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ABSTRACT
Parallel Coordinate Plots (PCP) are a valuable tool for exploratory data analysis of high-dimensional numer-
ical data. The use of PCPs is limited when working with categorical variables or a mix of categorical and
continuous variables. In this article, we propose Generalized Parallel Coordinate Plots (GPCP) to extend the
ability of PCPs from just numeric variables to dealing seamlessly with a mix of categorical and numeric
variables in a single plot. In this process we find that existing solutions for categorical values only, such as
hammock plots or parsets become edge cases in the new framework. By focusing on individual observations
rather than a marginal frequency we gain additional flexibility. The resulting approach is implemented in the
R package ggpcp. Supplementary materials for this article are available online.
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1. Introduction

Few approaches in data visualization exist that are truly high-
dimensional. Most visualizations are projections of data into
two or three dimensions enhanced by facetting or additional
mappings to plot esthetics, such as point size and color. Parallel
coordinate plots are one of the exceptions: in parallel coordinate
plots we can actually visualize an arbitrary number of variables
to get a visual summary of a high-dimensional dataset. In a
parallel coordinate plot, each variable takes the role of a vertical
(or parallel) axis; giving the visualization its name. Multivariate
observations are then plotted by connecting their respective
values on each axis across all axes using poly-lines (see Figure 1).
For just two variables this switch from orthogonal axes to par-
allel axes is equivalent to a switch from the familiar Euclidean
geometry to the projective space. In the projective space, points
take the role of lines, while lines are replaced by points, that
is, points falling on a line in the Euclidean space correspond
to lines crossing in a single point in the projective space. This
duality provides a good basis for interpreting geometric features
observed in a parallel coordinate plots (Inselberg 1985).

The origins of parallel coordinate plots date back to the 19th
century and are, depending on the source, either attributed to
d’Ocagne (1885) or Gannett (1880). Modern era parallel coor-
dinate plots go back to Inselberg (1985) and Wegman (1990).
Parallel coordinate plots are used in an exploratory setting as
a way of getting a high-level overview of the marginal distri-
butions involved, identifying outliers in the data, and finding
potential clusters of points. In the absence of those, Parallel
Coordinate Plots are often criticized for the amount of clutter
they produce, resembling a game of mikado (also known as
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pickup-sticks—if you are not familiar with the game, imagine
spilling a box of spaghetti) rather than organized data. This
clutter is sometimes mitigated by the use of α-blending (Miller
and Wegman 1991), density estimation (Heinrich and Weiskopf
2009), or edge-bundling parallel coordinate plots (McDonnell
and Mueller 2008). For a detailed overview of these and other
techniques see Heinrich and Weiskopf (2013).

While parallel coordinate plots are a powerful tool, using
categorical variables alongside quantitative variables in PCPs
is a great challenge. Modifications of parallel coordinate plots
have been specifically developed to deal with categorical data:
parallel set plots (Kosara, Bendix, and Hauser 2006), Sankey
diagrams (Pople 2001; Schmidt 2008), Alluvial plots (Brunson
2020), Hammock plots (Schonlau 2003), and common angle
plots (Hofmann and Vendettuoli 2013); unfortunately, these
solutions do not accommodate quantitative variables. Instead,
they are intended for use with tabular data and show bands of
observations from one categorical variable to the next. Ham-
mock plots and common angle plots additionally mitigate effects
of the sine-illusion (Day and Stecher 1991; VanderPlas and
Hofmann 2015) on parallel sets plots.

An attempt to combine categorical and numeric variables
in a parallel coordinate plot is introduced in the categorical
parallel coordinate plots of Pilhöfer and Unwin (2013) by treat-
ing factor variables as numeric. Levels of categorical variables
are transformed to numbers and variables are then used as if
they were numeric. This introduces ties into the data, and the
resulting parallel coordinate plot becomes uninformative, as it
only shows a mesh of lines from each level of one variable to
each level of the next variable. Unfortunately, the extracat
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Figure 1. Sketch of a parallel coordinate plot of two observations in four dimensions. Each dimension is shown as a vertical axis, observations are connected by poly-lines
from one axis to the next. Two penguins from the Palmer Penguin dataset (see Section 5.1) were sampled for this example.

package has not been updated recently and is no longer on
CRAN. In this article, we describe a generalization of parallel
coordinate plots to accommodate both categorical and quantita-
tive variables, developed using the grammar of graphics, imple-
mented in the R packageggpcp. The resulting plots can be used
to gain additional insights into multivariate data compared to
plots created using other available software.

The remainder of the article is organized as follows: Section 2
introduces the ggpcp syntax and explains the improvements
in ggpcp over other parallel coordinate plot software packages.
Section 3 describes the data processing for parallel coordinate
plots and how this wrangling is separated from the plot render-
ing inggpcp. Section 4 discusses the rendering of parallel coor-
dinate plots and factors such as plotting order and tie-breaking
which are important for the design of PCPs. Section 5 provides
several examples which highlight different uses of generalized
PCPs in exploratory settings.

2. Motivation and Package Usage

An important motivation for the ggpcp package is that other
implementations of parallel coordinate plots for categorical vari-
ables make it difficult to follow a single observation across
the chart. ggpcp alleviates this difficulty with two innova-
tions: careful treatment of categorical variables to prevent line
intersections at vertical axes, which maintains the visual ability
to follow individual cases across the chart, and methods for
ordering observations within categorical variables to reduce the
amount of visual clutter. Together, these features allow for easier
perception of lines in generalized parallel coordinate plots: by
reducing the number of intersecting lines at pivot points along
the vertical axes through case ordering, we allow our brains to
leverage the Gestalt principle of good continuation to follow one
line across the plot. Reducing the number of line crossings at
non-axis points simplifies the plot, reducing the overall cognitive
load required to “untangle” (literally and metaphorically) the
individual observations and leveraging the Gestalt principle of
common fate.

In addition,ggpcp uses the full grammar of graphics philos-
ophy instead of highly specific wrapper functions. This allows
users to focus on the data, rather than the names of vari-
ous parameters used for customization. ggpcp adopts tidy
conventions for data wrangling, separating the necessary data
manipulation to generate a parallel coordinate plot from the

visual rendering, as shown in Listing 1. The arrangement
of the parallel axes, ordering of cases, and scaling of vari-
ables are completed using pcp_select, pcp_arrange, and
pcp_scale, respectively; the resulting data frame is then
passed directly into the familiar ggplot() call. During the
plotting stage, the only modification from default ggplot2
syntax is the use of aes_pcp() in place of aes(); this is
necessary to handle the multiple axes in a parallel coordinate
plot while maintaining the ability to map all other variables
of the original data frame to esthetics such as linetype and
color. The user has complete control over layers such as PCP
lines (geom_pcp), labels (geom_pcp_labels), and boxes
around categorical variables (geom_pcp_boxes). The con-
sequences of the choice to base ggpcp on the grammar of
graphics framework, and the separation of the data wrangling
and plotting, are discussed in Section 6.

An example parallel coordinate plot is shown in Figure 2,
along with the ggpcp code to generate the plot in Listing 1.
We can see that Gentoo penguins have smaller bill depth and
larger flipper length and body mass than Chinstrap and Adelie
penguins. Chinstrap penguins have longer bills than Adelie
penguins, but are similar to Adelie penguins across most other
measurements. Males tend to be larger than females across all
three species. In addition, it is clear from Listing 1 that the
data management process (lines 2–5) is entirely distinct from
the plotting process in lines 6–9. This separation makes plots
generated with ggpcp easy to prepare, use, and customize.

3. Data Management

One of the ideas behind this re-implementation of parallel coor-
dinate plots is to expose parallel coordinate plots at a functional
level. Rather than using a single function with parameters con-
trolling every aspect, we separate the data management from
the visual rendering. In particular, we separate out the data
management into three parts:

1. Variable selection and reshaping data,

2. Scaling of axes, both at the individual level and in the
relationship of the axes to each other, and

3. Treatment of ties in categorical axes.

The code corresponding to each of these steps is shown in lines
3–5 of Listing 1.
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Listing 1. A demonstration of ggpcp’s data wrangling and plotting API.

1 pcp <− p e n g u i n s %>% # d a t a management :
2 f i l t e r ( ! i s . na ( s e x ) ) %>% # t i d y workf low
3 p c p _ s e l e c t ( 4 , 3 , 5 : 6 , sex , s p e c i e s ) %>% # v a r s e l e c t i o n ( s e c 3 . 1 )
4 p c p _ s c a l e ( method =" uniminmax " ) %>% # s c a l e v a l u e s ( s e c 3 . 2 )
5 p c p _ a r r a n g e ( ) %>% # a r r a n g e c a t e g . d a t a
6 g g p l o t ( a e s _ p c p ( ) ) + # c r e a t e c h a r t l a y e r s :
7 geom_pcp_axes ( ) + # v e r t i c a l l i n e s f o r a x e s
8 geom_pcp ( a e s ( c o l o u r = s p e c i e s ) , # l i n e s e g m e n t s
9 a l p h a = 0 . 8 , o v e r p l o t =" none " ) +

10 g e o m _ p c p _ l a b e l s ( ) # l a b e l c a t e g o r i e s

Figure 2. The code in Listing 1 describes the data handling and basic structure of this parallel coordinate plot with both categorical and continuous data shown on vertical
axes. Some minor modifications have been made to the plot for esthetic purposes.

Figure 3. The user selects a set of three variables (top left). On the right, an overview of the data wrangling step before a parallel coordinate plot is drawn (bottom left). The
original data is duplicated once each time a variable is included using pcp_select during the transition from wide to long form. Note that the order in which variables
are selected is reflected in the order in which variables are shown in the parallel coordinate plot.

The modularization of the data wrangling process has the
additional advantage of laying out the necessary elements in
successive steps. Some of these steps are optional: scaling
variables might not be necessary if all variables are already
on the same scale (i.e., method “raw” in GGally); similarly,
using pcp_arrange to break ties is only necessary if categorical

variables are present and we want to spread these observations
out so that individual lines are visible. In addition, by exposing
these elements of the pcp data wrangling process, we allow users
to create additional functions for handling these tasks.

The treatment of ties is an aspect not generally addressed
in the original parallel coordinate plots of Inselberg (1985)
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and Wegman (1990). We have found a need to deal with ties,
because ties are visually the main obstacle to allowing the viewer
to follow an observation from axis to axis through the high-
dimensional space. If we can track a single observation through
the high-dimensional space, we have the ability to look beyond
the two-variable associations of adjacent axes. This allows users
to more easily summarize main trends and identify observations
which do not follow those trends. When ties cannot be sepa-
rated and users cannot follow individual observations, higher-
dimensional insights are next to impossible.

3.1. Variable Selection and Order of the Variables

One of the biggest strengths of the grammar of graphics is its
mapping between data variables and visual esthetics. In standard
plots any mapping is a function between one data variable and
one esthetic. In a parallel coordinate plot, this one-to-one map-
ping between data and plot esthetics is seemingly turned into a
one-to-many mapping between arbitrarily many data variables
to the x axis. By transforming the wide form of the dataset into
a long form (Wickham 2014, 2021), we obtain a one-to-one
mapping to a now discrete x axis consisting of the (names of the)
original data variables.

From the user’s perspective, this data reshaping is data
selection; the data wrangling takes place behind the scenes in
pcp_select(data, ...), which selects the variables to
be included in the parallel coordinate plot. Variables can be
specified by any combination of the following methods:

• position, for example, 1:4, 7, 5, 4,
• name, for example,class, age, sex,

aede1:aede3 or
• using pattern selectors, for exam-

ple, starts_with("aede"), see
?tidyselect::select_helpers

Variables can be selected multiple times and will then be
included in the data and the resulting plot multiple times. Note
that the order in which variables are selected determines the
order in which the corresponding axis is drawn in the parallel
coordinate plots. pcp_select transforms the selected vari-
ables to long form and embellishes the dataset with a number of
additional variables. All of the newly created and added variables
start with the prefix pcp_:

• pcp_id: integer variable identifying each observation in
the original dataset. This variable is used as the grouping
variable to identify which values should be connected by a
line segment in the parallel coordinate plot.

• pcp_x: discrete variable consisting of the names of the
selected variables in the order that they were selected—this is
the order in which the variables will be included in the plot.

• pcp_y: numeric variable containing the values of all of the
selected variables. In case a selected variable is not numeric,
it is converted to a factor variable and the (numeric) factor
levels are saved in pcp_y.

• pcp_class: character variable containing the class infor-
mation of a selected variable.

• pcp_level: character variable containing the factor levels
of selected data variables. In case of numeric variables, the
data values are stored (in textual form). The ordering of factor
variables will be discussed below but it is implemented using
this added variable.

As a consequence of these design decisions, users have several
ways of performing different tasks within the flow of generating
data for a parallel coordinate plot. For instance, users can reorder
variables using pcp_select or after variable selection using
the pcp_x variable. Motivations for reordering factors in par-
allel coordinate plots are discussed in more detail in Section 4.1.

Similarly to previous implementations of parallel coordi-
nate plots which attempted to accommodate categorical vari-
ables, we initially treat factor variables as variables with labels
and an associated (numerical) ordering of those labels. When-
ever we assign a numeric value to the ordering, we refer
to the associated score, which is an integer value from one
to the number of categories, if not specified explicitly oth-
erwise. Ordered factors are plotted from the lowest level
upwards. If a factor legend is included, it will need to be
reversed to match this order by using guides(color =
guide_legend(reverse=TRUE)), as shown in the exam-
ple in Section 5.2. Where ggpcp differs from previous imple-
mentations of parallel coordinate plots is in the assignment of
numerical values to individual observations within each factor
level. This process is discussed further in Section 4.1.

3.2. Scaling

Figure 4 shows two of the scaling methods applied to the olive oil
data (Forina, Armanino, and Lanteri 1983; Wickham et al. 2011):
Measurements of fatty acids in 572 olive oils from three differ-
ent regions in Italy are visualized as parallel coordinate plots.
Similar to the findings by Cook and Swayne (2007), we see that
eicosenoic acid is only found in increased quantities in olive oils
from Southern Italy. Quantities of oleic and linoleic acids allow a
separation between olive oils from Sardinia and Northern Italy.
Both scaling methods enable us to come to these conclusions.
While uniminmax scaling uses the space allotted to the chart
most efficiently, the robust normalization method emphasizes
the heavy tails and skewness of some of the measurements,
such as the percentages of stearic and arachidic fatty acids. Both
scaling methods are implemented as part of pcp_scale.

pcp_scale(data, method) scales the values on each
axis and determines the relative relationship of the axes to each
other. Themethod argument is a character string specifying the
method to be used when transforming the values of each variable
onto a common y axis. The default, uniminmax, univariately
scales each variable onto a range of [0,1] with the minimum at
zero and the maximum at one. globalminmax maps the val-
ues across all axes onto an interval of [0,1]. This method should
only be used if the values across all variables are comparable. The
methodrobust normalizes values univariately by mapping the
median value to 0.5 and divide by four times the median absolute
deviation. This corresponds to a mapping of a 95% confidence
interval to an interval of 0 to 1. Values outside this range, as in the
top plot in Figure 4, indicate a variability in the measurements
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Figure 4. Two scaling methods showing fatty acid compositions of olive oils from different regions in Italy, areas within each region are colored using similar hues within
region (green for Northern Italy, purple for Sardinia, and tans for Southern Italy). The two scaling methods roughly allow the same conclusions. For readability, the y scale
shows textual values rather numbers.

larger than that of a normal distribution, as can be seen for
several acid measurements.

4. Visual Rendering

4.1. Breaking Ties on Categorical Axes

As discussed previously, one of the primary advantages of
ggpcp over previous parallel coordinate plot software packages
is that ggpcp handles categorical and continuous data in a
way that allows users to trace a single observation through the
projective space. This is accomplished through a tie-breaking
algorithm: different categorical levels are grouped along the
vertical axis in boxes proportional to the number of cases in
each level. Within the box for a level, individual observations are
arranged so that visual clutter is minimized and individual cases
can be followed. This approach is similar to others (Graham
and Kennedy 2003; Holten and Van Wijk 2010) that support
following an observation through a sequence of ties on the
vertical axes. Instead of modifying the line slope and curvature,
we apply the same transformation to each axis, ensuring that
lines do not intersect.

An interesting consequence of our treatment of case order-
ing with categorical variables is that with large datasets, our
approach is visually similar to existing solutions for categorical-
only parallel set plots, Sankey diagrams, and alluvial plots. This
effect can be seen clearly in the first two vertical axes of Figure 4:
similarly colored bands of lines are visually grouped and when
observations are sufficiently dense, become perceptually similar
to the parallelograms used in parallel set plots.

Figure 5 shows several approaches of dealing with categorical
variables in parallel coordinate plots. The left-most panel shows
two categorical variables and the typical net of lines that forms
between them in an original parallel coordinate plot. The other
three panels show three different approaches for breaking the
ties resulting from the categorical variables, with our favored
solution shown on the right: all observations are spaced out
evenly. This results in a natural visualization of the marginal
frequencies along each axis (additionally enhanced by the light
gray boxes grouping observations in the same category) that is
not as prominent in the previous three panels. The ordering
of the observations within the level is such that a minimal
number of line crossings occurs between the axes. This method
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Figure 5. Using 12 randomly sampled penguins from the Palmer penguin data, we show four different approaches of dealing with categorical variables: the panel on the
left shows the typical net of lines resulting from categorical variables in regular parallel coordinate plots. In the other three panels, ties in categorical levels are broken using
different approaches (from left to right): jittering, equi-spaced line segments and ordered equi-spaced line segments are shown.

of dealing with categorical variables is the one we propose in
the generalized parallel coordinate plot. While it is esthetically
pleasing, it also allows us, in the spirit of the original parallel
coordinate plots, to follow an individual observation from left
to right through the plot even for categorical variables. The
other two solutions in the middle panels of Figure 5 show two
intermediate solutions of breaking ties in categorical variables:
jittering and equi-spaced (unordered) values.

When extended over multiple axes, the equispaced
tie-breaking solution that reduces line crossings requires
hierarchical sorting, which is implemented in the ggpcp
function pcp_arrange(data, method, space). Two
implemented methods for tie-breaking are "from-left"
and "from-right", meaning that tie breaks are determined
hierarchically by variables’ values from the left or the right,
respectively. The parameter space specifies the amount of the
y axis to use for space between levels of categorical variables. By
default, 5% of the axis is used for spacing. While hierarchical
sorting requires additional computations relative to the jittering
or equally spaced solutions in Figure 5, this extra processing
serves as “external cognition” (Scaife and Rogers 1996)—the
additional computer time reduces the cognitive load required
to untangle the lines of data in the chart (Ware et al. 2002).

Mart and Laguna (2003) discusses the NP hard problem
of ordering categories to minimize line crossing. In PCPs, the
category order is determined by the factor order (or the numer-
ical scale in the continuous case); these line crossings are not
avoidable through within-category sorting and are a function
of the data itself. Hierarchical sorting of individual observations
minimizes extraneous crossings within these categories in cases
where there are multiple similar observations, contributing to
the Gestalt of “common fate” among individuals with similar
values across a number of PCP axes because the lines “move
together” through the vertical axes.

4.2. Variable Ordering and Transformations

There are many different goals one might have when drawing a
PCP; these goals shape any effort the designer might put into

optimization of visual appearance. For instance, the order of
factor levels is an important consideration if the goal is to mini-
mize line crossings and thus the visual complexity of the parallel
coordinate plot. As previously discussed, some line crossings can
be removed by sorting, however, others can only be removed
through reordering of factor levels. While automatic sorting of
factor levels is computationally difficult and statistically unde-
sirable given that many factors have some implicit or explicit
ordering that should not be automatically optimized, manually
reordering factors can reduce the number of line crossings to
produce a simpler and more comprehensible PCP. For example,
in the last panel of Figure 5, a reordering of the second factor so
that the dark (purple) lines are on the bottom could reduce the
overall number of line crossings to just two crossings, once the
hierarchical sorting is updated to accommodate the new factor
order.

As briefly discussed in Section 3.1, users can transform indi-
vidual variables, reordering factors or reversing an axis, using
a mutate statement before variable selection. Univariate trans-
formations like these may be useful to reduce the overall visual
complexity of a parallel coordinate plot by reducing the number
of negatively correlated axes and crossing lines which are hard
to follow. An example showing the benefits of reordering and
transforming variables for visual clarity is provided in Figure 8.

4.3. Line Segment Plotting Order

While ggpcp allows us to follow a single observation through
a plot, as the number of observations increases, this becomes
more difficult due to overplotting. As more observations and line
segments are drawn, more lines cross each other, increasing the
effort required to follow a poly-line from one side of the plot to
the other. Coloring by groups and using α-blending improves
the readability of plots. However, the order of drawing the cases
affects what can be seen due to overplotting.

As a countermeasure, the order in which line segments are
plotted should be carefully chosen. The parameter overplot
defaults to option “small-on-top,” where groups are plotted in
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Figure 6. The code in Listing 2 generates two parallel coordinate plots. The plot on the left uses the ordering of the dataset to determine line plotting order; as a result,
Adelie penguins are plotted last (on top). On the right, we use the “small-on-top” default; this ensures that the smallest categories, sex = NA and Chinstrap, are plotted last.

Listing 2. The overplot parameter can be used to control the order in which lines are plotted, affecting the visual appearance and emphasis of parallel coordinate
plots. Line 2 specifies the order of the dataset; lines 6–8 plot the data using the user-specified ordering while lines 9–11 plot the data using the default “small-on-top”
ordering.

1 p c p _ d f <− p e n g u i n s %>%
2 a r r a n g e ( s e x ) %>% # NA l a s t = t o p o f PCP a x i s
3 p c p _ s e l e c t ( sex , s p e c i e s ) %>%
4 p c p _ s c a l e ( method = " uniminmax " ) %>%
5 p c p _ a r r a n g e ( )

6 g g p l o t ( pcp_df , a e s _ p c p ( ) ) + geom_pcp_axes ( ) +
7 geom_pcp ( a e s ( c o l o u r = s p e c i e s ) , o v e r p l o t = " none " ) +
8 g e o m _ p c p _ l a b e l s ( ) + theme_pcp ( )

9 g g p l o t ( pcp_df , a e s _ p c p ( ) ) + geom_pcp_axes ( ) +
10 geom_pcp ( a e s ( c o l o u r = s p e c i e s ) , o v e r p l o t = " s m a l l −on−t o p " ) +
11 g e o m _ p c p _ l a b e l s ( ) + theme_pcp ( )

order of size from largest to smallest so that the smallest group
is plotted last—effectively putting the small group on top.

An alternative setting, “none,” is very flexible, but requires
the user to specify the order in which observations are drawn
in the data processing step. The order in which observations
are listed in the original data is preserved throughout the data
wrangling process and directly informs the order in which lines
are rendered in the layers. The use and effect of overplot are
demonstrated in Listing 2 and Figure 6, respectively.

5. Examples

5.1. Palmers Penguins

Several aspects of Parallel Coordinate Plots depend on order-
ings: the order of variables along the x axis, the order of levels in
a categorical variable, the orderings of cases within categorical
variable levels, and the order in which lines are drawn. Order-
ings should therefore (a) have good defaults, and (b) be easily
changeable.

The top of Figure 7 shows a generalized parallel coordinate
plot of the Palmer penguins data (Horst, Hill, and Gorman
2020). The numeric data consists of body measurements of
three species of penguins: bill length, bill depth, flipper length,
body weight. Adelie penguins generally have smaller bill lengths
than the other two species, while Gentoo penguins can be

distinguished by their relatively large flipper lengths. The bottom
of Figure 7 shows the effect of reordering the levels of both the
“species” and the “island” variables in the generalized parallel
coordinate plots. This reordering of factor levels has the effect of
emphasizing that Gentoo penguins and Chinstrap penguins are
each found on only one island, while Adelie penguins are found
on all three islands. In addition, only after levels of “island”
and “species” are reordered can we see that for each species the
numbers of penguins in the three years of the study (the study
ID variable) were roughly the same.

Distinguishing species
Factor level ordering is but one consideration when constructing
parallel coordinate plots. It is also important to carefully order
the variables on the x-axis, as shown in Figure 8, where the
variables have been reordered from Figure 7 to allow the viewer
to identify which body measurements distinguish the species.
In addition to the reordering, the axis for bill depth has been
reversed. Both changes help to separate the species. Gentoo
penguins have the lowest bill depth, while generally having the
longest flippers and largest mass. Reversing the axis for bill
depths aligns the smallest bill depths with the longest flippers,
moving Gentoo penguins closer together as a group. The plot
shows that the Gentoo penguins are bigger, that Gentoo and
Chinstrap are both only found on single islands, and, finally, that
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Figure 7. Both of the levels of the island and the species variable reordered to reflect that two of the species are each only found on one island.

Figure 8. Changing the order of the variables along the x-axis emphasizes the differences in body measurements between the species, compared to the variable ordering
in Figure 7.

Adelie and Chinstrap are distinguished by the lengths of their
bills.

As ggpcp uses the ggplot2 API, faceting is fully supported.
Figure 8 is faceted by gender: while the results are the same for



1580 S. VANDERPLAS ET AL.

Figure 9. Generalized parallel coordinate plot of the Palmer penguins data with sex of penguin mapped to color. Dark lines represent penguins for which sex could not be
determined. We see that researchers were able to sex all of the Chinstrap penguins. Note that species is included twice (with different order of the levels).

the two sexes, any variability of body measures due to sex is
removed from the plot by facetting. This makes the results stand
out more. Interestingly, some potential outliers that were not
visible previously now become visible. Note for example the two
Gentoo males with particularly short flippers, and the Chinstrap
female with an exceptionally long bill.

Determining sex
Figure 9 shows that within each species, the males tend to
be larger in size and heavier than the females. For several
of the penguins, sex could not be determined because either
the sexing primer did not amplify or no blood sample was
obtained (Gorman, Williams, and Fraser 2014). These penguins
are represented by dark lines. Comparing these penguins’ body
measurements to those of the other penguins, we can make
suggestions regarding their sex.

In Figure 10 we explore this idea a bit further. This figure
is based on the same data as Figure 9, however, we exclude
Chinstrap penguins as researchers were able to sex all of those
penguins. The body measurements of all sexed penguins are
summarized by two ribbons for each sex and species. The
inner ribbons are bounded by the 25% and the 75% percentile
values on each axis. The lighter ribbon covers 95% of obser-
vations on each variable. We use these ribbons to reduce the
noise introduced by individual lines. Body measurements of
the unsexed animals are represented as line segments on top
of the ribbons. This helps us to evaluate and assess the lines
drawn for individual, unsexed penguins within the context of
the marginal distributions (in this case their putative sex and
species).

While we facet both by species and sex, note that the axes are
rescaled within each species to make use of the full range in y.
However, we use the same scale between the two sexes of each
species. This different treatment of faceting variables is achieved
by the use of a group_by statement before pcp_scale. List-
ing 3 shows the code for prepping the data shown in Figure 10.
By grouping on species but not on sex (line 9), data is being
rescaled within species but the same scaling is used across males

and females. Measurements for unsexed animals are shown as
line segments on top of inter-quantile ribbons of both sexes.
Viewers are encouraged to draw a conclusion about an ani-
mal’s sex based on their values within the (2d density) context
of their species and putative sex. Statistically, this comparison
relates to a likelihood ratio test: the viewer is asked to make
an assessment of the likelihood to observe the measurements
of an animal under each of the two competing hypotheses
of sex.

Chinstrap penguins are excluded (line 2) because all of their
individuals in the data have a sex assigned. The general pat-
tern of measurements of the Gentoo penguins suggests that
three of the four individuals with missing sex information are
female (the three with the lowest bill depth). The fourth ani-
mal has an exceptionally deep bill, however, all other mea-
surements suggest that this animal, too, is female. For further
evidence, we find from the original data that their nest partners
are all sexed as male; this additional information is shown in
Figure 10. While assuming that nest partners are male and
female is not a perfect method, in particular, for penguins,
which have been shown to live in same-sex partnerships, in
all three of the studies considered for this data only nests with
breeding successes have been considered. More details can be
found in Gorman, Williams, and Fraser (2014). For Adelie
penguins determining sex is not quite as clear-cut, but based
on body mass and bill length measurements the three lightest
penguins might be female, while the heaviest one could be
male. The fifth penguin, marked “?”, exhibits measurements
that are neither typically male not typically female. We can
assess these inferences using the additional information that
four of the five unsexed Adelie penguins are nest partners. The
un-partnered penguin is the lightest and has measurements
which are more consistent with female penguins. The Adelie
penguin indicated by ? is the partner of a female penguin (pair
B) and might be assumed to be male. The remaining pair of
unsexed Adelie penguins (pair A) consists of a putative male and
female; this is consistent with the breeding pair assumption in
the study.
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Figure 10. Closer investigation of non-sexed Adelie and Gentoo penguins. The group_by call before pcp_scale is responsible for scaling by species while the same scale is
kept across sex within species. Penguins without assigned sex (based on blood markers) are drawn on top of both sexes. The labels to the left of the ribbons are our best
guess at a penguin’s sex based on body measurements of other penguins of the same species. The letters on the right indicate nests—two penguins with the same letter
share the same nest.

Listing 3. Code to prepare data for Figure 9 by relabling penguins with NA sex as ‘?’and ordering sex so that penguins of unknown sex are between the male and female
labels.

1 p e n g u i n s _ p c p <− p e n g u i n s %>%
2 f i l t e r ( s p e c i e s ! = " C h i n s t r a p " ) %>% # no unsexed a n i m a l s i n C h i n s t r a p
3 mutate ( # make a s s i g n m e n t more r e a d a b l e
4 s e x = i f e l s e ( i s . na ( s e x ) , " ? " , a s . c h a r a c t e r ( s e x ) ) ,
5 s e x = f a c t o r ( sex , l e v e l s = c ( " f e m a l e " , " ? " , " male " ) )
6 ) %>%
7 f i l t e r ( ! i s . na ( body_mass_g ) ) %>%
8 p c p _ s e l e c t ( 6 : 5 , 3 : 4 ) %>%
9 group_by ( s p e c i e s ) %>% # re−s c a l e by s p e c i e s

10 p c p _ s c a l e ( ) %>%
11 p c p _ a r r a n g e ( )

5.2. Getting a Second, Third, ... and Seventh Opinion

Figure 11 shows data from Agresti (2002) published as part of
thepoLCA package (Linzer and Lewis 2011). Seven pathologists
were asked to assess the same 118 slides for the presence or
absence of carcinoma in the uterine cervix. Binary responses
for each slide were recorded (yes/no). Pathologists all agreed
on about 25% of slides, which they considered to be carcinoma
free, and a further 12.5% of slides, which were considered to
show carcinoma by all pathologists. For the remaining 62.5%
of slides there was some disagreement and it is clear that this
disagreement is not random. The pathologists have been ordered
from left to right from the fewest number of overall carcinoma
diagnoses made to the highest number. This shows a strong level

of agreement between adjacent axes. Note, in this example we do
not need to scale the variables. Aside from the actual scale the
values are ordered in the same way.

Landis and Koch (1977, Table 1) allow us a closer look at
this data. The pathologists evaluated the slides using five levels
from 1 to 5, given as (1) Negative, (2) Atypical Squamous Hyper-
plasia, (3) Carcinoma in Situ, (4) Squamous Carcinoma with
Early Stromal Invasion, and (5) Invasive Carcinoma. Agresti
(2002) classified levels 1 and 2 as “no” and levels 3 to 5 as
“yes”. Figure 12 gives an overview of this more detailed data.
The different pathologists are drawn in the same order as in
Figure 11. The results for each scan are colored by the overall
average score (rounded to the closest integer). Compared to
the previous figure, Figure 12 shows more variability between



1582 S. VANDERPLAS ET AL.

Figure 11. Pathologists’ diagnoses of absence (no) or presence (yes) of carcinoma in the uterine cervix based on 118 slides. Each slide is shown by a poly-line.

Figure 12. Closer look at pathologists’ evaluations on a more detailed scale from 1 (Negative) to 5 (Invasive Carcinoma). Rounded average scores are mapped to color to
help distinguish severity of scan evaluations.

pathologists’ evaluations, but only few scans have vastly differ-
ent scores assigned to them. Pathologist C, in particular, rates
two scans as negative, that all other pathologists rate as quite
advanced cancer. Mostly, the variability between pathologists’
assessments stems from a difference in applying the categories
rather than from an actual difference of opinions. The similarity
in evaluations is particularly striking between pathologists A, G,
E, and B.

In this example, the generalized parallel coordinate plot gives
us a visual tool for assessing the similarity between evaluations
by different pathologists that moves beyond a mere correspon-
dence of scores to an analysis that is based on ranks. The
hierarchical sorting used in pcp_arrange assigns ranks to
each observation. This provides additional information about
the agreement between pathologists, which is graphically rep-
resented as the variability in line slope (i.e., whether the y coor-
dinate on each vertical axis is similar). When the poly-lines are

relatively flat, this means that pathologists agree on the relative
severity of the carcinoma in the scan. Obviously, we can assess
“flat-ness” of the poly-lines numerically as the variance of the
calculated variable pcp_y. Figure 13 highlights the controver-
sial scans, and provides additional visualizations assessing the
frequency of difficult scans and the variability in pcp_y and in
the numerical scores assigned.

5.3. Clustering with PCPs

PCPs can also be used to assess, explain, and explore statis-
tical methods. In the penguins example, we can use k-means
clustering on all numeric body measurements and investigate
which observations are generally captured in each of the clusters,
as well as which categorical variables are most associated with
membership in each cluster.
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Figure 13. Scans with a high variability in line segments are highlighted. While we might initially assume that a high line variability is directly associated with a high
variability between pathologists’ scores, we see from the scatterplot at the bottom right that the correlation between these two measures is not perfect. The difference lies
in the tie-breaking approach: the y values for two scans with the same score on one axis are adjusted based on the scores by the other pathologists.

k-means clustering assigns cluster labels arbitrarily based
on random cluster centers. In order to maintain a persistent
ordering over different values of k we reorder the cluster labels by
the value of body_mass_g. This helps us to compare between
k and k + 1 clusters.

Figure 14 shows the numeric measurements along with the
assigned clusters, with categorical variables species and sex on
the right. Each line is colored by the assigned cluster, allowing
us to determine how the categorical variables relate to the quan-
titative variables and the resulting clusters.

When k = 2, Figure 14(a) shows that the largest difference
in the observed data is between Gentoo penguins and the other
two species. When k = 3, in Figure 14(b), the additional
cluster separates the Adelie and Chinstrap penguins into two
groups with a few misclassifications; this additional cluster is
based on the length of the bill (which we can follow due to the
clear connection between data values in the generalized PCP).
Adding a fourth cluster, as in Figure 14(c) splits Adelie penguins
into males and females, though again there are some penguins
that are misclassified. The addition of a fifth cluster in Fig-
ure 14(d) splits Chinstrap penguins into male and female. Once
we add a sixth cluster in Figure 14(e), we finally split the Gentoo
penguins by sex as well, though again this clustering is not
perfect.

What is clear from this exercise is that Adelie and Chinstrap
penguins are much more similar to each other than they are
to Gentoo penguins, but that there is still noticeable sexual
dimorphism within each species.

We also see from the figure that some of the separation into
sexes is lost from one clustering to the next. This is typical for
nonhierarchical clustering algorithms. Rather than refining a
previous cluster, a switch from k clusters to k + 1 clusters starts
the clustering process anew. If the signal in the data to separate
into k clusters is not strong or is ambiguous, we will see this
reflected in the results; observations might be quite arbitrarily
put together into groups, or a group of observations might be
split into multiple clusters.

In the Hartigan-Wong (Hartigan and Wong 1979) algorithm
used here for the clustering, points are assigned to random
clusters in the initialization. In order to assess the effect of
this nondeterministic start on the results, it is good practice
to investigate the cluster stability by repeating the clustering
multiple times for the same number of classes k (if k > 1).
Figure 15 shows a comparison of the results from multiple
runs of the k-means algorithm for k = 6. The lines in this
figure are colored by species and sex. We see that the splits by
species are relatively stable—there are only a few cases across
all results in which individuals end up in clusters with indi-
viduals from another species, and if they do, it is the same
individuals across different results. Splits by sex show more
variability: Chinstrap penguins rarely split into male/female
clusters, while Gentoo penguins shows a relatively stable sepa-
ration into males and females. The Adelie population has sub-
sets of individuals that are separated into males only, females
only, and a third, more variable subset of a combination of
the two.
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Figure 14. An overview of the use of parallel coordinate plots to examine which variables contribute to clustering and to identify individuals who are misclassified.

6. Design of the ggpcp API

Now that we have demonstrated the ggpcp API and several
examples of how ggpcp can be used to create plots which allow
users to investigate and explore multivariate data in new ways, it
is useful to take a moment to reflect on the design of the ggpcp
API and how it differs from past implementations of parallel
coordinate plots.

Using the ggplot2 grammar of graphics API as a foun-
dation has several benefits: users of ggplot2 and the tidyverse
come with a general understanding of how an API is set up
and should work. Esthetically, users can make use of all of
the “ggplot2” functionality for customizing plots. Functionally,
“ggpcp” interfaces seamlessly with “ggplot2” and can therefore
leverage existing infrastructure, such as facetting, as used in
Figure 8.

In addition, designing ggpcp using the ggplot2 frame-
work expands the functionality available to users without
much additional code, thanks to other packages, such as
plotly (Sievert 2020) and gridSVG (Murrell and Potter
2020), which extend ggplot2 to create interactive graphics for
the web.

While we make use of the general ggplot2API for plotting
the data, ggpcp makes the additional decision to separate the
data wrangling from the plotting. This is a slight deviation
from the ggplot2 extension approach, as data summaries and
modifications in ggplot2 are implemented in statistics functions.
These functions, named “stat_xxx,” where “xxx” is usually the
name of the corresponding geom to capture the close rela-
tionship between the “geom_xxx” and the “stat_xxx” functions.
For example, “stat_boxplot” calculates the summaries necessary
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Figure 15. Comparison of eight k-means runs for k = 6. Color of lines is given by species and sex. The differences between the clusters are introduced by the different
random seeds in the initial cluster centers.

for drawing a boxplot, such as the mean, quartiles, and IQR.
“stat_bin” is the default statistics associated with histograms:
continuous variables are binned and a frequency count is being
visualized. A ”stat_pcp” data function would therefore have to
deal with the translation from a the user-friendly wide dataset
to the technically motivated long form of the data that allows
a direct mapping of one variable to the x axis (implemented
as “pcp_x”) and another variable to the y axis (implemented as
“pcp_y”).

Obviously, we decided against an implementation of this
“stat_pcp” function, resulting in the need to wrangle the original
data into the correct format ahead of the call to ggplot. Splitting
data wrangling and plotting provides several benefits.

1. Speed: moving the data wrangling out of the inner work-
ings of “ggplot2” removes the necessity to repeat this step
each layer. This results in a considerable speed up for
larger datasets or more intricate plots with multiple layers.

2. Transparency and Flexibility: modularizing and exposing
the data wrangling pipeline into individual steps creates a
better conceptual framework and gives users more flexi-
bility to make changes: users can interact with and modify
intermediate results at each step.

3. Reducing the function clutter: most parallel coordinate
plot functions come with a LOT of parameters—many
of them aimed at controlling the exact layout of the
plot, dealing with considerations such as “showPoints” for
drawing points or “boxplot” for drawing a boxplot. These
parameters become unnecessary in the ggpcp implemen-
tation because of the direct availability of the ggplot2 layer
system. Should there be a need for boxplots on top of
the default PCPs, a simple call to “geom_boxplot” will
draw them, and depending on whether this call happens
before or after a call to “geom_pcp,” the boxplots end up
behind or in front of the lines. Modularizing the code for
data wrangling and visualizing means that parameters for
parallel coordinate plots can be placed directly in their

relevant functions. This helps with interpreting param-
eters as well as removing the need for calling the same
parameters in multiple layers to ensure that all layers are
based on the same data.

The use of data wrangling functions outside of the plotting
apparatus allows us to format the data in a consistent way (and
execute that operation only once). This is somewhat analogous
to the way the sf package (Pebesma 2018) handles plotting
based on different geometries: by customizing the format of
the data that is passed into the ggplot extensions, we can write
plotting functions that conform to the expected use of ggplot2
layers that use data with a different underlying structure.

7. Discussion

This article describes generalized parallel coordinate plots,
which extend parallel coordinate plots to include categorical
variables. This extension is a significant development: GPCPs
are useful in a wide variety of scenarios where standard PCPs
were insufficient; in addition, the handling of categorical vari-
ables introduced as part of the ggpcp implementation of
GPCPs opens up many new areas for PCP-related research.

The most consequential feature of GPCPs as implemented in
the ggpcp package is the ability to follow a single observation
through multiple categorical and continuous axes. This conti-
nuity provides a perceptual advantage over other alternatives
even for plots of only categorical variables, as it is possible to
visually assess N > 2-dimensional contingent relationships
using GPCPs, as demonstrated in Figure 15. Throughout the
examples in this article, we have attempted to showcase the
impacts of this visual continuity through a range of different
applications of GPCPs. We have attempted to assemble a broad
set of such examples, but we expect that GPCPs will be useful in
many other applications.

As a consequence of the line continuity in generalized PCPs,
we also highlight the importance of four different types of
ordering: axes, factors, lines, and plotting. While previous papers
have examined the impact of axis ordering, there is a large
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increase in the importance of factor, line, and plotting order
to preserve the line continuity afforded by GPCPs. The ggpcp
framework allows the ordering of factors, lines, and plotting to
carry additional information which affects the user’s ability to
understand the data. These factors, along with the use of color in
PCPs, deserve much more investigation and consideration than
the brief overview provided in this article, which is focused on
demonstrating the ggpcp API. The implementation of GPCPs
provided in the ggpcp package neatly separates data manage-
ment from visual rendering while leveraging theggplot2API.
These features contribute to the power and flexibility of the
ggpcp package.

Supplementary Materials

Code and data to produce this paper are available at https://github.com/
srvanderplas/ggpcp-paper. The ggpcp package code is available on CRAN
and the development version can be found at https://github.com/heike/
ggpcp.
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