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SUMMARY

The NCI-60 cell line collection is a very widely used
panel for the study of cellular mechanisms of cancer
in general and in vitro drug action in particular. It is a
model system for the tissue types and genetic diver-
sity of human cancers and has been extensively
molecularly characterized. Here, we present a quan-
titative proteome and kinome profile of the NCI-60
panel covering, in total, 10,350 proteins (including
375 protein kinases) and including a core cancer pro-
teome of 5,578 proteins that were consistently quan-
tified across all tissue types. Bioinformatic analysis
revealed strong cell line clusters according to tissue
type and disclosed hundreds of differentially regu-
lated proteins representing potential biomarkers for
numerous tumor properties. Integration with public
transcriptome data showed considerable similarity
between mRNA and protein expression. Modeling
of proteome and drug-response profiles for 108
FDA-approved drugs identified known and potential
protein markers for drug sensitivity and resistance.
To enable community access to this unique re-
source, we incorporated it into a public database
for comparative and integrative analysis (http://
wzw.tum.de/proteomics/nci60).
INTRODUCTION

Cell lines derived from human tumors are very widely usedmodel

systems for the study of cancer biology and drug discovery.

Particularly in combination with system-level explorative pro-

filing technologies, the comparative analysis of cancer cell lines

can reveal distinct similarities and differences in biological pro-

cesses between cancer cells that can be exploited in many

different ways. For instance, the 59 cancer cell lines (NCI-60

panel) of the National Cancer Institute’s (NCI’s) Developmental

Therapeutics Program (DTP; http://dtp.nci.nih.gov) are an estab-

lished tool for in vitro drug screening. The collection represents,
at least to some extent, the tissue type and genetic diversity of

human cancers (Shoemaker, 2006). Since its inception, the

NCI-60 panel has led to many important discoveries, including

a general advance in the understanding of cancer mechanisms

(Boyd and Paull, 1995; Weinstein, 2006), the identification of

mechanisms of action of drugs, and the approval of new chemo-

therapeutic agents (e.g., bortezomib). Hundreds of thousands of

potential anticancer agents have by now been screened using

the NCI-60 panel (Holbeck et al., 2010; Shoemaker, 2006), and

multiple technology platforms have been used to characterize

the cells on the molecular level including, but not limited to, array

comparative genomic hybridization (Bussey et al., 2006), karyo-

type analysis (Roschke et al., 2003), DNA mutational analysis

(Abaan et al., 2013; Ikediobi et al., 2006), DNA fingerprinting

(Lorenzi et al., 2009), microarrays for transcript expression

(Scherf et al., 2000; Shankavaram et al., 2007), microarrays for

microRNA expression (Blower et al., 2008; Liu et al., 2010),

single-nucleotide polymorphism arrays to identify DNA copy

number alterations (Garraway et al., 2005), and DNAmethylation

(Ehrich et al., 2008). Although proteins carry out virtually all

cellular processes and represent the vast majority of anticancer

drug targets, very few studies have focused on the analysis of

protein expression across the NCI-60 panel (Nishizuka et al.,

2003; Park et al., 2010; Shankavaram et al., 2007). In particular,

reverse-phase protein microarrays from cellular lysates have

been employed in this context, and although these studies

focused on a rather confined number of proteins, their results

highlight the potential of systematic protein expression analyses

for cancer research in general and drug discovery in particular.

Mass spectrometry (MS)-based proteomics has undergone

rapid progress in past years (Aebersold and Mann, 2003; Mallick

and Kuster, 2010), and systematic analyses can now be carried

out to identify and quantify themajority of proteins expressed in a

human cell line (Beck et al., 2011; Burkard et al., 2011; Geiger

et al., 2012; Lundberg et al., 2010; Nagaraj et al., 2011). In addi-

tion, important oncogene classes such as kinases, which are

often of low cellular abundance, can now be systematically

queried using MS-based proteomics (Bantscheff et al., 2007;

Wu et al., 2011). Protein kinases are key players of intracellular

signal transduction, and dysregulation of protein kinases can

be cause or consequence of cancer and therefore are among

the most important anticancer drug targets today (Cohen,
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Figure 1. Proteomic Analysis of the NCI-60

Cell Line Panel

(A) Experimental strategy.

(B) Coverage of the human genome by chromo-

somes. Distributions of the identified genes are

shown in red versus total genes (blue) for each

chromosome.

(C) Core cancer proteome and contributions of

different tissue groups.

See also Figure S1.
2002; Knapp et al., 2013). More generally speaking, proteomic

analyses are now valuable tools for molecular and clinical cancer

research (Hanash and Taguchi, 2010) and drug discovery

(Schirle et al., 2012) and will be more and more used in concert

with DNA/RNA-level investigations in the future.

In the present study, we employed a comprehensive analysis

using MS-based proteomics to obtain quantitative proteome

profiles of all 59 cell lines of the NCI-60 panel. Collectively,

10,350 proteins, including 375 protein kinases, were identified

and 6,003 proteins were consistently quantified in at least

5 out of 59 cell lines. Unsupervised bioinformatic analysis

revealed strong cell line clusters according to tissue type, and

further analyses disclosed 522 differentially regulated proteins

and several pathways predominant in certain tissue types. Inte-

gration with public transcriptome data showed a significant

degree of correlation between messenger RNA (mRNA) and

protein expression, and the integration with profiles of 108

drugs approved by the US Food and Drug Administration

(FDA) revealed known and potentially novel protein markers

involved in mediating drug resistance and sensitivity. To enable

access to this unique resource, we incorporated the proteomics

data including the peptide fragment spectra into a database for

comparative and integrative analysis. These data can, for

example, be used to obtain reference expression profiles for pro-

teins of interest both within and across experiments and cell

lines.

RESULTS AND DISCUSSION

Proteomic Analysis of the NCI-60 Panel Identifies the
Core Cancer Proteome
The NCI-60 panel comprises 59 individual cancer cell lines

derived from nine different tissues (brain, blood and bone
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marrow, breast, colon, kidney, lung,

ovary, prostate, and skin), which we

analyzed using three proteomic ap-

proaches (Figures 1A and S1A–S1C).

The proteome profiles of all individual

cell lines followed a conventional one-

dimensional PAGE followed by in-gel

digestion and liquid chromatography-

tandem mass spectrometry (GeLC-MS/

MS) approach (Schirle et al., 2003)

and yielded 8,113 proteins (Figure S1D).

To increase tissue-specific proteome

coverage, one representative cell line
from each of the nine tissue groups was analyzed in more depth

and resulted in the identification of 8,443 proteins (deep pro-

teomes; Figures S1A and S1E). Kinase profiles were obtained

for the complete NCI-60 panel using immobilized nonselective

kinase inhibitors (kinobeads) followedbyMS-basedprotein iden-

tification (Bantscheff et al., 2007; Figures S1B, S1D, and S2A).

The kinobead approach resulted in the identification of 220 pro-

tein kinases of which 106 were not identified in the other two

approaches, thus accessing a part of the proteome of too low

abundance for conventional shotgun proteomics. In addition,

155 protein kinases, which have low or no affinity for kinobeads

(Bantscheff et al., 2007; Lemeer et al., 2013), were exclusively

identified in the proteome profiling experiments.

Collectively, the three data sets comprise 10,350 distinct pro-

teins corresponding to 8,739 unique genes and representing

46% of the protein-coding human genome (Figure 1B). Protein

identifications are spread evenly across autosomes with an

average coverage of 44%. Interestingly, while a similar coverage

was also obtained for the X chromosome, we found only five pro-

teins encoded by Y-chromosomal genes (12% coverage) in cell

lines of male origin, which is consistent with previous findings

(Geiger et al., 2012).

The large number of cell lines investigated allowed us to

analyze expression profiles of proteins systematically across

cell lines. To identify proteins ubiquitously expressed in cancer

cells of different origins, we reconstructed the common prote-

ome for all nine tissue groups. A protein was considered as

part of the core proteome if it was identified in at least one cell

line of every single tissue group. The resulting 5,578 proteins

can thus be regarded as the core cancer proteome. The remain-

ing �5,000 proteins show a more distinct expression pattern

between tissues and each tissue contributing �2,000 proteins

not contained in the core proteome (Figure 1C).



Figure 2. Proteome-wide Label-free Quantification of the NCI-60 Cell Line Panel

(A) Distribution of protein intensity from proteome profiling experiments of all 59 cell lines. Whiskers represent the most extreme data point.

(B) Distribution of the median logarithmic protein intensity of all proteins identified in the proteome profiling experiments.

(C) Gene ontology enrichment analysis of the most and least abundant proteins. Enrichment score of biological functions and cellular components wasmeasured

by modified Fisher’s exact test (Hosack et al., 2003).

See also Figures S2, S3, and S4.
Proteomics Detects Proteins between 100 and 10
Million Copies per Cell
We used intensity-based label-free quantification for the relative

quantification of proteins across cell lines in which the summed

protein intensity from proteome profiling experiments (not deep

proteomes or kinomes) served as a proxy for protein abundance

within a cell line (Luber et al., 2010). Protein abundance distribu-

tions of all 59 cell lines are generally very similar and span at least

five orders of magnitude (Figures 2A and S2B), which is consis-

tent with recent estimates of protein copy numbers in mamma-

lian cell lines (Beck et al., 2011; Geiger et al., 2012; Nagaraj

et al., 2011; Schwanhäusser et al., 2011).

To identify proteins that appear uniformly among the most and

least abundant proteins, we calculated median abundance

values across all cell lines (Figures 2B, S2B, and S2C) and esti-

mated protein copy numbers. Assuming a median number of

�10,000 copies per protein (Beck et al., 2011) and a linear corre-

lation between measured protein abundance and copy number

(Beck et al., 2011; Malmström et al., 2009), we estimate that

the identified proteins have copy numbers between 100 and
10,000,000 copies per cell. The 10%most highly expressed pro-

teins contain mostly structural proteins and proteins involved in

basic cellular machineries that are known to be much more

abundant than regulatory proteins (Figures 2C and S3A–S3D).

For instance, proteins involved in transport processes, as classi-

fied by Gene Ontology (GO) annotation (Ashburner et al., 2000),

formed a tight cluster at the top end of the distribution of protein

expression levels. Similarly, proteins with roles in protein folding,

molecular transport, and translation are significantly enriched

among the most abundant proteins. Conversely, among the

10% least abundant proteins are mainly regulatory proteins,

membrane proteins, and a large proportion of as-yet-uncharac-

terized proteins. The correlation of protein abundance of all NCI-

60 cell lines was relatively high (average Pearson correlation of

R = 0.81; Figure S3E). Despite this strong correlation, there are

clearly also proteins that differ by orders of magnitude in expres-

sion between cell lines (Figure S3F). Taken together, these

observations are consistent with previous comparative studies

of multiple cell lines (Geiger et al., 2012) as well as with studies

of single cell lines (Beck et al., 2011; Nagaraj et al., 2011).
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Figure 3. Hierarchical Clustering and PCA Analyses of the Proteome and Kinase Profiling Experiments

(A and B) Unsupervised hierarchical clustering of cell lines based on proteome profiles and kinase profiles. Dendrograms show average linkage hierarchical

clustering using Spearman rank correlation with Ward metric.

(C) Cell line PCA based on 473 and 49 differentially expressed proteins and protein kinases, respectively.

(D) Hierarchical clustering of all cell lines and differentially expressed proteins including kinases. Top biological functions and pathways enriched in defined

clusters are indicated. Cell lines are colored as in Figure 1.

See also Figure S4.
Clustering of Proteomes Highlights Common and
Distinct Molecular Signatures of Cancer Cells
We next examined the similarity of individual cell line proteomes

using unsupervised hierarchical clustering using 6,003 proteins

that were quantified in at least 5 out of the 59 cell lines (Figure 3A).

In general, cell lines originating from the same tissue converged

into the same or closely related clusters. Hierarchical clustering

revealed subclusters of colon (seven out of seven), leukemia (five

out of six), CNS (five out of six), and melanoma (six out of eight)

cell lines in which the samples segregated largely according to

their tissue of origin. Interestingly, one melanoma line that did

not cluster (LOX IMVI) has been reported to lackmelanin produc-

tion (Stinson et al., 1992), which is a strong determinant for the

melanoma cluster. Cell lines from breast and ovarian cancers

show a more pronounced distribution across multiple clusters,

indicating that their protein expression patterns are quite hetero-

geneous. We observed, for instance, that the estrogen receptor

(ER)-negative breast cancer cell line Hs578T clustered with the

stromal/mesenchymal cluster of glioblastoma and renal tumor
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cell lines. In contrast, the ER-positive breast cancer lines

MCF-7 and T47D clustered to colon cancer lines displaying an

epithelial phenotype, which is, for instance, characterized by

the expression of proteins involved in cell-junction signaling.

We separately performed hierarchical clustering on kinase

profiles of all NCI-60 cell lines (220 protein kinases; Figure 3B),

which revealed five distinct clusters at an average intercluster

correlation coefficient ofR0.6. While CNS (six out of six), leuke-

mia (six out of six), prostate (two out of two), and melanoma (six

out of eight) cell lines clustered on single branches, ovarian, and

non-small-cell lung cancer lines diverged into multiple clusters,

likely reflecting a more heterogeneous molecular phenotype

than the aforementioned tumor entities. Interestingly, the clus-

tering analysis shows that the similarity of cell lines according

to their tissue of origin is less pronounced on the kinase level

compared to the proteome level. On the one hand, this suggests

that cancer cell lines preserve, at least to a significant extent, the

basic molecular makeup and biological functions of their tissue

of origin and thus may be valuable model systems for studying



tissue-specific functions and processes. On the other hand,

the striking kinase expression heterogeneity observed for

some cell lines may reflect molecularly diverged signal-trans-

duction mechanisms among and between cancer cell types.

Given that genomic instability is a hallmark of cancer cells, it is

of note that particularly highly abundant proteins, such as those

involved in cellular maintenance (e.g., energy metabolism and

protein synthesis), evolve more slowly than proteins of lower

abundance, which include most regulatory proteins (Beck

et al., 2011; Pál et al., 2001; Subramanian and Kumar, 2004).

Highly expressed proteins are apparently under strong selective

pressure, likely because of energy constraints (Lane and Martin,

2010) and/or because of a requirement for translational robust-

ness (i.e., minimizing the risk for protein aggregation and toxicity;

Drummond et al., 2005). Consistent with the common notion that

aberrant signal transduction is an important driver of cancer

development and progression, the lower selective pressure of

low-abundance proteins, in turn, might represent a general

mechanism of how regulatory functions of cancer cells evolve

and diverge.

To identify proteins differentially expressed between different

tissue categories, we grouped cell lines accordingly. Overall, the

correlation of protein expression between tissue groups is strong

(R > 0.8; Figure S4A). Proteins significantly changing between

groups were detected by fitting a linear model to the normalized

data and calculating empirical Bayes andmoderated F and t sta-

tistics. In total, this test determined 522 such proteins (q < 0.05)

in at least one of the groups across the whole NCI-60 panel. The

majority of these proteins are of high abundance (Figures S4B

and S4C), which is in accordance with the observation that

abundant proteins can be consistently quantified acrossmultiple

cell lines.

Principal component analysis (PCA) of these proteins also re-

vealed convergence of cell lines according to their tissue of origin

(Figure 3C). Again, the separation of cell lines was less pro-

nounced in the kinase profiles than in the proteome profiles,

which is consistent with the hierarchical clustering results. Two

cell lines are particularly notable in this context. The MDA-MB-

435 cell line, derived from the pleural effusion of a patient with

breast cancer, coclustered with melanoma cell lines. This cell

line was originally reported as a breast carcinoma cell line, but

more recent evidence indicates that it is a derivative of the

M14 melanoma cell line (Rae et al., 2007). This is supported by

the proteomic data, which suggests that MDA-MB-435 is indeed

a melanoma line. We also observed high similarity between

MDA-MB-435 and the ovarian line IGROV1, raising the possibil-

ity that the latter may also originate from an (occult) melanoma.

Hierarchical clustering of differentially expressed proteins and

cell lines disclosed that significantly enriched biological func-

tions and biochemical pathways of selected protein clusters

are consistent with actual biological functions of the respective

tissue type (Figure 3D). For instance, cluster 3 comprises pro-

teins highly expressed in melanoma cell lines, and the only

biological function associated with proteins in this cluster is

melanin biosynthesis and pigmentation. In contrast, proteins in

cluster 5 are highly expressed in leukemic cell lines and partici-

pate, for instance, in intracellular signaling pathways of immune

cells (e.g., the tyrosine-protein kinase BTK or the proto-onco-
gene Vav). We also note that the leukemia lines all show

markedly reduced levels of proteins involved in processes

more relevant for solid tumors (e.g., cell junction, cell adhesion,

blood vessel development, and others).

Protein kinases are the major constituents of cellular signal

transduction. Among the 220 kinases identified from kinobead

purifications, 49 are differentially expressed between tissue

groups. Kinases were identified across all branches of the phylo-

genetic tree and, in particular, tyrosine kinases (TKs) display

lineage-specific differential expression (Figure 4). The TK family

comprises multiple targets of anticancer drugs, and many of

them show significant differences between tissue types, such

as EGFR, EPHA2 and EPHB2, SRC, or MET.

Moreover, the profiles of differentially expressed kinases un-

derscore known drug/target combinations and suggest yet-

unexplored potential targets or applications of known drugs.

For instance, BTK represents an attractive drug target as it has

been found solely in leukemia cell lines. This is consistent with

recent results that indicate that the BTK inhibitor ibrutinib has

significant activity and is well tolerated in patients with relapsed

or refractory B cell malignancies (Advani et al., 2013). Our results

also highlight platelet-derived growth factor receptor alpha

(PDGFRa), which has been exclusively identified in CNS cell

lines, indicating that the inhibition of angiogenesis via PDGFRa

might represent a potential target in malignant glioblastomas.

A yet-unexplored drug target, for instance, might be the ribo-

somal protein S6 kinase alpha-4 (RPS6KA4), which has been

found to be significantly overexpressed in prostate cancer cell

lines. It is downstream of important signaling pathways and

involved in the phosphorylation and regulation of various tran-

scription factors including activation of the proto-oncogenes

c-Fos and c-Jun (FOS and JUN; Pierrat et al., 1998; Soloaga

et al., 2003).

Comparative Analysis of Proteome and Transcriptome
Profiles
Transcriptome data are frequently used for global gene expres-

sion analysis of cancer cells, and the approach has also been

applied to the NCI-60 panel (Pfister et al., 2009). Given that pro-

teins are translated from mRNA templates, it is logical to

compare mRNA and proteome profiling data as molecular

descriptors of gene expression. The normalized transcriptome

data (Figures S5A–S5C) mapped to 13,741 genes above the

detection limit, and of all the expressed transcripts, 8,065

(59%) were detected as proteins with a clear bias toward

higher-abundance transcripts (Figures 5A and 5B). While 81%

of the most abundant mRNAs (first quartile) could be identified

on the protein level, this was only the case for 21% of the least

expressed transcripts (last quartile). Proteins and transcripts

were equally well identified across subcellular localizations (Fig-

ure 5C). This is of note as it is a common (albeit probably inaccu-

rate) notion that membrane proteins are underrepresented in

proteomic data.

To identify trends and relationship betweenmRNA and protein

abundances across the NCI-60 cell lines, we performed multi-

variate analyses. Coinertia analysis (CIA) was used to visualize

relationships between transcriptome and proteome profiles (Fig-

ure 5D). In CIA plots, each arrow represents one of the NCI-60
Cell Reports 4, 609–620, August 15, 2013 ª2013 The Authors 613



Figure 4. Kinome Tree of Identified and Differentially Expressed Kinases

Mass spectrometric analysis of kinobead purifications from 59 NCI-60 cell lines identified 220 protein kinases across all branches of the phylogenetic tree.

Identified and differentially expressed (q < 0.05, ANOVA) protein kinases are indicated in blue and red, respectively. Red dots are sized according to the negative

logarithmic q value.

Illustration reproduced courtesy of Cell Signaling Technology (http://www.cellsignal.com).
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Figure 5. Comparison of the NCI-60 Proteome and Transcriptome

(A) Distribution of mRNA intensities.

(B) Venn diagram of genes detected on mRNA and protein level.

(C) Subcellular localization of mRNA and proteins.

(D) Coinertia analysis of mRNA and protein expression across the complete NCI-60 cell line panel. Arrows represent the projected coordinates of transcriptome

(arrow base) and proteome (arrow tip) of the respective cell lines. The length of the arrow is proportional to the divergence between the data sets. The global

correlation between the data matrices was 0.76, indicating a high costructure between transcriptome and proteome of the NCI-60 cell lines. Colors represent the

nine NCI-60 cell line classes as in Figure 1.

(E) PCA of mRNAs and proteins, respectively, plotted in the same orientation as the CIA.

See also Figures S5 and S6.
cell lines. The base of each arrow represents the position of that

cell line in transcriptome space, and the tip of each arrow gives

the position in proteome space. The length of an arrow repre-

sents the divergence between transcriptome and proteome of

a given cell line (the shorter the arrow, the higher the level of

concordance between the mRNAs and proteins for a particular

cell line). Generally, the previously described cell line clusters

are also observed in the CIA plot (for transcriptome and prote-

ome hierarchical clustering clusters, see Figures S5D and 3A,

respectively) and represent the same or similar biological func-

tions. This indicates that the high-level biological information

content of transcriptomes and proteomes is similar and equally

well suited to cluster cell lines into the correct tissue space.

We also note that the more heterogeneous cell line groups
(e.g., breast cancer cell lines) do not exhibit a considerably

higher degree of divergence between their transcriptome and

proteome profiles, indicating that the observed spread reflects

the heterogeneity on cellular level.

The position of cell lines along the axes of the CIA plot in

Figure 5D can be explained by distinct cellular properties. The

horizontal axis separates cell lines according to their prolifera-

tion rate (Spearman rank correlation of p = 4.7 3 10�5 and p =

6.4 3 10�6 for transcriptome and proteome, respectively; Fig-

ure S6A) and the vertical axis separates according to the tissue

type. While the majority of cell lines isolated from carcinomas

and sarcomas do not exhibit strong divergence, leukemia and

melanoma cell lines form distinct clusters toward one end of

the vertical axis. We note that many cell lines are projected
Cell Reports 4, 609–620, August 15, 2013 ª2013 The Authors 615



further in protein space than in gene space, indicating that the

protein expression profiles of these cell lines contain more

information than the corresponding mRNA profiles and thus

contribute more to the trends on the axes. To disclose mRNAs

and proteins responsible for the separation of tissue clusters,

we selected highly correlated mRNAs and proteins of the same

PCA direction (Figure 5E). While the majority of genes exhibits

considerable variation between transcriptome and proteome

expression, 629 genes are highly correlated (R > 0.7; Figure 5E,

black dots) and are strongly expressed on both the transcrip-

tome (Figure 5E, left panel) and proteome levels (Figure 5E, right

panel) of colon, leukemia, melanoma, CNS, or renal cell lines. For

instance, the integrated analysis of mRNA and protein expres-

sion disclosed several markers for leukemia cancer cell lines,

including protein tyrosine phosphatase PTPRC (CD45), the

hematopoietic lineage cell-specific protein HCLS1, and the

RacGTPase-activating protein ArhGAP15, all of which fulfill

well-studied functions in immune cells (Costa et al., 2011;

Rhee and Veillette, 2012; Yamanashi et al., 1993).

Taken together, despite the moderate depth of proteome

coverage per single cell line (again, 6,003 proteins were quanti-

fied in at least 5 out of 59 cell lines), proteome and transcriptome

data both appear to be powerful molecular descriptors of cancer

cells, and their integrative analysis enables a more comprehen-

sive view on the multiple layers of cellular regulation than any

technique alone.

Identification of Protein Signatures for Drug Sensitivity
and Resistance
In many cases, sensitivity or resistance of cell lines to anticancer

therapeutics cannot be simply attributed to single genes or

proteins (Garnett et al., 2012). To uncover protein signatures

significantly associated with drug sensitivity and resistance,

we employed elastic net regression analysis (Zou and Hastie,

2005), which disclosed cooperative interactions between protein

expression, their mutational status (Reinhold et al., 2012) and the

response signature of anticancer therapeutics (DTP; Rubinstein

et al., 1990) across the NCI-60 panel, thereby revealing complex

molecular signatures, which might be used as ‘‘panel bio-

markers’’ (or ‘‘multifeature biomarkers’’) to predict drug sensi-

tivity or resistance. Overall, elastic net modeling identified

20,743 protein-drug associations from which 1,801 associations

corresponding to 97 different drugs were defined as highly sig-

nificant (effect size > 90% percentile, frequency > mean fre-

quency 3 2 SDs). In most instances, the identified signatures

are complex and involve both, mutation and differential protein

expression. Interestingly, a small number of proteins were

recurrently associated with increased sensitivity to drugs from

different classes (Figure 6A), most notably the antiapoptotic

regulator Bcl-2 (11/32, significant/detected protein-drug associ-

ations) and the helicase CHD4, the latter representing a major

component of the nucleosome remodeling and histone deacety-

lase (NuRD) repressor complex (11/15). Somewhat counterintu-

itively, Bcl-2 has recently been shown to facilitate initiation of

apoptosis after binding to paclitaxel (Ferlini et al., 2009). How-

ever, the sensitizing effect of Bcl-2 expression in our data was

not observed for tubulin-targeting drugs such as paclitaxel, but

it has been significantly and recurrently associated with other
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classes of chemotherapeutics (e.g., topoisomerase inhibitors

or alkylating agents). Although we cannot provide a clear expla-

nation for this observation, the overexpression of Bcl-2 in

numerous sensitive cell lines suggests a general role of Bcl-2

in mediating drug sensitivity, potentially by facilitating cells to

undergo apoptosis upon treatment.

Proteins often correlated with drug resistance exhibit a variety

of cellular functions. The most frequently observed protein, the

14-3-3 protein zeta/delta (YWHAZ; 17/19), has recently been

implicated in drug resistance of breast cancer patients (Li

et al., 2010) and likely affects drug sensitivity through inhibition

of apoptosis via sequestration of the proapoptotic Bcl-2-associ-

ated death promoter protein (BAD; Hermeking, 2003; Neal et al.,

2009; Niemantsverdriet et al., 2008). Thus, 14-3-3 zeta/delta rep-

resents an attractive target to overcome resistance to a broad

range of anticancer agents. A notable group of proteins recur-

rently associated with drug resistance is involved in membrane

trafficking and regulation and includes four members of the

Rab family (Rab5B, 11/11; Rab1B, 10/13; Rab11, 10/12; and

Rab14, 7/10) as well as Sec22B (9/11), indicating that these pro-

teins mediate resistance by facilitating degradation and extru-

sion of drug molecules, thus keeping intracellular levels of the

active drug low. We note that protein kinases were only rarely

associated with sensitivity to more than one drug, underscoring

the notion that aberrantly expressed and regulated protein

kinases represent selective drug targets for selected cancer sub-

types. Drug resistance, however, might be more frequently

mediated by protein kinases, such as PAK-4 (8/9), which may,

again, modulate drug sensitivity through the inhibition of

apoptosis (Gnesutta and Minden, 2003; Gnesutta et al., 2001).

Elastic net analysis enabled the identification of drug sensi-

tivity and resistance features for both targeted drugs as well as

chemotherapeutics. For instance, sensitivity to paclitaxel, a

mitotic drug targeting tubulin, is strongly associated with high

expression of aryl hydrocarbon receptor interacting protein

(AIP; Figures 6B and S6B), for which several lines of evidence

suggest a role as a tumor suppressor (Georgitsi et al., 2007;

Nord et al., 2010) and proapoptotic protein (Kang and Altieri,

2006). Despite numerous associated mutations, the strongest

correlates for paclitaxel resistance were actually the expression

of glutamate dehydrogenase 1 (GluD1) and Rab5B (Figure 6B).

Dasatinib sensitivity, in contrast, was notably associated with

expression of Src kinase, one of the primary targets of dasatinib,

and accompanied by expression of numerous Src substrates,

such as STAT1 or the small subunit 1 of the calcium-dependent

protease calpain (CAPNS1) as well as integrin beta-1 (ITGB1), a

Src activator (Figure 6C). Consistent with this, although STAT1

activation is frequently increased in tumors and cell lines, its

functional role has previously been associated with growth sup-

pression and, hence, can be considered as a potential tumor

suppressor (Bromberg et al., 1996). Resistance to dasatinib is

significantly associated with proteins involved in RNA process-

ing as well as cellular compromise, such as the apoptosis-

inducing factor (AIF; Figure 6C). AIF plays a central role in

caspase-independent cell death; it has not yet been ascribed a

potential role in resistance to targeted cancer drugs, but it might

represent valuable therapeutic potential in resistant tumor cells

(Lorenzo and Susin, 2007).



Figure 6. Elastic Net Modeling Reveals Drug Sensitivity and Resistance Signatures

(A) Proteins recurrently and significantly associated with drug resistance and sensitivity.

(B) Heatmaps of highly significant elastic net features associated with response to dasatinib (right) and paclitaxel (left) for the most resistant (blue) and sensitive

(red) cell lines. For each cell line, features are at the top of the heatmap followed by expression features (blue corresponds to low expression, red to high

expression). To the bottom of each feature is a bar indicating the absolute value of the effect size.

See also Figure S6.
The NCI-60 Proteome Database Enables Access to This
Comprehensive Resource
This current proteome resource of 59 commonly employed

cancer cell lines enables a wide range of analyses, which are

beyond the scope of this study. For instance, the data can be

used to obtain reference expression profiles for proteins of inter-

est both within and across a range of cell line proteomes. It may

facilitate selecting the appropriate cell line for the study of a

particular biological phenomenon of interest without the need

for additional experiments such as RNA deep sequencing (Dan-

ielsson et al., 2013), or might alternatively be used as reference

for targeted proteome analyses (Picotti and Aebersold, 2012).

To enable efficient use of these data by the scientific community,

the data were incorporated into a database, which is accessible

via a user-friendly web interface. The database contains protein

expression profiles along with details about protein and peptide

identification information, including the matched tandem mass

spectra. The data are cross-referenced to Uniprot, Ensemble,
and several other major resources to facilitate additional infor-

mation browsing.

Conclusions
In the present study, we provide a comprehensive resource of

NCI-60-wide protein expression profiles for more than 10,000

proteins, including more than 350 protein kinases. Our results

indicate that, despite the moderate depth of proteome coverage

per single cell line, the broad biological information contained in

transcriptomics and proteomics data is similar, but each tech-

nique provides complementary information. While transcriptom-

ics enables genome-wide investigations of mRNAs and has

proven very useful, it can by nature not be utilized to study post-

transcriptional processes of cellular regulation, such as protein

expression, posttranslational modifications, protein degrada-

tion, protein interaction, or protein activities, which are areas

largely confined to proteome analysis (some of which were high-

lighted here). Although the proteomic data acquired in this study
Cell Reports 4, 609–620, August 15, 2013 ª2013 The Authors 617



did not reach the same degree of genome coverage as the

mRNA profiles, the proteomic data appeared to be particularly

powerful for the identification of mechanisms by which cancer

cells evade potent targeted inhibitors or broad chemothera-

peutic compounds. Using the experimental and bioinformatic

methods employed here, we anticipate that proteomics will

play an increasing role in molecular profiling of cancer, and we

are making our data available to the community via a database

so that the data can be broadly utilized in research aimed at un-

derstanding and fighting cancer.

EXPERIMENTAL PROCEDURES

Protein Preparation and Kinobead Affinity Purification

Cell pellets obtained from DTP of the NCI were lysed and kinobead pull-downs

were performed and prepared for in-gel digestion as previously described (Wu

et al., 2011, 2012). For full proteomes, 50 mg from each kinobead flow-through

were reduced, alkylated, and separated via an LDS-PAGE gel. It is of note that

the kinobead procedure does not result in significant kinase depletion from the

flow-through (Bantscheff et al., 2007). In-gel trypsin digestion was performed

according to standard procedures (Shevchenko et al., 1996).

Protein Identification and Quantification

Nanoflow LC-MS/MS analyses of tryptic peptides were conducted on an

Eksigent nanoLC-Ultra 1D+ (Eksigent) coupled to an LTQ Orbitrap XL ETD

or Orbitrap Elite mass spectrometer (Thermo Scientific). The mass spectrom-

eters were operated in data-dependent mode and raw MS spectra were pro-

cessed using Maxquant (version 1.3.0.3; Cox and Mann, 2008). Tandemmass

spectra were searched with Andromeda (Cox et al., 2011) against the IPI

human database (version 3.68; 87,061 sequences) and a maximum false dis-

covery rate (FDR) of 1% for peptides and proteins was required. Protein abun-

dance was estimated based on summed peptide intensities from proteome

profiling experiments (but not deep proteomes and kinomes), and label-free

quantification was used for comparisons between samples (Luber et al., 2010).

Statistical and GO Enrichment Analyses

Statistical analysis of quantified proteins was performed using R (version

2.12.1; Team, 2012). Differential expression was assessed via ANOVA and

p values were corrected for multiple hypothesis testing to control the FDR at

5% (Benjamini and Hochberg, 1995). Cluster analyses including hierarchical

clustering and PCA were performed using a variety of algorithms and metrics.

Classification and functional enrichment as well as pathway membership were

analyzed using BiNGO (Maere et al., 2005) and Ingenuity Pathway Analysis

(Ingenuity Systems). The kinome dendrogram was an adapted and repro-

duced courtesy of Cell Signaling Technology using modified version of the

of Human Kinome application of the Tripod project (http://tripod.nih.gov/).

Comparison of Proteomics and Transcriptomics

Normalized gene expression data for NCI-60 cell lines were obtained from the

Gene ExpressionOmnibus (series accession number GSE32474; Barrett et al.,

2009; Pfister et al., 2009). Significant differences were identified applying a

Bayesian approach using the limma package (Bioconductor 2.7; Smyth,

2004). A threshold of an adjusted p value < 0.05 was used to identify significant

changes. CIA (Culhane et al., 2003; Dolédec and Chessel, 1994) was used to

analyze statistical relationships betweenprotein andgene expression patterns.

Protein-Drug Associations

Elastic net regression (Zou and Hastie, 2005) was used to identify associations

between proteins and drug response across NCI-60 cell lines. Protein-drug

associations have been assessed for 108 FDA-approved drugs, and drug

activity levels were obtained from Cellminer (Reinhold et al., 2012). Proteomic

data, including full proteome data (8,113 proteins), kinome profiling (220

kinases), NCI-60 mutation data (from the Cellminer database), as well as the

tissue type, were used as input variables.

For further details, please refer to the Extended Experimental Procedures.
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