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Abstract
We present a rigidity theorem for the action of the mapping class group π0(Diff(M))

on the space R+(M) of metrics of positive scalar curvature for high dimensional
manifoldsM . This result is applicable to a great number of cases, for example to simply
connected 6-manifolds and high dimensional spheres. Our proof is fairly direct, using
results from parametrised Morse theory, the 2-index theorem and computations on
certainmetrics on the sphere.We also give a non-triviality criterion and a classification
of the action for simply connected 7-dimensional Spin-manifolds.

1 Introduction

1.1 Statement of the results

For a closed manifold M of dimension (d − 1) let R+(M) denote the space of all
Riemannian metrics of positive scalar curvature on M . The diffeomorphism group
Diff(M) of M acts on the space R+(M) by pullback and this action defines a group
homomorphism

� : �(M) := π0(Diff(M)) −→ π0(hAut(R+(M)))
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1144 G. Frenck

from the mapping class group of M to the group of homotopy classes of homotopy
self-equivalences ofR+(M). Ourmain result is that the image of thismap is often very
small. To state this precisely without too many technicalities, we confine ourselves
to the special case where M is simply connected and Spin in this introduction, but
remark that we prove results for all manifolds of dimension at least 6.

Let � be a Spin-structure on M and recall that a Spin-diffeomorphism of (M, �)

is a pair ( f , f̂ ) consisting of an orientation preserving diffeomorphism f : M → M
and an isomorphism f̂ : f ∗� → � of Spin-structures. We denote by DiffSpin(M, �)

the group of all Spin-diffeomorphisms and by �Spin(M, �) := π0(DiffSpin(M, �)) the
Spin-mapping class groupof (M, �). For a diffeomorphism f ofM denote themapping
torus by T f := M × [0, 1]/(x, 0) ∼ ( f (x), 1). If ( f , f̂ ) is a Spin-diffeomorphism,
T f inherits a Spin-structure. This construction defines a group homomorphism

T : �Spin(M, �) −→ �
Spin
d

to the cobordism group of closed d-dimensional Spin-manifolds. Our main result is
the following.

Theorem A If (M, �) is a simply connected Spin-manifold of dimension d − 1 ≥ 6,
there exists a group homomorphism

SE : �
Spin
d −→ π0(hAut(R+(M))),

such that the following diagram, where F is the forgetful map, commutes

�Spin(M, �)

�(M)

�
Spin
d

π0(hAut(R+(M))).

F

T

�

SE

Note that Theorem A is true but vacuous for R+(M) = ∅. Since �
Spin
7 = 0 (cf. [29,

Théorème II.16, p. 49]), f ∗ : R+(M) → R+(M) is homotopic to the identity for every
Spin-diffeomorphism ( f , f̂ ) of a simply connected, 6-dimensional Spin-manifold M .
Using computations in characteristic classes we get the following.

Theorem B Let M be a simply connected, stably parallelizable manifold of dimension
d − 1 ≥ 6, equipped with a Spin-structure. Let ( f , f̂ ) be a Spin-diffeomorphism.
Then the map

f ∗ : R+(M) −→ R+(M)

is homotopic to the identity unless d ≡ 1, 2 (mod 8). In the latter case, ( f 2)∗ is
homotopic to the identity.

Remark Any orientation-preserving diffeomorphism f of M can be lifted to a Spin-
diffeomorphism if M is simply connected. Therefore f ∗ : R+(M) → R+(M) is
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The action of the mapping… 1145

homotopic to the identity for each orientation preserving diffeomorphism of M if
d �≡ 1, 2 ( mod 8). This conclusion does not hold for orientation-reversing diffeomor-
phisms (for example it is false if f : S7 → S7 is an orthogonal matrix of determinant
−1).

For more examples we refer to [10, Chapter 4.1]. Using Theorem A one can also use
computational results on π0(R+(M)) and π0(Diffx0(M)) (for example [3] and [14])
to find elements in π0 and π1 of the observer moduli space of psc-metrics for certain
manifolds. In the situation of Theorem A, assume that f ∗g is homotopic to g for one
g ∈ R+(M). Then the mapping torus admits a psc metric and hence α(T f ) = 0.
This has an interesting consequence for manifolds of dimension 7. Recall that the map

�
Spin
8

∼=−→ Z ⊕ Z, [W ] �→ (sign(W ), α(W )) is an isomorphism. Since the signature
of a mapping torus always vanishes we deduce

Corollary C Let M be a simply connected Spin-manifold of dimension 7 and let f be
a Spin-diffeomorphism. If there exists a metric g ∈ R+(M) such that f ∗g lies in the
same path component as g, then the map f ∗ : R+(M) → R+(M) is homotopic to
the identity.

Proposition D Let d ≥ 7, let f : Sd−1 → Sd−1 be a Spin-diffeomorphism and let g◦
denote the round metric. If f ∗g◦ and g◦ lie in the same path component, then f ∗ is
homotopic to the identity.

Remark The first result concerning the action of the mapping class group on the
space of positive scalar curvature metrics was given by Hitchin [18], where he con-
structed a map inddiff : π0(R+(Md−1))×π0(R+(Md−1)) −→ KO−d(pt) and used
the Atiyah–Singer index theorem to show that inddiff(g, f ∗g) = α(T f ). Hence,
the α-invariant of the mapping torus of f is an obstruction to f acting trivially on
π0(R+(M)). For Sd−1 with d ≥ 9 and d ≡ 1, 2 ( mod 8) there exist diffeomorphisms
f with α(T f ) �= 0 which implies thatR+(Sd−1) is not connected in these dimensions.
Theorem A shows that these are the only dimensions where simply connected, stably
parallelizable manifolds admit such a diffeomorphism.

Remark In [3] a factorisation result similar to Theorem A is proven. It is shown that
for certain manifolds the image of π0(Diff∂ (M2n)) → π0(hAutR+(M))) is abelian,
where Diff∂ denotes those diffeomorphisms that fix a neighbourhood of the boundary
point-wise.Using anobstruction theoretic argument they conclude that thismap factors
through π1(MTSpin(2n)). This has been upgraded in [8] and [9] to hold for a bigger
class of manifolds. Theorem A directly implies abelianess of the image and improves
the named results since the map π1(MTSpin(d − 1)) → �

Spin
d has nontrivial kernel.

1.2 Outline of the proof

Theorem A follows from a more general, cobordism theoretic result which we will
develop in this outline. The main geometric ingredient is a parametrised version of
the famous Gromov–Lawson–Schoen–Yau surgery theorem due to Chernysh. Let
ϕ : Sk−1 × Dd−k ↪→ M be an embedding and letR+(M, ϕ) := {g ∈ R+(M)|ϕ∗g =

123



1146 G. Frenck

g◦ + gtor} be the space of those metrics that have a fixed standard form on the image
of ϕ. Here g◦ denotes the round metric on Sk−1 and gtor is a torpedo metric on Dd−k ,
i.e.an O(d − k)-invariant metric of positive scalar curvature that restricts to the round
metric on the boundary.

Theorem 1.1 ([4, Theorem 1.1], [32, Main Theorem]) If d − k ≥ 3, the inclusion
R+(M, ϕ) ↪→ R+(M) is a weak equivalence.

As a consequence we obtain a map

Sϕ : R+(M) ��� R+(M, ϕ)
∼=−→ R+(Mϕ, ϕop) ↪→ R+(Mϕ),

where the first map is the homotopy inverse to the inclusion and the second one is given
by cutting out ϕ∗(g◦+gtor) and pasting in ϕ

op∗ (gtor+g◦). Here, ϕop : Dk ×Sd−k−1 ↪→
Mϕ denotes the surgery embedding complementary to ϕ. Next we want to define the
mapS for general cobordisms. In this paper, a cobordism between (d−1)-dimensional
manifolds M0 and M1 is a triple (W , ψ0, ψ1) consisting of a d-dimensional manifold
W whose boundary has a decomposition ∂W = ∂0W  ∂1W and diffeomorphisms
ψi : ∂iW → Mi for i = 0, 1. We will only consider Spin-structures on cobordisms
in the final step of the proof. An admissible handle decomposition H of (W , ψ0, ψ1)

is a collection of manifolds N1, . . . , Nn , embeddings ϕi : Ski−1 × Dd−ki ↪→ Ni

with d − ki ≥ 3 for i = 1, . . . , n and diffeomorphisms f0 : ∂0W
∼=−→ N1,

fn : (Nn)ϕn
∼=−→ ∂1W and fi : (Ni )ϕi

∼=−→ Ni+1 for i = 1, . . . , n − 1 such that
there exists a diffeomorphism rel∂W

W ∼= ∂0W × [0, 1] ∪ f0 tr (ϕ1) ∪ f1 tr (ϕ2) ∪ f2 · · · ∪ fn−1 tr (ϕn) ∪ fn ∂1W × [0, 1]

and (W , ψ0, ψ1) is called an admissible cobordism if it admits an admissible handle
decomposition. By the theory of handle cancellation developed by Smale [27] (see also
[21,30]), a cobordism is admissible if the inclusion ψ−1

1 : M1 ↪→ W is 2-connected.
For a cobordismW with an admissible handle decomposition H we define the surgery
map SW ,H : R+(M0) → R+(M1) by

SW ,H := (ψ1)∗ ◦ ( fn)∗ ◦ Sϕn ◦ · · · ◦ ( f1)∗ ◦ Sϕ1 ◦ ( f0)∗ ◦ (ψ0)
∗.

Lemma E Let d ≥ 7. Then the homotopy class of SW ,H is independent of the choice
of admissible handle decomposition H. We will write SW :=SW ,H . If the inclusion
ψ−1
0 : M0 ↪→ W is 2-connected as well, SW is a weak homotopy equivalence.

Remark In [33], Walsh constructed a psc metric gH on (W , H) that restricts to a given
metric g0 on ∂0W . He shows that the homotopy class of gH is independent of H .
Using boundary identificationsψi this gives a well definedmapSW : π0(R+(M0)) →
π0(R+(M1)).We adapt the proof from [33] so that we obtain awell-defined homotopy
class of a map of spaces inducing Walsh’s map on π0.

To prove this one uses Cerf theory to show that different handle decompositions are
related by a finite sequence of elementary moves. The parametrized handle exchange
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The action of the mapping… 1147

theoremof Igusa [20] ensures that thesemoves keep the handle decomposition admissi-
ble. Igusa’s theorem is the point where d ≥ 7 is used. Next we show surgery invariance
of SW .

Lemma F Let d ≥ 7, let M0, M1 be two (d − 1)-manifolds, let W be an admissible
cobordism and let� : Sk−1×Dd−k+1 ↪→ IntW be an embedding with 3 ≤ k ≤ d−3.
Then SW ∼ SW� .

Nowwe are able to derive the general cobordism theoretic result. Let
ˆ

�
Spin
d denote the

following category: objects are given by closed, simply connected, (d−1)-dimensional
Spin-manifolds M and morphisms from M0 to M1 are given by cobordism classes of
compact d-dimensional Spin-cobordisms (W , ψ0, ψ1). Note that every such cobor-
dism class contains an admissible cobordism and two admissible cobordisms in the
same class are related by a sequence of surgeries satisfying the index constraints from
the previous Lemma.

Theorem G Let d ≥ 7. Then there exists a functor S : ˆ
�

Spin
d −→hTop into the homo-

topy category of spaces with the following properties:

(1) On objects, S is given by S(M) = R+(M),
(2) if f : M1 → M0 is a diffeomorphism, then S(M0 × [0, 1], id, f −1) = f ∗,
(3) if α ∈ ˆ

�
Spin
d (M0, M1) is represented by (tr (ϕ), id, id) for tr (ϕ) the trace of a

surgery datum ϕ with codimension at least 3, then S(α) = Sϕ .

Furthermore,S is uniquely determined by these properties, up to natural isomorphism.

This immediately implies Theorem A: For a closed Spin-manifold V let SE(V ) :=
S(M × [0, 1]  V , id, id) and since (M × [0, 1]  T f , id, id) is Spin-cobordant to
(M × [0, 1], id, f −1) the given diagram commutes.

Structure of the paper. Section 2 contains the geometric arguments required
for proving the main results. After preliminaries on Riemannian metrics and handle
decompositions we analyse how two admissible handle decompositions are related.
We show that passing from one to another does not alter the homotopy class of S in 2.6
leading to the proof of Lemma E (Lemma 2.25). We then give a direct geometric argu-
ment that shows the surgery invariance of the homotopy class of S in 2.7 which proves
Lemma F (Lemma 2.30). There are no assumptions on the existence of Spin-structures
and connectivity until here. In Section 3 we introduce tangential structures and prove
the general version of Theorem G (Theorem 3.6). Afterwards we define the (struc-
tured) mapping class group as well as the (structured) cobordism group and we relate

these to the general version of the category
ˆ

�
Spin
d described above. As an application

we prove Theorem B in 3.5. In 3.6 we take a closer look at the 7-dimensional case
which leads to the proof of Corollary C.
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1148 G. Frenck

2 Handle decompositions and the surgery map

2.1 Spaces of Riemannianmetrics

For a closed manifold M we denote byR(M) the contractible space of all Riemannian
metrics on M equipped with the (weak) Whitney C∞-topology. The subspace of
metrics whose scalar curvature is strictly positive will be denoted by R+(M).

Definition 2.1 Let M and N be compact manifolds of dimension d − 1 ≥ 0 and let
ϕ : N ↪→ M be an embedding. For a metric g on N , we define

R+(M, ϕ; g) := {h ∈ R+(M) : ϕ∗h = g}.

For N = ∐n
i=1 S

ki−1 × Dd−ki and g = ∐n
i=1 g

ki−1◦ + gd−ki
tor we write R+(M, ϕ) :=

R+(M, ϕ; g). Here, gki−1◦ denotes the round metric and gd−ki
tor a torpedo metric1. If

there is no chance of confusion, we will omit the dimension of these metrics.

There is the following generalization of the famous Gromov–Lawson–Schoen–Yau
surgery theorem (cf. [12,28]) which is originally due to Chernysh [4] and has been
first published by Walsh [32]. A detailed exposition of Chernysh’s proof can be found
in [7]. Let M be a (d − 1)-manifold and for i = 1, . . . , n let Ni be closed manifolds
of dimension (ki − 1). Let d − ki ≥ 3 for all i and let gNi be metrics on Ni such
that scal(gNi + gtor) > 0. Let N := ∐n

i=1 Ni × Dd−ki , g := ∐n
i=1 gNi + gtor and let

ϕ : N ↪→ M be an embedding.

Theorem 2.2 [Parametrized Surgery Theorem [4, Theorem1.1], [32,Main Theorem]]
The map

R+(M, ϕ; g) ↪→ R+(M)

is aweakhomotopy equivalence. In particular, if M1 is obtained fromM0 byperforming
surgery along ϕ : Sk−1 × Dd−k ↪→ M0 of index k ≤ d − 3 then there exists a zig-zag
of maps

R+(M0)
�←↩ R+(M0, ϕ)

∼=−→ R+(M1, ϕ
op) ↪→ R+(M1).

If furthermore k ≥ 3, the rightmost map in this composition is also a weak equivalence
and we obtain a zig-zag of weak equivalences from R+(M0) toR+(M1).

Remark 2.3 The space R+(M) is homotopy equivalent to a CW -complex (see [25,
Theorem 13]). By Whitehead’s theorem, a weak homotopy equivalence of CW -
complexes is an actual homotopy equivalence. Therefore we may assume that weak
homotopy equivalences of R+(M) have actual homotopy-inverses.

1 A torpedo metric on Dd−k is an O(d − k)-invariant metric of positive scalar curvature that restricts to
the round metric on the boundary. For precise definitions see [4], [31] or [7].

123



The action of the mapping… 1149

Fig. 1 A standard trace

Dd-k

Dk

[0,1]

2.2 Handle decompositions of cobordisms

In this section we discuss handle decompositions of a cobordism W . First, we give a
model for attaching a handle. We adapt the one given in [26, Construction 8.1] which
is convenient.

Construction 2.4 [Standard trace] Let ε ∈ (0, 1
4 ) be fixed and let k ∈ {0, . . . , d}. We

fix once and for all an O(k) × O(d − k)-invariant submanifold

Tk ⊂ [0, 1] × Dk × Dd−k

with the following properties (see Fig. 1 for a visualization)

(1) (s, 0, 0) ∈ Tk if and only if s = 1
2 .

(2) The projection Tk
pr−→ [0, 1] is a Morse function and ( 12 , 0, 0) is the only critical

point of this Morse function. Its index is k.
(3) We have the following equalities for intersections

Tk ∩ ([0, ε) × Sk−1 × Dd−k) = [0, ε) × Sk−1 × Dd−k

Tk ∩ ((1 − ε, 1] × Dk × Sd−k−1) = (1 − ε, 1] × Dk × Sd−k−1

Tk ∩ ([0, 1] × Sk−1 × Sd−k−1) = [0, 1] × Sk−1 × Sd−k−1

(4) The boundary of Tk is given by

∂Tk =({0} × Sk−1 × Dd−k) ∪ ({1}×Dk × Sd−k−1) ∪ ([0, 1]×Sk−1×Sd−k−1).

We call Tk the standard trace of a k-surgery.

Definition 2.5 [Trace of a surgery] LetM be amanifold and letϕ : Sk−1×Dd−k ↪→ M
be an embedding. We call such an embedding a k-surgery datum in M and we define
the trace of ϕ to be

tr (ϕ) :=
(
[0, 1] × (M\imϕ)

)
∪id[0,1]×ϕ Tk .

123



1150 G. Frenck

There is a Morse function hϕ : tr (ϕ) → [0, 1] with precisely one critical point with
value 1

2 and index k. We define Mϕ := h−1
ϕ (1) ∼= (M\imϕ) ∪ (Dk × Sd−k−1).

For a surgery datum ϕ inM there is an obvious reversed surgery datum ϕop : Sd−k−1×
Dk ↪→ Mϕ and there is a canonical diffeomorphism (Mϕ)ϕop ∼= M . We define the
attaching sphere of ϕ to be ϕ(Sk−1 ×{0}) ⊂ M and the belt sphere of ϕ as ϕop({0}×
Sd−k−1) ⊂ Mϕ .

Definition 2.6 (1) Let (W , ψ0, ψ1) : M0 � M1 be a cobordism and let ϕ : Sk−1 ×
Dd−k ↪→ M1 be an embedding. We define the manifold W with a k-handle
attached along ϕ to be (W ∪ψ1 tr (ϕ), ψ0, id).

(2) A handle decomposition of (W , ψ0, ψ1) : M0 � M1 is a collection of manifolds
N1, . . . , Nn , embeddings ϕi : Ski−1 × Dd−ki ↪→ Ni for i = 1, . . . , n and diffeo-

morphisms f0 : ∂0W
∼=−→ N1, fn : (Nn)ϕn

∼=−→ ∂1W and fi : (Ni )ϕi
∼=−→ Ni+1

for i = 1, . . . , n − 1 such that there exists a diffeomorphism rel ∂W

W ∼= ∂0W×[0, 1] ∪ f0 tr (ϕ1) ∪ f1 tr (ϕ2) ∪ f2 · · · ∪ fn−1 tr (ϕn) ∪ fn ∂1W×[0, 1].
We call fi the identifying diffeomorphisms and ϕi the surgery data.

Remark 2.7 For a diffeomorphism f : M0
∼=−→ M1 and a surgery datum ϕ in M0 there

exists a canonical induced diffeomorphism F : trϕ → tr ( f ◦ ϕ) that restricts to f
on the incoming boundary and to a diffeomorphism fϕ : (M0)ϕ → (M1) f ◦ϕ such that
fϕ is equal to f on M0\imϕ and fϕ ◦ ϕop = ( f ◦ ϕ)op on the outgoing boundary.

In order to compare different handle decompositions of a manifold, we need to
describe a model for handle cancellation. Let W : M0 � M1 be a cobordism which
has a handle decomposition with two handles2: Let ϕ : Sk−1 × Dd−k ↪→ M0 and
ϕ′ : Sk × Dd−k−1 ↪→ (M0)ϕ be two surgery data such that the belt sphere of ϕ and
the attaching sphere of ϕ′ intersect transversely in a single point. By [34, Theorem
5.4.3] there exists an embedding of a disk Dd−1 ∼= D ⊂ M0 such that imϕ ⊂ D
and imϕ′ ⊂ Dϕ . Therefore it suffices to have a closer look at handle cancellation on
the sphere. Let M0 = D ∪ D′ = Sd−1 where D′ is another disk. Let a ∈ Sd−k−1

and b ∈ Sk such that ϕop(0, a) = ϕ′(b, 0) is the unique intersection point. Since the
belt sphere of ϕ and the attaching sphere of ϕ′ intersect transversally here, there is a
disc Sk+ ⊂ Sk such that ϕ′(Sk+ × {0}) = ϕop(Dk × {a}) after possibly changing the

coordinates of D. Let Sk− := Sk\Sk+. Then ϕ′(Sk− × {0}) ⊂ M\imϕ (see Fig. 2).
Because of transversality we may isotopy ϕ′ such that ϕ′(Sk− × Dd−k−1) ⊂ M\imϕ.
Then ϕ(Sk−1 × Dd−k) ∪ ϕ′(Sk− × Dd−k−1) ∼= Dd−1 (cf. [34, Lemma 5.4.2.]) and

also A := Sd−1\(ϕ(Sk−1 × Dd−k) ∪ ϕ′(Sk− × Dd−k−1)
) ∼= Dd−1. By choosing an

identification A ∼= Dk × Dd−k−1 we have ϕ′(Sk− × Dd−k−1) ∪ A ∼= Sk × Dd−k−1.
We see that

Sd−1 =(
ϕ(Sk−1 × Dd−k) ∪ ϕ′(Sk− × Dd−k−1)

) ∪ A
︸ ︷︷ ︸

∼=Sk×Dd−k−1

2 For ease of notation we assume that all boundary identifications are given by the identity.
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The action of the mapping… 1151

Fig. 2 .

and hence we can change coordinates on Sd−1 by changing the embedding Dd−1 ↪→
M such that ϕ is the embedding of the first factor of the solid torus decomposition

ak : Sd−1 ∼=−→ (Sk−1 × Dd−k) ∪ (Dk × Sd−k−1),

i.e.ak ◦ ϕ = ι(Sk−1×Dd−k ). We get an induced map

akϕ : Sd−1
ϕ

∼=−→ (Dk × Sd−k−1) ∪ (Dk × Sd−k−1),

wherewe identify (Dk×Sd−k−1)∪(Dk×Sd−k−1) = Sk×Sd−k−1 = (Sk×Dd−k−1)∪
(Sk × Dd−k−1). Because of transversality we may change ϕ′ by an isotopy so that
(akϕ) ◦ ϕ′ is equal to the inclusion of the first factor in Sk × Dd−k−1 ∪ Sk × Dd−k−1.
Then

(akϕ)ϕ′ : (Sd−1
ϕ )ϕ′

∼=−→ Dk+1 × Sd−k−2 ∪ Sk × Dd−k−1

This is a solid torus decomposition of (Sd−1
ϕ )ϕ′ . We get a diffeomorphism Hk : Sd−1×

[0, 2] ∼=−→ tr (ϕ) ∪ tr (ϕ′) which fixes the strip D′ × [0, 2] ⊂ (Sd−1) × [0, 2] and
the lower boundary point-wise. We may also assume that Hk restricts on the upper

boundary to a diffeomorphism ηk : Sd−1
∼=−→ (Sd−1

ϕ )ϕ′ which translates (akϕ)ϕ′ into the
solid torus decomposition ak+1, i.e.

(
(akϕ)ϕ′ ◦ηk

) = ak+1. For every k ∈ {0, . . . , d}we
fix the diffeomorphisms Hk (and hence ηk) once and for all. The following proposition
is well known and can be proven by analyzing paths of generalized Morse functions
using Cerf theory (see [15, Theorem 3.4] or [10, Proposition 1.5.7]).

Proposition 2.8 Let d ≥ 7. Then any two handle decompositions of W only differ by
a finite sequence of the following moves:

(1) An identifying diffeomorphism is replaced by an isotopic one.
(2) A surgery datum is replaced by an isotopic one.
(3) A k-surgery datum is precomposed with an element A ∈ O(k) × O(d − k).
(4) The order of two surgery data with disjoint images is changed.
(5) Let ϕ and ϕ′ be k- and (k + 1)-surgery data such that the belt sphere of ϕ and

the attaching sphere of ϕ′ intersect transversally in a single point. Then the two
handles are replaced by the identifying diffeomorphism id # ηk .
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1152 G. Frenck

2.3 Hatcher–Igusa’s 2-index theorem

Since Theorem 2.2 has restrictions on the indices of surgery data, we need to consider
handle decompositions with index constraints. Let (Wd , ψ0, ψ1) : M0 � M1 be a
cobordism.

Definition 2.9 (W , ψ0, ψ1) is called admissible if ψ−1
1 : M1 ↪→ W is 2-connected.

An admissible handle decomposition is a handle decomposition where all surgery data
ϕi : Ski−1 × Dd−ki ↪→ Ni satisfy ki ≤ d − 3.

Remark 2.10 It follows from the proof of the h-cobordism theorem due to Smale
[27] (see also [21,30]) that every admissible cobordism admits an admissible handle
decomposition.

Next we want to analyze different admissible handle decompositions. Recall that a
birth-death-singularity of a smooth function f : Wd → R is a point p ∈ W for which
there exist coordinates (x1, . . . , xd) around p such that

f (x) = f (p) + x31 −
λ∑

i=2

x2i +
d∑

i=λ+1

x2i

near p. In this case we call (λ − 1) the index of f at p. A smooth function f : W →
R that has only non-degenerate and birth-death-singularities is called a generalized
Morse function.

Definition 2.11 We define H(W ) to be the space of generalized Morse functions on
W with the C∞-topology. For i ≤ j ∈ {0, . . . , d} we denote by Hi, j (W ) the space
of generalized Morse functions such that non-degenerate critical points have index in
{i, . . . , j} and birth-death-singularities have index in {i, . . . , j − 1}.
Theorem 2.12 Let d ≥ 7 and let M1 ↪→ W be 2-connected. Then the space
H0,d−3(W ) is path-connected. If furthermore M0 ↪→ W is 2-connected as well, the
spaceH3,d−3(W ) is path-connected, too. In particular, there exists a Morse-function
without critical values of index {d−2, d−1, d} or {0, 1, 2, d−2, d−1, d} respectively.
This follows from the parametrized handle exchange theorem. It was first proven by
Hatcher [16] “in a short and elegant paper which ignores most technical details” [20, p.
5]. A complete and rigorous proof has been given by Igusa in [20]. Note that there is an
index shift: Igusa considers n + 1-dimensional cobordisms, whereas our cobordisms
are d-dimensional.

Parametrized Handle Exchange Theorem ([20, p. 211, Theorem 1.1]) Let
i, j, k ∈ N and assume that

(1) (W , M0) is i-connected,
(2) j ≥ i + 2,
(3) i ≤ d − k − 2 − min( j − 1, k − 1),
(4) i ≤ d − k − 4.
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Then the inclusion Hi+1, j (W ) ↪→ Hi, j (W ) is k-connected. There is a dual version
of this: Assume that

(1) (W , M1) is d − j-connected,
(2) j ≥ i + 2,
(3) d − j ≤ d − k − 2 − min( j − 1, k − 1),
(4) d − j ≤ d − k − 4.

Then the inclusion Hi, j−1(W ) ↪→ Hi, j (W ) is k-connected.

Proof of Theorem 2.12 Consider the chain of maps

H3,d−3(W ) → H2,d−3(W ) → H1,d−3(W ) → H0,d−3(W ) →
→ H0,d−2(W ) → H0,d−1(W ) → H(W )

If M1 ↪→ W is 2-connected and d ≥ 7, the last three maps are 1-connected. If
M0 ↪→ W is 2-connected, the first three maps are 1-connected as well. The theorem
follows as H(W ) is connected.

Remark 2.13 There is a small mistake in [33, Proof of Theorem 3.1], where he only
requires d ≥ 6. But the map H0,d−2(W ) ↪→ H(W ) is only 0-connected, i.e.π0-
surjective but not necessarily π0-injective under this assumption. Therefore it does not
follow, that H0,d−2(W ) is path-connected as claimed in loc. cit.. However, if d ≥ 7
the map is not only π0-injective but also 1-connected which is more than needed.

The following result can again be proven by analyzing paths of generalized Morse
functions with index constraints: Any two admissible handle decompositions arise
from a Morse function having only critical points of index ≤ d − 3. By Theorem 2.12
there exists a path of generalized Morse functions also having only critical points of
index≤ d−3 and birth-death-points of index≤ d−4. The rest of the proof is analogous
to the one of Proposition 2.8 (again, see [15, Theorem 3.4] or [10, Proposition 1.5.7
and Proposition 1.6.4]).

Proposition 2.14 [10, 1.6.4] Let W : M0 � M1 be an admissible cobordism of dimen-
sion d ≥ 7. Then any two admissible handle decompositions of W only differ by a
finite sequence of the 5 moves from Proposition 2.8 with the following difference:

5’. Let k ≤ d − 4 and let ϕ and ϕ′ be k- and (k + 1)-surgery data such that the belt
sphere of ϕ and the attaching sphere of ϕ′ intersect transversally in a single point.
Then the two handles are replaced by the identifying diffeomorphism id # ηk .

2.4 The surgery datum category

We recall the following method to construct a category. For details see [24, pp. 48].

Definition 2.15 A graph is a tuple (O, A, ∂0, ∂1), where O and A are sets called the
object set and the arrow set and ∂0, ∂1 are maps A ⇒ O . We say that two arrows
f , g ∈ A are composable if ∂0g = ∂1 f .
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1154 G. Frenck

Definition 2.16 Let G = (O, A, ∂0, ∂1) be a graph. We define the category C(G) to
have elements of O as objects and morphisms of C(G) are (possibly empty) strings
of composable morphisms of A. We call C(G) the free category generated by G.

Proposition 2.17 [[24, p. 51, Proposition 1]] Let C be a small category and let R be
a binary relation, i.e.a map that assigns to each pair (a, b) of objects a subset of
morC(a, b)2. Then, there exists a category C/R with object set objC and a functor
Q : C → C/R (which is the identity on objects) such that

(1) If ( f , f ′) ∈ R(a, b) then Q f = Q f ′.
(2) If H : C → D is a functor such that ( f , f ′) ∈ R(a, b) implies H f = H f ′, then

there exists a unique functor H ′ : C/R → D such that H ′ ◦ Q = H.

Let Bordd denote the category with objects (d − 1)-manifolds and morphisms given
by diffeomorphism classes of cobordisms (W , ψ0, ψ1). The main goal of this chapter
is to give a presentation of Bordd , i.e. a graph G, a relation R and an equivalence of

categories C(G)/R
∼=−→ Bordd . Let us first construct the graph G. Objects in O are

the objects of Bordd and arrows will be given by diffeomorphisms and elementary
cobordisms:

(1) For a diffeomorphism f : M0 → M1 we get an arrow I f ∈ A from M0 to M1.
(2) For a surgery datum ϕ in M we get an arrow Sϕ ∈ A from M to Mϕ .

Next, we need to construct the relation R on C(G). Recall that for a diffeomorphism
f : M → M ′ and a surgery datum ϕ in M there exists a canonical induced diffeo-
morphism fϕ : Mϕ → M ′

f ◦ϕ . Also, if ϕ and ϕ′ are two surgery embeddings into
M with disjoint images, there are obvious induced surgery data ϕ′

ϕ and ϕϕ′ on Mϕ

and (Mϕ)ϕ′
ϕ

= (Mϕ′)ϕϕ′ . We define R to be the relation on morphism sets of C(G)

generated by the following:

(1) Iid = id.

(2) If f : M0
∼=−→ M1 and g : M1

∼=−→ M2 are diffeomorphisms, then Ig ◦ I f = Ig◦ f .

(3) Let f : M0
∼=−→ M1 and let ϕ be a surgery embedding into M0. Then S f ◦ϕ ◦ I f =

I fϕ ◦ Sϕ .

(4) If f , f ′ : M ∼=−→ M ′ are isotopic, then I f = I f ′ .
(5) If A ∈ O(k) × O(d − k), then Sϕ = Sϕ◦A.
(6) If ϕ, ϕ′ are two surgery embeddings into M with disjoint images, then Sϕϕ′ ◦ Sϕ′ =

Sϕ′
ϕ

◦ Sϕ .
(7) Let ϕ be a k-surgery datum in M and ϕ′ a (k + 1)-surgery datum in Mϕ such

that the belt sphere of ϕ and the attaching sphere of ϕ′ intersect transversely in a
single point. Then Sϕ′ ◦ Sϕ = Iid # ηk , where ηk is the diffeomorphism described
Sect. 2.2, below Remark 2.7.

Remark 2.18 For isotopic surgery embeddings ϕ and ϕ′ we get a diffeotopy H of M
such that H0 = id and H1 ◦ ϕ = ϕ′ by the isotopy extension theorem. Then

Sϕ′ = SH1◦ϕ ◦ IH0 = SH1◦ϕ ◦ IH1 = I(H1)ϕ ◦ Sϕ.
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The action of the mapping… 1155

Definition 2.19 We define the surgery datum category Xd to be C(G)/R and
Q : C(G) → Xd shall denote the projection functor.

2.5 A presentation of the cobordism category

In this section we prove that the surgery datum gives a presentation of the category
Bordd . This is the main result of this chapter.

Theorem 2.20 Let P : C(G) → Bordd denote the functor which is the identity on
objects and is given on morphisms by

(1) For f : M0 → M1, I f is mapped to (M0 ×[0, 1], id, f ) ∼= (M1 ×[0, 1], f −1, id)
(2) For a surgery datum ϕ in M, Sϕ is mapped to (tr (ϕ), id, id).

Then P descends to a functorP : Xd → Bordd which is an equivalence of categories.
Proof First we check well-definedness. By Proposition 2.17 it suffices to show that P
respects the relations of Xd .

(1) (M0 × [0, 1], id, id) is the identity.
(2) (M1 × [0, 1], id, f ) ◦ (M0 × [0, 1], id, g):=(M0 × [0, 1] ∪g M1 × [0, 1], id, f )

∼=−→ (M0 × [0, 2], id, f ◦ g)

and

the diffeomorphism is given by the identity on M0 × [0, 1] and by the map
(p, t) �→ (g−1(p), t + 1) for (p, t) ∈ M1 × [0, 1].

(3) Letϕ be a surgery embedding intoM0 and let f : M0
∼=−→ M1 be adiffeomorphism.

P(I fϕ ◦ Sϕ) = (tr (ϕ) ∪ (M0)ϕ × [0, 1], id, fϕ)

P(S f ◦ϕ ◦ I f ) = ([0, 1] × M0 ∪ f tr ( f ◦ ϕ), id, id)

We will show that both of these are diffeomorphic to X := (M0 ×[0, 1] ∪ trϕ ∪ fϕ

(M1) f ◦ϕ × [0, 1], id, id). The diffeomorphism X
∼=−→ P(I fϕ ◦ Sϕ) is given by

shrinking M0 × [0, 1] ∪ trϕ to trϕ and by fϕ × id on (M0)ϕ × [0, 1]. Recall that
there is a canonical diffeomorphism F : trϕ

∼=−→ tr ( f ◦ ϕ). The diffeomorphism

X
∼=−→ P(S f ◦ϕ ◦ I f ) is given by the identity on M0 × [0, 1], F on tr (ϕ) and by

shrinking the collar of (M1) f ◦ϕ .

(4) Let ft : M0
∼=−→ M1 be a diffeotopy. Then we get a diffeomorphism F : ([0, 1] ×

M0, id, f0)
∼=−→ ([0, 1] × M0, id, f1) given by F(t, x) = f −1

t ◦ f0(x).
(5) For every A ∈ O(k)×O(d−k), ϕ◦A is just a reparametrization of ϕ and hence this

does not change tr (ϕ) since the standardmodel was chosen to be O(k)×O(d−k)-
invariant (cf. Construction 2.4).

(6) Let ϕ, ϕ′ be surgery embeddings into M with disjoint images and let U ,U ′ be
disjoint neighborhoods of imϕ, imϕ′ in M . Let F : [0, 2] × M

∼=−→ [0, 2] × M be
a diffeomorphism such that

(a) F |[0, ε
2 )×M∪(2− ε

2 ,2]×M = id
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1156 G. Frenck

(b) F(t, x) = (t + 1, x) for 1 − ε1 > t > ε1 and x ∈ U
(c) F(t, x) = (t − 1, x) for 2 − ε1 > t > 1 + ε1 and x ∈ U ′

Then, F induces a diffeomorphism F : tr (ϕ) ∪ tr (ϕ′
ϕ) ∼= tr (ϕ′) ∪ tr (ϕϕ′) which

is the identity on a collar of the boundary.
(7) This is precisely the situation discussed below Remark 2.7.

Therefore there is an essentially surjective functor P : Xd → Bordd . Every cobor-
dism admits a handle decomposition and hence this functor is full. It is faithful by
Proposition 2.8: Any two preimages of a cobordism W under P only differ by a finite
sequence of the seven relations of Xd . ��
Definition 2.21 Let a, b ∈ {−1, 0, 1, . . . }. We define:

(1) We define Borda,b
d ⊂ Bordd to be the wide3 subcategory defined by the following:

morBorda.b
d

(M0, M1) contains those morphisms (W , ψ0, ψ1) where ψ−1
0 : M0 ↪→

W is a-connected and ψ−1
1 : M1↪→W is b-connected. Here (−1)-connected shall

be the empty condition.
(2) Ga,b to be the graph with the same object set as G and morphisms as follows:

For f : M0
∼=−→ M1 we have I f ∈ A connecting M0 and M1 and for every

surgery embedding ϕ : Sk−1 × Dd−k ↪→ M with k ∈ [a + 1, d − b − 1] we
have Sϕ ∈ A connecting M and Mϕ . Analogously to Definition 2.19, we define
X a,b
d := C(Ga,b)/R.

Note that Borda,b
d is a category by the Blakers-Massey excision theorem [5, Theorem

6.4.1].

Theorem 2.22 For d ≥ 7, the induced functor P−1,2 : X−1,2
d → Bord−1,2

d is an
equivalence of categories.

Proof The proof goes along the same lines as the proof of Theorem 2.20. For fullness
we note that if the inclusionsψ−1

1 : M1 ↪→ W is 2-connected respectively, there exists
a Morse function with all indices≤ d−3 by Theorem 2.12. Faithfulness follows from
Proposition 2.14. ��

2.6 Definition of the surgery map

Let hTop denote the homotopy category of spaces, i.e.the category with spaces as
objects and homotopy classes of maps as morphisms.

Definition 2.23 We define a functor

S : C(G−1,2) −→ hTop

by the following:

(1) S(M) = R+(M).

3 A subcategory is called wide if it contains all objects.
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The action of the mapping… 1157

(2) For a diffeomorphism f : M0
∼=−→ M1 the morphism I f is mapped to [g �→ f∗g],

where f∗ := ( f −1)∗.
(3) For ϕ : Sk−1 × Dd−k ↪→ M with k ≤ d − 3,

Sϕ �→ [R+(M) ��� R+(M, ϕ)
∼=−→ R+(Mϕ, ϕop) ↪→ R+(Mϕ)],

where the first map in this chain is the homotopy inverse to the inclusion (cf.
Theorem 2.2) and the second one works as follows: For a metric g̃ on M\imϕ, the
metric g̃ ∪ ϕ∗(gk−1◦ + gd−k

tor ) is mapped to g̃ ∪ (ϕop)∗(gktor + gd−k−1◦ ).

We will abbreviate S f :=S(I f ) and Sϕ :=S(Sϕ).

Remark 2.24 We have S(morC(G2,2)(M0, M1)) ⊂ hIso(R+(M0),R+(M1)), i.e. S
maps morphisms in C(G2,2) to (the homotopy classes of) homotopy equivalences.
This follows from the Parametrized Surgery Theorem (cf. Theorem 2.2).

Lemma 2.25 S induces a well-defined functor X−1,2
d −→ hTop.

Proof For d ≤ 2 the statement and the proof of this theorem is trivial sincemorX−1,2
d

is generated by diffeomorphisms and it suffices to note that isotopic diffeomorphisms
induce homotopic maps. Therefore we may assume d ≥ 3 throughout this proof. Fur-
thermore, we will use dashed arrows for maps that contain inverses of weak homotopy
equivalences (cf. Remark 2.3).

We need to show that the relations R from Definition 2.19 do not change the
homotopy class of S(α) for α ∈ morX−1,2

d
(M0, M1). This is obvious for relations

1, 2 and 4. For relation 5 this is easy as well, because g◦ + gtor is O(k) × O(d − k)-
invariant. Also, S f ◦ϕ ◦ I f and I fϕ ◦ Sϕ give homotopic maps because of the following
homotopy-commutative diagram.

R+(M0) R+(M0, ϕ) R+((M0)ϕ, ϕop) R+((M0)ϕ)

R+(M1) R+(M1, f ◦ ϕ) R+((M1) f ◦ϕ, ( f ◦ ϕ)op) R+((M1) f ◦ϕ)

f∗ ( fϕ)∗f∗ ( fϕ)∗

For relation 6 let ϕ, ϕ′ be two surgery embeddings into M with disjoint images. Then
there are inclusions R+(M, ϕ) ←↩ R+(M, ϕ  ϕ′) ↪→ R+(M, ϕ′) and performing
both surgeries at the same time is the same as performing them one after another. The
most difficult part of this proof is to show that handle cancellation does not alter the
homotopy class of S(α). If d = 3 the only surgery data in morX−1,2

d
are of the form

S−1 × D3 ↪→ M . Hence there cannot be cancelling surgeries and we may assume
that d ≥ 4 from now on. The proof now consists of two steps: We first reduce to the
statement that cancelling surgeries do not change the path component of the round
metric inR+(Sd−1) which afterwards is proven by an elementary computation using
[31, Lemma 1.9]. Let ϕ, ϕ′ be surgery data in M as in relation 7 and let f := idM # ηk

where ηk : Sd−1
∼=−→ (Sd−1

ϕ )ϕ′ is the fixed diffeomorphism from Section 2.2. Note
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1158 G. Frenck

that in this case we have k ≤ d − 4 and d ≥ 4. There exists an embedding of a disk
Dd−1 ∼= D ⊂ M such that imϕ ⊂ D and imϕ′ ⊂ Dϕ . It suffices to show that the
composition

R+(M, D; gtor) R+(M) R+(
(Mϕ)ϕ′

)
R+(M)

ι Sϕ′ ◦ Sϕ f ∗

is homotopic to the inclusion ι: By the Theorem 2.2, the inclusion map ι is a weak
homotopy equivalence since d ≥ 4 and hence Sϕ′ ◦ Sϕ is homotopic to f∗.

Let g ∈ R+(D, ϕ)g◦ be a metric in the component of gtor ∈ R+(D)g◦ which exists
by Theorem 2.2. Consider the following diagram:

R+(M\D)g◦ R+(M, D; g)

R+(M, D; gtor)

R+(M, ϕ)

R+(M)

∼=
∼=

�
�

The composition of the top maps is given by gluing in g and the composition of the
lower maps is given by gluing in gtor. These two metrics are homotopic relative to the
boundary and hence this diagram commutes up to homotopy. The bottom map and the
right-hand vertical map are weak equivalences by Theorem 2.2 because d ≥ 4 and k ≤
d − 4. Hence, the inclusion mapR+(M, D; g) ↪→ R+(M, ϕ) is a weak equivalence
as well. Let gϕ be the metric obtained from g by cutting out ϕ∗(gk−1◦ + gd−k

tor ) and
gluing in ϕ

op
∗ (gktor + gd−k−1◦ ). The following diagram where the horizontal maps are

given by replacing g with gϕ commutes on the nose with the non-dashed arrows and
up to homotopy with the dashed arrow:

R+(M) R+(M, ϕ) R+(Mϕ, ϕop) R+(Mϕ)

R+(M, D; g) R+(Mϕ, Dϕ; gϕ)

�
�

∼= �

�

∼=

It again follows that the right-hand vertical map and the right-hand diagonal map
are weak equivalences. Note that the composition of the bottom horizontal maps is
precisely the map Sϕ . Now let g̃ ∈ R+(Dϕ, ϕ′)g◦ be a metric in the component of
gϕ ∈ R+(Dϕ)g◦ . We get the following diagram

R+(Mϕ\Dϕ)g◦ R+(Mϕ, Dϕ; g̃)

R+(Mϕ, Dϕ; gϕ)

R+(Mϕ, ϕ′)

R+(Mϕ)

∼=
∼=

�
�

which is homotopy-commutative as g̃ and gϕ are homotopic. The righthand ver-
tical map is a weak equivalence because d − k − 1 ≥ 3 and we deduce that
R+(Mϕ, Dϕ; g̃) ↪→ R+(Mϕ, ϕ′) is a weak equivalence as well. Let g̃ϕ′ be the metric
obtained from g̃ by cutting out ϕ′∗(gk◦ + gd−k−1

tor ) and gluing in ϕ′op∗(gk+1
tor + gd−k−2◦ ).

We get the analogous homotopy-commutative diagram:
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The action of the mapping… 1159

R+(Mϕ) R+(Mϕ, ϕ′) R+((Mϕ)ϕ′ , ϕ′op) R+((Mϕ)ϕ′)

R+(Mϕ, Dϕ; g̃) R+((Mϕ)ϕ′ , (Dϕ)ϕ′ ; g̃ϕ′)

� ∼= �

�

∼=

This accumulates to the following diagram where all arrows are weak equivalences:

R+(M) R+(Mϕ) R+((Mϕ)ϕ′)

R+(M, D; gtor)R+(Mϕ, Dϕ; gϕ)R+(Mϕ, Dϕ; g̃)R+((Mϕ)ϕ′ , (Dϕ)ϕ′ ; g̃ϕ′)

R+(M)

Sϕ S ′
ϕ

ι

(1)

f ∗

Here, the map (1) is given by cutting out gϕ and gluing in g̃. Since these are homotopic
relative to the boundary, the inside triangle and hence the entire diagram commutes
up to homotopy. Therefore, the composition f ∗ ◦ Sϕ′ ◦ Sϕ ◦ ι is homotopic to the
inclusion if and only if the top row composition in this diagram is. In contrast to
f ∗ ◦ Sϕ′ ◦ Sϕ ◦ ι this composition only consists of actual maps which are given as
follows: For h ∈ R+(M\D)g◦ we have

h ∪ gtor h ∪ gϕ h ∪ g̃ h ∪ g̃ϕ′

h ∪ f ∗g̃ϕ′

We will denote the path component of a psc-metric g on M by [g] ∈ π0(R+(M)). By
the above argument it suffices to show that [ f ∗g̃ϕ′ ] = [gtor] ∈ π0(R+(D)g◦). This is
implied by Lemma 2.26 as follows: We can assume that D ⊂ Sd−1 is a hemisphere
and we have f ∗ ◦ Sϕ′ ◦ Sϕ([gtor ∪ gtor]) ∼ [gtor ∪ f ∗g̃ϕ′ ] by the above argument
for M = Sd−1 and h = gtor. After possibly changing the coordinates of the disk D

we may assume the following: If ak : Sd−1
∼=−→ (Sk−1 × Dd−k) ∪ (Dk × Sd−k−1) is

the solid torus decomposition then ak ◦ ϕ is given by the inclusion of the first factor
and akϕ ◦ ϕ′ : Sk × Dd−k−1 ↪→ (Sk × Dd−k−1) ∪ (Sk × Dd−k−1) is also given by the
inclusion of the first factor (cf. Sect. 2.2). In this case we have f = ηk . The metric
[gtor ∪ gtor] is homotopic to the round metric by [31, Lemma 1.9] and we have

[gtor ∪ f ∗g̃ϕ′ ] ∼ η∗
k ◦ Sϕ′ ◦ Sϕ([gtor ∪ gtor])

∼ η∗
k ◦ Sϕ′ ◦ Sϕ([g◦]) Lemma 2.26∼ [g◦] ∼ [gtor ∪ gtor].

Also g1 := gtor ∪ f ∗g̃ϕ′ and g2 := gtor ∪ gtor are both in the image of the inclusion
map R+(D)g◦ ↪→ R+(Sd−1) which is a weak equivalence and since [g1] = [g2] it
follows that [gtor] = [ f ∗g̃ϕ′ ] ∈ π0(R+(D)g◦). ��

Lemma 2.26 Let g◦ ∈ R+(Sd−1) be the round metric and let ak : Sd−1
∼=−→ (Sk−1 ×

Dd−k) ∪ (Dk × Sd−k−1) be the solid torus decomposition. Let ϕ : Sk−1 × Dd−k ↪→
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Sd−1 and let ϕ′ : Sk × Dd−k−1 ↪→ Sd−1
ϕ be surgery data such that ak ◦ ϕ and akϕ ◦ ϕ′

are both given by the inclusion of the respective first factor. Then Sϕ′ ◦ Sϕ([g◦]) ∼
Sηk ([g◦]) = (ηk)∗[g◦].
Proof Let gkmtor := (gk−1◦ + gd−k

tor ) ∪ (gktor + gd−k−1◦ ) denote the mixed torpedo metric
on(Sk−1 × Dd−k) ∪ (Dk × Sd−k−1). By [31, Lemma 1.9]) we have (ak)∗gkmtor ∼ g◦
and hence

Sϕ(g◦) ∼ Sϕ

(
(ak)∗gkmtor

) = Sϕ(S(ak )−1(gkmtor))

∼ S(akϕ)−1Sak◦ϕ(gkmtor) = (akϕ)∗Sak◦ϕ(gkmtor)

Now ak ◦ ϕ is given by the inclusion and hence

Sak◦ϕ(gkmtor) ∼ (gtor + g◦) ∪ (gtor + g◦) ∼ g◦ + g◦ ∼ (g◦ + gtor) ∪ (g◦ + gtor)︸ ︷︷ ︸
=g

on (Dk×Sd−k−1)∪(Dk×Sd−k−1) = Sk×Sd−k−1 = (Sk×Dd−k−1)∪(Sk×Dd−k−1).
We can now compute

Sϕ′Sϕ(g◦) ∼ (akϕ)ϕ′ ∗ S(akϕ)◦ϕ′
(
(g◦ + gtor) ∪ (g◦ + gtor)

)

︸ ︷︷ ︸
=(gtor+g◦)∪(g◦+gtor)=gk+1

mtor

∼ (akϕ)ϕ′ ∗ gk+1
mtor

We have to show that (akϕ)ϕ′ ∗ gk+1
mtor ∼ ηk∗g◦ which is equivalent to

η∗
k

(
(akϕ)ϕ′

)∗
gk+1
mtor ∼ g◦

But ηk was chosen such that
(
(akϕ)ϕ′ ◦ ηk

) = ak+1 and therefore

η∗
k (a

k
ϕ)ϕ′ ∗gk+1

mtor = (ak+1)∗gk+1
mtor ∼ g◦.

��
We get the following Corollary which follows immediately from Lemma 2.25 and
Theorem 2.22.

Corollary 2.27 Let d ≥ 7. Then there is a unique functor4

S : Bord−1,2
d −→ hTop

which satisfies:

4 By abuse of notation, we call this functor S again.
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1. S(M) = R+(M)

2. S(M×I ,id, f ) = f∗
3. S(trϕ,id,id)(g) = Sϕ .

Corollary 2.28 Let W = (W , ψ0, ψ1) : M0 � M1 be an admissible cobordism. Then
there is a well defined homotopy class of a map SW : R+(M0) → R+(M1). If
W op := (W op, ψ1, ψ0) is also admissible, i.e. ψ−1

0 : M0 ↪→ W is also 2-connected,
then SW is a homotopy equivalence and a homotopy-inverse is given by SW op .

Remark 2.29 The constructions from the proof of [31, Theorem 3.1] show the fol-
lowing: If W = (W , id, id) : M0 � M1 is an admissible cobordism, g0 ∈ R+(M0)

and g1 ∈ R+(M1) are metrics such that SW ([g0]) ∼ [g1], then there exists a metric
G ∈ R+(W )g0,g1 .

2.7 Surgery invariance ofS

In this section we prove the following Lemma.

Lemma 2.30 Let d ≥ 7 and let M0, M1 be two (d − 1)-manifolds, let W =
[W , id, id] ∈ morBord−1,2

d
(M0, M1) and let � : Sk−1 × Dd−k+1 ↪→ Int W be an

embedding with 3 ≤ k ≤ d − 3. Then SW ∼ SW� .

Proof First we note that for 3 ≤ k ≤ d − 3, W� is again an admissible cobordism:
LetW ◦ :=W\im�. ThenW ◦ ↪→ W is (d − k)-connected andW ◦ ↪→ W� is (k−1)-
connected. We have the following diagram:

W W ◦ W�

M1

2-connected

(d − k)-connected (k − 1)-connected

Since 3 ≤ k ≤ d − 3, the inclusions M1 ↪→ W ◦ and M1 ↪→ W� are 2-connected and
hence W� is admissible.

We first prove Lemma 2.30 in the case that k �= 3. Let c : M1×[1−ε, 1] ↪→ W be a
collar which does not intersect im� and let γ : [0, 1]× Dd−1 ↪→ W be an embedded,
thickened path connecting M1 × {1 − ε} and im�. Let

W1 := imc #∂ im� := imc ∪ imγ ∪ im�

W ′
1 := imc #∂ im�op

W0 :=W\W1.

We choose γ , so that the boundaries of all of these are smooth. ThenW1 � M1∨Sk−1,
W ′

1 � M1 ∨ Sd−k , W0 ∪ W1 = W and W0 ∪ W ′
1 = W�. Since M1 ↪→ W and

M1 ↪→ W� are 2-connected and 4 ≤ k ≤ d − 3, the maps M1 ∨ Sk−1 � W1 ↪→ W
and M1 ∨ Sd−k � W ′ ↪→ W� are 2-connected as well.
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Fig. 3 Surgery on the cobordism W

Fig. 4 Gluing W
op
1 to W ′

1

Note that W1 and W ′
1 have the same boundary M ′

1 given by

∂W1 = M1  (M1 # ∂(im�))
︸ ︷︷ ︸

=M ′
1
∼=M1#(Sk−1×Sd−k )

= M1  (M1 # ∂(im�op)) = ∂W ′
1.

Next, we show that W0, W1, W ′
1 and W op

1 are again admissible. Because of W1 �
M1 ∨ Sk−1 and W ′

1 � M1 ∨ Sd−k we get

– (W1, M1) is (k − 2)-connected.
– (W1, M ′

1) is (d − k)-connected.
– (W ′

1, M1) is (d − k − 1)-connected.

So, for 4 ≤ k ≤ d − 3 all of these are at least 2-connected and hence W1, W ′
1 and

W op
1 are admissible5. For W0 we note that W is homotopy equivalent to W0 with a

5 For k = 3, the cobordism W1 might not be admissible which is why this case is treated separately.
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(d − k + 1)-cell attached along �({1} × Sd−k):

W0 ∪ Dd−k+1 = (
W\(im� ∪ imγ )

) ∪ Dd−k+1

= W\(im�\Dd−k+1
︸ ︷︷ ︸

�Dd

∪ imγ ) � W .

Therefore W0 ↪→ W is (d − k)-connected and we have the following diagram.

M ′
1 W1

W0 W

2-connected

2-connected

(d − k)-connected

and hence M ′
1 ↪→ W0 is 2-connected, too.

So we get a decompositions into admissible cobordismsW = W0 ∪W1 andW� =
W0 ∪ W ′

1 which implies SW = SW1 ◦ SW0 and SW� = SW ′
1
◦ SW0 . In the homotopy

category hTop we have

SW� = SW ′
1
◦ SW1∪W op

1︸ ︷︷ ︸
=id

◦SW0

= SW ′
1
◦ SW op

1
◦ SW1 ◦ SW0 = SW op

1 ∪W ′
1
◦ SW ,

where W op
1 ∪ W ′

1 denotes the manifold obtained by gluing the outgoing boundary of
W op

1 to the incoming boundary of W ′
1 along idM ′

1
. It suffices to show that W op

1 ∪ W ′
1

is diffeomorphic to M1 × I relative to the boundary since SW only depends on the
diffeomorphism type ofW (see Lemma 2.25 and Corollary 2.27). We have (see Fig. 4)

W op
1 ∪ W ′

1 =
(
(M1 × [0, ε]) #∂ Sk−1 × Dd−k+1

)

∪
M ′

1

(
Dk × Sd−k #∂ (M1 × [1 − ε, 1])

)

∼= M1 × [0, 2ε] #
(

(Sk−1 × Dd−k+1) ∪
Sk−1×Sd−k

(Dk × Sd−k)

)

︸ ︷︷ ︸
∼=Sd

∼= M1 × [0, 1].

and these diffeomorphisms are supported on a small neighbourhood of M ′
1 and hence

relative to the boundary. This finishes the proof for the case k �= 3.
For the case k = 3 we need a different argument, becauseW1 might not be admissible
in this case. Consider the map

Emb(S2 × Dd−3, M1) −→ Emb(S2 × Dd−2, M1 × [0, 2])
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Fig. 5 The diffeomorphism α

which is given by ϕ �→ � with �(x, (y, t)) = (ϕ(x, y), t) for x ∈ S2 and (y, t) ∈
Dd−2 ⊂ Dd−3 × [0, 1]. We also have a map Emb(S2 × Dd−2, M1 × [0, 2]) ↪→
Emb(S2×Dd−2,W ) given by shrinking the interval and composing with the inclusion
of the collar. We will use the following Lemma.

Lemma 2.31 In the present situation, the maps Emb(S2×Dd−3, M1) −→ Emb(S2×
Dd−2, M1 × [0, 2]) and Emb(S2 × Dd−2, M1 × [0, 2]) ↪→ Emb(S2 × Dd−2,W ) are
both 0-connected.

By thisLemmawemay isotope the embedding� : S2×Dd−2 ↪→ W so that its image is
contained in the collar of the boundary M1. So we may assume thatW = M1 ×[0, 2].
We abbreviate M := M1. Again by the above lemma, we can isotope � such that
�(S2 × Dd−3 × {0}) ⊂ M × {1}, i.e.� is a thickening of ϕ := �|S2×Dd−3×{0}. Let us
now give the diffeomorphism

(M × [0, 1
2 ] ∪

ϕ
D3 × Dd−3)

︸ ︷︷ ︸
∼=trϕ

∪ (M × [ 12 , 1] ∪
ϕ
D3 × Dd−3)

︸ ︷︷ ︸
∼=(trϕ)op

α−→ (M × I )\im� ∪ D3 × Sd−3
︸ ︷︷ ︸

∼=(M×I )�

.

On (M\imϕ) × I the diffeomorphism α shall be given by the identity. Next we take
diffeomorphisms

α1 : imϕ ×
[

0,
1

2

] ∼=−→
(

imϕ ×
[

0,
1

2

])

\
(

im� ∩
[

0,
1

2

])

α2 : imϕ ×
[
1

2
, 1

] ∼=−→
(

imϕ ×
[
1

2
, 1

])

\
(

im� ∩
[
1

2
, 1

])

.

On the D3 × Dd−3-parts it is given by the inclusion of the lower or upper hemisphere
D3×Sd−3± ⊂ D3×Sd−3. The entire diffeomorphism is visualized in Fig. 5. Therefore
we have S(M×I )� ∼ Strϕop ◦ Strϕ ∼ id ∼ SM×I and the proof is finished modulo
Lemma 2.31. ��
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Proof of Lemma 2.31 We have the following diagram

Emb(S2 × Dd−3, M1) Emb(S2 × Dd−2, M1 × [0, 2])

Imm(S2 × Dd−3, M1)

Mon(T S2 ⊕ R
d−3, T M1)

Map(S2, Fr(T M1)) Map(S2, Fr(T M1 ⊕ R))

Emb(S2 × Dd−2,W )

Imm(S2 × Dd−2,W )

Mon(T S2 ⊕ R
d−2, TW )

Map(S2, Fr(W ))

(4)
(1) (6)

(5)

(3)

� �

∼= ∼=
(2)

where Mon denotes the space of bundle monomorphisms. Note that the bottom-most
vertical maps are homeomorphisms because S2 is stably parallelizable and the middle
ones are homotopy equivalences by the Smale-Hirsch immersion theorem (cf. [2,
Section 3.9]). The map (1) is 0-connected because of theWhitney embedding (cf. [17,
pp. 26]) and the maps (5) and (6) are π0-bijections again by the Whitney-embedding
theorem. It remains to show that (2) and (3) are 0-connected. Then the map (4) is
0-connected, too. For (2) consider the following diagram of fibrations.

Map(S2,Gld−1(R)) Map(S2,Gld(R))

Map(S2,Fr(T M1)) Map(S2,Fr(T M1 ⊕ R))

Map(S2, M) Map(S2, M)

d − 4-conn.

Since d − 4 ≥ 3, the map (2) is 0-connected. The map (3) fits into a similar diagram:

Map(S2,Gld(R)) Map(S2,Gld(R))

Map(S2,Fr(T M1 ⊕ R)) Map(S2,Fr(W ))

Map(S2, M1) Map(S2,W )

Since M1 ↪→ W is 2-connected, the bottom-most map is 0-connected and hence so is
the map (3). ��

3 Tangential structures and proof of main result

3.1 Tangential structures

In order to get rid of the connectivity assumptions of the category Bord−1,2
d , we

need tangential structures. For d ≥ 0 let BO(d + 1) be the classifying space of the
(d+1)-dimensional orthogonal group and letUd+1 be the universal vector bundle over
BO(d + 1). Let θ : B → BO(d + 1) be a fibration. We call θ a tangential structure.
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Definition 3.1 A θ -structure on a real rankd + 1-vector bundle V → X is a bundle
map l̂ : V → θ∗Ud+1. A θ -structure on a manifold Wd+1 is a θ -structure on TW and
a θ -manifold is a pair (W , l̂) consisting of a manifoldW and a θ -structure l̂ onW . For
0 ≤ k ≤ d a stabilized θ -structure on Mk is a θ -structure on T M ⊕ R

d+1−k .

An important source of tangential structures are covers of BO(d + 1). For example we
have BSO(d + 1) → BO(d + 1) or BSpin(d + 1) → BO(d + 1) or more generally
BO(d + 1)〈k〉 → BO(d + 1), where BO(d + 1)〈k〉 denotes the k-connected cover
of BO(d + 1). Other sources of tangential structures are Moore-Postnikov towers:

Definition 3.2 Let Md−1 be a connected manifold, let l : M → BO(d + 1) be the
classifying map of the stabilized tangent bundle and let l̂ : T M ⊕ R

2 → Ud+1 be a
bundle map covering l. The n-th stage of the Moore-Postnikov tower for the map l is
called the stabilized tangential n-type of M .

Example 3.3

(1) The stabilized tangential 2-type of a connected Spin-manifold M of dimension at
least 3 is BSpin(d + 1) × Bπ1(M).

(2) The stabilized tangential 2-type of a simply connected, non-spinnable manifold
M of dimension at least 3 is BSO(d + 1).

Recall the following lemma which is frequently used when working with surgery
results concerning positive scalar curvature.

Lemma 3.4 [[23, Proposition 4], [19, Proposition, Appendix B], [10, LemmaB.4]] Let
θ : B → BO(d + 1) be a tangential structure, with B of type Fn. Let Wm : M0 � M1
be a θ -cobordism and let M1 → B be n-connected. If n ≤ m

2 − 1, there exists
a θ -cobordism W ′ : M0 � M1 such that (W ′, M1) is n-connected. If furthermore
M0 → B is also n-connected, there exists a θ -cobordism W ′ : M0 � M1 such that
(W ′, Mi ) is n-connected for i = 0, 1. Furthermore W ′ is θ -cobordant to W relative
to the boundary.

3.2 Proof of themain result

We will now prove the general version of Theorem G which is the main result of this
article.

Definition 3.5 We define �d,2 to be the category given by the following:
Objects are given by tuples (M, B, θ, l̂) where

– M is a closed (d − 1)-dimensional manifold.
– θ : B → BO(d + 1) is a 2-coconnected tangential structure.
– l̂ is a stabilized θ -structure such that the underlyingmap l : M → B is 2-connected.

Morphisms (M0, B0, θ0, l̂0) to (M1, B1, θ1, l̂1) are given by equivalence classes of
tuples (W , ψ0, ψ1, �̂, h) where

– h : B0 → B1 is a map over BO(d + 1). This gives an induced map

ĥ : θ∗
0Ud+1 → θ∗

1Ud+1.
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Fig. 6 A representative of a
morphism in �d,2

Fig. 7 The relation in the category �d,2

– (W , ψ0, ψ1) is a cobordism from M0 to M1.
– �̂ is a stabilized θ1-structure on W .
– �̂|∂0W = ĥ ◦ l̂0 ◦ dψ0 und �̂|∂1W = −l̂1 ◦ dψ1, where −l̂1 denotes the bundle map
given by

l̂1 ◦
(

id ⊕
(−1

1

))

: T M1 ⊕ R
2 → T M1 ⊕ R

2 → θ∗
1Ud+1

– (W , ψ0, ψ1, �̂, h) ∼ (W ′, ψ ′
0, ψ

′
1, �̂

′, h′) if h = h′ and there exists a (d + 1)-
dimensional θ1-manifold (X , �X ) with corners such that there exists a partition of
∂X = ⋃

i=0,3 ∂i X together with diffeomorphisms

∂0X
∼=−→ M0 × I ∂2X

∼=−→ M1 × I

∂1X
∼=−→ W ∂3X

∼=−→ W ′

such that θ -structures and diffeomorphisms fit together (see Fig. 7).

Composition is given by gluing cobordisms along the common boundary:

(W ′, ψ ′
0, ψ

′
1, �̂

′, h′) ◦ (W , ψ0, ψ1, �̂, h)

= (W ∪(ψ ′
0)

−1◦ψ1
W ′, ψ0, ψ

′
1, �̂ ∪(ψ ′

0)
−1◦ψ1

�̂′, h′ ◦ h).
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Theorem 3.6 Let d ≥ 7. There is a functor

S : �d,2 −→ hTop

with the following properties:

(1) On objects, S is given by S(M, B, θ, l̂) = R+(M).
(2) If α ∈ �d,2

(
(M0, B0, θ0, l̂0), (M1, B1, θ1, l̂1)

)
is represented by a cobordism

whose underlying manifold is given by (M0 × [0, 1], id, f −1) for a diffeomor-
phism f : M1 → M0, then S(α) = f ∗.

(3) If α ∈ �d,2
(
(M0, B0, θ0, l̂0), (M1, B1, θ1, l̂1)

)
is represented by a cobordism

whose underlying manifold is given by the trace (tr (ϕ), id, id) of a surgery datum
ϕ : Sk−1 × Dd−k ↪→ M0 with d − k ≥ 3, then S(α) = Sϕ (cf. Definition 2.23).

Furthermore,S is uniquely determined by these properties, up to natural isomorphism.

Proof Let V := (V , ψ0, ψ1, �V ) : (M0, ĥ ◦ l̂0) � (M1, l̂1) be a θ1-cobordism. By
Lemma 3.4, there exists an admissible θ1-cobordism V ′ : M0 � M1 in the same
cobordism class. We define SV :=SV ′ . By definition of S it is clear that this fulfils
the desired properties and is compatible with composition. It remains to show that this
is well-defined. Let X : V0 � V1 be a θ1-cobordism relative to ∂V0 = ∂V1 and let
Xi : Vi � V ′

i be relative θ1-cobordisms such that (V ′
i , M1) is admissible for i = 0, 1.

We get a relative θ1-cobordism X̃ := Xop
0 ∪ X ∪ X1 : V ′

0 � V0 � V1 � V ′
1. Again, by

Lemma 3.4, we may assume that (X̃ , V ′
i ) is 2-connected. So, V

′
1 is obtained from V ′

0
by a sequence of surgeries of index k ∈ {3, . . . , d −2}. One can order these surgeries,
so that one first performs the 3-surgeries, the 4-surgeries next and so on up to the
d − 3-surgeries. By Lemma 2.30 all of these do not change the homotopy class of S
and wemay assume that V ′

1 is obtained from V ′
0 by a finite sequence of d−2-surgeries.

Reversing these surgeries we deduce that V ′
0 is obtained from V ′

1 by a finite sequence
of 3-surgeries and by Lemma 2.30 the map SV ′

0
is homotopic to SV ′

1
. Hence S is

well-defined. ��
Remark 3.7 Note that if M0 and M1 have the same tangential 2-type, there exists
an admissible cobordism V ′ in the same cobordism class as V such that (V ′)op is
admissible as well. Then S(V ′)op is a homotopy-inverse for SV .

Remark 3.8 As mentioned in Remark 2.29 (see also [31]), Walsh constructed a psc-
metric G on an admissible self-cobordism W : M � M extending a given psc-metric
g0 on the incoming boundary using the same construction used here. He showed
that the homotopy class of G restricted to the outgoing boundary does not depend
on the handle presentation [33, Theorem 1.3]. Therefore he obtained a map fW ∈
Aut(π0(R+(M))) given by [g0] �→ [G|M×{1}]. By separating the cobordism part of
the picture (Section 2.2 to Section 2.5) from the scalar curvature part of the picture
(Section 2.6 and Section 2.7) we upgraded this to give an actual homotopy class of
a map SW ∈ π0(hAut(R+(M))) inducing Walsh’s map on π0(R+(M)). The second
improvement lies in the cobordism-invariance ofS which drastically enlarges its kernel
and enables us to define SW for any θ -cobordism W .
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Before we start deriving the general version of Theorem A, let us list two interesting
facts about the surgery map. The first one is proven by an argument similar to the
reduction step in the proof of Lemma 2.25 and uses the notion of left-/right-stable
metrics (cf. [8]).

Let M0 be a manifold and let M (2)
0 consist of all 0-, 1- and 2-handles of M0. We

write Q0 := M0\M (2)
0 and N := ∂(M0\M (2)

0 ). We get a decomposition of M0 into two

cobordisms ∅ M(2)
0� N

Q0� ∅. A metric g ∈ R+(M (2)
0 )h is called right-stable if for every

cobordism V : N � N ′ the map μ(g, _) : R+(V )h,h′ → R+(M (2)
0 ∪ V )h′ which

glues in g is a weak homotopy equivalence. Analogously a metric g ∈ R+(Q0)h is
called left-stable if for every cobordism V : N ′ � N the map μ(_, g) : R+(V )h′,h →
R+(V ∪ Q0)h′ which glues in g is a weak homotopy equivalence.

Proposition 3.9 Let M0 be such that there exists a metric g = grst ∪ glst ∈ R+(M0)

which is the union of a right-stable metric grst ∈ R+(M (2)
0 )h and a left-stable metric

glst ∈ R+(Q0)h. Let W = (W , id, id),W ′ = (W ′, id, id) : M0 � M1 be admissible
cobordisms with SW (g) ∼ SW ′(g). Then SW is homotopic to SW ′ .

Proof of Proposition 3.9 SinceW andW ′ are admissible, they consist of handles glued
along surgery data with codimension at least 3. By transversality we may assume
that all handles are attached in the interior of Q0. Hence we can decompose M1 into
M (2)

0 ∪ Q1 and W (resp W ′) into M (2)
0 × [0, 1] and a relative cobordism V : Q0 �

Q1 (resp. V ′). Let gVlst and gV
′

lst represent the resulting path components of SV (glst)
and S ′

V (glst). Since glst is left-stable μ(_, glst) is a weak equivalence and SW =
μ(_, glst)−1 ◦μ(_, gVlst) and SW ′ = μ(_, glst)−1 ◦μ(_, gV

′
lst ). By assumption grst ∪ gVlst

is homotopic to grst ∪ gV
′

lst and because grst is right-stable, gVlst is homotopic to gV
′

lst .
Therefore μ(_, gVlst) ∼ μ(_, gV

′
lst ) and hence SW ∼ SW ′ .

Remark 3.10 This theorem applies for example if M0 is the double dM
(2)
0 = M (2)

0 ∪
(M (2)

0 )op of M (2)
0 and the metric g is given by grst ∪ goprst which covers the case M0 =

Sd−1 and g = g◦.

The second fact states that the surgerymap induces a well definedmap on concordance
classes of psc-metrics which will be used in forthcoming work [11]. Let us first recall
the notion of concordance of psc-metrics.

Definition 3.11 Let g0, g1 ∈ R+(M). We say g0 and g1 are concordant if R+(M ×
[0, 1])g0,g1 �= ∅. This defines an equivalence relation and we denote the set of concor-
dance classes of R+(M) by π̃0(R+(M)).

Proposition 3.12 S induces a well defined map on concordance classes.

Proof Let M0, M1 be as in Theorem 3.6, g, g′ ∈ R+(M0) be concordant metrics via
G ∈ R+(M0 × [0, 1])g,g′ and let [W ] ∈ �

θ1
d (M0, M1). Without loss of generality

we may assume that W is admissible. The map SW induces a map on components
and since isotopy of psc-metrics implies concordance of psc-metrics, there are unique
concordance classes [SW [g]] and [SW [g′]] represented by h and h′ respectively. It
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remains to show that h and h′ are concordant. By [31, Theorem 3.1] (cf. Remark 2.29)
there exist metrics H ∈ R+(W )g,h and H ′ ∈ R+(W )g′,h′ . This gives the psc-metric
H ′op ∪G ∪ H ∈ R+(Wop ∪ M0 ×[0, 1] ∪W )h′,h . By Proposition 3.25,W op ∪ M0 ×
[0, 1] ∪ W is θ1-cobordant to M1 × [0, 1] relative to the boundary and by the surgery
theorem there exists a psc-metric H̃ ∈ R+(M1 × [0, 1])h′,h . ��
Remark 3.13 Let W : M0 � M1 be an admissible cobordism. A similar argument
shows that on concordance classes we have

[SW (g)] = [h] ⇐⇒ ∃G ∈ R+(W )g,h

3.3 The StructuredMapping Class Group

In this section we will give the definitions and present two models for the structured
mapping class group of a manifold. For the next two sections let θ : B → BO(d + 1)
be a fixed tangential structure.

Definition 3.14 For a smooth manifold Md−1 we denote by Diff(M) the topological
group of diffeomorphisms of M with the (weak) C∞-topology. If M is oriented we
denote the subgroup of orientation preserving diffeomorphisms of M by Diff+(M).
The (unoriented) mapping class group �(M) is defined to be π0(Diff(M)) and the
oriented mapping class group �+(M) is defined as π0(Diff+(M)).

Definition 3.15 Let Md−1 be a smooth oriented manifold. We define

EDiffθ (M) := EDiff(M) × Bun(T M ⊕ R
2, θ∗Ud+1)

BDiffθ (M) := EDiffθ (M)/Diff(M) = EDiff(M) ×
Diff(M)

Bun(T M ⊕ R
2, θ∗Ud+1),

where we use the model EDiff(M) := { j : M ↪→ R
∞−1} which is the (contractible)

space of embeddings and Bun(_, _) denotes the space of bundle maps. More con-
cretely,

BDiffθ (M) = {(N , l̂) : N ⊂ R
∞−1, N ∼= M and l̂ ∈ Bun(T N ⊕ R

2, θ∗Ud+1)}.

Given an embedding j : M ↪→ R
∞−1 and a (stabilized) θ -structure l̂ on M , we get

a base-point ( j(M), l̂) ∈ BDiffθ (M). We also define the universal M-bundle with
θ -structure UM,θ by

UM,θ := EDiffθ (M) ×
Diff(M)

M −→ BDiffθ (M).

Remark 3.16 For θBSO : BSO(d + 1) → BO(d + 1)we abbreviate BDiffθBSO(M) by
BDiff+(M). Note that with our convention EDiff+(M) is not contractible but homo-
topy equivalent to Bun(T M⊕R

2, θ∗
BSOUd+1)which has two contractible components

provided thatM is connected (cf. [10, p. 6]). However, ifM is connected and admits an
orientation reversing diffeomorphism, BDiff+(M) is still a model for the classifying
space of Diff+(M)-principal bundles.
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Definition 3.17 [Structured Mapping Class Group] Let M be a smooth submanifold
of R

∞−1 and let l̂ be a stabilized θ -structure on M . The θ -structured mapping class
group �θ(M, l̂) is defined by

�θ(M, l̂) := π1(BDiff
θ (M), (M, l̂)).

For γ : S1 → BDiffθ (M) we define the structured mapping torus Mγ := γ ∗UM,θ .

Remark 3.18 The mapping torus Mγ has a θ -structure on the vertical tangent bundle.
Since the tangent bundle of the circle is trivial, this gives a θ -structure on Mγ .

Since the case of B = BSpin(d + 1) is of great interest in the present paper we
will have a closer look at it. Let us recall the more traditional description of Spin-
structures (cf. [6, Chapter 3]): A Spin-structure σ on a manifold M is a pair (P, α)

consisting of a Spin(d + 1)-principal bundle P and an isomorphism α : P ×Spin(d+1)

R
d+1

∼=−→ T M ⊕ R
2. An isomorphism of Spin-structures σ0 = (P0, α0) and σ1 =

(P1, α1) is an isomorphism β : P0
∼=−→ P1 of Spin(d + 1)-principal bundles over

idM such that α1 ◦ (β ×Spin(d+1) idRd+1) = α0. If f : M → M is an orientation
preserving diffeomorphism and σ = (P, α) is a Spin-structure on M , we define
f ∗σ := ( f ∗P, (d f )−1 ◦ f ∗α).

Now, let σ0, σ1 be two Spin-structures of M . A Spin-diffeomorphsim (M, σ0)
∼=−→

(M, σ1) is a pair ( f , f̂ ) consisting of an orientation preserving diffeomorphism

f : M
∼=−→ M and an isomorphism f̂ of Spin-structures σ0 and f ∗σ1 (cf. [6,

Definition 3.3.3]). We denote by DiffSpin((M, σ0), (M, σ1)) the space of Spin-

diffeomorphisms (M, σ0)
∼=−→ (M, σ1). This gives rise to the groupoid DiffSpin(M)

which has Spin-structures on M as objects and morphisms spaces are given by
DiffSpin((M, σ0), (M, σ1)). For a Spin-structure σ on M , we define

DiffSpin(M, σ ) :=DiffSpin((M, σ ), (M, σ )).

Proposition 3.19 Let M be a simply connected Spin-manifold. Then the forgetful
homomorphism DiffSpin(M, σ ) → Diff+(M) is surjective and its kernel has two
elements.

Proof Since M is simply connected, the Spin-structure σ of an oriented manifold
is unique up to isomorphism. So for every orientation preserving diffeomorphism

f : M ∼=−→ M , there is an isomorphism σ
∼=−→ f ∗σ , hence the map is surjective. The

rest follows from [6, Lemma 3.3.6]. ��
If θ is an arbitrary tangential structure we also have a different model for �θ(M, l̂).

Definition 3.20 For a θ -structure l̂ on Md−1 we define

Bθ (M, l̂) :=
{

( f , L) : f : M ∼=−→ M is a diffeomorphism
L is a homotopy of bundle maps l̂ ◦ d f � l̂

}
/

∼
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where the equivalence relation is given by homotopies of f and L .

Proposition 3.21 [10, Proposition1.2.11]There is agroup isomorphism�θ (M, l̂)
∼=−→

Bθ (M, l̂).

Example 3.22 Since we usually will be interested in the case where θ is the (stabilized)
tangential 2-type of a high-dimensional manifold M , let us consider the case B =
BSpin(d + 1)×BG. Themap θ : BSpin(d + 1)×BG → BO(d + 1) factors through
the 3-connected cover θSpin : BSpin(d + 1) → BO(d + 1) and we get

Bun(T M ⊕ R
2, θ∗Ud+1) = Bun(T M ⊕ R

2, θ∗
SpinUd+1) × Map(M, BG).

So, a θ -structure l̂ on M is given by a Spin-structure σ on M and a map M → BG.
Let ψ := [ f , L] ∈ Bθ (M, l̂). Then f is an orientation preserving diffeomorphism of
M and L is the homotopy class of a path connecting the bundle maps l̂Spin, l̂Spin ◦
d f : T M ⊕ R

2 → θ∗
SpinUd+1 together with the homotopy class of a path connecting

the maps α and α ◦ f : M → BG. If G = π1(M, x) for some base-point x ∈ M , this
means that the induced map f∗ : π1(M, x) → π1(M, f (x)) is given by conjugation
by a path γ : [0, 1] → M with γ (0) = x and γ (1) = f (x). We say that f acts on the
fundamental group by an inner automorphism in this case.

3.4 Cobordism sets

Before we can derive the general version of Theorem A we need to take a closer look
at the morphism sets of �d,2. Recall that we fixed a tangential structure θ : B →
BO(d + 1).

Definition 3.23 Let Md−1
0 , Md−1

1 be compact manifolds with (stabilized) θ -structures
l̂0, l̂1. We define the cobordism set of manifolds with θ -structure and fixed boundary
by

�θ
d

(
(M0, l̂0), (M1, l̂1)

) :={
(W , ψ0, ψ1, �̂)

}
/ ∼ .

Here, W is a d-manifold with boundary ∂W = ∂0W
∐

∂1W , ˆ� ∈Bun(TW ⊕
R, θ∗Ud+1) is a bundle map and ψi : ∂iW → Mi , i = 0, 1 are diffeomorphisms
such that (−1)i l̂i ◦ dψi = �̂|∂i W . We call M0 the incoming boundary and M1 the
outgoing boundary (see Fig. 6 in Definition 3.5). The equivalence relation is given by
the cobordism relation:We say that (W , ψ0, ψ1, �) and (W ′, ψ ′

0, ψ
′
1, �

′) are cobordant
if there exists a (d + 1)-dimensional θ -manifold (X , �X ) with corners such that there
exists a partition of ∂X = ⋃

i=0,3 ∂i X together with diffeomorphisms

M0 × I ∼= ∂0X M1 × I ∼= ∂3X

W ∼= ∂2X W ′ ∼= ∂1X

such that θ -structures and identifying diffeomorphisms fit together (see Fig. 7 in Def-
inition 3.5).
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Fig. 8 Introducing corners to obtain the desired cobordism

Remark 3.24 (1) Since θ is a fibrationwe do not need to consider homotopies (−1)i l̂i ◦
df ∼ �̂|∂i W but we can arrange the θ -structures to actually agree.

(2) �θ
d((M, l̂), (M, l̂)) becomes a monoid via concatenation of cobordisms and iden-

tifying them along the boundary diffeomorphisms, i.e.

(W ′, ψ ′
0, ψ

′
1, �

′) · (W , ψ0, ψ1, �) := (W ∪
ψ ′
0◦ψ−1

1
W ′, ψ0, ψ

′
1, � ∪

ψ̂ ′
0◦ψ̂−1

1
�′).

This monoid is actually an abelian group (cf. Corollary 3.28).
(3) Note that one has a map �θ

d((M, l̂), (M, l̂)) → �θ
d(∅,∅) = �θ

d given by identi-
fying the equal boundaries of a cobordismW : M � M . This map turns out to be
an isomorphism of groups (cf. Corollary 3.28 and the remark below it).

Proposition 3.25 Let Wd : M0 � M1 be θ -cobordism. Then there exists a θ -structure
on W op : M1 � M0 such that W ∪ W op ∼ M0 × [0, 1] rel M0 × {0, 1}. In particular,
if W : ∅ � M is a θ -nullbordism, the double dW :=W ∪ W op is nullbordant and
W op  W is cobordant to the cylinder on M.

Proof Consider the manifold with corners W × I . We introduce new corners as in
Fig. 8. Next, we construct the θ -structures6. Let �W : TW ⊕ R → θ∗Ud+1 be the
θ -structure onW . SinceW ↪→ W ×[0, 1] is a homotopy equivalence there is a unique
extension up to homotopy

TW ⊕ R θ∗Ud+1

T (W × [0, 1])

�W

where the vertical map sends v ∈ R>0 to the inwards pointing vector. This gives a
θ -structure on W × I and by restriction a θ -structure on W op. ��
Now we can prove another useful tool.

Proposition 3.26 The action of �θ
d on �θ

d

(
(M0, l̂0), (M1, l̂1)

)
given by disjoint union

is free and transitive.

6 This is adapted from [13, Proof of Proposition 2.16].
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Proof Since disjoint union is associative up to cobordism and disjoint union with
the emptyset is the identity this really defines a group action. In the case that
�θ

d

(
(M0, l0), (M1, l1)

) = ∅ the statement is trivial. So let

(L, ψ L
0 , ψ L

1 , �L) : (M0, l̂0) � (M1, l̂1)

be a cobordism. Let �L : �θ
d −→ �θ

d

(
(M0, l0), (M1, l1)

)
be given by �L(V ) =

V  L . Also let

�̃L : �θ
d

(
(M0, l0), (M1, l1)

)−→ �θ
d

be defined given by gluing in the cobordism (Lop, ψ L
1 , ψ L

0 , �
op
L ) along the boundary

as follows: We concatenate with Lop and then identify the equal boundaries:

�θ
d

(
(M0, l0), (M1, l1)

)∪Lop−→ �θ
d

(
(M0, l0), (M0, l0)

)−→ �θ
d

Wewill prove the Proposition by showing that� and �̃ aremutually inverse bijections.
By Proposition 3.25 we have

�̃(�([V ])) = �̃([V  L]) = [V  (L ∪ Lop)] = [V ].

It remains to show that �̃L(W ) L = (W ∪ Lop) L is cobordant toW . First we note
that (W , ψ0, ψ1) is diffeomorphic to (M0 × I ∪ψ0 W ∪

ψ−1
1

M1 × I , id, id) and so it
suffices to consider the case that all boundary identifications are given by the identity.
We now decompose (W ∪ Lop)  L as follows:

V0 := M0 × [0, ε] ∪ M1 × [1 − ε, 1] V1 := L

V2 := Lop V3 :=W

Note that

∂V0 = (M0 × {0})  (M0 × {ε})  (M1 × {1 − ε})
︸ ︷︷ ︸

=∂+V0

(M1 × {1})

∂V1 = M0  M1 = ∂V2 = ∂V3

By identifying ∂+V0 and ∂V2 with ∂V1 and ∂V3 in different ways we obtain

V0 ∪ V1 = L V2 ∪ V3 = Lop ∪ W

V0 ∪ V3 = W V2 ∪ V3 = Lop ∪ L = dL

Wewill now construct the cobordism X : (V0∪V1)(V2∪V3) � (V0∪V3)(V2∪V1).
We construct this by taking Vi × I for every i = 0, 1, 2, 3, introducing corners at the
boundary (and at ∂+V ) respectively) as shown in Fig. 9.
We then glue together these manifolds as follows: We identify
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Fig. 9 Introducing corners at the
boundary of Vi × [0, 1]

Fig. 10 The cobordism
X : (V0 ∪ V1)  (V2 ∪ V3) �
(V0 ∪ V3)  (V2 ∪ V1)

• ∂V0 × {t} with ∂V1 × {t} and ∂V2 × {t} with ∂V3 × {t} for t ∈ [0, 1
2 ]

• ∂V0 × {t} with ∂V3 × {t} and ∂V1 × {t} with ∂V2 × {t} for t ∈ [ 12 , 1].
This is shown in Fig. 10. The θ -structures are given by �̂Vi ⊕ idR (the arrows in Fig. 10
indicate the incoming and outgoing boundary of X ). ��

Remark 3.27 Proposition 3.26 can also be proven using structured cobordism cate-
gories. The presented proof however is much more direct.

Corollary 3.28 Let (M, l) be a (d − 1)-dimensional θ -manifold. Then the map

� : �θ
d

∼=−→ �θ
d

(
(M, l̂), (M, l̂)

)

given by (V , �̂) �→ (M×[0, 1]V , id, id, (l̂⊕ idR) �̂) is an isomorphism of groups.

In particular, �θ
d

(
(M, l̂), (M, l̂)

)
is an abelian group.

Proof It is a group homomorphism because

�(V  W ) = M × [0, 1]  V  W

= (M × [0, 1]  V ) ∪ (M × [1, 2]  W ) = �(V ) ∪ �(W ).

The rest follows from Proposition 3.26. ��
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Remark 3.29 The inverse is given by mapping (W , ψ0, ψ1) to the manifold obtained
by gluing ∂1W to ∂0W along the diffeomorphism ψ−1

0 ◦ ψ1.

Corollary 3.30 The map �θ(M, l̂) → �θ
d given by [γ ] �→ [Mγ ] is a homomorphism.

Proof Let γ : [0, 1] → BDiffθ (M) be a path from (M, l̂) to itself. We define the
mapping cylinder map by A : �θ(M, l̂) → �θ

d(M, M), γ �→ (γ ∗UM,θ , id, id). Since
the bundle classified by γ0 ∗ γ1 is the same as the union of the bundles classified by
γi , this satisfies

A(γ0 ∗ γ1) = ((γ0 ∗ γ1)
∗UM,θ , id, id)

= (γ ∗
0UM,θ ∪ γ ∗

1UM,θ , id, id)

= (γ ∗
0UM,θ , id, id) ∪ (γ ∗

1UM,θ , id, id) = A(γ0) ∪ A(γ1).

Since the isomorphism �θ
d(M, M) → �θ

d is given by gluing the boundary, we have
Mγ = �̃(γ ∗UM,θ ) and hence

Mγ0∗γ1 = �̃(A(γ0 ∗ γ1)) = �̃(A(γ0) ∪ A(γ1))

3.28= �̃(A(γ0))  �̃(A(γ1)) = Mγ0  Mγ1 .

��
Remark 3.31 Using the model Bθ (M, l̂) for the mapping class group, we see that the
map A : Bθ (M, l̂) → �θ

d(M, M) is given byψ �→ (M×[0, 1], id, ψ−1) for P . Note
that since �θ

d(M, M) is commutative, ψ �→ (M × [0, 1], id, ψ) is a homomorphism
as well.

3.5 The action of themapping class group

We will now give the general statement of Theorem A. For a space X let hAut(X)

denote the group-like7 H -space of weak homotopy equivalences of X .

Corollary 3.32 Let d ≥ 7, let M be a (d − 1)-dimensional manifold and let θ : B →
BO(d + 1) be the stabilized tangential 2-type of M where l̂ : T M ⊕ R

2 → θ∗Ud+1
is a θ -structure. Then there exists a group homomorphism

SE : �θ
d −→ π0(hAut(R+(M))),

such that the following diagram, where F is the forgetful map and T is the mapping
torus map, commutes

�θ(M, l̂)

�(M)

�θ
d

π0(hAut(R+(M))).

F

T

�

SE

7 A space X is called group-like if π0(X) is a group.
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Proof We define SE(W ) :=SM×[0,1]W ,id,id. Then SE is a group homomorphism by
Corollary 3.28 and because S is compatible with composition. By Theorem 3.6 the
above diagram is commutative since [M × I  Tψ, id, id] = [M × I , id, ψ−1] (cf.
Corollary 3.30 and Remark 3.31). ��
Proof of Theorem B Since M is simply connected and stably parallelizable, the tangen-
tial 2-type ofM is given by BSpin(d+1). Let f : M → M be a Spin-diffeomorphism.
By Corollary 3.32 we need to show that the class [T f ] ∈ �

Spin
d vanishes. The ker-

nel of the forgetful homomorphism �
Spin
d → �SO

d is a finite dimensional F2-vector
space and concentrated in degrees congruent ≡ 1, 2(8) (cf. [1]). By [22, Proposition
13] mapping tori of stably parallelizable manifolds are orientedly nullbordant. This
finishes the proof.

There are more examples to which Corollary 3.32 is applicable which can be found
in [10, Section 4.1].

Proof of Proposition D By Proposition 3.19 we may assume that f is a Spin-
diffeomorphism. Let W : Sd−1 → Sd−1 be an admissible cobordism Spin-cobordant
to Sd−1×[0, 1]T f . Then f ∗ ∼ SET f ∼ SW and by Proposition 3.9 andRemark 3.10
this is homotopic to the identity if SW (g◦) is homotopic to g◦.

3.6 The action for simply connected Spin 7-manifolds

We have the following result for 7-manifolds which implies Corollary C.

Corollary 3.33 Let M7 be a simply connected Spin-manifold and let f : M ∼=−→ M be
a Spin-diffeomorphism. Then the following are equivalent:

(1) ˆA (T f ) = 0.
(2) T f is Spin-nullbordant.
(3) f ∗ is homotopic to the identity.
(4) f ∗g ∼ g for every g ∈ R+(M).
(5) There exists a metric g ∈ R+(M) such that f ∗g ∼ g.

Proof The implications 3. ⇒ 4. and 4. ⇒ 5. are obvious and the implication 2. ⇒ 3
follows from Corollary 3.32. For 1. ⇒ 2. we note that

�
Spin
8

∼= Z ⊕ Z ∼= 〈[HP
2], [β]〉,

where β denotes the Bott manifold with ˆA (β) = 1 and sign(β) = 0. Furthermore,
sign(HP

2) �= 0 and ˆA (HP
2) = 0. Since for T f both these invariants vanish, it has

to be Spin-nullbordant. Finally 5. ⇒ 1. is proven as follows: Let gt be an isotopy
between f ∗g and g. Since isotopy of psc-metrics implies concordance of psc-metrics,
there exists a psc-metric G on M × [0, 1] restricting to f ∗g and g. Then G induces a
psc-metric on T f as one can identify the metrics on the boundary along f ∗ and hence

ˆA (T f ) = 0. ��
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1178 G. Frenck

Remark 3.34 Since M is simply connected the forgetful map DiffSpin(M) →
Diff+(M) is surjective. Hence the above Corollary classifies the action of �+(M)

onR+(M) for every simply connected 7-dimensional Spin-manifold.

Note that the implications 2. ⇒ 3. ⇒ 4. ⇒ 5. ⇒ 1. don’t require the restriction to
dimension 7. For simply connected, 7-dimensional Spin-manifolds, we get a further
factorization of the action map:

�Spin(M)

KO−8(pt)

π0(hAut(R+(M)))

ˆA (β)

SEβ

η

Â ◦T

This factorization is sharp in the sense that ker η = ker Â ◦T by Corollary 3.33.

Proposition 3.35 Let M be a (d − 1)-dimensional, simply connected Spin-manifold
and let Wd be a closed Spin-manifold with α(W ) �= 0. Then SEW (g) � g for every
psc-metric g on M.

Proof By Lemma 3.4 we can perform (Spin-)surgery on the interior of M×[0, 1]W
to get an admissible cobordism V : M � M . If there exists a psc-metric g0 ∈ R+(M)

such that SEW (g0) ∼ g0, there exists a psc-metric G on V that restricts to g0 on
both boundaries by Remark 2.29. We obtain a psc-metric on the manifold V ′ given
by gluing the boundaries of V together along the identity. So, α(V ′) = 0 by the
Lichnerowicz-formula and since α is Spin-cobordism invariant we get

0 = α(V ′) = α((M × S1)  W ) = α(W ).

��
This shows that vanishing of the α-invariant ofW is a necessary condition for SE(W )

to be homotopic to the identity. We close with the following question.

Question 3.36 Let M be simply connected and Spin. Is vanishing of the α-invariant
of W a sufficient condition for SE(W ) to be homotopic to the identity on R+(M)?

If the answer to Question 3.36 were yes, we would get the following diagram.

�Spin(M)

�
Spin
d

π0(hAut(R+(M)))

KO−d(pt)

Acknowledgements This paper is a streamlined version of the author’s PhD-thesis [10] at WWUMünster.
It is my great pleasure to thank Johannes Ebert for his guidance, lots of comments and many enlightening
discussions. I also would like to thank Lukas Buggisch, Oliver Sommer and Rudolf Zeidler for many fruitful
discussions.

Funding Open Access funding enabled and organized by Projekt DEAL.

123



The action of the mapping… 1179

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Anderson, D.W., Brown Jr., E.H., Peterson, F.P.: Spin cobordism. Bull. Am. Math. Soc. 72, 256–260
(1966). https://doi.org/10.1090/S0002-9904-1966-11486-6

2. Adachi,M.: Embeddings and Immersions. Translations ofmathematical monographs. AmericanMath-
ematical Society, Providence (1993)

3. Botvinnik, B., Ebert, J., Randal-Williams, O.: Infinite loop spaces and positive scalar curvature. Invent.
Math. 209(3), 749–835 (2017). https://doi.org/10.1007/s00222-017-0719-3

4. Chernysh, V.: On the homotopy type of the space R+(m), 2004, arXiv:math/0405235
5. Dieck,T.:AlgebraicTopology.EMS textbooks inmathematics, EuropeanMathematical Society,Zurich

(2008)
6. J. Ebert. Characteristic classes of spin surface bundles: applications of the Madsen-Weiss theory, vol-

ume 381 of Bonner Mathematische Schriften [Bonn Mathematical Publications]. Universität Bonn,
Mathematisches Institut, Bonn: Dissertation, p. 2006. Rheinische Friedrich-Wilhelms-Universität
Bonn, Bonn (2006)

7. Ebert, J., Frenck,G.: TheGromov–Lawson–Chernysh surgery theorem.Bol. Soc.Mat.Mex. (3) (2020).
https://doi.org/10.1007/s40590-021-00310-w

8. Ebert, J., Randal-Williams, O.: Infinite loop spaces and positive scalar curvature in the presence of a
fundamental group. Geom. Topol. 23(3), 1549–1610 (2019). https://doi.org/10.2140/gt.2019.23.1549

9. Ebert, J., Randal-Williams, O.: The positive scalar curvature cobordism category. ArXiv e-prints, 2019,
arxiv:1904.12951

10. Frenck, G.: The Action of the mapping class group on spaces of metrics of positive scalar curvature.
PhD thesis, WWU Münster, Available through the author’s website, 2019

11. Frenck, G.: H-space structures on spaces of metrics of positive scalar curvature, 2020,
arXiv:2004.01033

12. Gromov, M., Lawson Jr., H.B.: The classification of simply connected manifolds of positive scalar
curvature. Ann. Math. (2) 111(3), 423–434 (1980). https://doi.org/10.2307/1971103

13. Galatius, S., Randal-Williams, O.: Stable moduli spaces of high-dimensional manifolds. Acta Math.
212(2), 257–377 (2014). https://doi.org/10.1007/s11511-014-0112-7

14. Galatius, S., Randal-Williams, O.: Abelian quotients of mapping class groups of highly connected
manifolds. Math. Ann. 365(1–2), 857–879 (2016). https://doi.org/10.1007/s00208-015-1300-2

15. Gay, D., Wehrheim, K., Woodward, C.: Connected cerf theory. in preparation, 2012. https://math.
berkeley.edu/katrin/papers/cerf.pdf

16. Hatcher, A.E.: Higher simple homotopy theory. Ann. Math. (2) 102(1), 101–137 (1975). https://doi.
org/10.2307/1970977

17. Hirsch, M.: Differential Topology. Graduate Texts in Mathematics. Springer, New York (1976)
18. Hitchin, N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974). https://doi.org/10.1016/0001-

8708(74)90021-8
19. Hebestreit, F., Joachim, M.: Twisted spin cobordism and positive scalar curvature. J. Topol. 13(1),

1–58 (2020). https://doi.org/10.1112/topo.12122
20. Igusa, K.: The stability theorem for smooth pseudoisotopies. K-Theory 2(1–2), vi+355 (1988). https://

doi.org/10.1007/BF00533643
21. Kervaire, M.A.: Le théorème de Barden-Mazur-Stallings. Comment. Math. Helv. 40, 31–42 (1965).

https://doi.org/10.1007/BF02564363
22. Kreck,M.: Cobordism of odd-dimensional diffeomorphisms. Topology 15(4), 353–361 (1976). https://

doi.org/10.1016/0040-9383(76)90029-X

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1090/S0002-9904-1966-11486-6
https://doi.org/10.1007/s00222-017-0719-3
http://arxiv.org/abs/math/0405235
https://doi.org/10.1007/s40590-021-00310-w
https://doi.org/10.2140/gt.2019.23.1549
http://arxiv.org/abs/1904.12951
http://arxiv.org/abs/2004.01033
https://doi.org/10.2307/1971103
https://doi.org/10.1007/s11511-014-0112-7
https://doi.org/10.1007/s00208-015-1300-2
https://math.berkeley.edu/ katrin/papers/cerf.pdf
https://math.berkeley.edu/ katrin/papers/cerf.pdf
https://doi.org/10.2307/1970977
https://doi.org/10.2307/1970977
https://doi.org/10.1016/0001-8708(74)90021-8
https://doi.org/10.1016/0001-8708(74)90021-8
https://doi.org/10.1112/topo.12122
https://doi.org/10.1007/BF00533643
https://doi.org/10.1007/BF00533643
https://doi.org/10.1007/BF02564363
https://doi.org/10.1016/0040-9383(76)90029-X
https://doi.org/10.1016/0040-9383(76)90029-X


1180 G. Frenck

23. Kreck, M.: Surgery and duality. Ann. Math. (2) 149(3), 707–754 (1999). https://doi.org/10.2307/
121071

24. MacLane, S.: Categories for the working mathematician, vol. 5. Springer, New York-Berlin (1971).
Graduate Texts in Mathematics

25. Palais, R.S.: Homotopy theory of infinite dimensional manifolds. Topology 5, 1–16 (1966). https://
doi.org/10.1016/0040-9383(66)90002-4

26. Perlmutter, N.: Cobordism categories and parametrized morse theory, 2017, arXiv:1703.01047
27. Smale, S.: On the structure of manifolds. Am. J. Math. 84, 387–399 (1962). https://doi.org/10.2307/

2372978
28. Schoen, R., Yau, S.T.: On the structure of manifolds with positive scalar curvature. Manuscripta Math.

28(1–3), 159–183 (1979). https://doi.org/10.1007/BF01647970
29. Thom, R.: Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28, 17–86

(1954). https://doi.org/10.1007/BF02566923
30. Wall, C.T.C.: Geometrical connectivity. I. J. Lond. Math. Soc. 2(3), 597–604 (1971). https://doi.org/

10.1112/jlms/s2-3.4.597
31. Walsh, M.: Metrics of positive scalar curvature and generalised Morse functions, Part I. Mem. Am.

Math. Soc. 209(983), xviii+80 (2011). https://doi.org/10.1090/S0065-9266-10-00622-8
32. Walsh,M.: Cobordism invariance of the homotopy type of the space of positive scalar curvaturemetrics.

Proc. Am. Math. Soc. 141(7), 2475–2484 (2013). https://doi.org/10.1090/S0002-9939-2013-11647-
3

33. Walsh, M.: Metrics of positive scalar curvature and generalised Morse functions. Part II. Trans. Am.
Math. Soc. 366(1), 1–50 (2014). https://doi.org/10.1090/S0002-9947-2013-05715-7

34. Wall, C.T.C.: Differential Topology. Cambridge University Press, Cambridge (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.2307/121071
https://doi.org/10.2307/121071
https://doi.org/10.1016/0040-9383(66)90002-4
https://doi.org/10.1016/0040-9383(66)90002-4
http://arxiv.org/abs/1703.01047
https://doi.org/10.2307/2372978
https://doi.org/10.2307/2372978
https://doi.org/10.1007/BF01647970
https://doi.org/10.1007/BF02566923
https://doi.org/10.1112/jlms/s2-3.4.597
https://doi.org/10.1112/jlms/s2-3.4.597
https://doi.org/10.1090/S0065-9266-10-00622-8
https://doi.org/10.1090/S0002-9939-2013-11647-3
https://doi.org/10.1090/S0002-9939-2013-11647-3
https://doi.org/10.1090/S0002-9947-2013-05715-7

	The action of the mapping class group on metrics of positive scalar curvature
	Abstract
	1 Introduction
	1.1 Statement of the results
	1.2 Outline of the proof

	2 Handle decompositions and the surgery map
	2.1 Spaces of Riemannian metrics
	2.2 Handle decompositions of cobordisms
	2.3 Hatcher–Igusa's 2-index theorem
	2.4 The surgery datum category
	2.5 A presentation of the cobordism category
	2.6 Definition of the surgery map
	2.7 Surgery invariance of the surgery map

	3 Tangential structures and proof of main result
	3.1 Tangential structures
	3.2 Proof of the main result
	3.3 The Structured Mapping Class Group
	3.4 Cobordism sets
	3.5 The action of the mapping class group
	3.6 The action for simply connected Spin 7-manifolds

	Acknowledgements
	References




