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Entanglement transition through Hilbert-space localization
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We study Hilbert-space localization of the many-body dynamics due to ergodicity breaking and analyze this
effect in terms of the entanglement entropy and the entanglement spectrum. We find a transition from a regime
driven by quantum tunneling to a regime that is dominated by boson-boson interaction, where the latter exhibits
ergodicity breaking. Properties of this transition are captured by observation time averaging, which effectively
suppresses the large dynamical entanglement fluctuations near the critical point. We employ this approach to
the experimentally available bosonic Josephson junction. In this example, the transition from a tunneling regime
to Hilbert-space localization reveals clear signatures in the entanglement entropy and entanglement spectrum.
Interestingly, the transition point is reduced by quantum effects in comparison to the well-known result of
the mean-field approximation in the form of self-trapping. This indicates that quantum fluctuations reduce the
classical self-trapping. Different scaling with respect to the number of bosons, N , is found in the tunneling and
the localization regime: While the entanglement entropy grows logarithmically with N in the tunneling regime,
it increases linearly in the localized regime. Our results indicate that entanglement provides a concept for a
sensitive diagnosis for the transition from a quantum tunneling regime to Hilbert-space localization.
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I. INTRODUCTION

Entanglement is considered as one of the most fundamental
building blocks in quantum physics and quantum informa-
tion processing. Specifically, the Rényi entanglement entropy
measures the quantum correlations between two subsystems
under a spatial bipartition [1–4], which has become an impor-
tant and popular concept for detecting measurement-induced
entanglement transitions [5–7], characterizing many-body dy-
namics and localization [8–17], and classifying the topology
of quantum systems [18–21]. Recently, the Rényi entangle-
ment entropy has been efficiently measured in the laboratory
with randomized methods without full quantum state tomog-
raphy [22–24].

Hilbert-space localization (HSL) describes the phe-
nomenon in which the evolution of a quantum system from
an initial Fock state is restricted to a subregion of the Hilbert
space in the presence of strong particle-particle interaction,
i.e., it is a special form of spontaneous ergodicity breaking.
It originates from the fact that a Fock state is an eigenstate
of the local interaction part of the Hamiltonian, where only a
sufficiently strong tunneling can overcome the HSL. Although
we anticipate such a behavior for any system in which tunnel-
ing competes with particle-particle interaction, so far it was
only calculated for the bosonic Josephson junction (BJJ). In
this case, we have seen that it is characterized by a change
of the scaling behavior of the participation ratio [25] or by
a sudden jump of the return probability between different
states [26]. The dynamics of the system is rather complex,
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where the scattering of an individual particle by other particles
can be considered as random. Therefore, HSL is reminiscent
of Anderson localization in real space [27], with the crucial
difference that the scattering environment in the latter is static
rather than dynamic. It also distinguishes itself from other
types of many-body localization, where the interplay of in-
teractions and disorder is involved [8,9,28]. In this article,
we focus on the BJJ, which has been studied intensively in
the semiclassical limit [29–32] and realized experimentally
[33–37]. It is found that the entanglement transition and dif-
ferent properties are strongly related to the HSL.

The implementation of entanglement in the investigation of
many-body localization has led to some of the most important
discoveries in many-body physics. For example, the scaling
laws of Rényi entanglement entropy are taken as the key
characteristic of the many-body localization phase. Neverthe-
less, it is still unclear how the entanglement behaves when
a many-body system undergoes the HSL phase transition,
arising from the competition of particle interactions and tun-
neling. Here we investigate the following questions: Is there
a generic entanglement transition and HSL correspondence?
Will the entanglement exhibit different characteristic proper-
ties in the localized and tunneling phases? Can entanglement
reveal quantum effects that are not covered by the classical
mean-field approximation? Affirmative answers are obtained
in this work.

The unitary evolution of a quantum system typically drives
it to states of higher entanglement [6,38] and the dynami-
cal entanglement entropy usually exhibits large fluctuations,
which makes it difficult to extract generic information about
the system. Here we adopt the principle of ensemble av-
erage from statistical physics for the ensemble created by
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randomly chosen observation times. We denote this approach
as the observation time average method. In the experiment,
this means one repeats the measurement at different times on
identical systems and averages over this ensemble of results.
This idea has some similarities with the random matrix theory,
where averaging an ensemble of Hamiltonians is used to ob-
tain generic properties of the many-body spectrum [39–44].
It is shown that the observation time average method is a
powerful tool and efficiently suppresses the randomness in
entanglement entropy and entanglement spectrum. Moreover,
this approach can be extended to the investigation of other
systems with entanglement.

II. MODEL

Within the single-mode approximation [29], the BJJ with N
bosons can be described as a two-site Bose-Hubbard model,

HBJJ = −J (a†
LaR + a†

RaL ) + U

2

(
n2

L + n2
R

)
, (1)

where a†
L,R (aL,R) are the bosonic creation (annihilation) oper-

ators in the left and right potential traps, and nL,R = a†
L,RaL,R

are the corresponding number operators. J describes the
tunneling of bosons between the traps and U represents
the particle-particle interaction, which energetically favors
a symmetric distribution of bosons in the double traps
when U > 0. Using Fock states |k, N − k〉 ≡ |k〉 ⊗ |N − k〉
(k = 0, . . . , N) as a basis of the Hilbert space, the
corresponding Hamiltonian matrix has a tridiagonal structure
with Hk,k′ = 〈k, N − k|HBJJ|k′, N − k′〉 = U [(N − k)2 +
k2]δk,k′ − J

√
k(N + 1 − k)δk,k′−1 − J

√
k′(N + 1 − k′)δk,k′+1.

This matrix can be interpreted as a (N + 1)-site tight-binding
lattice with broken translational invariance, where the
tunneling rate and the potential are minimal at the center and
grow symmetrically towards the endpoints. Hence, the HSL
in the BJJ is related to translation symmetry breaking, in
contrast to Anderson localization in the presence of quenched
disorder [27], whose ensemble is translational invariant.
Using the SU(2) spin representation, the BJJ Hamiltonian can
also be written as [29]

HS
BJJ = UL2

z − 2JLx + UN2/4, (2)

when Lx = (a†
LaR + a†

RaL )/2 and Lz = (a†
LaL − a†

RaR)/2, rep-
resenting a large nonlinear spin system with magnitude S =
N/2. This maps the evolution of BJJ to the spin motion on the
Bloch sphere.

III. ENTANGLEMENT AND RÉNYI ENTROPY

The Hilbert space H of the BJJ is a product space
Hl ⊗ Hr that comprises the left and right traps. We start
with all bosons in the right well, i.e., ρ0 = |0, N〉〈0, N |. On
the Bloch sphere, the initial spin vector 〈0, N |L|0, N〉 [L =
(Lx, Ly, Lz )] points to the south pole [Fig. 2(a)]. This is a
high-energy state with E = UN2/2 and the left and right
traps are not entangled. With Eq. (1), the unitary evolution
density operator reads ρ(t ) = e−iHBJJtρ0eiHBJJt . We define the
reduced density matrix ρL(t ) = TrR[ρ(t )] with respect to the
right well by summing over all possible states in the right
well. This gives an (N + 1) × (N + 1) matrix with elements

FIG. 1. The entanglement entropy S for 100 bosons as a function
of time t for (a) U = 0.01 and (b) U = 0.1. We set J = 1. As shown
in the figure, the entanglement entropy fluctuates strongly in time,
which is later suppressed with the observation time average.

ρL
nn′ (t ) = ∑N

k=0〈n, k|ρ(t )|n′, k〉. Only k = N − n′ = N − n
survive in the summation due to particle number conservation.
This implies a diagonal reduced density matrix,

ρL(t ) = TrR ρ(t ) =

⎡
⎢⎣ ρL

0 (t )
. . .

ρL
N (t )

⎤
⎥⎦, (3)

with elements ρL
n (t ) = 〈n, N − n|ρ(t )|n, N − n〉. For t = 0,

the ρ(t ) and ρL(t ) both have only a single nonzero matrix
element, namely, ρ0,N ;0,N (t = 0) = ρL

0 (t = 0) = 1. Localiza-
tion is characterized by a large weight of only a few matrix
elements for all t > 0, while for a delocalized state, the weight
is distributed over time t > 0 to all states, such that ρL

k (t ) ≈
1/(N + 1).

With ρL(t ), we introduce the Rényi entropy [16] as a quan-
titative measure for the entanglement between the traps, which
gives

Sα (t ) = 1

1 − α
log2 Tr

[
ρα

L (t )
] = 1

1 − α
log2

∑
n

[
ρL

n (t )
]α

.

(4)

In general, α is a free parameter and the typical values used
are α = 2, 3 [16]. We fix α = 2 in the subsequent calculations.
S (t ) ≡ S2(t ) measures the entanglement entropy over time
with the initial value S (t = 0) = 0. With Eqs. (3) and (4),
we plot the entanglement entropy versus time for N = 100
bosons with J = 1 and U = 0.01 or 0.1 separately in Fig. 1.
The unitary evolution drives the system into higher entangled
states rapidly, indicating the fast entanglement growth at the
beginning. In the long-time limit, the mean entanglement en-
tropy saturates but is subject to strong fluctuations. The mean
value depends on the system parameters. For instance, with
U = 0.01 (U = 0.1), we obtain S ∼ 3.8 (S ∼ 1.5).

IV. RANDOM OBSERVATION TIME

To reveal the generic entanglement dependence on the
system parameters such as N , J , and U , we need to avoid
large quantum fluctuations. This is done by the observation
time average method: We conduct a specific experiment (or
perform a calculation) repeatedly at different times and aver-
age with respect to those times. In other words, we perform a
time average of the observables. This is applied to the reduced
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FIG. 2. The entanglement entropy phase transition with system parameters. (a) Schematic plot of the HSL phase and tunneling phase on
the Bloch sphere. (b) Plot of S(J ) for different Ns with U = 1. When J is small, corresponding to the HSL phase, S increases with J . The
system undergoes the phase transition to the tunneling regime at Jc, after which S is a constant. (c) The competition of U and J , where we
choose N = 20 and the colors represent the magnitude of S. (d),(e) The effects of the number of bosons on the phase transition. Specifically,
(d) S(J, N ) with U = 1 and (e) S(U, N ) with J = 1. The four plots (b)–(e) indicate a clear entanglement phase transition when the system
undergoes the transition from the HSL phase to the tunneling phase controlled by the U, J , and N .

density matrix of the BJJ and gives

〈
ρL

n (t )
〉
t =

N∑
j, j′=0

cn(Ej, Ej′ )〈e−i(Ej−Ej′ )t 〉t , (5)

where the matrix element cn(Ej, Ej′ ) = 〈N −
n, n|Ej〉〈Ej |ρ0|Ej′ 〉〈Ej′ |N − n, n〉, where |Ej〉 (Ej) is an
eigenstate (eigenvalue) of the Hamiltonian HBJJ. For the
observation time average 〈·〉t , we choose the exponential
distribution se−st dt , where long-time observations are
exponentially suppressed on the scale 1/s. This gives
〈e−i(Ej−Ej′ )t 〉t = 1/[1 + i(Ej − Ej′ )/s], which indicates that
the effective evolution after average is no longer unitary. The
probability is preserved, though, since

∑
n〈ρL

n (t )〉t = 1,
reflecting the absence of losses in the closed system.
Therefore, the observation time average is different from
random weak measurements. With Eq. (3), the observation
time average gives, for the diagonal reduced density matrix
〈ρL(t )〉t with elements,

〈
ρL

n (t )
〉
t =

∫ ∞

0
ρL

n (t )se−st dt =
N∑

j, j′=0

cn(Ej, Ej′ )

1 + i(Ej − Ej′ )/s
, (6)

where s = 1 is subsequently used. This expression is used
to calculate the corresponding Rényi entanglement entropy
S (J,U, N ) with Eq. (4), where the entropy is a function of
N,U, J without fluctuations in time. As shown in Fig. 2, the

time average leads to a smooth behavior of the entanglement
entropy for the system parameters, where the entanglement
transition by the HSL is clearly presented.

In Figs. 2(b) and 2(d), we plot S (J ) for different
numbers of bosons. Physically, when J is small, i.e.,
in the HSL phase, the motion of the bosons is con-
strained to the southern hemisphere [Fig. 2(a)] and the
matrix element 〈N − k, k|HBJJ|0, N〉 = −J〈k, N − k|a†

LaR +
a†

RaL|0, N〉 is very small and proportional to J (for fixed N).
This is exactly reflected in the entanglement entropy, where
S (J ) grows approximately linearly with J until it reaches the
critical value Jc [Fig. 2(b)]. The Jc is the transition point of the
HSL phase to the tunneling phase, after which the bosons can
reach the entire Hilbert space from the initial state [Fig. 2(a)].
This explains why, in the tunneling regime, the S (J ) is a con-
stant and only depends on the size of the system [Fig. 2(d)],
meaning the entanglement entropy measures to what extent
the system can explore the Hilbert space. In Fig. 2(c), the
competition between the tunneling J and particle interactions
U for N = 20 is presented. When increasing U , it takes a
larger value of J to reach the entanglement phase transition. In
the HSL phase, the S (J,U ) is proportional to J and inversely
proportional to U . While in the tunneling regime, S (J,U )
is a constant, when the entire Hilbert space is accessible. In
Fig. 2(e), we plot S (U, N ), where the size effects on the
entanglement phase transition are shown. When the number
of bosons is large, the system is more easily localized in the
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FIG. 3. The characterization of the critical transition point uc.
(a) Plot of S vs J rescaled by N with U = 1. (b) Similarly, S(UN )
with J = 1. The phase transition point uc ∼ 3.7 for all the realiza-
tions. We plot the dependence of the entanglement entropy with N ,
(c) rescaled by J−1 with U = 0.4 and (d) rescaled by U with J = 3.
Again, the entanglement entropy undergoes a phase transition at
uc ∼ 3.7 and reaches the maximum at this critical value. Hence, uc is
a generic value that characterizes the entanglement phase transition.

Hilbert space and undergoes the entanglement phase transition
for smaller values of U , since the critical value uc = UN/J
does not depend on N. The critical entanglement phase transi-
tion point is shown in Fig. 3 with the characteristic parameter
u = UN/J , which reveals a sharp boundary between the tun-
neling and HSL phases. In Fig. 3(a), we plot the S versus J
rescaled by the N . Here, U is set to 1 and the entanglement
entropy undergoes the phase transition, for different numbers
of bosons, at the same value of J/N ∼ 0.27. The critical point
uc = UN/J ∼ 3.7. Similarly, we plot S (U, N ) for different
Ns in Fig. 3(b), where the system also exhibits the entan-
glement transition at uc ∼ 3.7. This generic phase transition
behavior is also confirmed by tuning N with the rescaling
by J−1 [Fig. 3(c)] and U [Fig. 3(d)], where the entanglement
reaches its maximum at uc ∼ 3.7. Interestingly, this quantum
phase transition point deviates from the results by the Gross-
Pitaevskii equation [29] under the mean-field approximation,
where

3.7 ≈ uQuantum
c < uMean field

c = 4. (7)

It is crucial to note that both critical values depend on
the number of bosons, N , only through the combination
of parameters u = UN/J , as demonstrated in Fig. 3. This
fact, as well as the critical value uQuantum

c ≈ 3.7, were also
found previously for the scaling change of the participation
ratio [25] and for the jump of the return probability [26].
The above result reflects the effective enhancement of the
particle-particle interaction by quantum entanglement, where
the system undergoes the HSL phase transition with smaller
U ′s and causes quantitative change in the entropy. In contrast,
the mean-field approximation ignores the entanglement and,
therefore, it requires a stronger particle-particle interaction to
reach the self-trapping transition. The deviation of uc from its

mean-field value is in agreement with a recent work by
Wimberger et al. on the N dependence of uc for different
initial states [32]. Their critical values are monotonically
increasing even up to N ≈ 100, in contrast to Fig. 3. This
indicates that the observation time averaged entanglement
entropy (EE) provides a more stable criterion for the definition
of a critical point.

Our calculations are limited to N ≈ 100 bosons. It would
be interesting though to calculate the critical value uc also in
the large-N regime. The fact that the EE increases monoton-
ically with N in Fig. 3 indicates that a classical description
with only a one-particle mean-field wave function for the two
sites of the BJJ might not be sufficient, at least for u ≈ uc. A
semiclassical approximation has been used as an interpolation
between the full quantum evolution and the classical approx-
imation, where large values of N are accessible [30,32]. Such
calculations reveal that the value of uc varies for different
initial states. Moreover, the fluctuations decay very slowly
with N in the vicinity of uc [30].

Different scaling behaviors with the size of the system are
found in the HSL phase and tunneling phase. Here we use the
normalized entanglement entropy defined by S̃ = S/Smax for
constant u. As shown in Figs. 4(a) and 4(c), we plot S̃ versus
the number of bosons, N , keeping characteristic parameter
u a constant [u = 1 < uc for Fig. 4(a) and u = 40 > uc for
Fig. 4(c)]. Note that as u ∼ J−1 and u ∼ UN , the small u
corresponds to the tunneling phase and large u corresponds to
the HSL phase. The entanglement entropy increases logarith-
mically with the size of the system for the tunneling regime
and linearly for the localized regime, namely,

S̃ ∼ ln(N ), u < uc; S̃ ∼ N, u > uc. (8)

The linear N behavior is counterintuitive when we follow
the argument of a single localized state. In the present
model, though, localization appears in a two-dimensional
space that includes two Fock states. This is a consequence of
the mirror symmetry of the BJJ model. Then the EE reads
S̃ ∼ − log2[ρ2

N + (1 − ρN )2] ∼ 2ρN with ρN ∼ cN . This was
confirmed in a direct calculation of the reduced density matrix
with c ≈ 0.002 (cf. Appendix). Then the linear N behavior
is valid in a crossover region up to N ≈ 200, but becomes
asymptotically ρN ∼ 1/2. The transition of scaling behaviors
around uc ∼ 3.7 is clearly visualized in Fig. 4(b). The linear
increase reflects the fact that a fixed fraction of states is
localized, and the entanglement entropy increases with the
effective volume of the traced right well. This is obviously
quite different from the tunneling regime, where the entire
Hilbert space is involved, implying that the matrix elements of
the reduced density matrix are equally distributed, leading to
a ln N behavior. This logarithmic behavior can be considered
a modification of the area law, which is initially proposed for
noninteracting particles.

Quite generally, a degeneracy in the energy spectrum can
be associated with a phase transition. For instance, a typical
quantum phase transition is associated with the degeneracy
of the ground state. Then an important question is whether
the above entanglement phase transition reveals some charac-
teristic features in the entanglement spectrum [45], which is
defined as the eigenvalues of the reduced density matrix. The
concept of entanglement spectrum is utilized in the detecting
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FIG. 4. Scaling laws for the tunneling and HSL phases. (a) Plot of normalized entanglement entropy vs the number of bosons, N , with
u = 1. Here, u < uc ∼ 3.7, corresponding to the tunneling phase; S̃ grows logarithmically with N . (c) Different scaling behaviors are found
when the system is in the HSL phase, where S̃ increases linearly with N . (b) Plot of S̃(u, N ) with color representing its magnitude. The scaling
law keeps S̃ ∼ ln N when u < uc and gradually becomes S̃ ∼ N after crossing the transition point uc.

of topological orders [46] and extensively investigated with
different lattice models [47,48]. In the case of the evolution
with excited states, the relation between the phase transition
and the entanglement spectrum can be very complex because,
as in the case of HSL, it is not a transition associated with
the ground state alone. Here, the diagonal form of the reduced
density matrix in Eq. (3) enables the direct calculation of the
entanglement spectrum. Together with Eq. (6), we have

ξn = ln
[〈
ρL

n (t )
〉
t

]
. (9)

Here we use the time-independent reduced matrix to avoid the
fluctuations, as we have discussed. We plot the entanglement
spectrum ξn(U ) in Fig. 5(a) and ξn(J ) in Fig. 5(b) for N = 10,
where the entanglement transition clearly exhibits signatures
in the spectrum. Specifically, the entanglement spectrum has
almost constant levels independent of U and J in the tunneling
phase and repulsive levels in the HSL phase. The transition
from constant levels to repulsive levels happens exactly at the
critical transition point uc, as we find for the entanglement
entropy. Thus, the entanglement spectrum is also a useful
indicator for observing a qualitative change in the onset of
the HSL transition. In particular, the strong level repulsion in
the localized regime with increasing U is significant.

V. SUMMARY AND DISCUSSION

We have investigated the entanglement phase transition
that arises from the competition between the tunneling and
particle-particle interaction, where both entanglement entropy

FIG. 5. Entanglement spectrum as a function of (a) U and (b)
J . The transition to the HSL is indicated by the repulsion of the
levels, which keeps constant in the tunneling phase and spreads in
the HSL phase. Compared with the entanglement entropy, the critical
transition of the entanglement spectrum is again characterized by uc.

and entanglement spectrum undergo a clear quantum phase
transition from the tunneling regime to the HSL regime. It is
crucial though to apply the observation time average to sup-
press strong quantum fluctuations in time, which is a powerful
tool and can be extended for other studies on entanglement.
Moreover, the transition point we find here is smaller than
the value given by the mean-field approximation with the
Gross-Pitaevskii equation. This reveals the quantum effects
that are not covered in the form of self-trapping. Different
scaling laws with the size of the system are found before and
after the phase transition. It is shown that the entanglement
entropy grows logarithmically with the number of bosons in
the tunneling phase and linearly in the localized phase.

Our results indicate that the entanglement entropy
(entanglement spectrum) can be controlled by the tunneling
rate J , interaction strength U , and the number of the bosons,
N , which can be proven in the present experiment platforms.
For instance, for an ultracold Bose gas in a two-site optical
lattice, the potential barrier can be tuned by an external laser
field [36]. Another realization of a BJJ is a pair of coupled
polariton condensates [34]. In such experiments, by tuning
the parameters in the setup, critical phase transitions may
be observed. The generalization of the two-site structure of the
BJJ to more sites should provide similar effects of controllable
entanglement and HSL, reflecting that the two-site prototype
is a scalable model. Another extension of the BJJ is the
coupling to a large but finite bath [49]. Then we expect similar
localization and entanglement effects as we found here.
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APPENDIX: EVOLUTION OF THE ENTANGLEMENT
ENTROPY

The EE is given by the reduced density matrix ρ̂ through
the Rényi entropy. Thus, the evolution of the EE is determined
by the evolution of ρ̂, whose diagonal elements can be written
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FIG. 6. Evolution of the EE for N = 100 bosons with J = 1 and different values of the interaction strength U on different timescales.

in spectral representation as

ρ̂n(t ) = 〈n, N − n|e−iHt |0, N〉〈0, N |eiHt |n, N − n〉

=
N∑

j, j′=0

e−i(Ej−Ej′ )t

× 〈n, N − n|Ej〉〈Ej |0, N〉〈0, N |Ej′ 〉〈Ej′ |n, N − n〉.
(A1)

This is a superposition of oscillating functions with frequen-
cies {|Ej − Ej′ |}, where the fastest oscillations are given by
the largest frequency. We can distinguish two extreme cases
for the BJJ: the noninteracting case with U = 0 and the
nontunneling case with J = 0. For U = 0, the energy spec-
trum is equidistant with distance 2J and energy eigenvalues
E0 = 0, Ej = ±2J j ( j = 1, 2, . . . , N/2) [50]. This implies a
periodic evolution with period tp = π/2J . In particular, the
matrix elements of the density matrix elements with n = 0, N
read ρ̂0(t ) = | cos(Jt )|2N and ρ̂N (t ) = | sin(Jt )|2N [51]. This
is reflected by the behavior visualized in Fig. 6(a). The other
extreme is J = 0. Since the initial state |0, N〉 is an eigenstate
of the Hamiltonian, there is no evolution. A small tunneling
rate J , though, splits the degeneracy of |0, N〉 and |N, 0〉
and creates a small frequency of the order of J that leads to
very slow oscillations in the evolution. On the other hand,
the fastest oscillations are caused by the maximal frequency
UN2/4. This is visible in Fig. 6(f).

The evolution is more complex in the intermediate regime,
where tunneling and interaction compete. Different frequen-
cies contribute and there is an evolution on all timescales,
caused by frequencies from 0 to the largest frequency UN2/4.
The oscillating behavior is only limited by the number of
frequencies, Nf = (N + 1)N/2. Typical examples of the EE
in the BJJ are plotted in Fig. 6 on different timescales. The

influence of the interaction strength U clearly distinguishes
a noninteracting tunneling regime [Fig. 6(a)] and a strongly
interacting regime of fast oscillations with tp ≈ 0.07 [inset
in Fig. 6(f)] and slower oscillations with t ′

p ≈ 90, where the
EE is quite small. There is an intermediate regime that has
characteristic features on long timescales that represents small
frequencies. Moreover, the intermediate regime has a higher
EE than the other two regimes. This indicates a more complex
evolution. In Fig. 7, the evolution of the EE is compared on
the same timescale for the different regimes.

Besides the frequencies of the oscillations, the expansion
coefficients in (A1) play a crucial role in the evolution. They
reflect the overlap between the Fock states and the energy
eigenstates and determine the entanglement of the different
Fock states. In the tunneling regime, all elements of the re-
duced density matrix contribute significantly, for instance, at
time t = 1000 [cf. Fig. 8(a)]. In the localized regime, on the
other hand, the overlaps between the Fock states with a few
energy eigenstates are large. In particular, for J = 0, we get
ρ̂n(t ) = δnN , which yields a vanishing EE. Small tunneling

FIG. 7. Evolution of the EE for different values of U , J = 1, and
N = 100 on the same timescale.
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FIG. 8. The elements ρL
n (t ) of the reduced density matrix for different numbers of bosons N (a) Deep in the tunneling regime (u = 1) at

fixed time t = 1000 and (b) deep in the localized regime (u = 40), where the maximum of ρL
n (t ) on the time interval [0, 2000] is plotted.

can be treated as a perturbation expansion in powers of J ,
leading to a small EE. In this case, the elements of the re-
duced density matrix have only two significant contributions,
as visualized in Fig. 8(b). A special effect is that for a fixed u,
the smaller of the two matrix elements increases linearly with
N such as 2N/1000 up to N ≈ 200 bosons. We anticipate a
saturation for larger values of N , which eventually results in
two equal matrix elements of 1/2.

These time-dependent results indicate a complex evo-
lution of the reduced density matrix and the EE that is
caused by the oscillating behavior with various frequen-
cies. Degeneracies in the energy spectrum due to specific
physical effects, such as phase transitions, appear on large
timescales. This fact suggests that the oscillating behavior
of the reduced density matrix on short timescales should be
averaged out.
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