
Thread-Local, Step-Local Proof Obligations for
Refinement of State-Based Concurrent Systems ⋆

Gerhard Schellhorn, Stefan Bodenmüller, and Wolfgang Reif

Institute for Software and Systems Engineering
University of Augsburg, Germany

{schellhorn,stefan.bodenmueller,reif}@informatik.uni-augsburg.de

Abstract. This paper presents a proof technique for proving refine-
ments for general state-based models of concurrent systems that reduces
proving forward simulations to thread-local, step-local proof obligations.
Instances of this proof technique should be applicable to systems specified
with ASM rules, B events, or Z operations. To exemplify the proof tech-
nique, we demonstrate it with a simple case study that verifies lineariz-
ability of a lock-free implementation of concurrent hash sets by showing
that it refines an abstract concurrent system with atomic operations.
Our theorem prover KIV translates programs to a set of transition rules
and generates proof obligations according to the technique.

Keywords: Refinement, State-Based Concurrent Systems, Thread-Local Proof
Obligations, Interactive Verification

1 Introduction

Refinement-based development is a successful approach to the development of
algorithms and software systems. An important subcase is the development of ef-
ficient, thread-safe concurrent implementations, where the abstract specification
is often given as simple atomic operations.

We have developed two approaches for verifying such refinements. One is
based on a program calculus, and the other on which we focus in this paper relies
on translating programs to a state-based description. This approach requires just
predicate logic for verification.

We have done case studies with algorithms that are hard to verify. In partic-
ular, some require backward simulation or were hard to reduce to thread-local
reasoning [12]. Most cases, however, like the one we consider in this paper, are
simpler. We noted that their verification still results in much overhead when one
tries to verify standard forward simulation conditions. There is much potential
to reduce complex reasoning to simple verification conditions local to threads,
exploiting symmetry (all threads execute the same operations). Furthermore,

⋆ Supported by the Deutsche Forschungsgemeinschaft (DFG), “Correct translation of
abstract specifications to C-Code (VeriCode) ” (grant RE828/26-1).

giving assertions reduces proofs to individual conditions for each step, which are
easy to understand.

This paper develops an approach to prove forward simulations with proof
obligations that are local to individual threads and steps of the programs. Gen-
erating these proof obligations has been implemented in our KIV theorem prover.
It makes use of earlier work that developed a translation from programs to tran-
sition systems and defined local proof obligations for verifying invariants. We
extend the approach to refinements by specifying local proof obligations for for-
ward simulations.

We exemplify the approach by proving the correctness of a simple, concurrent
implementation of hash sets. Proving the case study was presented as a chal-
lenge at last year’s VerifyThis competition [21] for theorem provers. However,
the case study turned out to be far too complex to verify in a 90-minute time
frame (none of the participants got further than to verify just termination of a
simplified sequential version). We define the algorithms in Section 2 and sketch
their translation to a transition system. Section 3 defines the main invariant and
summarizes the local proof obligations that are needed to establish it.

Section 4 defines the strategy for generating local proof obligations based
on three mappings: one establishes a mapping between the control states of
each thread in the concrete and the abstract system. The second provides a
mapping of steps that has some resemblance to the mapping used in Event-B
refinements [1]. The third defines a relation between the local states of threads.

For our case study, we achieve the desired effect: the reasoning is reduced to
the essential arguments that show that the programs have an atomic effect at
one specific instruction.

Finally, Section 5 gives related work and Section 6 concludes.

2 Case Study: Concurrent Hash Sets

We use a challenge of the 2022 VerifyThis competition [21] held at ETAPS as
a case study to illustrate our approach. The tasks of the challenge [22] revolved
around verifying the correctness of a simple but thread-safe and lock-free im-
plementation of hash sets. The implementation produces hash sets with a fixed
capacity and only provides functionality for insertions and membership queries.

Implementation of the Algorithms in KIV

The two main operations of the given algorithms can be executed concurrently
by an arbitrary number of threads, and were translated into KIV programs using
algebraic data types as a basis. For concurrent executions, we assume an inter-
leaving semantics where each program statement (such as assignments or evalua-
tions of conditionals) is executed atomically, but atomic steps of different threads
can interleave. The implementation uses a fixed-sized array ar : Array(Elem)
storing keys of a generic type Elem as a state variable. Each slot of ar is initial-
ized with a designated key ⊥ : Elem, used as a placeholder for empty slots.

Algorithm 1 Hash Set Insertion Operation in KIV.

idle: Insert(e; ; b)
precondition: e ̸= ⊥
postcondition: b ↔ ∃ n. n < #ar ∧ ar [n] = e

I01: let sz = #ar in
I02: let n0 = get hash(e, sz) in
I03: let n = n0 in {
I04: b := false;
I05: while ¬ b do {
I06 with (ar [n] = e ⊃ doInsert(t , true); τ):

let e0 = ar [n] in { // atomic load
I07 /* e0 ̸= ⊥ → e0 = ar [n] */:

if e = e0 then {
I08 /* e0 = e ∧ e = ar [n] */:

b := true; // return true if the element is already there
I09: return idle;

} else
I10: if e0 ̸= ⊥ then
I11: n := (n + 1) mod sz // slot is occupied, try next slot

else {
I12 with (ar [n] = ⊥ ∨ ar [n] = e ⊃ doInsert(t , true); τ):

if* ar [n] = ⊥ // CAS (returns the new value in e0)
then e0 := e, ar [n] := e else e0 := ar [n];

I13: if e0 = e then {
I14: b := true; // return true if the element was inserted
I15: return idle;

} else
I16: n := (n + 1) mod sz // slot is occupied, try next slot

} };
I17: if n = n0 then {
I18 with doInsert(t , false):

b := false; // return false if the array is full
I19: return idle;

} else
I20: skip; // continue with next loop iteration

} };
I21: return idle; // never reached

assertions
I03 → I20 : n0 = get hash(e,#ar);
I04 → I16 : allslotsfull(ar ,n0,n, e, false);
I17 : allslotsfull(ar ,n0,n, e, true);
. . .

Algorithm 1 lists the KIV implementation (ignore the with clauses and
assertions for the moment) of the Insert operation for adding keys to the
set. The operation takes a key e : Elem as input and signals via the output
b : Bool whether the requested key was inserted (or was already included in the
set).1 First, the algorithm calculates the hash value n0 for the key e using the
function get hash (line I02). The function returns a value in the range [0, sz),
where sz is set to the size of ar (written #ar). Then, the algorithm uses linear
probing to find a free slot in ar , i.e., it searches for the closest following un-
occupied location in ar starting from n0. For this, the while loop (I05 - I20)
incrementally checks the entries of ar (accessing a location n of an array ar is
written ar [n]).

Depending on the value e0 of the slot currently considered, different situations
must be handled. If the slot already contains the requested key e, nothing has
to be inserted and the operation returns true (I07 - I09). When the slot is
occupied, i.e., e0 is neither e nor ⊥, the search must be continued at the next
slot (I10 - I11). For this, the current index n is incremented for the next loop
iteration (note that the search continues at index 0 when the upper bound of
the array is reached). If a free slot was found (e0 = ⊥), the algorithm tries to
insert the element atomically using a CAS (compare-and-swap) operation (I12).
In KIV, this is modeled using the if* construct, which performs the evaluation of
its condition and the first statement of the chosen branch as one atomic step. In
case the CAS was successful, the element was successfully added and operation
returns with true (I13 - I15). Otherwise, another thread interfered and occupied
the slot, so the search must be continued (I16). Finally, insertion is aborted if
the search went one full round and no free slot was found. Then the array is full,
and the operation returns false (I17 - I19).

Analogously, Algorithm 2 shows the implementation of the Member oper-
ation for checking whether a key e has been inserted into the set. The result b
is again determined by traversing ar using linear probing (M05 - M17) until the
searched element was found (M07 - M09). The search is aborted and the operation
returns false when either the complete array was checked (M14 - M16) or a ⊥
was reached (M10 - M12).

Note that the KIV implementations of both operations slightly differ from
the pseudo-code given in the challenge description as it uses do-while loops,
which are currently not supported by the programming language of KIV.

Translation to a State-Based Transition System

KIV provides functionality to automatically translate algorithms like the one
given above to state-based transition systems. More precisely, the framework of
Input/Output Automata (IOA) [15] is used.

1 KIV procedures currently do not have return values. Instead, the parameters of a
procedure are partitioned into input, reference, and output parameters, which are
separated by semicolons.

Algorithm 2 Hash Set Member Operation in KIV.

idle: Member(e; ; b)
precondition: e ̸= ⊥
postcondition: b → ∃ n. n < #ar ∧ ar [n] = e

M01: let sz = #ar in
M02: let n0 = get hash(e, sz) in
M03: let n = n0 in {
M04: b := false;
M05: while ¬ b do {
M06 with (ar [n] = e ∨ ar [n] = ⊥ ∨ (n + 1) mod sz = n0 ⊃ doMember(t); τ):

let e0 = ar [n] in // atomic load
M07: if e = e0 then {
M08: b := true; // return true if the element was found
M09: return idle;

} else
M10: if e0 = ⊥ then {
M11: b := false; // return false if empty entry was found
M12: return idle;

} else {
M13: n := (n + 1) mod sz ; // slot is occupied, try next slot
M14: if n = n0 then {
M15: b := false; // return false if array is full and element not in
M16: return idle;

} else
M17: skip; // continue with next loop iteration

} } };
M18: return idle; // never reached

Definition 1. An Input/Output Automaton (IOA) is a labeled transition sys-
tem A with
– a type State of states,
– a predicate init(s) that fixes a subset of initial states s,
– a type Action of actions, and
– a step (or transition) predicate step(s, a, s ′) defining steps of the automaton

from states s to states s ′, labeled by actions a.

Actions can be viewed as parameterized ASM rules [3], as the names of Event-B
events [1] parameterized by the values chosen in ANY . . . WHERE clauses, or as
Z operations [5] with inputs/outputs. The carrier set of Action is partitioned
into internal actions a satisfying internal(a), which represent events of the
system that are not visible to the environment, and external actions a satisfy-
ing external(a), which represent interactions of A with its environment. The
set of external actions typically comprises invoke and return actions for each
non-atomic operation, representing their invoking and returning steps and fix-
ing the calling thread as well as the inputs and outputs. For example, the actions
invInsert(t , e) and retInsert(t , b) represent the respective steps for the In-
sert operation (analogously, invMember and retMember for Member).

An execution fragment frag(s0a1s1a2s2a3 . . .) is a (finite or infinite) se-
quence of alternating states and actions such that step(si, ai+1, si+1). An ex-
ecution exec(s0a1s1a2s2a3 . . .) is additionally required to start with an ini-
tial state s0 satisfying init(s0). The set of all executions or fragments of an
automaton A is denoted exec(A) and frag(A), respectively. The trace of an
execution is the projection of all its actions to the external ones, formally
trace(s0a1s1a2s2a3 . . .) = a1a2a3 . . . | {ai | external(ai)}. The set traces(A)
of all traces of an automaton A represents its visible behavior to a client. A
trace shows concurrency by having several operations pending, e.g., the trace

invInsert(t1, e1) invInsert(t2, e2) retInsert(t1, true) invMember(t1, e2)

shows a situation where thread t1 has inserted element e1 successfully and is
currently running a test for membership of e2, while another thread t2 is concur-
rently running an insertion of the same element e2. Concurrent execution might
add both retMember(t1, true) or retMember(t1, false) as the next action, de-
pending on whether thread t2 manages to insert the element before the check of
thread t1 or not.

In the following, we outline how the translation is performed for the hash set
implementation; a more detailed description is given in [7].

The states of the automaton are constructed from three components: the
global state gs : GS , the local state function lsf : Tid → LS , and the program
counter function pcf : Tid → PC . The combined state is written as the tuple
mkstate(gs, lsf , pcf) of type State.

In KIV, states are given by (the values of) one or several (typed) state vari-
ables. The global state gs is the tuple of the state variables that can be accessed
by all threads. For the hash set case study, this only includes the array ar , which
can be accessed via the selector gs.ar. The local state function lsf stores local
variables used by threads in the programs of the system. This includes all lo-
cally introduced variables in operations, e.g., sz or n in Alg. 1, as well as the
parameters of operations, e.g., e and b in Alg. 1. The function stores a local
state tuple ls : LS for each thread t : Tid , where selectors for the individual
fields are defined again. For example, the value of sz for a thread t is selected
via lsf (t).sz.

The function pcf stores the program counter (control state) for each thread,
which defines the current step of a thread within a program. For this, each atomic
step in a KIV program is augmented with a unique label (I01, I02, . . . , I21 for
Insert, and M01, M02, . . . , M18 for Member). The type PC is defined as an
enumeration type containing a constant for each program label together with
idle for a thread that is in between operation calls (of Insert or Member).

For the step predicate, a generic axiom definition is generated.

step(mkstate(gs, lsf , pcf), a, mkstate(gs ′, lsf ′, pcf ′))

↔ ∃ t . pre(gs, lsf (t), pcf (t), a) ∧ gs ′ = gstepf(gs, lsf (t), pcf (t), a)

∧ lsf ′ = lsf (t := lstepf(gs, lsf (t), pcf (t), a))

∧ pcf ′ = pcf (t := pcstepf(gs, lsf (t), pcf (t), a))

The definition breaks down a system step to a step of one thread t by restricting
changes of lsf and pcf to affect the parts of t only (the term f (k := v) yields
the function f where the value of f (k) is updated to v). The three step functions
gstepf, lstepf, and pcstepf calculate the next global and local state and the
next program counter of this thread from the previous ones if the precondition
predicate pre holds. These step functions and the precondition predicate are
defined by axioms for each individual program counter.

The pre predicate fixes the actions a a program counter pc maps to, po-
tentially depending on the current states gs and ls. The Action type contains
values for all invoke and return steps of the automaton. Internal steps of non-
atomic programs are typically mapped to the default action τ . However, internal
steps can also be mapped to user-defined actions using a with-clause. We will
assign actions representing (potential) linearization points, i.e., steps where an
operation “takes effect” (cf. Sec. 4). For example, the steps I06, I12, and I18

of Alg. 1 are specified with the action doInsert, recording the current thread t
and a boolean value determining whether the operation successfully inserted the
element. The assignment of these actions can be conditional: the action of I06 is
doInsert(t , true) only if ar [n] = e holds at that point, otherwise it is τ . In the
algorithm, the notation φ ⊃ a0; a1 is used as an abbreviation for an expression
that computes a0 if φ is true and a1 otherwise. Thus, the precondition of I06
is specified by the following axiom, using the respective selectors to access the
global and local state vars. 2

pre(gs, ls, I06, a) ↔ a = (gs.ar[ls.n] = ls.e ⊃ doInsert(ls.tid); τ)

State updates are also specified by individual axioms for the functions gstepf
and lstepf for each program counter. For example, the let-statement at I06

introduces a new local variable e0 and thus updates the corresponding field of
the local state. On the other hand, the global state is not modified.

lstepf(gs, ls, I06, a) = (ls.e0 := gs.ar[ls.n])

gstepf(gs, ls, I06, a) = gs

Finally, the program counter step function pcstepf is defined based on the
algorithm’s control flow, e.g., the program counter of a thread is moved to I07

after the statement at I06 was executed. If the control flow can take different
branches, the result of pcstepf is conditional. For example, after evaluating the
if-condition at I07, the program counter is either set to I08 or I10.

pcstepf(gs, ls, I06, a) = I07

pcstepf(gs, ls, I07, a) = (ls.e = ls.e0 ⊃ I08; I10)

3 Local Proof Obligations for Invariants

For proving the refinement of the hash set implementation (see Sec. 4), an invari-
ant restricting the reachable states of the automaton is necessary. This invariant

2 To access the identifier of thread t , it is stored as a tid-field in its local state. An
invariant ensures that threads store the correct identifier, i.e., lsf (t).tid = t .

typically contains general consistency properties of the global state (independent
of the local states of any thread, thus called global invariants) as well as various
assertions for different control points of the algorithm (called local invariants as
they also refer to the local states of threads).

The global invariant is given as a predicate GInv(gs). For the case study, it
ensures that the array ar , in which the elements of the set are stored, has a valid
size (it can store at least one element) and that its slots are filled correctly.

GInv(ar) ↔ #ar ̸= 0 ∧ htok(ar)

The latter property is expressed by the predicate htok, which is defined using
the auxiliary predicates allslotsfull and between.

htok(ar) ↔ ∀ n. n < #ar ∧ ar [n] ̸= ⊥
→ allslotsfull(ar , get hash(ar [n],#ar),n, ar [n], false)

allslotsfull(ar ,n0,n, e, b) ↔ ∀ m. between(n0,m,n, b) ∧m < #ar

→ ar [m] ̸= e ∧ ar [m] ̸= ⊥

between(n0,m,n, b) ↔ n0 = n ∧ b

∨ (n < n0 ⊃ m < n ∨ n0 ≤ m; n0 ≤ m ∧m < n)

The predicates encode that ar was filled by linear probing: it must hold for any
non-⊥ element ar [n] that all slotsm between the element’s hash value (calculated
by get hash) and the slot n it is stored in are “full”, i.e., are occupied by other
non-⊥ elements. Since the search for a free slot continues at the first slot when
the end of the array is reached (cf. Alg. 1), the definition of between must
consider both the case of n0 ≤ n and the case of n < n0 (expressed using the
φ ⊃ t0; t1 notation). Note that the definitions just consider slots m ∈ [n0,n)
when the flag b is false, which is the case for the global invariant htok. The
predicates are used with b ↔ true only in local invariants to express that the
array is filled completely (when all slots are considered, i.e., n0 = n).

Instead of giving a local invariant formula directly, KIV generates a predicate
definition from thread-local assertions for the individual program points. This
approach facilitates tackling larger algorithms as the resulting formula becomes
vast quite quickly (typically several pages of text, even for small case studies like
the one presented in this paper). Thus, manually defining and maintaining this
formula is very error-prone.

An assertion LInvpcval(gs, ls) can be given for every label pcval ∈ PC . In
KIV, assertions can be encoded as a comment /* φ */ at the respective label
(cf. lines I07 and I08 of Alg. 1). Since typically assertions hold for ranges in
the code, they can also be given separately. For example, the assertions given
at the bottom of Alg. 1 encode the progress of linear probing: in every iteration
of the loop, all slots between the hash value get hash(e,#ar) of the element
and the current index n are occupied (I04 → I16 is a shorthand for the range
I04, I05, . . . , I15, I16). The critical step here is from I16 to I17, where the index
n is incremented. At this point, the boolean flag of allslotsfull is toggled from

false to true because n may have been incremented to n0 when ar has been
fully searched.

From the given assertions, KIV generates the definition of a local invari-
ant predicate LInv(gs, ls, pc), which is then lifted to a full invariant definition
Inv(gs, lsf , pcf) for the automaton.

LInv(gs, ls, pc) ↔
∧

pcval∈PC

(pc = pcval → LInvpcval(gs, ls))

Inv(gs, lsf , pcf) ↔ GInv(gs) ∧ ∀ t . LInv(gs, lsf (t), pcf (t))

Since the steps of threads can interleave, the given thread-local assertions must
be stable over the steps of other threads for the invariant to hold. In order to
avoid the combinatorial explosion of explicitly reasoning over all possible inter-
leavings, a rely predicate rely(t , gs, gs ′) is used to abstract from the concrete
modifications other threads can make. All steps that are not executed by thread
t should satisfy this predicate when they start in global state gs and end with
gs ′. Thread t relies on other threads to change the global state according to
rely. For the case study, the following rely predicate is sufficient, enforcing that
no thread resizes the array and that no thread overwrites a slot at which an
element has been inserted before.

rely(t , ar0, ar1)

↔ #ar0 = #ar1 ∧ ∀ n. n < #ar0 ∧ ar0[n] ̸= ⊥ → ar1[n] = ar0[n]

With these definitions, proof obligations (POs) are generated that ensure that
the predicate Inv(gs, lsf , pcf) is actually an invariant of the automaton. The
obligations are formulated in sequent notion: a sequent Γ ⊢ ∆ abbreviates the
formula ∀x .

∧
Γ →

∨
∆ where Γ (the antecedent) and ∆ (the succedent) are

lists of formulas, and x is the list of all free variables in ∆ and Γ .

step-pcval-pcval′: For every step from label pcval to pcval′ with action a

LInvpcval(gs, ls), GInv(gs), pre(gs, ls, pcval, a)

⊢ LInvpcval′(gstepf(gs, ls, LInvpcval, a), lstepf(gs, ls, LInvpcval, a))

∧ GInv(gstepf(gs, ls, pcval, a))

rely-pcval: For every step from label pcval

LInvpcval(gs, ls), GInv(gs), pre(gs, ls, pcval, a), ls.tid ̸= t

⊢ rely(t , gs, gstepf(gs, ls, pcval, a))

stable-pcval: For every label pcval

LInvpcval(gs, ls), GInv(gs), rely(t , gs, gs
′) ⊢ LInvpcval(gs

′, ls)

The first PO (step-pcval-pcval′) guarantees that each step of a thread estab-
lishes the thread-local assertion at the following statement and preserves the
global invariant. The other two POs ensure that steps of other threads do not
invalidate assertions. This is split into showing that all such steps are rely steps
(rely-pcval) and that all assertions are stable over the rely (stable-pcval).

Note that often a significant amount of the generated obligations can be omit-
ted. Many steps do not update the global state (when gstepf(gs, ls, pcval, a) =

gs), and so the rely-pcval POs can be dropped for these steps as it is enforced
that the rely predicate is reflexive. In fact, only the rely-I12 PO is generated
for the case study since the CAS at I12 is the only step of the algorithm that
modifies ar . Furthermore, if two assertions LInvpcval and LInvpcval′ of differ-
ent labels pcval ̸= pcval′ are syntactically the same formula, the obligations
stable-pcval and stable-pcval′ are identical, so only one is generated.

In summary, 28 stable and 48 step proof obligations were verified with 65
interactions (including lemmas). Together they establish the invariant Inv of the
IOA. A proof of the soundness of this thread-local proof technique is given in [7].

4 Local Proof Obligations for Refinement

While the invariants ensure that the array is always in a consistent state, they
do not ensure that each operation has a desired effect, e.g. that insert adds
at most the element given as input and deletes nothing. In a sequential setting
simply augmenting the proof with suitable postconditions would be sufficient. In
a concurrent setting this is not possible, as the postcondition can be invalidated
by other threads. Instead one must show that the program behaves like an atomic
operation. This is typically verified by giving abstract atomic descriptions of
program behavior. A standard notion is serializability [18], which requires that
programs behave like transactions: either they have an atomic effect or none at
all when failing. Opacity [9] additionally requires that even failing transactions
never read from states that result from partially executed transactions.

For concurrent libraries like the one we consider here, the standard correct-
ness notion is linearizability [12], which in addition to atomicity requires that the
effect of each operation happens between its invocation and its return. In con-
trast to other criteria, linearizability has the advantage that it is compositional:
using several linearizable libraries is correct already if each library is correct.

The effect of a linearizable operation can be expressed directly as the whole
code of each operation executing sequentially without any interleaving. This is
done in model checking approaches, which automatically check that all possible
interleavings of a fixed (usually very small) number of threads and operations
has the same effect than executing them in some suitable sequential order. A
more common approach in interactive proofs is to express the effect using simple
operations of an abstract data type, like we do here.

Many of the atomicity criteria can be expressed as refinement correctness
with respect to an abstract automaton (e.g., TMS2 for opacity, see [8]). A correct
refinement from an automaton A (with states as of type AState, step relation
astep, etc.) to an automaton C in general requires that the externally visible
invoking and returning steps (i.e., the external actions of A and C that show
their inputs/outputs) must be preserved, formally traces(C) ⊆ traces(A).

Refinement can be verified using either a forward or a backward simulation.
Together the approach is complete: if backward simulation is necessary, it is al-
ways possible to give an intermediate automaton, such that the upper refinement
(often a simple one) can be verified using backward simulation, while the lower

idle : InvInsert(e)
atomic invInsert(t, e)
precondition : e ̸= ⊥
{ le := e;
return invIns }

invIns : DoInsert(do)
atomic doInsert(t)
{ lb := do;
if do then

set := set ∪ {le};
return retIns }

retIns : RetInsert(; ; b)
atomic retInsert(t, b)
{ b := lb;
return idle }

idle : InvMember(e)
atomic invMember(t, e)
precondition : e ̸= ⊥
{ le := e;
return invMem }

invMem : DoMember()
atomic doMember(t)
{ lb := le ∈ set;
return retMem }

retMem : RetMember(; ; b)
atomic retMember(t, b)
{ b := lb;
return idle }

Fig. 1: Canonical automaton for set operations.

one (usually the difficult one) is verified with a forward simulation. Therefore
we will focus on forward simulations only, and on deriving thread-local proof
obligations for this case. A forward simulation is defined as follows.

Definition 2. A forward simulation from a concrete IOA C to an abstract IOA
A is a relation abs ⊆ State ×AState such that each of the following holds.

Initialisation

init(s) ⊢ ∃ as. ainit(as) ∧ abs(s, as) (1)

External step correspondence

abs(s, as), step(s, a, s′), external(a) (2)

⊢ ∃ as ′. abs(s ′, as ′) ∧ astep(as, a, as ′)

Internal step correspondence

abs(s, as), step(s, a, s ′), internal(a) (3)

⊢ ∃ frag(A)(as a1 as1 . . . an asn). abs(s
′, asn) ∧ ∀ i ≤ n. ainternal(ai)

It requires that the visible behavior represented by the actions of external
steps to be preserved, i.e., one has to verify a commuting 1:1 diagram for each
invoking or returning step, where equality of the action implies that the thread
executing the step as well as its input/output are the same. In contrast, an
internal step can refine an arbitrary number n of abstract internal steps. Often
this number is one or zero, and we will focus on this case. If the number of steps
is zero, the step is said to “refine skip” and as = asn holds.

For linearizability, the abstract specification A that has to be refined by the
automaton C constructed from the algorithms is particularly simple and called
the canonical automaton. The automaton has a state consisting of a data struc-
ture, here a set of elements (all different from ⊥). For each operation available for
the abstract data type (here: checking for membership and adding an element),
it has three atomic steps.

The three steps for each operations are shown in Fig. 1 using KIV’s gen-
eral specifications of atomic steps of threads, indicated by the keyword atomic
followed by the action of the step. These can in general be arbitrary programs
again, although we here need simple assignments only.

The first of the three steps for each operation is an invoking step, that changes
the program counter apc of the thread from idle to an invoked state (given after
the return keyword). This step just copies the input to a local variable (here:
le). The second step is a Do step that executes the operation, modifies the data
structure and computes its result in a local variable (here: lb). The Do step
changes the apc of the thread to a returning state, from which the Return step
returns a result (by making it visible in its action) resetting the pc to idle.
For the insert operation, the Do is nondeterministic, it can either insert the
element, or refuse to do so, abstracting from the two possibilities of the insert
algorithm. The nondeterminism is resolved by an additional boolean input that
is also present in the action executed.

Like for the algorithms of Sec. 2, thread-local atomic steps accessing a global
(here: set) and a thread-local state (here: the variables le and lb) are translated
to predicate logic with preconditions apre and step functions agstepf, alstepf,
apcstepf. The resulting canonical automaton A still allows operations of dif-
ferent threads to run concurrently, but insists that all operations have a simple,
atomic effect described by the Do step that happens while the operation runs.

Finding a forward simulation between A and C requires finding the specific
internal step of C where the effect of the operation happens. In general, finding a
correct linearization point (LP) can be very difficult, e.g., it is possible that the
LP of an operation is not a step of the thread executing it, but a step of another
thread: one case is that thread t makes an offer, and another thread t′ in a step
that accepts the offer executes the LP of both threads (the elimination stack [11]
and queue [17] are two instances). This case requires a forward simulation where
one concrete step matches two Do-steps of the abstract specification.

The local proof obligations we give in this paper are tailored towards the most
common case, which is that a specific step in the code of the thread executing
an algorithm is its LP, which corresponds to the abstract Do step of the running
operation. All other steps of an operation “refine skip”, i.e., their proof obligation
reduces to a 1:0 diagram.

For this case, we give a mapping that singles out the step, and gives the
matching abstract Do step. This is done efficiently by exploiting that we can fix
actions using the with clauses in the algorithms. For the Insert algorithm, see
Alg. 1, there are three steps which can be the LPs: the obvious one is a successful
CAS at line I12. However, a failed CAS at this line can also be a linearization
point when the algorithm recognizes that the element is already present. For the
same reason, the step at I06 that loads ar[n] is another LP when the loaded
value is the element e that should be inserted. Finally, I18 is an LP for the case
where no element is inserted, since the array is full.

For the Member algorithm, only loading a value at M06 can be an LP. It
is one in three cases: First, when the element e checked to be in the set is
loaded (Member will return true). Second, when ⊥ is loaded: then Member
will return false. Note that while there is often some freedom to choose an LP
between several program steps, in this case the loading step is the only one that
is correct. Any step executed later will not work, since in between executing

the load and this step, another thread might have inserted e, and the abstract
Do step would already return true rather than false as the algorithm does.
Finally, the step is also an LP when the array slot checked is the last one, i.e.,
when (n+ 1) mod sz = n0. In this case Member will return false.

To allow the definition of thread-local and step-local proof obligations, the
abstraction relation is again split into a global part, and a thread-local part.

– The global abstraction relation GAbs(gs, ags) specifies how global states
correspond. For the case study absset(gs.ar, ags.set) is used, defined as
∀ e. e ∈ set ↔ ∃ n. n < #ar ∧ e = ar [n] ∧ e ̸= ⊥.

– a local abstraction relation LAbs(gs, ls, pc, ags, als, apc) that gives the cor-
respondence between program counters and local input and output values
stored in ls, pc and als, apc, respectively (the relation may depend on the
global states gs and ags). Like for the assertions used in invariants, we give
these as assertions for certain ranges of program counters of the concrete
algorithm. An example is I5 : apc = (b ⊃ retIns; invIns) ∧ (b → ¬ lb)
which states that at I5, the abstract pc apc is before/after the Do-step,
depending on the value of b, and that the local variable lb of the abstract
specification is true when variable b used in the algorithm is true. In the
proof obligations below, we refer to the formula that holds at a specific pc
value pcval as LAbspcval(gs, ls, als, apc). The full LAbs-formula is defined as
the conjunction of implications pc = pcval → LAbspcval(gs, ls, als, apc) for
all pc values pcval, similar to the local invariant.

The full simulation relation includes the both global and local invariants as well
as the global and local abstractions.

abs(gs, lsf , pcf , ags, alsf , apcf) (4)

↔ GInv(gs) ∧ AGInv(ags) ∧ GAbs(gs, ags)

∧ ∀ t . LAbs(gs, lsf (t), pcf (t), alsf (t), apcf (t))

∧ LInv(gs, lsf (t), pcf (t)) ∧ ALInv(ags, alsf (t), apcf (t))

Assuming we have already proved invariants LInv, GInv and ALInv, AGInv for the
concrete resp. abstract specification, we can now define thread-local, step-local
proof obligations (POs) for a refinement. All POs share a number of common
preconditions.

Prec = GInv(gs), AGInv(ags), GAbs(gs, ags),

pre(gs, lsf (t), pcf (t), a), gs ′ = gstepf(gs, lsf (t), pcval, a),

ls ′ = lstepf(gs, lsf (t), pcval, a), pc′ = pcstepf(gs, lsf (t), pcval, a),

LInvpcval(gs, lsf (t)), ALInv(ags, alsf (t)),

LAbspcval(gs, lsf (t), alsf (t), apcf (t)),

∀ t′. t′ ̸= t → LInv(gs, lsf (t′)) ∧ ALInv(ags, alsf (t′))

∧ LAbs(gs, lsf (t′), pcf (t′), ags, alsf (t′), apcf (t′))

These refer to a concrete and an abstract state consisting of gs, lsf , pcval and
ags, alsf , apcf related by abs, and to a thread t, that modifies the global state,

the local state and the pc to gs ′, ls ′, and pcval′. The preconditions include a
quantified formula that asserts the local invariants and local abstraction for
other threads. For this case study, this quantified precondition is not required
for the verification of the POs defined below. There are however case studies
where a specific thread (e.g., a thread that has set a lock) influences another,
where instantiating the quantifier is necessary.

Definition 3 (Thread-local, step-local proof obligations). Each step from
pcval to pcval′ of the concrete algorithm that executes action a under condition
φ has two proof obligations. These depend on whether the action of the step is
matched to an abstract action or not.

Case 1 The action a is also executed by the abstract system.

PO-pcval-pcval′-same

Prec, φ, ags ′ = agstepf(ags, alsf (t), apc, a),

als ′ = alstepf(gs, lsf (t), pcval, a), apc′ = apcstepf(gs, lsf (t), pcval, a)

⊢ apre(ags, alsf (t), apcf (t)) ∧ GAbs(gs ′, ags ′)

∧ LAbspcval′(gs
′, ls ′, pc′, ags ′, als ′, apc′)

PO-pcval-pcval′-other

Prec, φ, t ̸= t′, LInv(gs, lsf (t′)), ALInv(ags, alsf (t′)),

LAbs(gs, lsf (t′), pcf (t′), ags, alsf (t′), apcf (t′)),

gs ′ = gstepf(gs, lsf (t), pcval, a), ags ′ = agstepf(gs, lsf (t), pcval, a),

⊢ LAbs(gs ′, lsf (t′), pcf(t′), ags ′, lsf (t′), pcf (t′), alsf (t′), apcf (t′))

Case 2 The action a is not an abstract action.

PO-pcval-pcval′-same

Prec, φ ⊢ GAbs(gs ′, ags) ∧ LAbspcval′(gs
′, ls ′, ags, als, apc)

PO-pcval-pcval′-other

Prec, φ, t ̸= t′, LInv(gs, lsf (t′)), ALInv(ags, alsf (t′))

LAbs(gs, lsf (t′), pcf (t′), ags, alsf (t′), apcf (t′))

⊢ LAbs(gs ′, lsf (t′), pcf (t′), ags ′, lsf (t′), pcf (t′), alsf (t′), apcf (t′))

Note that with clauses in the algorithms fix the condition φ under which a step
is a linearization point, and therefore executes a specific abstract action. The
two POs of each case distinguish preserving the global abstraction and the local
abstraction of thread t that executes the step itself (same-POs), and preserving
the local abstraction of some other thread t′ ̸= t (other-POs).

The other-POs are trivial and dropped by the proof obligation generator
when steps do not change the global state. When the global state changes, then
the two LAbs-formulas must be expanded by their definition (and the proof
obligation generator already does this), which results in quite large conjunctions
over all assertions given. It is easy to prove that

Theorem 1. The local proof obligations together with the initialization condi-
tion of forward simulation imply that abs as defined by (4) is a forward simula-
tion between the concrete and the abstract system.

by just noting that the assumption that abs holds for the initial states in the
forward simulation conditions (2) and (3) implies all the preconditions of the
thread local POs, except for the specific choice of pre, φ and a, which fixes one
of the possible steps the concrete system has available. That abs in the postcon-
dition of (2) and (3) is implied follows by looking at each individual predicate it
consists of: that the global and local invariants hold again was already verified
for each of the two automata C and A individually. Predicate GAbs is established
by the same-PO. Finally, LAbs is established by the same-PO for thread t itself,
and by the other-PO for all other threads.

The main reduction in effort is that doing all the case splits over available
steps, the relevant quantifier reasoning for threads, the reduction of LInv and
LAbs to the assertions LInvpcval and LAbspcval that hold at a specific pcval has
already been done, as well as dropping all trivial proof obligations. For our case
study, the proof obligation generator results in 49 proof obligations of type same,
and 15 of the other type. All but 5 are proven automatically by the simplifier.

The main difficult proof obligation is the one for the step that linearizes the
member operation at M6. It requires showing that, based on the invariant htok
and the assertion allslotsfull that holds at this point, linearization is correct
for all three possible cases: the first is that the value loaded is ⊥. In this case,
we need the lemma

htok(ar), ar[n] = ⊥, e ̸= ⊥, allslotsfull(ar, get hash(e,#ar), n, e, false)

⊢ (∀ m. m < #ar → ar [m] ̸= e)

The second case is that the last slot is loaded ((n+1) mod sz = get hash(e,#ar)
holds) and is not e. This needs some quantifier reasoning for the allslotsfull-
predicate to assert that the between range encompasses all array elements, im-
plying the element e cannot be in the array. The third case, where e itself is
loaded, is simple.

The other step that needs a lemma is the CAS step when inserting an element
at I12. For the successful case a lemma is needed that asserts that updating both
the array and the set preserves absset. Formulated as a rewrite rule

n < #ar ∧ ar[n] = ⊥ ∧ absset(ar, set)

→ (absset(ar [n := e], set ∪ {e}) ↔ e ̸= ⊥)

the lemma is applied automatically, and just one interaction is needed that does
a case split on whether the CAS succeeds.

Most of the effort in verifying the simulation now lies in fixing linearization
points, and in defining suitable assertions based on this choice. Only 12 inter-
actions were needed to prove the thread-local proof obligations. Verifying these
was significantly simpler than proving the invariant of the concrete system. De-
velopment of thread local proof obligations was motivated and first tested with
an earlier case study [6] on opacity. There, using thread local POs instead of the
standard forward simulation conditions reduced the proof effort from 245 to 42
interactions. The online presentation [19] for this case study has been enhanced
to include the new refinement proofs.

5 Related Work

Our approach is based on standard interleaving semantics used by many other
formalisms. The more general semantics of concurrent ASMs [2] allows several
threads (called agents) to make steps at the same time at the cost of considering
clashes. Using a weak memory model would make reasoning more realistic but
also more complex.

Our translation from programs to state-based transitions is influenced by
Manna-Pnueli’s work [16] and the translation of plusCAL [14] to TLA+. The
thread-local proof obligations for invariants are influenced by rely-guarantee cal-
culus [4,13]. However, because of symmetry, we need a rely predicate only, while
the guarantee could be inferred as the conjunction of the rely’s for all other
threads.

Our systems are usually step-deterministic, i.e., for a state s and the action
a there is usually at most one state s ′ with step(s, a, s ′). The mapping between
actions therefore allows to mimic a useful feature of the simulation conditions of
Event-B refinement: these fix the choice of parameters for the ANY-clause of an
abstract event (cf. [1], p. 251) avoiding the need for instantiation in the proof.

Most interactive theorem provers (Event-B is an exception) instantiate veri-
fied refinement theories and prove a simulation based on this, and we also follow
that approach (a theory of IO Automata refinement is part of the web presen-
tation [10]). Our work here resulted from the observation that for concurrent
algorithms, the proof that shows sufficiency of thread-local proof obligations
often constitutes a significant part of the work that can be avoided.

Our approach to thread-local proof obligations has some similarities to [20].
There, the proof obligations are specialized to linearizability and inferred on pa-
per. An algorithm infers and verifies intermediate assertions automatically. The
definition of a rely condition is avoided, instead the approach weakens assertions
minimally (using decidable fragments of Separation Logic) to be stable over all
the transitions of other threads.

6 Conclusion

We have defined an approach to the verification of concurrent threaded systems
that reduces simulation proofs to thread-local, step-local proof obligations for a
forward simulation. We found that this reduces the effort for verification signif-
icantly and allows us to focus on the core predicates and assertions needed for
verification of the hash set implementation. All KIV specifications and proofs
for the hash set case study can be found online [10].

In this paper we could not discuss various extensions that we either have al-
ready done (e.g., global system transitions that model crashes or flushing mem-
ory from volatile to persistent memory) or are future work (e.g., progress condi-
tions). A comparison to the program calculus we alternatively use is also beyond
the scope of this paper. Finally, it would also be interesting to see how incre-
mental development of concurrent algorithms using several refinements could
benefit.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. E. Börger and K.-D. Schewe. Concurrent abstract state machines. Acta Informat-
ica, 53:469–492, 2016.

3. E. Börger and R. F. Stärk. Abstract State Machines — A Method for High-Level
System Design and Analysis. Springer, 2003.

4. W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel,
and J. Zwiers. Concurrency Verification: Introduction to Compositional and Non-
compositional Methods. Number 54 in Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2001.

5. J. Derrick and E. Boiten. Refinement in Z and in Object-Z : Foundations and
Advanced Applications. Formal Approaches to Computing and Information Tech-
nology (FACIT). Springer, 2001. second, revised edition 2014.

6. J. Derrick, S. Doherty, B. Dongol, G. Schellhorn, O. Travkin, and H. Wehrheim.
Mechanized Proofs of Opacity: a Comparison of two Techniques. Formal Aspects
of Computing (FAC), 30(5):597–625, 2018.

7. J. Derrick, S. Doherty, B. Dongol, G. Schellhorn, and H. Wehrheim. Verifying Cor-
rectness of Persistent Concurrent Data Structures: a Sound and Complete Method.
Formal Aspects of Computing (FAC), 33(4-5):547–573, 2021.

8. S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards Formally Specify-
ing and Verifying Transactional Memory. Formal Aspects of Computing (FAC),
25(5):769–799, 2013.

9. R. Guerraoui and M. Kapalka. On the Correctness of Transactional Memory. In
Proc. of Principles and Practice of Parallel Programming (PPOPP), pages 175–
184, 2008.

10. Verification of Linearizability of Hash Sets with Local Proof Obligations with KIV.
http://www.informatik.uni-augsburg.de/swt/projects/HashSets.html, 2023.

11. D. Hendler, N. Shavit, and L. Yerushalmi. A Scalable Lock-Free Stack Algorithm.
In Proc. of Parallelism in Algorithms and Architectures (SPAA), pages 206–215.
ACM, 2004.

12. M. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for Con-
current Objects. ACM Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

13. C. B. Jones. Tentative Steps Toward a Development Method for Interfering Pro-
grams. Transactions on Programming Languages and Systems, 5(4):596–619, 1983.

14. L. Lamport. The PlusCal Algorithm Language. In Proc. of Theoretical Aspects of
Computing (ICTAC), pages 36–60. Springer, 2009.

15. N. A. Lynch and M. R. Tuttle. Hierarchical Correctness Proofs for Distributed Al-
gorithms. In Proc. of ACM Symposium on Principles of Distributed Programming
(PODC), pages 137–151. ACM, 1987.

16. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems – Safety.
Springer, 1995.

17. M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. Using Elimination to Implement
Scalable and Lock-Free FIFO Queues. In Proc. of Parallelism in Algorithms and
Architectures (SPAA), pages 253–262. ACM, 2005.

18. C. H. Papadimitriou. The Serializability of Concurrent Database Updates. Journal
of the ACM, 26(4):631–653, 1979.

http://www.informatik.uni-augsburg.de/swt/projects/HashSets.html

19. Verification of Opacity of a Transactional Mutex Lock with KIV and Isabelle. http:
//www.informatik.uni-augsburg.de/swt/projects/Opacity-TML.html, 2016.

20. V. Vafeiadis. Automatically Proving Linearisability. In Proc. of Computer Aided
Verification (CAV), volume 6174 of LNCS, pages 450–464. Springer, 2010.

21. VerifyThis Program Verification Competition Series. https://www.pm.inf.ethz.
ch/research/verifythis.html.

22. VerifyThis 2022: Challenge 3 - The World’s Simplest Lock-Free Hash
Set. https://ethz.ch/content/dam/ethz/special-interest/infk/

chair-program-method/pm/documents/Verify%20This/Challenges2022/

verifyThis2022-challenge3.pdf, 2022.

http://www.informatik.uni-augsburg.de/swt/projects/Opacity-TML.html
http://www.informatik.uni-augsburg.de/swt/projects/Opacity-TML.html
https://www.pm.inf.ethz.ch/research/verifythis.html
https://www.pm.inf.ethz.ch/research/verifythis.html
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges2022/verifyThis2022-challenge3.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges2022/verifyThis2022-challenge3.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges2022/verifyThis2022-challenge3.pdf

	Thread-Local, Step-Local Proof Obligations for Refinement of State-Based Concurrent Systems

