalizability, 

interpretability, lack 

of standardized 

HRV measurement 

methods

Moazemi 

et al. (25)

11,513 patients 

from MIMIC-III 

and 502 from 

University Hospital 

Düsseldorf ’s 

cardiac ICU 

(age ≥ 17)

Retrospective 

data analysis

ICU readmission Clinical time 

series 

(MIMIC-III 

and domestic)

RNN (LSTM) Well perforing AI (up to 

0.82 AUROC), data-

driven approach, 

validation with external 

cohort

Interpretability, 

dataset shift 

problem

Baral et al. 

(44)

7,611 patients 

(age > 15) from 

MIMIC-III cardiac 

ICUs

Retrospective 

data analysis

Cardiac arrest Clinical time 

series 

(MIMIC-III)

Multi-layer 

perceptron (MLP), 

RNN 

(bidirectional 

LSTM)

Well-performing AI model 

(up to 0.94 AUROC) to 

reduce false alarm for 

cardiac arrest, improved 

model compared to 

normal LSTM

Generalizability

Qin et al. 

(43)

49,168 patients 

from MIMIC-III

Retrospective 

data analysis

Sepsis Textual and 

structured 

clinical data 

(MIMIC-III)

NLP (BERT), 

Amazon 

Comprehend 

Medical for data 

processing, 

XGBoost (for 

classification)

Outperform PhysioNet’s 

sepsis prediction challenge 

winner (up to 0.89 

AUROC)

Generalizability

Nanayakkara 

et al. (77)

Adult (age ≥ 17) 

septic patients 

from MIMIC-III

Retrospective 

data analysis

Sepsis treatment 

planning

Clinical time 

series 

(MIMIC-III)

RL Introducing a novel 

physiology-driven 

recurrent autoencoder, 

highly interpretable, 

uncertainty quantification

Lack of 

standardization, 

how/when AI is 

considered safe 

enough for clinical 

routine

Zheng et al. 

(78)

1,362 critically ill 

COVID patients 

(mean age 69.7) 

from New York 

University 

Langone Health

Retrospective 

data analysis

Managing oxygen 

flow rate to 

reduce mortality 

risk

EHR 

(domestic)

RL AI model to identify 

optimal personalized 

oxygen flow rate to reduce 

mortality rate

Generalizability

Peine et al. 

(79)

61,532 and 200,859 

ICU stays of adult 

patients from 

MIMIC-III and 

eICU datasets

Retrospective 

data analysis

Optimization of 

mechanical 

ventilation to 

reduce mortality 

risk

Clinical time 

series 

(MIMIC-III 

and eICU)

RL Introduce VentAI to 

dynamically optimize 

mechanical ventilation for 

individual patients

Generalizability, 

algorithm bias, 

missing/false data

Akrivos et al. 

(80)

162 adult patients 

(18 < age < 90 on) 

from MIMIC-II

Retrospective 

data analysis

Cardiac arrest Transformed 

clinical time 

series 

(MIMIC-II)

integrated model of 

sequential contrast 

patterns using 

Multichannel 

Hidden Markov 

Model

High sensitivity (with the 

average of 0.78) and 

specificity to identify high 

risk patients

False positive rate in 

classification results

(Continued)

https://doi.org/10.3389/fmed.2023.1109411
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Moazemi et al. 10.3389/fmed.2023.1109411

Frontiers in Medicine 10 frontiersin.org

for train and test purposes, respectively. Their findings highlight the 
benefit of RNN models in general, and the need for consistency in 
train and validation cohorts in particular. They further highlight the 
dataset shift problem and interpretability of deep learning models as 
critical future challenges for AI in CDS.

Baral et  al. (44) applied multi-layer perceptrons (MLP) and 
bidirectional LSTM models for the prediction of cardiac arrest and 
have shown the superiority of the enhanced bidirectional model to the 
normal LSTM. They analyzed a cohort of data from MIMIC-III for 
both training and test purposes. Their proposed RNN model showed 
reasonable performance in predicting cardiac arrest, reducing the false 
alarm rate significantly. As they did not validate their model with 
external data, their findings are subject to further 
generalizability assessments.

Qin et  al. (43) applied Bidirectional Encoder Representations 
from Transformers (BERT) (86) and Amazon Comprehend Medical 
techniques (as natural language processing (NLP) approaches) to 
process textual data and XGBoost method to classify patients with 
high risk of sepsis. They leveraged open access and structured clinical 
data from the MIMIC-III database for training and test. Their 
proposed pipeline outperformed the winner of PhysioNet challenge 
for sepsis prediction in 2019 which had applied XGBoost and Bayesian 

optimization without processing textual data (87). However, their 
findings lack validation against independent external cohorts, hence 
the generalizability issue.

Nanayakkara et al. (77) took advantage of reinforcement learning 
approaches to introduce a novel recurrent autoencoder for the task of 
sepsis treatment planning. They used clinical time series data from the 
MIMIC-III database for their analysis which include interpretable 
uncertainty quantification of clinical factors. They further discussed 
the lack of globally agreed standards in the assessments of safeness of 
AI methodologies as one of the most critical challenges in the field.

Zeng et al. (78) also applied reinforcement learning methodologies 
to quantify the optimal personalized oxygen flow rate to minimize the 
risk of mortality in cardiac ICU patients. To this end, they analyzed 
electronic health record (EHR) data from cardiovascular patients’ 
stays at their hospital in a single center study. Thus, their findings 
might be subject to future external validation.

In another study leveraging reinforcement learning 
methodologies, Peine et al. (79) introduced VentAI, an RL based 
pipeline for personalized optimization of mechanical ventilation 
in patients staying at cardiovascular ICUs. They analyzed clinical 
time series data from two open access databases (MIMIC-III and 
eICU) and identified generalizability, bias in AI algorithms, and 

TABLE 2 (Continued)

Study Population Study 
designs

Predicted 
outcome(s)

Data 
type(s)

Method(s) Main 
contribution(s)

Identified 
challenge(s) 
towards 
integration of 
AI in practice

Aushev et al. 

(81)

75 adult (age > 18)

patients from 

ShockOmics 

European database

Retrospective 

data analysis

Mortality due to 

septic and 

cardiogenic 

shock

ECG 

(ShockOmics 

Dataset)

SVM, Random 

Forest, RFE, 

Bayesian networks

Apply feature selection to 

identify the most relevant 

predictors of mortality 

due to septic and 

cardiogenic shock using 

ECG with high certainty 

(up to 0.84 AUROC)

–

Kim et al. 

(82)

29,181 adult 

(age > 18) ICU 

patients from 

Yonsei Health 

System (Severance 

and Gangnam 

Severance 

Hospitals)

Retrospective 

data analysis

Acute respiratory 

failure and 

cardiac arrest

Time series 

(domestic)

Deep Learning 

(LSTM)

Introduce FAST-PACE for 

preparing immediate 

intervention in emergency 

situations, outperforming 

some established scoring 

systems (e.g., SOFA) (up 

to 0.88 AUROC)

Lack of relevant 

input data to AI 

models, lack of 

external validation, 

imbalanced 

datasets, lack of real 

time measurements 

of vital signs

Meyer et al. 

(83)

11,492 ICU stays 

from 9,269 adult 

(age ≥ 18) patients 

from a German 

cardiovascular 

tertiary care center

Retrospective 

data analysis

Mortality, renal 

failure, 

postoperative 

bleeding leading 

to operative 

revision

Time series 

(domestic)

Deep learning 

(RNN)

Predict severe 

complications after 

cardiothoracic surgery 

with a higher certainty (up 

to 0.96 AUROC), 

validation against 

MIMIC-III dataset

Dataset shift, biased 

data, 

generalizability, 

transparency and 

interpretability of 

AI decision making

Yoon et al. 

(84)

2,809 Adult 

(age > 18) patients 

from MIMIC-II

Retrospective 

data analysis

Tachycardia as a 

surrogate for 

cardiorespiratory 

instability (CRI)

Vital signs 

time series 

(MIMIC-II)

Regularized 

logistic regression 

(LR), Random 

Forest

Developed a risk score for 

predicting tachycardia 

episodes, AI model with 

high accuracy (up to 0.86 

AUROC)

Timestamp 

mismatching and 

data sparsity, 

specificity of 

predictions, lack of 

external validation
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missing and false entries in the measured clinical parameters as the 
most important challenges towards integration of AI in 
clinical practice.

Applying regularized logistic regression and random forest 
algorithms to vital signs from MIMIC-II dataset, Yoon et  al. (84) 
suggest that predicting tachycardia could increase clinical awareness 
of a higher risk of future hypotension and subsequently other forms 
of cardiorespiratory instability (CRI). But they did not directly 
compare their model to conventional scoring systems or conduct 
validation studies against independent sets of data.

Meyer et al. (83) applied a deep recurrent model to analyze time 
series data for the task of predicting severe complications in critical 
care units after cardiovascular surgery such as mortality, renal failure, 
and postoperative bleeding leading to operative revision. Their model 
outperforms clinical reference tools and is available to be integrated 
in EHR systems. They further validate the performance of their model 
which is trained using domestic data against external data from the 
MIMIC-III database and highlight the importance of generalizability 
and interpretability of AI methods in clinical practice.

Kim et al. (82) introduced Feasible Artificial Intelligence with 
Simple Trajectories for Predicting Adverse Catastrophic Events 
(FAST-PACE), an LSTM model to process clinical time series data, to 
predict events of acute respiratory failure and cardiac arrest. They fit 
their model using a domestic cohort of data and show the superiority 
of their model compared to some established scoring systems such as 
sequential organ failure assessment (SOFA) and mortality prediction 
model (MPM). Their findings further identify lack of external 
validation and inconsistencies in real time measurement schemes in 
critical care units as some limitations of data-driven approaches 
towards clinical decision making.

Aushev et al. (81) applied different feature selection techniques 
such as recursive feature elimination (RFE) in combination with 
SVM and random forest classifiers to identify most relevant features 
that could predict mortality due to shock in the intensive care unit. 
To this end, they analysed ECG data from ShockOmics dataset as 
part of an Europe funded project. As their patient cohort with 75 
subjects is relatively small, their findings might be  subject to 
further assessment.

Akrivos et al. (80) took advantage of the MIMIC-II dataset to 
integrate a model of sequential contrast patterns using the 
Multichannel Hidden Markov Model which is able to predict cardiac 
arrest in cardiovascular ICUs. Their approach takes advantage of 
clinical time series data after transforming them to sequential patterns. 
Their model achieves high performance, while suffering from a 
relatively low false positive rate in classifier predictions. This identifies 
rooms for follow-up studies including data from 
independent databases.

4.3. Risk of bias assessment

Figure  2 provides an overview of the risk of bias analysis 
results. Most of the studies conducted proper cross-validation 
methods. However, only five studies used independent external 
datasets for the validation of their models (Figure  3), which 
identifies lack of generalizability as a common issue towards 
integration of AI methodologies across different research groups 
and medical centers.

4.4. Studies’ outcomes

As illustrated in Figure 4, mortality as well as cardiac, sepsis and 
respiratory complications rank amongst the most common clinical 
outcomes analyzed by the selected literature. This is justified as most 
of the patients visiting cardiovascular ICUs have had cardiac surgeries 
beforehand or are subject to higher cardiac and 
respiratory complications.

4.5. Analyzed data types

Figure 5 shows an overview of the data modalities analyzed in the 
selected papers. Clinical time series is the most common group, while 
EHR and textual data are the least common groups. Moreover, as 
presented in Table 2, 13 studies out of 21 selected studies utilized open 
access datasets with 10 studies using different versions of MIMIC 
database either for training or validation purposes.

4.6. AI algorithms and models

Figure 6 outlines the AI methods for model development and 
interpretation of the models’ decisions as utilized by the included 

FIGURE 2

The risk of bias diagram for the selected studies. Each row 
corresponds to a selected study. The columns D1–D7 correspond to 
different risk criteria. The subjective judgements are color-coded as 
explained in the legend. The final column represents the overall 
judgement for the corresponding study.
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studies. The most common group of algorithms are linear or decision 
tree-based methods, followed by recurrent models. Only five studies 
included feature selection or explainable AI methods. Although the 
high level of diversity in the datasets and algorithms which are utilized 
in the selected papers hinders us from conducting comprehensive 
performance meta-analysis, as outlined in Table 2, area under the 
receiver operating characteristics curve (AUROC) ranging from 79 to 
96% throughout the entire cohort of papers, is the most commonly 
reported metrics item.

4.7. Concerns towards integration of AI in 
clinical routine

Figure 7 provides an overview of the concerns and limitations for 
the integration of AI for CDS in cardiac ICUs as discussed in the 
included papers, highlighting generalizability, interpretability, and 
dataset shift as the most central issues.

5. Discussion

Conventionally, patients visiting different care units undergo 
continuous examinations and interventions during their stays at the 

corresponding units. Thus, the physicians and medical staff are 
required to proactively monitor all the patients’ critical signs and 
examination results regardless of their types and frequencies. In 
particular, for cardiovascular patients who are subject to higher 
complication rates and longer stays at intensive care units (ICUs) (4, 
14), the increasing amounts of propagated and interconnected health-
related factors captured along the patients’ stays expose challenges 
towards taking appropriate and timely decisive actions for the 
physicians. These challenges are signified as many of the sources of 
multimodal temporal data used to make diagnostic or prognostic 
decisions, such as EHR extracted laboratory variables and vital signs, 
might be non-linearly correlated. Therefore, to assist the physicians 
and to complement their decision-making routines, there is an 
evolving need for appropriate clinical decision support systems 
(CDSS) leveraging modern AI-driven methodologies which are 
capable of investigating and identifying non-linear correlations in the 
multimodal patient data.

Advancements in AI are taking place continuously. Their presence 
in medicine is ever growing, and they could soon be present in cardiac 
ICUs. AI has the ability to assist clinicians in diagnosing arrhythmias, 
as shown in Parsi et al. where they were able to detect atrial fibrillation 
with a sensitivity and specificity >96% (39). Atrial fibrillation is a very 
common complication post cardiac surgery, which if not recognized, 
can have a significant negative impact on a patient’s health. The sooner 

FIGURE 4

The overview of the outcomes of the selected studies. The bar chart shows how frequent each study outcome has been, with the X axis quantifying 
the number of studies. Note that some studies analyzed multiple outcomes.

FIGURE 3

The summary of the risk of bias analysis. Each bar chart corresponds to one criteria of bias, stacked along the Y axis. The X axis quantifies the 
percentage of the studies with the corresponding color-coded subjective assessment as explained in the legend.
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atrial fibrillation is detected and treated, the higher are the chances of 
conversion into sinus rhythm. Another role AI can play is predicting 
therapeutic outcomes and thereby helping plan for further treatment. 
In the paper by Andersson et  al. the authors showed their ANN 

provided good prognostic accuracy in predicting neurological 
outcomes in comatose patients post out-of-hospital cardiac arrest (67). 
By having the capability to predict neurological outcomes, AI can help 
physicians decide whether further treatment would be beneficial for 

FIGURE 5

The overview of the data modalities analyzed in the selected studies. The bar chart shows how frequent each data modality has been, with the X axis 
quantifying the number of studies. Note that some studies analyzed multiple data modalities.

FIGURE 6

The overview of the AI methods and models applied for outcome prediction or interpretability. The bar chart shows how frequent each AI method has 
been, with the X axis quantifying the number of studies. Note that some studies applied multiple algorithms or methods (LR, logistic regression; SVM, 
support vector machine; DT, decision trees; RF, random forest; ANN, artificial neural networks; CatBoos, categorical boosting; XGBoost, extreme 
gradient boosting; RNN, recurrent neural networks; LSTM, long short-term memory; RL, reinforcement learning; NLP, natural language processing; 
RFE, recursive feature elimination; SHAP, SHapley Additive exPlanations).

FIGURE 7

The overview of the concerns towards integration of AI-driven decision support tools in clinical routines as discussed in the selected studies. The bar 
chart shows how frequent each concern has been, with the X axis quantifying the number of studies. Note that some studies mentioned multiple 
concerns.
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patients with neurological complications post cardiac arrest in the 
form of neurological rehabilitation for instance. Thus, it could help 
improve patient quality of life in those who would benefit, as well as 
filtering those who would not, thus ideally lowering the demand for 
neurological rehabilitation spots in clinics, which are already 
oversaturated with patients on waiting lists. Finally, AI is capable of 
optimizing and fine tuning therapies, as shown in Peine et  al. 
concluding AI was capable of delivering high performance 
optimization of mechanical ventilation in critical care, sometimes 
even exceeding physicians in comparison (79), and in Zheng et al. 
where AI was able to calculate the optimal oxygen therapy in 
COVID-19 patients, which was shown to be less on average than the 
amount recommended by physicians (78). This goes to show how AI 
is capable of improving general treatment and patient outcomes in 
ICUs while at the same time reducing the usage of costly materials, 
resources and services.

As illustrated in Figures 2, 3, our risk of bias analysis shows that 
most of the studies pass the criteria regarding blinding of the 
assessments and reporting bias. However, the findings revealed rooms 
for further consideration of universal validation guidelines, 
highlighting the lack of validation against external data cohorts. Thus, 
compared to conventional risk of bias criteria, we included three extra 
criteria (D1–D3) which address data-driven aspects of bias 
considering cohort size, proper cross-validation, and external datasets 
for validation purposes. We  believe, integrating these extra bias 
assessment criteria should be followed in systematic reviews in the 
medical AI field.

To provide an overview of the results of this systematic review, 
most of the selected studies focused on critical cardiac and 
respiratory complications resulting in mortality of patients visiting 
cardiac ICUs (Figure  4). To this end, as illustrated in Figure  5, 
numerical measurements (either singular or time-dependent) 
captured during patients’ stays at ICUs are extensively used for 
model training and evaluation in most of the studies, while textual 
data are the least used modality in this regard. Consecutively, 
depending on the input data, suitable AI-methods are utilized for 
model development. As shown in Figure 6, supervised ML classifiers 
such as SVM and random forest alongside XGBoost and CatBoost 
and reinforcement learning (RL) are the most common methods. 
Moreover, when it comes to analyzing clinical time series data and 
textual data, recurrent neural networks (RNNs) and natural 
language processing (NLP) come to action, respectively. For the 
special case of integrating NLP for processing textual health 
records, the lack of systematic guidelines for reporting EHRs 
becomes critical when no persistent vocabulary exists, especially for 
the non-English speaking centers for which less data is available for 
training and validation purposes.

Our findings further highlight the importance of utilizing open 
access datasets to provide AI-assisted clinical decision support in 
cardiovascular ICUs. While there are clear benefits to using open 
access datasets such as MIMIC in the field of critical care, it is 
important to consider the potential limitations of such datasets. Open 
access datasets may not fully capture the nuances of specific 
healthcare systems or populations in certain regions, which may 
impact the generalizability of the AI models trained on them. 
Therefore, researchers and clinicians should carefully evaluate the 
suitability of open access datasets for their particular use case and 

consider supplementing them with domestic datasets if necessary. 
Nonetheless, open access datasets can facilitate collaboration and 
knowledge sharing, which are essential for advancing the field of 
AI-assisted clinical decision making. Also, open access datasets are 
often rigorously curated and annotated by experts, ensuring the data 
is of high quality and can be  used reliably. On the other hand, 
domestic datasets may not have the same level of diversity and may 
be limited in size, leading to suboptimal AI models. Nevertheless, 
regardless of the fact that which kind of data is used to fit AI agents, 
a proper cross-validation scheme should be  applied to account 
for generalizability.

As illustrated in the analysis results, logistic regression (LR), 
SVM, decision trees, random forests, neural networks, and 
recurrent deep learning models are all popular machine learning 
algorithms used for various tasks in the field. Each of these 
algorithms has its own strengths and weaknesses, and the choice of 
algorithm depends on the specific task at hand and the available 
data. Most of the time, LR, SVM, and often tree-based methods are 
used as baseline methods to complement other more complex 
methodologies such as deep or recurrent neural networks (RNNs). 
Furthermore, decision trees and random forests are good choices 
when dealing with small to medium-sized datasets that have both 
categorical and numerical features. They work well when the data 
has a clear and interpretable structure, and when the decision-
making process can be represented as a sequence of simple if-then-
else rules. Decision trees are also good when there is a need to 
explain the reasoning behind a model’s decision-making process. 
Neural networks, including deep learning models, are ideal for large 
and complex datasets with many features, such as image, speech, 
and text data. They are especially powerful when the relationships 
between input and output data are highly nonlinear and difficult to 
capture with simple models. However, neural networks can 
be computationally expensive to train and require a lot of data to 
generalize well. Recurrent deep learning models are a type of neural 
network that are well-suited for sequential and longitudinal data, 
such as time series, speech, and text data. They can capture long-
term dependencies and patterns in the data and are especially useful 
when the output depends on past inputs. However, they can 
be  more difficult to train than linear or tree-based models and 
require more specialized expertise. In summary, it’s important to 
evaluate the strengths and weaknesses of each machine learning 
algorithm carefully and select the one that is best suited to the 
specific needs.

The findings from the selected articles have shown the predictive 
potential of different AI approaches including RNNs and RL. While 
many of the included studies integrated supervised ML classifiers like 
SVMs or RNNs for continuous patient monitoring in cardiac ICUs, 
one general advantage reinforcement learning provides over other 
paradigms of ML is that this way of defining the problem allows RL to 
take into account long-term rewards. This characteristic makes it 
especially appealing for clinical applications since, in numerous 
healthcare issues, the response to treatment decisions is frequently 
delayed (88). Additionally, the exploration-exploitation approach 
shares similarities with the actual clinical setting, where treatment 
responses can be  heterogeneous (89) and finding the optimal 
treatment regime can also be characterized by trade-offs between 
exploration and exploitation.
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Based on the findings of the included literature, the most 
critical limitations towards integration of AI-driven methods in 
routine clinical decision making are generalizability and 
explainability issues. As illustrated in Figure 3, more than 75% of 
the studies lack validation against external datasets which 
highlights the lack of generalizability associated with their 
findings. Nevertheless, as presented in Table 2, only three of the 
21 included studies provided open access web-based user 
interfaces to facilitate validating their models with external 
datasets. Although providing freely accessible tools for external 
validation should be marked as a benefit for novel AI tools, the 
lack of standardization of external validation schemes considering 
the high levels of privacy and confidentiality associated with 
medical data cohorts rank amongst the most important 
limitations towards integration of AI in clinical routines, 
especially in multicentric and federated scenarios (90).

Furthermore, despite all the promising achievements of AI in the 
medical domain, the medical experts are still responsible for 
patients’ lives. Therefore, to reduce the burden of responsibility and 
to provide further support, it is of critical importance to build trust 
in decisions made by the AI-assisted agents. As discussed in the 
related work (24), interpretability facilitated by explainable AI (XAI) 
best practices plays an important role to build further trust in AI in 
the medical domain. Although the authors of most of the reported 
articles recognize interpretability as a central issue in this domain, 
only five studies integrated methods such as RFE and SHAP to 
provide a level of transparency to complement their proposed 
models’ decisions (Figure  6). In a related work, Asan et  al. (91) 
identified transparency, robustness, and fairness as the most 
important criteria to enhance trust when it comes to human-AI 
collaboration in the healthcare domain which is confirmed by our 
risk of bias analysis as well. This emphasizes the evolving need for 
extra efforts to identify and mitigate different sources of bias since 
the early stages of designing and developing AI models for the 
clinical and medical domains.

Another concern which affects the effective integration of AI 
methodologies in the healthcare domain is the certification of the 
established models and products upon proper evaluations and 
clinical trials. Although an increasing number of approved AI/ML 
products has been traceable since 2015  in the united states and 
Europe in domains such as radiology, related works urge for more 
transparency on the criteria for the approval of AI/ML-based 
products facilitated through publicly accessible databases from 
authorities such as the food and drug association (FDA) of united 
states of America (United States) and Conformité Européene (CE) 
of Europe (92). As an insightful example, Zanca et al. suggest some 
practical guidelines for the medical physicists (MPs) who 
conventionally act as responsible authorities to ensure safety and 
quality of emerging diagnostic and therapeutic technologies in 
healthcare. They empathize that MPs need to acquire enough 
knowledge about AI tools and how they conceptually differ from 
traditional medical software and hardware devices, because they 
often attribute higher levels of autonomy compared to traditional 
medical products (93).

The current study presents a comprehensive overview of the 
most widely used AI-related methodologies as reported in recent 
literature, which were selected in a systematic and objective manner. 

As a result, the majority of the methodology employed is based on 
modern machine learning solutions. However, as per some other 
studies such as Roller et al. (94), there is a suggestion to begin with 
simpler systems which make the use of explicit, structured 
knowledge such as guidelines, decision-making procedures, and 
thresholds which are commonly found in clinical environments. As 
our comprehensive analysis outlined, these often simpler “rule-
based” processes have been mostly overlooked in the selected 
articles. This is an important concern which needs to be  further 
addressed in follow-up studies.

As a limitation of current study, due to diverse datasets and 
algorithms used in the selected cohort of studies, it was not feasible to 
conduct comprehensive meta-analysis covering comparison of all the 
methods across all the databases. Nonetheless, we  reported 
performance results from all the articles in Table 2. Although the 
results are not directly comparable with each other, area under the 
receiver operating characteristics curve (AUROC), ranging from 0.79 
to 0.96, was the most universal performance metric across all the 
selected studies.

In this study, we included studies from PubMed and Google 
Scholar databases alongside additional papers chosen from 
subjective search queries within impactful related works. Also, 
we focused on the studies written in the English language. Thus, our 
findings might be  biased with regard to the choices of search 
engines and text language and might not be fully comprehensive. 
However, we covered the application oriented, model-driven, and 
data-driven aspects of AI-assisted methodologies utilized for 
patient monitoring and medical intervention in cardiovascular 
ICUs, following the PRISMA (32) and medical AI life cycle (34) 
paradigms.

6. Conclusion and future work

Technical conclusion: Recent advancements in AI-driven 
methodologies in intensive patient monitoring open up new horizons 
for the integration of clinical decision support in practice. However, 
regardless of being totally automated or requiring an expert’s input or 
annotation, AI assisted methodologies for clinical decision support 
are meant to operate as a complementary aid to physicians and 
intensivists’ subjective decisions rather than acting in complete 
autonomy. To achieve this, certain limitations should be mitigated. 
Most importantly, to address the generalizability issue which has been 
highlighted by our findings to be a common source of bias, proper 
validation against independent unseen sets of data should be taken 
care of. This becomes more critical as the medical datasets attribute 
high levels of confidentiality, affecting multicentric and federated 
learning scenarios.

Medical conclusion: AI has the potential to simplify part of the 
decision making in intensive patient monitoring by reducing the 
burden of processing huge amounts of information available from 
different sources of vital signs and critical patient parameters. 
However, still efforts need to be made to enhance interpretability of 
state-of-the-art AI methods for clinicians. In addition, proper training 
and understandable insights should be provided for the medical staff 
to enhance the level of trust in AI decisions. Moreover, AI algorithms 
should be tested in prospective clinical trials similar to other new 
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medical devices under observation of legal instances such as FDA in 
the United States and CE in Europe.

Future work: For the future, we plan to conduct studies on the 
integration of eXplainable AI (XAI) best practices for patient 
monitoring in cardiac ICUs, focusing on federated learning scenarios 
in which data from multiple hospitals are processed.
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