

Thread-local, step-local proof obligations for refinement of state-based concurrent systems

Gerhard Schellhorn, Stefan Bodenmüller, Wolfgang Reif

Angaben zur Veröffentlichung / Publication details:

Schellhorn, Gerhard, Stefan Bodenmüller, and Wolfgang Reif. 2023. "Thread-local, step-local proof obligations for refinement of state-based concurrent systems." *Lecture Notes in Computer Science* 14010: 70–87. https://doi.org/10.1007/978-3-031-33163-3_6.

Nutzungsbedingungen / Terms of use:

Thread-Local, Step-Local Proof Obligations for Refinement of State-Based Concurrent Systems *

Gerhard Schellhorn, Stefan Bodenmüller, and Wolfgang Reif

Institute for Software and Systems Engineering
University of Augsburg, Germany
{schellhorn,stefan.bodenmueller,reif}@informatik.uni-augsburg.de

Abstract. This paper presents a proof technique for proving refinements for general state-based models of concurrent systems that reduces proving forward simulations to thread-local, step-local proof obligations. Instances of this proof technique should be applicable to systems specified with ASM rules, B events, or Z operations. To exemplify the proof technique, we demonstrate it with a simple case study that verifies linearizability of a lock-free implementation of concurrent hash sets by showing that it refines an abstract concurrent system with atomic operations. Our theorem prover KIV translates programs to a set of transition rules and generates proof obligations according to the technique.

Keywords: Refinement, State-Based Concurrent Systems, Thread-Local Proof Obligations, Interactive Verification

1 Introduction

Refinement-based development is a successful approach to the development of algorithms and software systems. An important subcase is the development of efficient, thread-safe concurrent implementations, where the abstract specification is often given as simple atomic operations.

We have developed two approaches for verifying such refinements. One is based on a program calculus, and the other on which we focus in this paper relies on translating programs to a state-based description. This approach requires just predicate logic for verification.

We have done case studies with algorithms that are hard to verify. In particular, some require backward simulation or were hard to reduce to thread-local reasoning [12]. Most cases, however, like the one we consider in this paper, are simpler. We noted that their verification still results in much overhead when one tries to verify standard forward simulation conditions. There is much potential to reduce complex reasoning to simple verification conditions local to threads, exploiting symmetry (all threads execute the same operations). Furthermore,

^{*} Supported by the Deutsche Forschungsgemeinschaft (DFG), "Correct translation of abstract specifications to C-Code (VeriCode)" (grant RE828/26-1).

giving assertions reduces proofs to individual conditions for each step, which are easy to understand.

This paper develops an approach to prove forward simulations with proof obligations that are local to individual threads and steps of the programs. Generating these proof obligations has been implemented in our KIV theorem prover. It makes use of earlier work that developed a translation from programs to transition systems and defined local proof obligations for verifying invariants. We extend the approach to refinements by specifying local proof obligations for forward simulations.

We exemplify the approach by proving the correctness of a simple, concurrent implementation of hash sets. Proving the case study was presented as a challenge at last year's VerifyThis competition [21] for theorem provers. However, the case study turned out to be far too complex to verify in a 90-minute time frame (none of the participants got further than to verify just termination of a simplified sequential version). We define the algorithms in Section 2 and sketch their translation to a transition system. Section 3 defines the main invariant and summarizes the local proof obligations that are needed to establish it.

Section 4 defines the strategy for generating local proof obligations based on three mappings: one establishes a mapping between the control states of each thread in the concrete and the abstract system. The second provides a mapping of steps that has some resemblance to the mapping used in Event-B refinements [1]. The third defines a relation between the local states of threads.

For our case study, we achieve the desired effect: the reasoning is reduced to the essential arguments that show that the programs have an atomic effect at one specific instruction.

Finally, Section 5 gives related work and Section 6 concludes.

2 Case Study: Concurrent Hash Sets

We use a challenge of the 2022 VerifyThis competition [21] held at ETAPS as a case study to illustrate our approach. The tasks of the challenge [22] revolved around verifying the correctness of a simple but thread-safe and lock-free implementation of hash sets. The implementation produces hash sets with a fixed capacity and only provides functionality for insertions and membership queries.

Implementation of the Algorithms in KIV

The two main operations of the given algorithms can be executed concurrently by an arbitrary number of threads, and were translated into KIV programs using algebraic data types as a basis. For concurrent executions, we assume an *interleaving semantics* where each program statement (such as assignments or evaluations of conditionals) is executed atomically, but atomic steps of different threads can interleave. The implementation uses a fixed-sized array ar: Array(Elem) storing keys of a generic type Elem as a state variable. Each slot of ar is initialized with a designated key $\bot: Elem$, used as a placeholder for empty slots.

Algorithm 1 Hash Set Insertion Operation in KIV.

```
idle: Insert(e; ; b)
  precondition: e \neq \bot
  postcondition: b \leftrightarrow \exists n. \ n < \#ar \land ar[n] = e
I01: let sz = \#ar in
102: let n_0 = \text{get\_hash}(e, sz) in
I03:
      let n = n_0 in {
         b := false;
I04:
I05:
         while \neg b do {
I06 with (ar[n] = e \supset doInsert(t, true); \tau):
            let e_0 = ar[n] in \{ // \text{ atomic load } \}
107 /* e_0 \neq \bot \rightarrow e_0 = ar[n] */:
              if e = e_0 then {
108 /* e_0 = e \wedge e = ar[n] */:
                 b := true; // return true if the element is already there
I09:
                 return idle;
              } else
I10:
                 if e_0 \neq \bot then
                    n := (n+1) \mod sz // slot is occupied, try next slot
I11:
                 else {
I12 with (ar[n] = \bot \lor ar[n] = e \supset doInsert(t, true); \tau):
                   if* ar[n] = \bot // \text{CAS} (returns the new value in e_0)
                    then e_0 := e, ar[n] := e else e_0 := ar[n];
I13:
                   if e_0 = e then {
                      b := \mathsf{true}; // \text{ return true if the element was inserted}
I14:
                      return idle;
I15:
                    } else
                      n := (n+1) \mod sz // slot is occupied, try next slot
I16:
            } };
           if n = n_0 then {
I17:
I18 with doInsert(t, false):
              b := false; // return false if the array is full
I19:
              return idle;
            } else
              skip; // continue with next loop iteration
I20:
I21: return idle; // never reached
assertions
  103 \rightarrow 120: n_0 = \text{get\_hash}(e, \#ar);
  104 \rightarrow 116: allslotsfull(ar, n_0, n, e, false);
  I17: allslotsfull(ar, n_0, n, e, true);
```

Algorithm 1 lists the KIV implementation (ignore the **with** clauses and **assertions** for the moment) of the **Insert** operation for adding keys to the set. The operation takes a key e: Elem as input and signals via the output b: Bool whether the requested key was inserted (or was already included in the set). First, the algorithm calculates the hash value n_0 for the key e using the function get_n hash (line IO2). The function returns a value in the range [0, sz), where sz is set to the size of ar (written #ar). Then, the algorithm uses linear probing to find a free slot in ar, i.e., it searches for the closest following unoccupied location in ar starting from n_0 . For this, the **while** loop (IO5 - I20) incrementally checks the entries of ar (accessing a location n of an array ar is written ar[n]).

Depending on the value e_0 of the slot currently considered, different situations must be handled. If the slot already contains the requested key e, nothing has to be inserted and the operation returns ${\tt true}~({\tt I07-I09})$. When the slot is occupied, i.e., e_0 is neither e nor \bot , the search must be continued at the next slot (${\tt I10-I11}$). For this, the current index n is incremented for the next loop iteration (note that the search continues at index 0 when the upper bound of the array is reached). If a free slot was found ($e_0 = \bot$), the algorithm tries to insert the element atomically using a CAS (compare-and-swap) operation (${\tt I12}$). In KIV, this is modeled using the ${\tt if*}$ construct, which performs the evaluation of its condition and the first statement of the chosen branch as one atomic step. In case the CAS was successful, the element was successfully added and operation returns with ${\tt true}~({\tt I13-I15})$. Otherwise, another thread interfered and occupied the slot, so the search must be continued (${\tt I16}$). Finally, insertion is aborted if the search went one full round and no free slot was found. Then the array is full, and the operation returns ${\tt false}~({\tt I17-I19})$.

Analogously, Algorithm 2 shows the implementation of the **Member** operation for checking whether a key e has been inserted into the set. The result b is again determined by traversing ar using linear probing (M05 - M17) until the searched element was found (M07 - M09). The search is aborted and the operation returns false when either the complete array was checked (M14 - M16) or a \bot was reached (M10 - M12).

Note that the KIV implementations of both operations slightly differ from the pseudo-code given in the challenge description as it uses **do-while** loops, which are currently not supported by the programming language of KIV.

Translation to a State-Based Transition System

KIV provides functionality to automatically translate algorithms like the one given above to state-based transition systems. More precisely, the framework of Input/Output Automata (IOA) [15] is used.

¹ KIV procedures currently do not have return values. Instead, the parameters of a procedure are partitioned into input, reference, and output parameters, which are separated by semicolons.

Algorithm 2 Hash Set Member Operation in KIV.

```
idle: Member(e; ; b)
  precondition: e \neq \bot
  postcondition: b \to \exists n. n < \#ar \land ar[n] = e
M01: let sz = \#ar in
M02:
      let n_0 = \text{get\_hash}(e, sz) in
M03:
      let n = n_0 in {
         b := false;
M04:
M05:
         while \neg b \text{ do } \{
M06 with (ar[n] = e \vee ar[n] = \bot \vee (n+1) \bmod sz = n_0 \supset doMember(t); \tau):
           let e_0 = ar[n] in // atomic load
MO7:
              if e = e_0 then {
M08:
                b := true; // return true if the element was found
M09:
                return idle;
              } else
M10:
                if e_0 = \bot then {
M11:
                   b := false; // return false if empty entry was found
                   return idle;
M12:
                } else {
M13:
                   n := (n+1) \mod sz; // slot is occupied, try next slot
                  if n = n_0 then {
M14:
                     b := false; // return false if array is full and element not in
M15:
M16:
                     return idle;
                   } else
                     skip; // continue with next loop iteration
M17:
       } } };
      return idle; // never reached
M18:
```

Definition 1. An Input/Output Automaton (IOA) is a labeled transition system A with

- a type State of states,
- a predicate init(s) that fixes a subset of initial states s,
- a type Action of actions, and
- a step (or transition) predicate step(s, a, s') defining steps of the automaton from states s to states s', labeled by actions a.

Actions can be viewed as parameterized ASM rules [3], as the names of Event-B events [1] parameterized by the values chosen in ANY ... WHERE clauses, or as Z operations [5] with inputs/outputs. The carrier set of Action is partitioned into internal actions a satisfying internal(a), which represent events of the system that are not visible to the environment, and external actions a satisfying external(a), which represent interactions of A with its environment. The set of external actions typically comprises invoke and return actions for each non-atomic operation, representing their invoking and returning steps and fixing the calling thread as well as the inputs and outputs. For example, the actions invInsert(t, e) and retInsert(t, b) represent the respective steps for the Insert operation (analogously, invMember and retMember).

An execution fragment $frag(s_0 a_1 s_1 a_2 s_2 a_3 ...)$ is a (finite or infinite) sequence of alternating states and actions such that $step(s_i, a_{i+1}, s_{i+1})$. An execution $exec(s_0 a_1 s_1 a_2 s_2 a_3 ...)$ is additionally required to start with an initial state s_0 satisfying $init(s_0)$. The set of all executions or fragments of an automaton A is denoted exec(A) and frag(A), respectively. The trace of an execution is the projection of all its actions to the external ones, formally $trace(s_0 a_1 s_1 a_2 s_2 a_3 ...) = a_1 a_2 a_3 ... \mid \{a_i \mid external(a_i)\}$. The set traces(A) of all traces of an automaton A represents its visible behavior to a client. A trace shows concurrency by having several operations pending, e.g., the trace

```
invInsert(t_1, e_1) invInsert(t_2, e_2) retInsert(t_1, true) invMember(t_1, e_2)
```

shows a situation where thread t_1 has inserted element e_1 successfully and is currently running a test for membership of e_2 , while another thread t_2 is concurrently running an insertion of the same element e_2 . Concurrent execution might add both $\mathtt{retMember}(t_1,\mathtt{true})$ or $\mathtt{retMember}(t_1,\mathtt{false})$ as the next action, depending on whether thread t_2 manages to insert the element before the check of thread t_1 or not.

In the following, we outline how the translation is performed for the hash set implementation; a more detailed description is given in [7].

The states of the automaton are constructed from three components: the global state gs:GS, the local state function $lsf:Tid \to LS$, and the program counter function $pcf:Tid \to PC$. The combined state is written as the tuple mkstate(gs, lsf, pcf) of type State.

In KIV, states are given by (the values of) one or several (typed) state variables. The global state gs is the tuple of the state variables that can be accessed by all threads. For the hash set case study, this only includes the array ar, which can be accessed via the selector gs.ar. The local state function lsf stores local variables used by threads in the programs of the system. This includes all locally introduced variables in operations, e.g., sz or n in Alg. 1, as well as the parameters of operations, e.g., e and e in Alg. 1. The function stores a local state tuple e is e in thread e in the value of e in thread e is selected via e in thread e in thread e is selected via e in thread e

The function *pcf* stores the program counter (control state) for each thread, which defines the current step of a thread within a program. For this, each atomic step in a KIV program is augmented with a unique *label* (I01, I02, ..., I21 for **Insert**, and M01, M02, ..., M18 for **Member**). The type *PC* is defined as an enumeration type containing a constant for each program label together with idle for a thread that is in between operation calls (of **Insert** or **Member**).

For the step predicate, a generic axiom definition is generated.

```
\begin{split} \mathtt{step}(\mathtt{mkstate}(gs, lsf, pcf), a, \mathtt{mkstate}(gs', lsf', pcf')) \\ \leftrightarrow \exists \ t. \quad \mathtt{pre}(gs, lsf(t), pcf(t), a) \land gs' = \mathtt{gstepf}(gs, lsf(t), pcf(t), a) \\ \land lsf' = lsf(t := \mathtt{lstepf}(gs, lsf(t), pcf(t), a)) \\ \land pcf' = pcf(t := \mathtt{pcstepf}(gs, lsf(t), pcf(t), a)) \end{split}
```

The definition breaks down a system step to a step of one thread t by restricting changes of lsf and pcf to affect the parts of t only (the term f(k:=v) yields the function f where the value of f(k) is updated to v). The three step functions gstepf, lstepf, and pcstepf calculate the next global and local state and the next program counter of this thread from the previous ones if the precondition predicate pre holds. These step functions and the precondition predicate are defined by axioms for each individual program counter.

The pre predicate fixes the actions a a program counter pc maps to, potentially depending on the current states gs and ls. The Action type contains values for all invoke and return steps of the automaton. Internal steps of nonatomic programs are typically mapped to the $default\ action\ \tau$. However, internal steps can also be mapped to user-defined actions using a with-clause. We will assign actions representing (potential) $linearization\ points$, i.e., steps where an operation "takes effect" (cf. Sec. 4). For example, the steps IO6, I12, and I18 of Alg. 1 are specified with the action doInsert, recording the current thread t and a boolean value determining whether the operation successfully inserted the element. The assignment of these actions can be conditional: the action of IO6 is doInsert(t, true) only if ar[n] = e holds at that point, otherwise it is τ . In the algorithm, the notation $\varphi \supset a_0$; a_1 is used as an abbreviation for an expression that computes a_0 if φ is true and a_1 otherwise. Thus, the precondition of IO6 is specified by the following axiom, using the respective selectors to access the global and local state vars. ²

```
pre(gs, ls, 106, a) \leftrightarrow a = (gs.ar[ls.n] = ls.e \supset doInsert(ls.tid); \tau)
```

State updates are also specified by individual axioms for the functions gstepf and lstepf for each program counter. For example, the let-statement at I06 introduces a new local variable e_0 and thus updates the corresponding field of the local state. On the other hand, the global state is not modified.

```
lstepf(gs, ls, IO6, a) = (ls.e0 := gs.ar[ls.n])

gstepf(gs, ls, IO6, a) = gs
```

Finally, the program counter step function pcstepf is defined based on the algorithm's control flow, e.g., the program counter of a thread is moved to 107 after the statement at 106 was executed. If the control flow can take different branches, the result of pcstepf is conditional. For example, after evaluating the if-condition at 107, the program counter is either set to 108 or 110.

```
pcstepf(gs, ls, IO6, a) = IO7

pcstepf(gs, ls, IO7, a) = (ls.e = ls.e0 \supset IO8; I10)
```

3 Local Proof Obligations for Invariants

For proving the refinement of the hash set implementation (see Sec. 4), an invariant restricting the reachable states of the automaton is necessary. This invariant

² To access the identifier of thread t, it is stored as a tid-field in its local state. An invariant ensures that threads store the correct identifier, i.e., lsf(t).tid = t.

typically contains general consistency properties of the global state (independent of the local states of any thread, thus called *global invariants*) as well as various assertions for different control points of the algorithm (called *local invariants* as they also refer to the local states of threads).

The global invariant is given as a predicate GInv(gs). For the case study, it ensures that the array ar, in which the elements of the set are stored, has a valid size (it can store at least one element) and that its slots are filled correctly.

$$GInv(ar) \leftrightarrow \#ar \neq 0 \land htok(ar)$$

The latter property is expressed by the predicate htok, which is defined using the auxiliary predicates allslotsfull and between.

$$\begin{split} \operatorname{htok}(ar) \leftrightarrow \ \forall \ n. \quad & n < \#ar \land ar[n] \neq \bot \\ & \rightarrow \operatorname{allslotsfull}(ar, \operatorname{get_hash}(ar[n], \#ar), n, ar[n], \operatorname{false}) \end{split}$$

$$\operatorname{allslotsfull}(ar, n_0, n, e, b) \leftrightarrow \ \forall \ m. \quad \operatorname{between}(n_0, m, n, b) \land m < \#ar \\ & \rightarrow ar[m] \neq e \land ar[m] \neq \bot \end{split}$$

$$\operatorname{between}(n_0, m, n, b) \leftrightarrow \quad n_0 = n \land b \\ & \lor (n < n_0 \supset m < n \lor n_0 \leq m; \ n_0 \leq m \land m < n) \end{split}$$

The predicates encode that ar was filled by linear probing: it must hold for any non- \bot element ar[n] that all slots m between the element's hash value (calculated by get_hash) and the slot n it is stored in are "full", i.e., are occupied by other non- \bot elements. Since the search for a free slot continues at the first slot when the end of the array is reached (cf. Alg. 1), the definition of between must consider both the case of $n_0 \le n$ and the case of $n < n_0$ (expressed using the $\varphi \supset t_0; t_1$ notation). Note that the definitions just consider slots $m \in [n_0, n)$ when the flag b is false, which is the case for the global invariant htok. The predicates are used with $b \leftrightarrow \texttt{true}$ only in local invariants to express that the array is filled completely (when all slots are considered, i.e., $n_0 = n$).

Instead of giving a local invariant formula directly, KIV generates a predicate definition from thread-local assertions for the individual program points. This approach facilitates tackling larger algorithms as the resulting formula becomes vast quite quickly (typically several pages of text, even for small case studies like the one presented in this paper). Thus, manually defining and maintaining this formula is very error-prone.

An assertion LInv_{pcval}(gs, ls) can be given for every label $pcval \in PC$. In KIV, assertions can be encoded as a comment $/* \varphi */$ at the respective label (cf. lines I07 and I08 of Alg. 1). Since typically assertions hold for ranges in the code, they can also be given separately. For example, the assertions given at the bottom of Alg. 1 encode the progress of linear probing: in every iteration of the loop, all slots between the hash value get_hash(e, #ar) of the element and the current index n are occupied (I04 \rightarrow I16 is a shorthand for the range I04, I05,..., I15, I16). The critical step here is from I16 to I17, where the index n is incremented. At this point, the boolean flag of allslotsfull is toggled from

false to true because n may have been incremented to n_0 when ar has been fully searched.

From the given assertions, KIV generates the definition of a local invariant predicate LInv(gs, ls, pc), which is then lifted to a full invariant definition Inv(gs, lsf, pcf) for the automaton.

$$\mathtt{LInv}(gs,ls,pc) \leftrightarrow \bigwedge_{pcval \in PC} (pc = pcval \to \mathtt{LInv}_{pcval}(gs,ls))$$

$$\operatorname{Inv}(gs, lsf, pcf) \leftrightarrow \operatorname{GInv}(gs) \land \forall t. \operatorname{LInv}(gs, lsf(t), pcf(t))$$

Since the steps of threads can interleave, the given thread-local assertions must be stable over the steps of other threads for the invariant to hold. In order to avoid the combinatorial explosion of explicitly reasoning over all possible interleavings, a rely predicate $\mathtt{rely}(t, gs, gs')$ is used to abstract from the concrete modifications other threads can make. All steps that are not executed by thread t should satisfy this predicate when they start in global state gs and end with gs'. Thread t relies on other threads to change the global state according to \mathtt{rely} . For the case study, the following rely predicate is sufficient, enforcing that no thread resizes the array and that no thread overwrites a slot at which an element has been inserted before.

```
\mathtt{rely}(t, ar_0, ar_1) \\ \leftrightarrow \#ar_0 = \#ar_1 \land \forall \ n. \ n < \#ar_0 \land ar_0[n] \neq \bot \rightarrow ar_1[n] = ar_0[n]
```

With these definitions, proof obligations (POs) are generated that ensure that the predicate $\operatorname{Inv}(gs, lsf, pcf)$ is actually an invariant of the automaton. The obligations are formulated in sequent notion: a sequent $\Gamma \vdash \Delta$ abbreviates the formula $\forall \underline{x}$. $\wedge \Gamma \rightarrow \bigvee \Delta$ where Γ (the antecedent) and Δ (the succedent) are lists of formulas, and \underline{x} is the list of all free variables in Δ and Γ .

```
step-pcval-pcval': For every step from label pcval to pcval' with action a LInv<sub>pcval</sub>(gs, ls), GInv(gs), pre(gs, ls, pcval, a)

\vdash LInv<sub>pcval'</sub>(gstepf(gs, ls, LInv_{pcval}, a), 1stepf(gs, ls, LInv_{pcval}, a))

\land GInv(gstepf(gs, ls, pcval, a))

rely-pcval: For every step from label pcval

LInv<sub>pcval</sub>(gs, ls), GInv(gs), pre(gs, ls, pcval, a), ls.tid \neq t

\vdash rely(t, gs, gstepf(gs, ls, pcval, a))

stable-pcval: For every label pcval

LInv<sub>pcval</sub>(gs, ls), GInv(gs), rely(t, gs, gs') \vdash LInv<sub>pcval</sub>(gs', ls)
```

The first PO (step-pcval-pcval') guarantees that each step of a thread establishes the thread-local assertion at the following statement and preserves the global invariant. The other two POs ensure that steps of other threads do not invalidate assertions. This is split into showing that all such steps are rely steps (rely-pcval) and that all assertions are stable over the rely (stable-pcval).

Note that often a significant amount of the generated obligations can be omitted. Many steps do not update the global state (when gstepf(qs, ls, pcval, a) =

gs), and so the **rely-pcval** POs can be dropped for these steps as it is enforced that the **rely** predicate is reflexive. In fact, only the **rely-I12** PO is generated for the case study since the CAS at I12 is the only step of the algorithm that modifies ar. Furthermore, if two assertions LInv_{pcval} and LInv_{pcval} of different labels $pcval \neq pcval'$ are syntactically the same formula, the obligations **stable-pcval** and **stable-pcval** are identical, so only one is generated.

In summary, 28 **stable** and 48 **step** proof obligations were verified with 65 interactions (including lemmas). Together they establish the invariant Inv of the IOA. A proof of the soundness of this thread-local proof technique is given in [7].

4 Local Proof Obligations for Refinement

While the invariants ensure that the array is always in a consistent state, they do not ensure that each operation has a desired effect, e.g. that insert adds at most the element given as input and deletes nothing. In a sequential setting simply augmenting the proof with suitable postconditions would be sufficient. In a concurrent setting this is not possible, as the postcondition can be invalidated by other threads. Instead one must show that the program behaves like an atomic operation. This is typically verified by giving abstract atomic descriptions of program behavior. A standard notion is *serializability* [18], which requires that programs behave like transactions: either they have an atomic effect or none at all when failing. *Opacity* [9] additionally requires that even failing transactions never read from states that result from partially executed transactions.

For concurrent libraries like the one we consider here, the standard correctness notion is *linearizability* [12], which in addition to atomicity requires that the effect of each operation happens between its invocation and its return. In contrast to other criteria, linearizability has the advantage that it is compositional: using several linearizable libraries is correct already if each library is correct.

The effect of a linearizable operation can be expressed directly as the whole code of each operation executing sequentially without any interleaving. This is done in model checking approaches, which automatically check that all possible interleavings of a fixed (usually very small) number of threads and operations has the same effect than executing them in some suitable sequential order. A more common approach in interactive proofs is to express the effect using simple operations of an abstract data type, like we do here.

Many of the atomicity criteria can be expressed as refinement correctness with respect to an abstract automaton (e.g., TMS2 for opacity, see [8]). A correct refinement from an automaton A (with states as of type AState, step relation astep, etc.) to an automaton C in general requires that the externally visible invoking and returning steps (i.e., the external actions of A and C that show their inputs/outputs) must be preserved, formally $traces(C) \subseteq traces(A)$.

Refinement can be verified using either a forward or a backward simulation. Together the approach is complete: if backward simulation is necessary, it is always possible to give an intermediate automaton, such that the upper refinement (often a simple one) can be verified using backward simulation, while the lower

```
retIns : RetInsert(;;b)
idle: InvInsert(e)
                                invIns : DoInsert(do)
atomic invInsert(t, e)
                                atomic doInsert(t)
                                                            atomic retInsert(t, b)
precondition: e \neq \bot
                                \{ lb := do; 
                                                            \{b := lb;
\{ le := e; 
                                  if do then
                                                              return idle }
 return invIns }
                                    set := set \cup \{le\};
                                  return retIns }
idle: InvMember(e)
                                invMem : DoMember()
                                                            retMem : RetMember(;;b)
                                \mathbf{atomic}\ \mathtt{doMember}(t)
                                                            \mathbf{atomic}\ \mathtt{retMember}(t,b)
atomic invMember(t, e)
                                                            \{b := lb;
precondition: e \neq \bot
                                \{ lb := le \in set; 
\{ le := e; 
                                  return retMem }
                                                              return idle }
 return invMem }
```

Fig. 1: Canonical automaton for set operations.

one (usually the difficult one) is verified with a forward simulation. Therefore we will focus on forward simulations only, and on deriving thread-local proof obligations for this case. A forward simulation is defined as follows.

Definition 2. A forward simulation from a concrete IOA C to an abstract IOA A is a relation $abs \subseteq State \times AState$ such that each of the following holds.

Initialisation

$$\operatorname{init}(s) \vdash \exists \ as. \ \operatorname{ainit}(as) \land \operatorname{abs}(s, as)$$
 (1)

External step correspondence

$$abs(s, as)$$
, $step(s, a, s')$, $external(a)$
 $\vdash \exists as'$. $abs(s', as') \land astep(as, a, as')$ (2)

Internal step correspondence

$$abs(s, as)$$
, $step(s, a, s')$, $internal(a)$ (3)
 $\vdash \exists frag(A)(as \ a_1 \ as_1 \ \dots \ a_n \ as_n)$. $abs(s', as_n) \land \forall \ i \leq n$. $ainternal(a_i)$

It requires that the visible behavior represented by the actions of external steps to be preserved, i.e., one has to verify a commuting 1:1 diagram for each invoking or returning step, where equality of the action implies that the thread executing the step as well as its input/output are the same. In contrast, an internal step can refine an arbitrary number n of abstract internal steps. Often this number is one or zero, and we will focus on this case. If the number of steps is zero, the step is said to "refine skip" and $as = as_n$ holds.

For linearizability, the abstract specification A that has to be refined by the automaton C constructed from the algorithms is particularly simple and called the canonical automaton. The automaton has a state consisting of a data structure, here a set of elements (all different from \bot). For each operation available for the abstract data type (here: checking for membership and adding an element), it has three atomic steps.

The three steps for each operations are shown in Fig. 1 using KIV's general specifications of atomic steps of threads, indicated by the keyword **atomic** followed by the action of the step. These can in general be arbitrary programs again, although we here need simple assignments only.

The first of the three steps for each operation is an invoking step, that changes the program counter apc of the thread from idle to an invoked state (given after the **return** keyword). This step just copies the input to a local variable (here: le). The second step is a Do step that executes the operation, modifies the data structure and computes its result in a local variable (here: lb). The Do step changes the apc of the thread to a returning state, from which the Return step returns a result (by making it visible in its action) resetting the pc to idle. For the insert operation, the Do is nondeterministic, it can either insert the element, or refuse to do so, abstracting from the two possibilities of the insert algorithm. The nondeterminism is resolved by an additional boolean input that is also present in the action executed.

Like for the algorithms of Sec. 2, thread-local atomic steps accessing a global (here: set) and a thread-local state (here: the variables le and lb) are translated to predicate logic with preconditions apre and step functions agstepf, alstepf, apcstepf. The resulting canonical automaton A still allows operations of different threads to run concurrently, but insists that all operations have a simple, atomic effect described by the Do step that happens while the operation runs.

Finding a forward simulation between A and C requires finding the specific internal step of C where the effect of the operation happens. In general, finding a correct linearization point (LP) can be very difficult, e.g., it is possible that the LP of an operation is not a step of the thread executing it, but a step of another thread: one case is that thread t makes an offer, and another thread t' in a step that accepts the offer executes the LP of both threads (the elimination stack [11] and queue [17] are two instances). This case requires a forward simulation where one concrete step matches two Do-steps of the abstract specification.

The local proof obligations we give in this paper are tailored towards the most common case, which is that a specific step in the code of the thread executing an algorithm is its LP, which corresponds to the abstract *Do* step of the running operation. All other steps of an operation "refine skip", i.e., their proof obligation reduces to a 1:0 diagram.

For this case, we give a mapping that singles out the step, and gives the matching abstract Do step. This is done efficiently by exploiting that we can fix actions using the **with** clauses in the algorithms. For the **Insert** algorithm, see Alg. 1, there are three steps which can be the LPs: the obvious one is a successful CAS at line I12. However, a failed CAS at this line can also be a linearization point when the algorithm recognizes that the element is already present. For the same reason, the step at I06 that loads ar[n] is another LP when the loaded value is the element e that should be inserted. Finally, I18 is an LP for the case where no element is inserted, since the array is full.

For the **Member** algorithm, only loading a value at M06 can be an LP. It is one in three cases: First, when the element e checked to be in the set is loaded (**Member** will return true). Second, when \bot is loaded: then **Member** will return false. Note that while there is often some freedom to choose an LP between several program steps, in this case the loading step is the only one that is correct. Any step executed later will not work, since in between executing

the load and this step, another thread might have inserted e, and the abstract Do step would already return true rather than false as the algorithm does. Finally, the step is also an LP when the array slot checked is the last one, i.e., when (n+1) mod $sz=n_0$. In this case **Member** will return false.

To allow the definition of thread-local and step-local proof obligations, the abstraction relation is again split into a global part, and a thread-local part.

- The global abstraction relation $\mathsf{GAbs}(gs, ags)$ specifies how global states correspond. For the case study $\mathsf{absset}(gs.\mathsf{ar}, ags.\mathsf{set})$ is used, defined as $\forall \ e.\ e \in set \leftrightarrow \exists \ n.\ n < \#ar \land e = ar[n] \land e \neq \bot.$
- a local abstraction relation LAbs(gs, ls, pc, ags, als, apc) that gives the correspondence between program counters and local input and output values stored in ls, pc and als, apc, respectively (the relation may depend on the global states gs and ags). Like for the assertions used in invariants, we give these as assertions for certain ranges of program counters of the concrete algorithm. An example is $\mathbf{15}: apc = (b \supset \mathbf{retIns}; \mathbf{invIns}) \land (b \rightarrow \neg lb)$ which states that at $\mathbf{15}$, the abstract pc apc is before/after the Do-step, depending on the value of b, and that the local variable lb of the abstract specification is true when variable b used in the algorithm is true. In the proof obligations below, we refer to the formula that holds at a specific pc value pcval as LAbs_{pcval}(gs, ls, als, apc). The full LAbs-formula is defined as the conjunction of implications $pc = pcval \rightarrow \text{LAbs}_{pcval}(gs, ls, als, apc)$ for all pc values pcval, similar to the local invariant.

The full simulation relation includes the both global and local invariants as well as the global and local abstractions.

```
abs(gs, lsf, pcf, ags, alsf, apcf) 
\leftrightarrow GInv(gs) \land AGInv(ags) \land GAbs(gs, ags) 
\land \forall t. \quad LAbs(gs, lsf(t), pcf(t), alsf(t), apcf(t)) 
\land LInv(gs, lsf(t), pcf(t)) \land ALInv(ags, alsf(t), apcf(t)) 
(4)
```

Assuming we have already proved invariants LInv, GInv and ALInv, AGInv for the concrete resp. abstract specification, we can now define thread-local, step-local proof obligations (POs) for a refinement. All POs share a number of common preconditions.

```
\begin{split} Prec &= \mathtt{GInv}(gs), \ \mathtt{AGInv}(ags), \ \mathtt{GAbs}(gs, ags), \\ & \mathtt{pre}(gs, lsf(t), pcf(t), a), \ gs' = \mathtt{gstepf}(gs, lsf(t), pcval, a), \\ & ls' = \mathtt{lstepf}(gs, lsf(t), pcval, a), \ pc' = \mathtt{pcstepf}(gs, lsf(t), pcval, a), \\ & \mathtt{LInv}_{\mathtt{pcval}}(gs, lsf(t)), \ \mathtt{ALInv}(ags, alsf(t)), \\ & \mathtt{LAbs}_{\mathtt{pcval}}(gs, lsf(t), alsf(t), apcf(t)), \\ & \forall \ t'. \ t' \neq t \rightarrow \ \ \mathtt{LInv}(gs, lsf(t')) \land \mathtt{ALInv}(ags, alsf(t')) \\ & \land \ \mathtt{LAbs}(gs, lsf(t'), pcf(t'), ags, alsf(t'), apcf(t')) \end{split}
```

These refer to a concrete and an abstract state consisting of gs, lsf, pcval and ags, alsf, apcf related by abs, and to a thread t, that modifies the global state,

the local state and the pc to gs', ls', and pcval'. The preconditions include a quantified formula that asserts the local invariants and local abstraction for other threads. For this case study, this quantified precondition is not required for the verification of the POs defined below. There are however case studies where a specific thread (e.g., a thread that has set a lock) influences another, where instantiating the quantifier is necessary.

Definition 3 (Thread-local, step-local proof obligations). Each step from peval to peval' of the concrete algorithm that executes action a under condition φ has two proof obligations. These depend on whether the action of the step is matched to an abstract action or not.

Case 1 The action a is also executed by the abstract system.

```
PO-pcval-pcval'-same
```

Note that **with** clauses in the algorithms fix the condition φ under which a step is a linearization point, and therefore executes a specific abstract action. The two POs of each case distinguish preserving the global abstraction and the local abstraction of thread t that executes the step itself (**same-POs**), and preserving the local abstraction of some other thread $t' \neq t$ (**other-POs**).

 $\vdash LAbs(gs', lsf(t'), pcf(t'), ags', lsf(t'), pcf(t'), alsf(t'), apcf(t'))$

The **other-POs** are trivial and dropped by the proof obligation generator when steps do not change the global state. When the global state changes, then the two LAbs-formulas must be expanded by their definition (and the proof obligation generator already does this), which results in quite large conjunctions over all assertions given. It is easy to prove that

Theorem 1. The local proof obligations together with the initialization condition of forward simulation imply that abs as defined by (4) is a forward simulation between the concrete and the abstract system.

by just noting that the assumption that abs holds for the initial states in the forward simulation conditions (2) and (3) implies all the preconditions of the thread local POs, except for the specific choice of pre , φ and a, which fixes one of the possible steps the concrete system has available. That abs in the postcondition of (2) and (3) is implied follows by looking at each individual predicate it consists of: that the global and local invariants hold again was already verified for each of the two automata C and A individually. Predicate GAbs is established by the same-PO. Finally, LAbs is established by the same-PO for thread t itself, and by the other-PO for all other threads.

The main reduction in effort is that doing all the case splits over available steps, the relevant quantifier reasoning for threads, the reduction of LInv and LAbs to the assertions LInv_{pcval} and LAbs_{pcval} that hold at a specific *pcval* has already been done, as well as dropping all trivial proof obligations. For our case study, the proof obligation generator results in 49 proof obligations of type same, and 15 of the **other** type. All but 5 are proven automatically by the simplifier.

The main difficult proof obligation is the one for the step that linearizes the member operation at M6. It requires showing that, based on the invariant htok and the assertion allslotsfull that holds at this point, linearization is correct for all three possible cases: the first is that the value loaded is \bot . In this case, we need the lemma

```
\begin{aligned} & \texttt{htok}(ar), \ ar[n] = \bot, \ e \neq \bot, \ \texttt{allslotsfull}(ar, \texttt{get\_hash}(e, \#ar), n, e, \texttt{false}) \\ & \vdash (\forall \ m. \ m < \#ar \rightarrow ar[m] \neq e) \end{aligned}
```

The second case is that the last slot is loaded $((n+1) \mod sz = \texttt{get_hash}(e, \#ar)$ holds) and is not e. This needs some quantifier reasoning for the allslotsfull-predicate to assert that the between range encompasses all array elements, implying the element e cannot be in the array. The third case, where e itself is loaded, is simple.

The other step that needs a lemma is the CAS step when inserting an element at I12. For the successful case a lemma is needed that asserts that updating both the array and the set preserves absset. Formulated as a rewrite rule

```
n < \#ar \land ar[n] = \bot \land \mathtt{absset}(ar, set)
 \rightarrow (\mathtt{absset}(ar[n := e], set \ \cup \{e\}) \leftrightarrow e \neq \bot)
```

the lemma is applied automatically, and just one interaction is needed that does a case split on whether the CAS succeeds.

Most of the effort in verifying the simulation now lies in fixing linearization points, and in defining suitable assertions based on this choice. Only 12 interactions were needed to prove the thread-local proof obligations. Verifying these was significantly simpler than proving the invariant of the concrete system. Development of thread local proof obligations was motivated and first tested with an earlier case study [6] on opacity. There, using thread local POs instead of the standard forward simulation conditions reduced the proof effort from 245 to 42 interactions. The online presentation [19] for this case study has been enhanced to include the new refinement proofs.

5 Related Work

Our approach is based on standard interleaving semantics used by many other formalisms. The more general semantics of concurrent ASMs [2] allows several threads (called agents) to make steps at the same time at the cost of considering clashes. Using a weak memory model would make reasoning more realistic but also more complex.

Our translation from programs to state-based transitions is influenced by Manna-Pnueli's work [16] and the translation of plusCAL [14] to TLA+. The thread-local proof obligations for invariants are influenced by rely-guarantee calculus [4,13]. However, because of symmetry, we need a rely predicate only, while the guarantee could be inferred as the conjunction of the rely's for all other threads.

Our systems are usually step-deterministic, i.e., for a state s and the action a there is usually at most one state s' with step(s, a, s'). The mapping between actions therefore allows to mimic a useful feature of the simulation conditions of Event-B refinement: these fix the choice of parameters for the ANY-clause of an abstract event (cf. [1], p. 251) avoiding the need for instantiation in the proof.

Most interactive theorem provers (Event-B is an exception) instantiate verified refinement theories and prove a simulation based on this, and we also follow that approach (a theory of IO Automata refinement is part of the web presentation [10]). Our work here resulted from the observation that for concurrent algorithms, the proof that shows sufficiency of thread-local proof obligations often constitutes a significant part of the work that can be avoided.

Our approach to thread-local proof obligations has some similarities to [20]. There, the proof obligations are specialized to linearizability and inferred on paper. An algorithm infers and verifies intermediate assertions automatically. The definition of a rely condition is avoided, instead the approach weakens assertions minimally (using decidable fragments of Separation Logic) to be stable over all the transitions of other threads.

6 Conclusion

We have defined an approach to the verification of concurrent threaded systems that reduces simulation proofs to thread-local, step-local proof obligations for a forward simulation. We found that this reduces the effort for verification significantly and allows us to focus on the core predicates and assertions needed for verification of the hash set implementation. All KIV specifications and proofs for the hash set case study can be found online [10].

In this paper we could not discuss various extensions that we either have already done (e.g., global system transitions that model crashes or flushing memory from volatile to persistent memory) or are future work (e.g., progress conditions). A comparison to the program calculus we alternatively use is also beyond the scope of this paper. Finally, it would also be interesting to see how incremental development of concurrent algorithms using several refinements could benefit.

References

- 1. J.-R. Abrial. *Modeling in Event-B: System and Software Engineering*. Cambridge University Press, 2010.
- E. Börger and K.-D. Schewe. Concurrent abstract state machines. Acta Informatica, 53:469–492, 2016.
- 3. E. Börger and R. F. Stärk. Abstract State Machines A Method for High-Level System Design and Analysis. Springer, 2003.
- 4. W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel, and J. Zwiers. *Concurrency Verification: Introduction to Compositional and Non-compositional Methods*. Number 54 in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2001.
- 5. J. Derrick and E. Boiten. Refinement in Z and in Object-Z: Foundations and Advanced Applications. Formal Approaches to Computing and Information Technology (FACIT). Springer, 2001. second, revised edition 2014.
- J. Derrick, S. Doherty, B. Dongol, G. Schellhorn, O. Travkin, and H. Wehrheim. Mechanized Proofs of Opacity: a Comparison of two Techniques. Formal Aspects of Computing (FAC), 30(5):597–625, 2018.
- 7. J. Derrick, S. Doherty, B. Dongol, G. Schellhorn, and H. Wehrheim. Verifying Correctness of Persistent Concurrent Data Structures: a Sound and Complete Method. Formal Aspects of Computing (FAC), 33(4-5):547–573, 2021.
- 8. S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards Formally Specifying and Verifying Transactional Memory. Formal Aspects of Computing (FAC), 25(5):769–799, 2013.
- R. Guerraoui and M. Kapalka. On the Correctness of Transactional Memory. In Proc. of Principles and Practice of Parallel Programming (PPOPP), pages 175– 184, 2008.
- 10. Verification of Linearizability of Hash Sets with Local Proof Obligations with KIV. http://www.informatik.uni-augsburg.de/swt/projects/HashSets.html, 2023.
- D. Hendler, N. Shavit, and L. Yerushalmi. A Scalable Lock-Free Stack Algorithm. In Proc. of Parallelism in Algorithms and Architectures (SPAA), pages 206–215. ACM, 2004.
- M. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for Concurrent Objects. ACM Transactions on Programming Languages and Systems (TOPLAS), 12(3):463–492, 1990.
- 13. C. B. Jones. Tentative Steps Toward a Development Method for Interfering Programs. *Transactions on Programming Languages and Systems*, 5(4):596–619, 1983.
- 14. L. Lamport. The PlusCal Algorithm Language. In *Proc. of Theoretical Aspects of Computing (ICTAC)*, pages 36–60. Springer, 2009.
- 15. N. A. Lynch and M. R. Tuttle. Hierarchical Correctness Proofs for Distributed Algorithms. In *Proc. of ACM Symposium on Principles of Distributed Programming (PODC)*, pages 137–151. ACM, 1987.
- 16. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems Safety. Springer, 1995.
- 17. M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. Using Elimination to Implement Scalable and Lock-Free FIFO Queues. In *Proc. of Parallelism in Algorithms and Architectures (SPAA)*, pages 253–262. ACM, 2005.
- 18. C. H. Papadimitriou. The Serializability of Concurrent Database Updates. *Journal of the ACM*, 26(4):631–653, 1979.

- 19. Verification of Opacity of a Transactional Mutex Lock with KIV and Isabelle. http://www.informatik.uni-augsburg.de/swt/projects/Opacity-TML.html, 2016.
- 20. V. Vafeiadis. Automatically Proving Linearisability. In *Proc. of Computer Aided Verification (CAV)*, volume 6174 of *LNCS*, pages 450–464. Springer, 2010.
- 21. VerifyThis Program Verification Competition Series. https://www.pm.inf.ethz.ch/research/verifythis.html.
- 22. VerifyThis 2022: Challenge 3 The World's Simplest Lock-Free Hash Set. https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges2022/verifyThis2022-challenge3.pdf, 2022.