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A B S T R A C T   

Ceramic Matrix Composites are an interesting option for high-temperature combustive environments as often 
encountered in aerospace applications. In the past a lot of research was conducted in order to find the right 
process parameters for optimal performance of these materials. The mechanical properties of CMCs are vastly 
dependent on their microstructure. Therefore, a lot of past research focused on finding correlations between 
process parameters and microstructure of CMCs, most of which was based on empirical trial and error methods. 

In this paper we use several data-driven, probabilistic machine-learning models to quantify the microstructural 
composition of C/C–SiC based on the process parameters and choice of raw materials. As a ground truth 123 
samples of C/C–SiC with varying process parameters and microstructures were used. The predictive capabilities 
of the models were demonstrated by the use of the R2 metric. By this analysis density in siliconized state as well 
as open porosity and mass change during siliconization proved to be the parameters with the highest impact on 
microstructural formation. If siliconization was taken out of the equation the porosity in CFRP state and fiber 
type were found to be the most influential factors.   

1. Introduction 

CMCs have gained a lot of relevance over the last decades in many 
application fields where high operating temperatures have to be ex-
pected [1]. Due to their complex nature including the vastly inhomo-
geneous microstructure which involves fibers, pores and other 
inclusions, processing and machining of CMCs until today poses a big 
challenge. The high complexity of the processing and machining steps 
leads to a high variance in important mechanical properties of the 
resulting components compared to their metallic counterparts. A lot of 
empirical research has been conducted in order to improve quality and 
reproducibility of CMC components and to identify the reasons for the 
dispersion. In Naskar et al. [2] the mechanical properties such as flexural 
strength and ductility of oxide CMCs were found to be strongly depen-
dent on the viscosity of the infiltrates, the number of infiltrations and the 
sintering temperatures. Friess et al. [3] investigated the influence of 
different precursors, C-fibers and annealing process parameters on the 
thermophysical properties of C/C–SiC. The results suggested that the 
thermal conductivity as well as spectral emissivity were dominated by 
the fiber selection, whereas the specific heat capacity was influenced by 
fiber and matrix properties. Furthermore, annealing was found to have 

beneficial impact on the thermal conductivity if done in C/C state prior 
to siliconizing. Also, properties of components manufactured by novel 
methods such as 3D printing show a high dependency on process pa-
rameters. This is demonstrated in Zhu et al. [4] where mechanical per-
formance and microstructure of carbon fiber reinforced silicium-carbide 
(C/SiC) parts are significantly affected by the 3D printing process pa-
rameters. Li et al. [5] as well as Krenkel [6] examined the effects of 
machining of CMCs on their surface integrity and microstructural 
quality. Here rotary ultrasonic machining was shown to yield high 
quality results. The importance of process parameters on mechanical 
properties is not only restricted to CMCs but includes most other ma-
terial engineering fields. Moses et al. [7] use an empirical approach to 
predict the effects of stir casting parameters on the ultimate tensile 
strength of aluminum matrix composites. 

Over the recent years computational methods have gained a lot of 
importance due to the steep rising of artificial intelligence (AI) and the 
progress in hardware resources [8]. A recent study investigated the 
correlation of several microstructural parameters and tensile strength of 
CMC samples by a neural network [9]. The underlying data was taken 
from already published scientific papers and included a high percentage 
of missingness. Ghayour et al. [10] used an AI modelling approach to 
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predict Vickers hardness of ceramic samples based on additive contents, 
sintering temperature, -time and -pressure. Aggour, Grupta et al. [11] 
showed that a type of deep neural network can be used to successfully 
characterize optical photomicrographs of CMC components. 

Although the current increase of computational approaches to ma-
terial design is not to be overlooked, the use in the world of CMCs is still 
limited. Existing studies mainly focus on other composite materials or 
have only small amounts of data to feed into their machine-learning 
algorithms. In this paper we use various machine-learning algorithms 
to describe the correlation of process parameters and resulting micro-
structure of C/C–SiC. A data pool of 123 CMC samples which include 
selected raw materials, process parameters and SEM images of constant 
magnification serves as a basis for the AI models. 

2. Dataset and preprocessing 

As a ground truth a dataset consisting of n = 123 C/C–SiC samples 
was used which were manufactured and documented at German Aero-
space Center (DLR) in Stuttgart (Germany) via the liquid silicon infil-
tration (LSI) process. The associated processing steps are shown in Fig. 1. 

Fig. 2 gives an overview over the most common fiber/matrix com-
binations in the data pool which will be relevant for later discussion. For 
every sample at least one representative SEM image with magnification 
of 100× was present from which the phase area shares and therefore the 
carbon conversion ratio (CCR) was determined, which is defined below. 
For every sample 29 columns were created which featured all the 
documented properties such as the type of resin and fiber used, porosity 
and density after every production step, mass changes, processing 
temperatures, -pressures and -times, fiber volume content and many 
more. 

As can be seen in Fig. 2Figure 2 the investigated fiber types mainly 
consisted of HTA and T800 fibers. A small number of samples also 
featured T1000 or YS90 fibers. The most common precursors used were 
JK60, MF43, XP60, MF13 and MF88 which made up more than 95% of 
the dataset. Additionally, some water-based precursors such as PF7554 
and PF0433 were present. The samples were prepared via different 
manufacturing processes which included autoclave, RTM (resin transfer 
molding), hot-press and winding. Furthermore, the processing parame-
ters for the same manufacturing route also differed amongst the samples; 
for example some RTM processes were run with different temperatures 
than others. Due to the wide range of different raw materials and 
manufacturing parameters, very different C/C–SiC materials can be 
produced, which differ greatly in their microstructure and properties. 

2.1. Carbon conversion ratio (CCR) 

In order to train a probabilistic model on the data, one or more 
dependent variables had to be selected which quantify the microstruc-
ture corresponding to the process parameters. In this case the CCR was 
chosen which is defined as the percentage of carbon in an SEM image 
which gets converted into silicon carbide during siliconization as 
described in Eq. (1). As CCR directly correlates with the carbon (C) 
content in the image, the latter could also have been chosen as depen-
dent variable. Nevertheless, CCR was slightly preferred because it 
combines information of carbon as well as silicon-carbide (SiC) contents. 

CCR =
ASiC • K

AC + ASiC • K

with K =
VC

VSiC
=

6, 53
cm3

mol

12, 45
cm3

mol

= 0, 52
Eq (1)  

Where ASiC and AC describe the sizes of SiC- and C-areas in the SEM 
image and VSiC and VC describe the molar volumes of SiC and C. 

The microstructure of C/C–SiC can show various degrees of single 
fiber siliconization (SFS), as depicted in Fig. 3. Composites with low 
amounts of SFS exhibit greater damage tolerance and quasi-ductile 
failure behavior whereas high amounts of SFS tend to embrittle the 
material [13]. The CCR now quantifies the images in a way that the 
higher the CCR value is the more SFS is present and vice-versa. 

Since most applications at DLR aimed for C/C–SiC components with 
a low amount of single-fiber-siliconization (corresponding to XB- 
structures and low CCR) the dataset is imbalanced [13,14]. Fig. 4 
shows a histogram of the CCR-distribution with a bin-size of 5 
throughout the dataset. A Shapiro-Wilk test [15] yielded a p-value of p =

2 • 10−8 which means that the data is not normally distributed as also 
easily observable in the histogram. From the histogram it is obvious that 
roughly ¾ of the samples have a CCR below 20. 

For samples where more than one image was available, mean and 
standard deviation were calculated for the CCR. This applied to 65% of 
the dataset. The mean relative standard deviation of these samples was 
11.6%, which shows that the CCR is relatively constant over different 
SEM-images of the same sample. Hence the CCR can be regarded as a 
robust measure for capturing the amount of SFS in a sample. 

2.2. Encoding 

Machine-learning models cannot work with alphabetical data such as 

Fig. 1. Process flow chart for production od C/C–SiC via Liquid Silicon Infiltration (LSI) [12].  
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resin or fiber names which are designated as categorical variables. Since 
a lot of properties in the dataset contained such non-numerical data, all 
categorical variables were encoded by one-hot-encoding as described in 

Ref. [16]. 

Fig. 2. Investigated fiber/matrix combinations; only combinations with more than 5 members are shown.  

Fig. 3. Images of XB-microstructure (left) which relates to lower CCR values and XD-microstructure (right) which relates to higher CCR values [13].  

Fig. 4. Histogram of CCR-distribution throughout the dataset with a p-value of p«0.05 and a bin size of 5.  
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2.3. Randomness in data splitting 

During the splitting process as well as during the model training and 
hyperparameter selection there is always randomness involved. For 
example, each 80:20 split of the data set leads to a different outcome if 
the samples are randomly drawn. In order to make different algorithms 
and preprocessing steps more comparable to one another the same 
random seeds were used when comparing two different methods to 
eliminate randomness effects due to ‘easy’ or ‘difficult’ datasets. 

2.4. Imputation 

The aforementioned dataset contained a lot of missing values, which 
poses a challenge for machine-learning algorithms. In literature a vari-
ety of different methods are suggested to deal with such cases, the 
simplest of which would be to drop the missing data. An alternative, less 
wasteful method is to use imputation techniques to make educated 
guesses about the missing data. But in order to do so it is necessary to 
determine the reason for its missingness. In van Buuren [17] missingness 
is categorized in three different groups: missing completely at random 
(MCAR), missing at random (MAR) and missing not at random (MNAR). 
In case of this study the data is classified as MAR because although not 
all measurements were always made for every sample of the dataset 
(randomly distributed) some measurements were generally performed 
less frequently than others because of their higher expense which pro-
vides some kind of pattern. For missing data of type MCAR and MAR 
multiple imputation methodology can be used [17]. Since dropping data 
with missing entries would have left over only a small fraction of the 
dataset, two different imputation methods were chosen and compared: 
mean univariate imputation as well as iterative multivariate imputation. 
Mean imputation is as simple as filling the missing values by the mean of 
each respective column. The iterative imputation is more complex and 
calculates a similarity between each sample by using the k nearest fea-
tures for which k has to be determined. Nearness is determined by 
calculating the absolute correlation coefficient between each parameter 
pair. Then the missing values are imputed by a weighted estimate based 
on sample similarity and iteratively re-calculating the similarities. The 
underlying estimator used was Bayesian Ridge regression [18]. A com-
parison for mean imputation and iterative imputation for an identical 
random seed is shown in Fig. 5. In both cases the nearest 5 features were 
used to impute the missing values by the ridge regression model. As an 
example, the density distribution in siliconized state was chosen, where 
blue markers denote measurements and red markers denote imputed 
values. It can be observed that iterative imputation provides more 
realistic outcomes for missing values and leads to better model accuracy 
as discussed later. 

2.5. Splitting the data 

The dataset was split into training- and testing sets by a common 
ratio of 80:20. Because the CCR distribution is imbalanced and heavily 
shifted to lower CCR values, stratified splitting was investigated in order 
to preserve class proportions as suggested in Farias et al. [19] and then 
compared to random splitting. In this case “classes” refer to bins of 
CCR-values which were created in 5% steps from CCR = 0% to CCR =
40% and one bin for CCR = 40% to the maximum CCR. A histogram of 
splitting with versus splitting without stratification is shown in Fig. 6 
where blue bins denote training data and red bins denote testing data. 
Stratification was found to be beneficial for model accuracy as discussed 
later. 

2.6. Cross validation 

After splitting the data into training- and testing sets, the training 
data was further split by the same 80/20 ratio during 5-fold cross vali-
dation (CV), leaving 20% of the samples for validation in each run. 
During CV the optimal hyperparameters for each respective model were 
chosen. In the end the optimal model was evaluated by the testing set. 
The whole procedure is outlined in Fig. 7. After evaluation the model 
with the best parameters was trained again on the whole training 
dataset. 

3. Developed models 

Four different algorithms were trained and compared against each 
other on the dataset which was summed up in Table 1. The mean 
squared error was used as regression criteria for all algorithms. 

3.1. Accuracy measure 

All models were trained to minimize the coefficient of determination 
R2 which can take values between (−∞, 1] and describes a measure for 
the predictive capabilities of the model in regression tasks. R2 was 
chosen because it is more informative than statistical rates like RMSE, 
MAE or MSE [20]. The coefficient of determination states how much 
percent of the variance of the dependent variable can be explained by 
the independent variables and is calculated by Eq. (2). Here Sd denotes 
the declared scatter, Sr the residual scatter and Stot the total scatter. 

R2 =
S2

d

S2
tot
= 1−

S2
r

S2
tot
= 1 −

∑m

i=1
(ŷi − yi)

2

∑m

i=1
(y − yi)

2
Eq (2) 

There are three different cases: 

Fig. 5. Comparison of mean imputation (left) and iterative imputation (right) for the same random seed; dark blue: measurement (training set), light blue: mea-
surement (testing set), dark red: imputed (training set), light red: imputed (testing set). (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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• 1 > R2 > 0: In this case the model explains some percentage of the 
variance of the dependent variable around its mean. Higher values 
are always better.  

• R2 = 0: The model explains none of the variance of the dependent 
variable around its mean  

• R2 < 0: The model performs more poorly than a horizontal line 
whereas the latter would be equivalent of always guessing the mean 
of the dependent variable 

3.2. Decision tree 

Despite their simplicity, decision trees (DT) are widely used in ma-
chine learning in geosciences and material engineering. This is mostly 
attributed to their easy interpretability compared to other machine- 
learning algorithms such as artificial neural networks as well as their 
low computational cost and the usability for classification as well as 

regression problems. There are several different algorithms to assemble 
a DT such as CART, C4.5 and CHAID which differ in the way they grow a 
tree. Generally, a DT contains a sequence of hierarchically organized 
conditions which are applied from the root node to the individual leaf 
nodes. The data is recursively split and each split evaluated for its purity 
by regression. As criterion for a split, either gini impurity or information 
gain are often times used for classification problems and mean squared 
error for regression problems. The splitting process is repeated until a 
stopping criterion is reached. After induction of the tree, a pruning 
process is applied in order to increase the generalization capability [21, 
22]. 

3.3. Random forest 

A random forest describes a set of decision tree predictors which can 
be used for classification as well as regression problems. Compared to 
single tree models, random forests are less prone to overfitting and have 
increased generalization capabilities. The diversity between the trees in 
a random forest is gained by growing each tree on a bootstrapped subset 
ni of the whole dataset n. The bootstrapped datasets are generated by 
randomly resampling the data with replacement. Through this proced-
ure roughly one third of the samples are not included in the training set 
which are called Out-of-Bag samples (OOB) and are used to estimate the 
feature importance. Moreover, only a random selection Xi of all the in-
dependent variables X is chosen as candidates for splitting criteria at the 

Fig. 6. Comparison of CCR-histograms for a 80%/20% Train/Test-split of the data using random sampling (left) and stratified sampling (right).  

Fig. 7. Procedure of finding optimal hyperparameters and determining model accuracy; CV: T denotes training data, V denotes validation data.  

Table 1 
Selection of models which were used for predictions on the dataset.  

Model Type Model Algorithm 

Decision Tree Optimized CART 
Random Forest Optimized CART 
Lasso Regression Modified linear regression 
Artificial Neural Network Multi-Layer Perceptron  
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tree nodes. Fig. 8 describes the procedure for growing a random forest 
[23–25]. 

3.4. Artificial neural network 

Artificial neural networks (ANN or NN) have gained a lot of rele-
vance over the last decade because of fast increasing computer hard-
ware. They are classified as deep learning, a branch of machine learning, 
and are inspired by the human brain which resulted in a lot of shared 
terminology with neuroscience. ANN consist of several layers of neurons 
which perform simple calculations and connections between them of 
different “connection strengths” or “weights” indicating to what extend 
a signal is amplified or diminished. Each neuron receives input from and 
sends signals to many other neurons of the network. Furthermore, an 
activation function is applied in every neuron acting as a threshold to 
determine if a neuron fires or not. On its own a single neuron is not very 
powerful; the strength of the whole system stems from the interaction of 
many neurons connected in the right way [26,27]. 

3.5. Lasso regression 

Least absolute shrinkage and selection operator regression, or LASSO 
regression in short, is a variant of linear regression which trades of bias 
for a better expected overall prediction and thus is less prone to over-
fitting [28]. Unlike normal linear regression LASSO regression tries to 
minimize the sum of the squared residuals plus a penalty term as shown 
in: 

∑n

i=1

(

yi −
∑

j
xijβi

)2

+ λ
∑p

j=1
|βi| Eq (3)  

Where λ is a model tuning parameter which has to be optimized by the 
algorithm. As λ increases bias increases but variance decreases and vice 
versa [29]. 

3.6. Hyperparameter optimization 

Hyperparameters are defined as purely external parameters and thus 
are independent of the dataset. Nevertheless, they influence the model 
accuracy and should be optimized in that regard as further explained in 
Refs. [30–32]. 

For all above mentioned models the optimal hyperparameters were 
found using a randomized grid search over 200 combinations of pre-
determined ranges of each hyperparameter. This method yields good 

results and is computationally more efficient than an exhaustive grid 
search because it does not go over all the possible combinations [33,34]. 
The randomized search was used in tandem with 5-fold cross validation 
and the parameter ranges for each model type are listed in Table 2. Thus, 
all in all 1000 estimators were trained for each algorithm, or 4000 in 
total. For ANN the data was standardized during preprocessing. 

3.7. Determination of important features 

Out of the 29 documented columns only a small selection correlated 
well with the resulting CCR. To reduce model training time and coun-
teract overfitting, an independent RF model was used to rank the rela-
tive importance of the features before model selection. The importance 
calculation is based on mean impurity reduction within each tree of the 
random forest, where the impurity is measured by least squares method. 
For example, the importance-value of feature ‘A’ is equal to the mean of 
all importance-values for feature ‘A’ between all trees which contain 
feature ‘A’. The sum of all the relative importance yields 1 or 100%, 
respectively. The formula for measuring the feature importance in 
random forests is given in Eq. (4). Here M denotes the number of trees in 
the forest, φm the m-th tree (for m = 1, …, M), p(t) the proportion of 
samples reaching node t, jt the identifier of the variable used for splitting 
node t and i(t) the impurity measure which in this case was RMSE [35]. 

Fig. 8. Procedure of growing a random forest [23].  

Table 2 
Optimized hyperparameters per algorithm; numbers in brackets indicate the 
range of candidates for the parameter space. Out of all possible combination a 
fixed amount of 200 per algorithm were trained.  

Algorithm Optimized Hyperparameters 

DT maximum features: [1–7], maximum depth: [4–11], minimum samples 
for split: [2,6,10,14,18,22,26], minimum samples per leaf: [1,3,5,7,9, 
11], splitter: [best, random] 

RF number of trees: [50, 60, 70, 80, 90, 100, 110, 120, 130], maximum 
features: [1–7], maximum depth: [4–11], minimum samples for split: 
[2,6,10,14,18,22,26], minimum samples per leaf: [1,3,5,7,9,11], 
bootstrap: [with, without] 

ANN activation: [logistic, reLu, tanh], solver: [lbfgs, adam, sgd], hidden 
layers: [(5, 5), (15, 15), (5, 5, 5), (50, 50, 50)], epochs: [100, 200, 300, 
400, 500], learning rate: [constant, adaptive], initial learning rate: 
[0.001, 0.004, 0.007, 0.01], alpha: [0.0001, 0.0004, 0.0007, 0.001], 
momentum: [0.3, 0.6, 0.9] 

LR lambda: [0.01, 0.05, 0.1, 0.3, 0.5, 0.8, 1]  

T. Lehnert et al.                                                                                                                                                                                                                                 
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Imp
(
Xj
)
=

1
M
∑M

m=1

∑

t∈φm

1(jt = j)[p(t)Δi(st, t)] Eq (4)  

4. Results and discussion 

All the above explained models and methods were used and 
compared against each other for their suitability to predict the CCR of 
samples from the test set. 

4.1. Effects of random and stratified sampling 

In general stratification lead to more reliable model accuracy mea-
sures and lower standard deviations when repeatedly calculating accu-
racy. A reason for this can be made visible by plotting the CCR values of 
datapoints which ended in trainings- and test sets over their density in 
siliconized state as shown in Fig. 9. Density was used because it was by 
far the most influential parameter which the model used to predict CCR. 
Blue dots show samples from the training set and red dots samples from 
the test set. 

Fig. 9 shows that stratification results in more representative splits 
than random drawing, in a way that samples from all over the CCR 
spectrum are included in the test- and training sets respectively. By using 
a random split no CCR values above 33 were present in the test set in this 
particular case which makes the reported model accuracy less 
meaningful. 

Another way to prove the difference between random and stratified 
splitting is by comparing the mean, minimum, maximum and standard 
deviation of CCR values in the respective test sets calculated from 5 
splits as shown in Table 3. It can be seen that random splitting leads to a 
high variance in mean CCR-values in test sets between each split; within 
the 5 splits, the mean CCR in the test set ranged between 15.0 and 21.3. 
For stratified splits the mean only ranged between 17.6 and 18.3. Since 
stratified splitting produced more reliable and representative model 
accuracy measures, it was preferred over random splitting. 

4.2. Effects of mean and iterative imputation 

Analogously the effect of imputation was examined using a similar 
set-up. During 15 model training processes using mean and iterative 
imputation respectively the R2 of a random forest was tracked using an 
identical random seed for splitting and model creation. For iterative 
imputation the process was continued until a deviation tolerance of ε =

1% between two consecutive steps was met or a maximum of 20 itera-
tions was reached. 

The models which used iterative imputation not only provided more 
realistic distributions (see Fig. 5) but also achieved slightly better R2 

scores, as shown in Table 4. For the iterative process the similarity be-
tween samples is calculated based on a given number of features nf , 

which therefore can be understood as a hyperparameter. The best model 
accuracy was found for nf = 5 which also fits the observed trends best 
when plotting the datapoints. Therefore, iterative imputation was 
preferred over mean imputation. 

4.3. Most important features 

Feature Selection was based results from 20 different test/train 
splits, thus a mean importance and standard deviation could be calcu-
lated. To determine an appropriate threshold value for inclusion or 
exclusion of features, an artificial feature was added to the dataset which 
contained random numbers and thus showed no correlation to CCR. 
Since the relative importance was also determined for the random 
feature, it could be used as a guideline in a way that any features with 
importance values in the range of or lower than its importance could 
safely be excluded from the model. This led to the decision that only 
features with a relative importance of 5% or higher were passed on to 
the AI-model which resulted in only 3 of the initial 29 features to be 
selected as shown in Fig. 10. 

The determination of relative feature importance concluded that 
density in siliconized state, mass change during siliconization and open 
porosity in siliconized state were the 3 most important features to pre-
dict CCR. Out of these, density was by far the most important charac-
teristic. The high correlation between density in siliconized state and 
CCR was expected because microstructures with high degrees of SFS 
absorb more silicon during siliconization. 

Although this trend makes a lot of sense, its information value is 
rather low. The earlier in the production line a correlation between a 
parameter and the CCR can be drawn the higher the potential for saving 
resources or labor time. Predicting CCR from a sample in siliconized 
state thus is rather unspectacular because all the labor- and energy 
intense production steps have already been done. 

Fig. 9. Comparison of a random split (left) and a stratified split (right) of samples into testing (red) and training data (blue). The random split does not yield CCR 
values over 33 in the test set whereas the stratified split does. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Table 3 
Comparison of mean and standard deviation of CCR in test sets calculated from 5 
splits using random sampling and stratified sampling.   

Random Splitting Stratified Splitting 

Mean CCR Interval (Test) [15, …21.3] [17.6, …18.3] 
Mean ± Std. in Interval 18.1 ± 2.4 18.0 ± 0.3 
R2 0.54 0.56  

Table 4 
Mean model accuracy for models with mean imputation and 
iterative imputation for missing values.  

Mean Imputer R2 Iterative Imputer R2 

0.55 ± 0.13 0.60 ± 0.12  
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By excluding all measurements taken during siliconization and re- 
training the model on the new dataset, the most important features 
could be determined for this case analogously (see Fig. 11). The resulting 
most important feature was now porosity in tempered state, not so 
closely followed by porosity in polymerized state, porosity in pyrolyzed 
state and the information weather the used fiber was of type T800 or not. 
All other features fell below the 5% threshold which was again set as a 
criterion for a feature to be included in the model. 

It has to be mentioned that by excluding siliconization the deter-
mined importance values showed a lot more dispersion and the models 
trained from this dataset generally achieved lower R2 scores (see 
Table 5). Nevertheless, correlations of CCR with processing steps as 
early as polymerization (CFRP state) could be drawn. This is also in 
accordance with some findings in literature where the appropriate 
processing of the composite in CFRP state prior to pyrolysis is regarded 
as the crucial step in the production of XB-C/C–SiC [36]. 

Fig. 12 shows a plot of CCR over both porosity in polymerized as well 
as in tempered state. By looking at porosity alone, a linear correlation 
with CCR could be drawn, which is characterized by high dispersion. 
Upon closer inspection the scatter could be reduced by simultaneous 
separation of the data points into fiber types T800 and HTA. Here HTA 
fibers clearly show higher CCR values for higher porosity whereas this 
trend is much flatter for T800 fibers. Furthermore, HTA fibers generally 
yield higher CCR values than T800 fibers. This trend was also picked up 

by the algorithm as the information wether the fiber is of type T800 or 
not was the 4th most important feature when excluding siliconization. 

Further splitting into resin types did not provide additional insight 
with XP60 being the only exception (only 4 most prominent resin types 
shown in Fig. 12). For XP60 the trend of higher CCR values for higher 
porosity did not apply. 

A possible reason for the general difference in CCR of samples with 
HTA or T800 fibers could be a difference in fiber matrix bonding 
strength. The correlation between interface strength and microstructure 
was already proven in Brandt et al. [37], Schulz [38] as well as 
Schulte-Fischedick [39] where a weaker interface between fibers and 
matrix was shown to produce XD-microstructure (and thus high CCR) 
whereas a stronger interface benefits the formation of XB-structures 
(and thus low CCR). Although, the measurement of interface strengths 

Fig. 10. Relative importance and standard deviation of the 5 most important features for predicting CCR; a random feature was added for comparison.  

Fig. 11. Relative importance and standard deviation of the 5 most important features for predicting CCR by leaving out all measurements taken during siliconization; 
a random feature was added for comparison. 

Table 5 
Comparison of achieved mean R2 score for the best suited model algorithm (RF) 
and n = 20 repetitions in case of including and excluding siliconization measures 
from the dataset.  

R2 (RF, Test Set, including 
siliconization) 

R2 (RF, Test Set, excluding 
siliconization) 

0.62 ± 0.16 0.49 ± 0.17  
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of HTA and T800 fibers to prove this hypothesis exceeded the scope of 
this work and no applicable information was found in literature. 

Porosity itself was not dependent of the fiber type but in some cases 
of the resin type used. Fig. 13 shows CCR over porosity grouped by the 4 
most frequently used resin types of this work. It can be seen that XP60 
led to the least amount of porosity (e’ ~ 1%) followed by MF43 (e’ ~ 
4%). JK60 and MF13 both led to unpredictable kinds of porosity 
apparently depending on other properties which could not be deter-
mined in this work. 

4.4. Comparison of model accuracy 

The coefficient of determination R2 was calculated for every algo-
rithm on the test set after the optimal hyperparameters were chosen 
during CV. This process was then repeated 20 times with varying test/ 
train splits in order to provide a mean and standard deviation for R2. 
Fig. 14 provides an overview over the results separated by model 
algorithm. 

Three observations can be made in Fig. 14: 

• Out of the four tested algorithms RF performed best given the un-
derlying data with a score of R2 = 0.62 ± 0.16 if data from all 
manufacturing steps was used  

• The standard deviation of all models was comparably large  
• DT and NN models showed a larger gap between R2 score during CV 

and final R2 score on the test set which indicates overfitting 

The high standard deviation is an indicator for high variance in the 
underlying data. Moreover, the number of samples is comparably small 
considering the high number of parameters, whilst simultaneously 
containing a lot of missing values. This also means that the imputation 
method plays an important role for the results. 

The better performance of simpler models such as random forest and 
lasso regression compared to the neural network is probably due to the 
limited amount of data, as traditional ML methods tend to outperform 
deep learning in these scenarios [31]. RF also have greater generaliza-
tion capabilities compared to DT which explains the better performance 
and the lower drop in accuracy between cross validation and test set. 

5. Conclusion 

In this paper the influence of production parameters as well as choice 
of raw materials on the microstructure formation of C/C–SiC samples 
was investigated by machine-learning methods. The goal was to find the 
most important parameters from a given selection which lead to C/ 
C–SiC with XB- or XD microstructure. As ground truth 123 samples with 
varying manufacturing parameters were used. A lot of missing data was 
present and thus imputed by an iterative approach. After preprocessing, 
four different supervised machine-learning algorithms were trained on 
the dataset and compared using R2 as accuracy metric from which RF 
performed best. 

Within the scope of this study the most relevant factors for either 
receiving high or low amounts of single fiber siliconization could be 

Fig. 12. CCR over open porosity in polymerized and tempered state grouped by fiber type (color-coded) and resin type (symbol-coded). (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 13. Received porosity by using different resins; left: polymerized state, right: tempered state.  
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determined by a model intrinsic method. For that, the C/C–SiC micro-
structures were quantified by introducing CCR in order to be able to feed 
this information into the models. 

Generally, it can be said that the evaluation of feature importance 
done by the model is more reliable the greater its accuracy is. Due to the 
mediocre accuracy of R2 = 0.62 achieved by the best models stemming 
from the high dispersion in the data, the determination of feature 
importance has to be evaluated carefully through subsequent in-
vestigations. If only data from CFRP state was used, the mean model 
accuracy for predicting CCR dropped to R2 = 0.49. 

Observed trends by the algorithms were:  

• Data gained during or after siliconization was the most important for 
predicting CCR. Especially a high density correlated well with high 
CCR values, followed by open porosity and mass change during 
siliconization.  

• If siliconization was taken out of the equation, porosity in tempered, 
polymerized and pyrolyzed state were the most important features to 
predict CCR.  

• T800 fibers generally benefited lower CCR values compared to HTA 
fibers for the same amount of open porosity in CFRP state. 
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Appendix 

List of 29 processing parameters used to train the models: 
Density in polymerized state, density in tempered state, density in 

pyrolyzed state, density in siliconized state, porosity in polymerized 
state, porosity during tempering, porosity in siliconized state, porosity in 
pyrolyzed state, mass change during pyrolysis, mass change during sil-
iconization, duration of polymerization, duration of tempering, 
maximum temperature during polymerization, maximum temperature 
during tempering, maximum temperature during pyrolysis, maximum 
temperature during siliconization, number of siliconizations, number of 
pyrolyses, precursor, fiber-pretreatment, desizing of fibres, fiber volume 
content in CFRP state, fiber-material, fiber architecture, fiber density, 
manufacturing method for CFRP, fiber orientation, sample thickness, 
geometry from which the sample was cut. 
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