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Abstract
This is an expository article without any claim of originality. We give a complete

and self-contained account of the Gromov–Lawson–Chernysh surgery theorem for

positive scalar curvature metrics.
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1 Introduction

A famous result by Gromov–Lawson [8] and Schoen–Yau [22] states that if Md is a

closed manifold with a metric of positive scalar curvature and u : Sd�k � Rk ! M a

surgery datum of codimension k� 3, then the manifold Mu :¼ MnðSd�k �
DkÞ [Sd�k�Sk�1 Dd�kþ1 � Sk�1 does have a metric of positive scalar curvature as

well. This has been the basis for virtually all existence results for psc metrics on

high-dimensional manifolds, the most prominent of which is [23].

A strengthening of the surgery theorem has been proven by Chernysh [3], based

on Gromov–Lawson’s proof. His result implies that the two spaces RþðMÞ and

RþðMuÞ of psc metrics have the same homotopy type if in addition to k� 3 the

condition d � k þ 1� 3 is also satisfied.

To state Chernysh’s theorems in full generality, some preliminaries are needed. To

keep the length of this introduction at bay, we state the results somewhat informally

and refer to the main body of the paper for precise definitions. We consider
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Riemannian metrics on compact manifolds with boundary (it is always assumed that

the boundaries are equipped with collars). Let RðMÞ be the space of all Riemannian

metrics h on M such that h ¼ gþ dt2 near oM, for some metric g on oM, and with

respect to the given collar. LetRþðMÞ � RðMÞ be the subspace of metrics of positive

scalar curvature. If h 2 RþðMÞ is of the form gþ dt2 near oM, then g has positive

scalar curvature as well, and hence mapping h to g defines a continuous restriction map

res : RþðMÞ ! RþðoMÞ:

We define

RþðMÞg :¼ res�1ðgÞ;

the space of all Riemannian metrics of positive scalar curvature on M which near

oM are equal to gþ dt2.

Theorem 1.1 (Chernysh [4]) The restriction map res : RþðMÞ ! RþðoMÞ is a
Serre fibration.

In fact, this is a slight improvement of the main result of [4], where it is only

shown that res is a quasifibration. The proof of Theorem 1.1 is given in Sect. 5.1 and

follows largely the idea of [4].

Now let N be a compact manifold with collared boundary and let u : N � Rk !
M be an open embedding such that u�1ðoMÞ ¼ oN � Rk and such that u is

compatible with the chosen collars of M and N. Let gN 2 RðNÞ be a Riemannian

metric on N, not necessarily of positive scalar curvature.

Let gktor be a torpedo metric on Rk such that

scalðgktorÞ þ scalðgNÞ ¼ scalðgN þ gktorÞ[ 0. The precise definition of a torpedo

metric will be given in (2.9) below, and for the time being, let us only list the most

important features. First, gktor is an O(k)-invariant metric on Rk. Second, let w :

ð0;1Þ � Sk�1 ! Rk be the polar coordinate map and dn2 be the round metric on

Sk�1. We require that w�gktor ¼ dt2 þ ddn2 on ½R;1Þ � Sk�1 for some R[ 0 and

d[ 0. Third, scalðgktorÞ� 1
d2 ðk � 1Þðk � 2Þ. We define the subspace

RþðM;uÞ:¼ h 2 RþðMÞju�hjN�Bk
R
¼ ðgN þ gktorÞjN�Bk

R
g � RþðMÞ:

n

Theorem 1.2 (Chernysh [3], see also Walsh [29]) Let u : N � Rk ! M be an open
embedding as before with k� 3. Let gN 2 RðMÞ be a Riemannian metric on N, not

necessarily of positive scalar curvature. Let gktor be a torpedo metric on Rk so that the

productmetric gN þ gktor onN � Rk has positive scalar curvature. Then the inclusionmap

RþðM;uÞ ! RþðMÞ

is a weak homotopy equivalence.

The main bulk of this paper is devoted to a detailed discussion of the proof of

Theorem 1.2.
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Remark 1.3 What Gromov and Lawson proved is that under the hypotheses of

Theorem 1.2 and for closed N, RþðM;uÞ 6¼ ;, provided that RþðMÞ 6¼ ;. Later,

Gajer [6] improved their result and proved that the inclusion map

RþðM;uÞ ! RþðMÞ is 0-connected.

Remark 1.4 If N ¼ Sd�k and gN is the round metric, one obtains a zig-zag

RþðMÞ ’ RþðM;uÞ ffi RþðMu;u
0Þ ! RþðMuÞ;

where u0 : Sk�1 � Rd�kþ1 ! Mu is the opposite surgery datum. It follows that

RþðMuÞ 6¼ ; and RþðMÞ ’ RþðMuÞ if 3	 k	 n� 2.

More generally, Theorem 1.2 implies the following cobordism invariance result.

Theorem 1.5 Let h : B! BOðdÞ be a fibration, d� 6. Assume that Mi, i ¼ 0; 1, are
two closed ðd � 1Þ-dimensional h-manifolds which are h-cobordant. Then

1. if the structure map M1 ! B is 2-connected, then there is a map

RþðM0Þ ! RþðM1Þ (in particular, if RþðM0Þ 6¼ ;, then RþðM1Þ 6¼ ;).
2. If in addition the structure map M0 ! B is 2-connected as well, then

RþðM0Þ ’ RþðM1Þ.

The best-known special case is B ¼ BSpinðdÞ. In that case, the hypothesis that

Mi ! BSpinðdÞ is 2-connected just means that Mi is simply connected. For such

manifolds, Theorem 1.5 follows in a straightforward manner from Theorem 1.2 and

the proof of the h-cobordism theorem (see, e.g. [15, Theorem VIII.4.1]), as explained

in [29, §4]. The general case requires techniques from surgery and handlebody theory

which are not so well known, which is why we include the proof in Sect. 6. Chernysh

also proved a version of Theorem 1.2 for a fixed boundary condition, which is used in

an essential way in [5]. To state it, let ou : oN � Rk ! oM be the induced embedding

and let g 2 RþðoM; ouÞ be a fixed boundary condition. We let

RþðM;uÞg :¼ RþðM;uÞ \ RþðMÞg:

Theorem 1.6 (Chernysh [4]) Under the hypotheses of Theorem 1.2, the inclusion
map

RþðM;uÞg ! RþðMÞg
is a weak homotopy equivalence.

The proof of Theorem 1.6 is only sketched in [4]. We give a proof, somewhat

different from the proof envisioned in [4], in Sect. 5.2. Besides Theorems 1.2 and

1.1, the proof uses the (elementary) corner smoothing technique which was

developed in [5, §2].

When [3] appeared, the result was apparently perceived as a curiosity and drew

little attention. This has changed in recent years: Theorem 1.2 is an irreplaceable

ingredient in the papers [2, 5]. Important parts of [3] are written in a fairly obscure
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way, and the paper has never been published. Later Walsh published a paper [29]

containing a proof of Theorem 1.2, but many relevant details are not addressed in

[29]. Because of the importance of the result for [2] and [5], the first named author

wanted to make sure that the result is correct and that he understands the proof

properly. He suggested checking [3] and [29] as a project for the second author’s

Master’s thesis. The present paper is the result of this checking process. Let us

summarize our findings.

1. One half of the proof of Theorem 1.2 is virtually identical to the proof of the

original Gromov–Lawson result. We found one small computational error,

which is reproduced in various expositions of the result ([21, 28]). This error

looks harmless at first sight, but enforces an alternative argument at one key

juncture of the proof. Therefore, we decided to give a self-contained treatment

of the whole proof.

2. All other arguments in Chernysh’s paper are essentially correct and complete,

albeit some parts of his paper are very intransparent and hard to decipher.

3. [29] leaves many questions open. In particular, it remains unclear to us how to

fill in the details of the proof of Lemma 3.3 loc.cit., without using the quite

technical computations of [3, §3] or computations of a similar delicacy.

2 Preliminary material

2.1 Spaces of psc metrics on manifolds with boundary

Let M be a compact manifold with boundary oM. We assume that the boundary of

M comes equipped with a collar oM � ½0; 1Þ ! M. The collar identifies oM � ½0; 1Þ
with an open subset of M and we usually use this identification without further

mentioning.

We only consider Riemannian metrics on M which have a simple structure near

oM. More precisely, for c 2 ð0; 1Þ, we denote by RðMÞc the space of all

Riemannian metrics h on M such that h ¼ gþ dt2 on oM � ½0; c
 for some metric g
on oM.

We topologize RðMÞc as a subspace of the Fréchet space of smooth symmetric

(2, 0)-tensor fields on M, with the usual C1-topology.

Now let RþðMÞc � RðMÞc be the subspace of all Riemannian metrics with

positive scalar curvature (this is an open subspace). It follows from [18, Theorem 13]

and [9, Proposition A.11] that RþðMÞc has the homotopy type of a CW complex.

If h 2 RþðMÞc and h ¼ gþ dt2 on oM � ½0; c
, then scalðgþ dt2Þ ¼ scalðgÞ and

so the metric g on oM necessarily has positive scalar curvature. This defines a

restriction map

resc : RþðMÞc ! RþðoMÞ;

which is continuous. We define
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RþðMÞcg:¼ðrescÞ�1ðgÞ;

the space of all psc metrics on M which on oM � ½0; c
 are equal to gþ dt2.

Moreover, we define

RþðMÞ :¼ colimc!0RþðMÞc

and

RþðMÞg :¼ colimc!0RþðMÞcg:

If b[ c, then RþðMÞb � RþðMÞc and RþðMÞbg � RþðMÞ
c
g, and it is elementary to

see that the inclusion maps are homotopy equivalences [2, Lemma 2.1].

The restriction maps induce a restriction map

res : RþðMÞ ! RþðoMÞ

on the colimit, and there is a continuous bijection

RþðMÞg ! res�1ðgÞ: ð2:1Þ

There is no a priori reason why (2.1) should be a homeomorphism. However,

Lemma 2.2 The map (2.1) is a weak homotopy equivalence.

Proof The inclusion maps RþðMÞb ! RþðMÞc and RþðMÞbg ! RþðMÞ
c
g are

closed embeddings. Hence the Lemma then follows from the next one, which is a

general fact. h

Lemma 2.3 Let X0 ! X1 ! X2 ! X3 ! . . . be a sequence of closed embeddings
of Hausdorff spaces and let fn : Xn ! Y be a compatible sequence of maps. Then the

continuous bijection w : colimnðf�1
n ðyÞÞ ! ðcolimnfnÞ�1ðyÞ is a weak homotopy

equivalence.

Proof It is enough to prove that if K is compact Hausdorff and h : K !
colimnðf�1

n ðyÞÞ is a map (of sets), then h is continuous if and only if w � h is

continuous. If g :¼ w � h is continuous, then we can consider g as a map to

colimnXn. By [24, Lemma 3.6], there is n and k : K ! Xn (continuous), so that

g :¼ in � k (in : Xn ! colimnXn is the natural map). Now k maps into f�1
n ðyÞ, and so

h can be written as the composition K!k f�1
n ðyÞ ! colimnðf�1

n ðyÞÞ of continuous

maps. h

2.2 The trace construction

For the proof of both, Theorems 1.2 and 1.1, the following tedious but

straightforward calculation using the standard formulas of Riemannian geometry

is needed. We include the proof in Appendix A because we do not know an explicit

reference.
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Lemma 2.4 Let g : R! RðMÞ be a smooth path. Let h :¼ dt2 þ gðtÞ be the
induced metric on R�M. Then the scalar curvature of h is given by the formula

scalðhÞ ¼ scalðgðtÞÞ þ 3

4
gikgjlgij;0gkl;0 � gklgkl;00 �

1

4
gikgjlgik;0gjl;0:

Here we use a local coordinate system in M and the Einstein summation convention.

Moreover, gij are the components of the metric tensor of g, gij the components of its
inverse. A symbol as gij;k denotes the derivative of gij with respect to the kth

coordinate and similarly for higher derivatives. The 0th direction is the R-direction.

We will use the following consequence of Lemma 2.4 in later sections.

Lemma 2.5 [6] Let M be a compact manifold, P a compact space and let G :

P� ½0; 1
 ! RþðMÞ be continuous and assume that Gðp; Þ is smooth for all p, and
that all derivatives of G in the [0, 1]-direction depend continuously on (p, t).
Assume that for each p 2 P, there is Bp 2 R such that scalðGðp; tÞÞ�Bp for all

t 2 ½0; 1
. Then for each g[ 0, there is K[ 0, such that if f : R! ½0; 1
 is a smooth
function with kf 0kC0 ; kf 00kC0 	K, then the metric Gðp; f ðtÞÞ þ dt2 on M � R satisfies

scalðGðp; f ðtÞÞ þ dt2Þ�Bp � g.

Proof Lemma 2.4 shows that there is C[ 0 so that

scal Gðp; f ðtÞ þ dt2
� �

�Bg � C kf 0kC0 þ kf 00kC0

� �
;

which immediately implies the claim. h

2.3 Rotationally symmetric metrics

Let w : ð0;1Þ � Sk�1 ! Rknf0g; ðt; vÞ7!tv be the polar coordinate map. We denote

by dn2 the round metric on Sk�1. Furthermore, Sk�1
r � Rk denotes the sphere of

radius r.

Lemma 2.6 Let g be an O(k)-invariant Riemannian metric on Bk
R, i.e. for all

A 2 OðkÞ, we have A�g ¼ g.

(1) There exist smooth functions a; f : ð0;RÞ ! ð0;1Þ, such that

w�g ¼ aðtÞ2dt2 þ f ðtÞ2dn2.

(2) aðtÞ � 1 holds if and only if the rays t 7!tv are unit speed geodesics for all

v 2 Sk�1. In this case we call g a normalized rotationally symmetric metric.

(3) Under the hypothesis of (2), f is the restriction of an odd smooth function
f : R! R with f 0ð0Þ ¼ 1. We call f the warping function of g.

(4) In that situation, the scalar curvature of g is given by

scalðgÞ ¼ ðk � 1Þ ðk � 2Þ 1� f 02

f 2
� 2

f 00

f

� �
: ð2:7Þ
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Proof For part (1), one uses that for each v 2 Sk�1, there is an A 2 OðkÞ such that

Av ¼ v and Ajv? ¼ �id. It follows that at each point 0 6¼ x 2 Bk
R, the spaces spanfxg

and TxðSk�1
kxk Þ are orthogonal with respect to g. Since dn2 is, up to a constant

multiple, the only O(k)-invariant metric on Sk�1, the claim follows. Part (2) is clear.

Part (3) can be found in [19, §3.4], and the computation for part (4) in [19, p. 69]. h

We denote the scalar curvature of the metric dt2 þ f ðtÞ2dn2 by

rðf Þ:¼scalðdt2 þ f ðtÞ2dn2Þ ¼ ðk � 1Þ ðk � 2Þ 1� f 02

f 2
� 2

f 00

f

� �
: ð2:8Þ

The function f ðtÞ ¼ sinðtÞ on ½0; pÞ gives a metric which is isometric to the usual

round metric on Sk. It has rðf Þ ¼ kðk � 1Þ. Let us now give the precise definition of

the torpedo metrics.

Definition 2.9 A torpedo function of radius d[ 0 is a function f : ½0;1Þ ! R

which is the restriction of a smooth odd function with f 0ð0Þ ¼ 1, such that

(1) 0	 f 0 	 1,

(2) f 00 	 0,

(3) there is R[ 0 so that f � d near ½R;1Þ,
(4) rðf Þ� 1

d2 ðk � 1Þðk � 2Þ.

The metric dt2 þ f ðtÞ2dn2 on Rk is called a torpedo metric of radius d.

Let us give a concrete construction of a torpedo function. Let �[ 0 be small and

let u : ½0;1Þ ! R be a function satisfying

• u � id on ½0; p
2
� �
,

• u � p
2

on ½p
2
þ �;1Þ,

• u00 	 0 (together with the previous conditions, this implies 0	 u0 	 1).

We define h1ðtÞ :¼ sinðuðtÞÞ. By (2.7) we have

rðh1Þ ¼ u0ðtÞ2kðk � 1Þ þ ð1� u0ðtÞ2Þ ðk � 1Þðk � 2Þ
sinðuðtÞÞ2

� 2ðk � 1Þ cosðuðtÞÞ
sinðuðtÞÞ u

00 �

u0ðtÞ2kðk � 1Þ þ ð1� u0ðtÞ2Þðk � 1Þðk � 2Þ� ðk � 1Þðk � 2Þ;

so that h1 is indeed a torpedo function of radius 1 (with R� p
2
þ �). For d[ 0, the

function

hdðtÞ :¼ dh1ð
t

d
Þ ð2:10Þ

is a torpedo function of radius d. For the rest of this paper, we fix a torpedo function
h1 of radius 1, and define hdðtÞ :¼ dh1ð tdÞ.
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3 The parametrized Gromov–Lawson construction

In this and the following section, we prove Theorem 1.2, and we begin with the

precise statement. Let N and M be compact manifolds with collared boundary and

let u : N � Rk ! M be an open embedding with k� 3. We assume that u�1ðoMÞ ¼
ðoNÞ � Rk and let ou : oN � Rk ! oM be the induced embedding. Furthermore,

we assume that u is compatible with the chosen collars, that is, if

ðx; t; vÞ 2 ðoNÞ � ½0; 1Þ � Rk � N � Rk, then

uðx; t; vÞ ¼ ðouðx; vÞ; tÞ 2 oM � ½0; 1Þ � M:

From now on, we usually identify N � Rk with an open subset of M via u.

Let gN be a Riemannian metric on N which is of the form goN þ dt2 on

oN � ½0; 1Þ. It is not required that scalðgNÞ[ 0. Let

A:¼ infðscalðgNÞÞ 2 R

and pick d[ 0 so that

1

d2
ðk � 1Þðk � 2Þ þ A[ 0:

Let gktor be a torpedo metric on Rk of radius d, and let R[ 0 be as in Definition 2.9.

For c[ 0, define

RþðM;uÞc :¼ fg 2 RþðMÞcjgjN�Bk
R
¼ ðgN þ gktorÞjN�Bk

R
g

and RþðM;uÞ :¼ colimc!0RþðM;uÞc.

Theorem 3.1 The inclusion maps

RþðM;uÞc ! RþðMÞc and RþðM;uÞ ! RþðMÞ

are weak homotopy equivalences.

The proof that we give will apply simultaneously to both cases, and for notational

simplicity, we deal only with RþðM;uÞ ! RþðMÞ. The proof is in two steps. We

first introduce an intermediate space RþðM;uÞ � RþrotðMÞ � RþðMÞ.

Definition 3.2 If M, N and gN is as above, we define RþrotðMÞ � RþðMÞ as the

subspace of those g, such that there exists a rotationally symmetric normalized psc

metric gBk
R

such that

gjN�Bk
R
¼ gN þ gBk

R
:

In this section, we show

Proposition 3.3 The inclusion map
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RþrotðMÞ ! RþðMÞ

is a weak homotopy equivalence.

The proof of Proposition 3.3 is essentially the same as the original argument by

Gromov and Lawson [8] (but note that Rosenberg–Stolz [21] corrected mistakes in

[8]).

3.1 Adapting tubular neighborhoods

In the proof of Theorem 1.2, we shall use several devices to change a Riemannian

metric. One such device (which plays a minor, more technical role) is by

suitable isotopies.

Definition 3.4 A Riemannian metric g on M is normalized on the r0-tube around N

if for each p 2 N and v 2 Sk�1, the curve ½0; r0
 ! N � Rk � M, t 7!ðp; tvÞ, is a unit

speed geodesic.

For example, each g 2 RþrotðMÞ is, by definition, normalized on the R-tube

around N.

Note that the condition defined above relates the metric g to the embedding u,

and therefore it would be more appropriate to call it normalized on the r0-tube
around N with respect to u. Since the embedding u will be fixed all the time and

since we exclusively consider the normalization condition with respect to u, we

decided to use the less precise wording.

Proposition 3.5 (Adapting tubular neighborhoods) Let (K, L) be a finite CW-pair
and let G : K ! RðMÞ be continuous, so that G(x) is normalized on the r-tube
around N when x 2 L. Then there exists r0 2 ð0; r
 and a continuous map F :
½0; 1
 � K ! DiffðMÞ such that Fðt; xÞ ¼ id if ðt; xÞ 2 ðf0g � KÞ [ ð½0; 1
 � LÞ,
Fðt; xÞjN ¼ id and such that Fð1; xÞ�GðxÞ is normalized on the r0-tube around N, for
all x 2 K.

Proof The embedding u : N � Rk ! M identifies the normal bundle mMN with the

trivial vector bundle N � Rk. For each Riemannian metric g on M, there are maps

The first is the fixed isomorphism, the second is induced by the bundle metric g and

the third is the Riemannian exponential map of g (and is only partially defined). The

metric g is normalized on the r0-tube around N if and only if ug is defined on

N � Bk
r0

and agrees with u there. Since N and K are compact, there is r0 [ 0 so that

uGðxÞ is defined on N � Bk
r0

, injective and has image in N � Rk � M. There is an

isotopy

H : ½0; 1
 � K � ðN � Bk
r0
Þ ! M

of embeddings such that Hðt; x; Þ ¼ uGðxÞ for all ðt; xÞ 2 ðf0g � KÞ [ ð½0; 1
 � LÞ
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and such that Hð1; x; Þ ¼ u for all x 2 K. In the case K ¼ �, this follows from the

well-known result that tubular neighborhoods are unique up to isotopy [11, Theo-

rem 4.5.3, 4.6.5]. The proof given in loc.cit. carries over to the parametrized and

relative case without change.

An instance of the parametrized isotopy extension theorem [27, Theorem 6.1.1]

shows that there exists F : ½0; 1
 � K ! DiffðMÞ with Fðt; xÞ ¼ id when ðt; xÞ 2
ðf0g � KÞ [ ð½0; 1
 � LÞ and Fðt; xÞjN�Bk

r0

¼ Hðt; x; Þ. The Riemannian metric

Fð1; tÞ�GðxÞ is normalized on the r0-tube around N. h

3.2 Gromov–Lawson curves

One important step in the proof of Theorem 1.2 (well explained in, e.g. [21, 28]) is

to obtain a deformation of a psc metric g on M by a deformation of M inside M � R

and to take the metric induced by gþ dt2.

Definition 3.6 A Gromov–Lawson curve C is a smooth map C : ½0; 1
 � ½0;1Þ !
R2 such that

(1) Cð0; sÞ ¼ ð0; sÞ for all s,
(2) each curve Ck :¼ Cðk; Þ is an embedding,

(3) there exists q[ r0 [ 0 such that for all k 2 ½0; 1
, CkðsÞ lies on the positive r-
axis for all s� r0 and CkðsÞ ¼ ð0; sÞ for all s� q. We call r0 the outer width of
C.

(4) C1 has a horizontal line segment of height r1, i.e. there exists 0\y4\y5 2 R

such that the line segment between the points ðy4; r1Þ and ðy5; r1Þ lies in the

image of C1. We call r1 the inner width of C, and ‘ :¼ jy4 � y5j is the length
of C.

(5) Ckð0Þ lies on the y-axis, and this is the only point where Ck meets the y-axis.

Moreover, it does so at a right angle and follows the arc of a circle (of

possibly infinite radius) in the region where r	 1
2
r1.

A typical Gromov-Lawson curve is shown in Fig. 1. The indicated points ðyi; riÞ
are important for the construction of these curves.

A Gromov–Lawson curve determines an isotopy of embeddings

EC : ½0; 1
 �M ! M � R. Write Ci
k, i ¼ 1; 2, for the components of Ck. First, we

define EC : ½0; 1
 � N � Rk ! N � Rk � R by

ECðk; p; vÞ:¼ðp;C2
kðkvkÞ

v

kvk ;C
1
kðkvkÞÞ ð3:7Þ

(which is smooth by the condition on C near the x-axis). For kvk� q,

ECðk; p; vÞ ¼ ðp; vÞ, and so we can extend ECðk; Þ as the identity over all of M.

Note that ECð0; Þ is just the inclusion x 7!ðx; 0Þ. Let gCk be the Riemannian metric

gCk :¼ ECðk; Þ�ðgþ dt2Þ

on M obtained by restricting the product metric on M � R to the image of ECðk; Þ
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and pulling back to M. The key argument for the proof of Proposition 3.3 is the

following result.

Proposition 3.8 Let K � RðMÞ be compact. Suppose that each g 2 K is normalized
on the r0-tube around N and that scalðgÞ�Bg for some Bg. For every �0 [ 0, g[ 0,
there exists a Gromov–Lawson curve C such that

(1) the outer width of C is at most r0,

(2) the inner width of C is at most �0,

(3) scalðgCkÞ�Bg � g for all g 2 K and all k 2 ½0; 1
.
(4) Moreover, for each ‘[ 0, we can arrange the length to be at least ‘.

3.3 Construction of the Gromov–Lawson curve

In this subsection, we prove Proposition 3.8. We need a formula for the scalar

curvature of the metric gCk .

Let I � R be an interval and let c : I ! R2
þ :¼ fðy; rÞjr� 0g be a smooth

embedded curve. We assume that whenever cðtÞ lies on the y-axis, then near t, c
follows a circle of possibly infinite radius perpendicular to the y-axis. Consider the

hypersurface

Qc:¼ ðp; v; rÞ 2 N � Rk � Rjðr; kvkÞ 2 ImðcÞ
� �

� N � Rk � R � M � R

(which is smooth because of the condition on c near the y-axis). Let us recall some

Fig. 1 A Gromov–Lawson curve ðc;HÞ
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formulas from the geometry of plane curves. In the situation we consider, the

derivative vector of c will lie in the fourth quadrant. We let h be the angle between c
and the negative r-axis and let j be the signed curvature of c. If c is parametrized by
arc-length, the curvature is given by

€cðsÞ ¼
0 �1

1 0

� �
� _cðsÞ � jðsÞ ð3:9Þ

or

jðsÞ ¼ h€cðsÞ;
0 �1

1 0

� �
_cðsÞi:

The angle is given by the formula

sinðhÞ ¼ h _c; e1i; cosðhÞ ¼ �h _c; e2i:

Note that

d

ds
hðsÞ ¼ jðsÞ: ð3:10Þ

If c meets the y-axis in a circle of radius q\1, then j ¼ � 1
q, r ¼ sinðhÞq near that

point.

For a given Riemannian metric g on N � Rk, we get the Riemannian metric gc on

Qc, obtained by restricting the product metric gþ dt2 on N � Rkþ1 to Qc.

Lemma 3.11 Let K � RðMÞ be compact. Assume that all g 2 K are normalized on
the r0-tube around N. Then there exists 0\r1	 r0 and C[ 0 such that for all

g 2 K, and for all immersed curves in the region fðy; tÞ 2 R2j0\y	 r1g, we have

scalðgcÞ� scalðgÞ þ jjj
�
�signðjÞ 2ðk � 1Þ sinðhÞ

r
� C sinðhÞ

	

þ ðk � 1Þðk � 2Þ sin2ðhÞ
r2

� C
sinðhÞ2

r
:

The proof of the Lemma is given in Sect. 1.

Remark 3.12 This estimate originates from the curvature formula computed in

[3, 8, 21] or [28]. These papers, however, contain a small computational error:

There the formula has either j sinðhÞ k�1
r instead of j sinðhÞ 2ðk�1Þ

r or 2
ðk�1Þðk�2Þ

r2

instead of
ðk�1Þðk�2Þ

r2 . We will point out in the proof of Lemma 3.11 where the error

occurs and in Remark 3.23 below, we discuss what impact this has on the proof of

Proposition 3.3.

Corollary 3.13 Let K � RðMÞ be compact. Assume that all g 2 K are normalized
on the r0-tube around N. Then for each B 2 R, there exists �0 [ 0 such that for
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� 2 ð0; �0Þ, the restriction of g to N � Sk�1
� has scalar curvature at least B.

Proof Consider the curve cðsÞ :¼ ðs; �Þ. The restriction of the product metric gþ
dt2 to Qc is the product of gjN�Sk�1

�
and dt2. Hence, scalðgcÞ ¼ scalðgjN�Sk�1

�
Þ. In the

case at hand, the curvature of c is j ¼ 0, and h ¼ p
2
. Hence, from Lemma 3.11, we

get

scalðgcÞ� scalðgÞ þ ðk � 1Þðk � 2Þ
�2

� C

�
:

If � is small enough, the term
ðk�1Þðk�2Þ

�2 dominates all other terms. h

Another auxiliary result is needed for the proof of Proposition 3.8.

Lemma 3.14 Let a[ 0 and consider the ordinary differential equation

h00 ¼ 1þ h02

a � h : ð3:15Þ

For any choice of initial values hðt0Þ[ 0 and h0ðt0Þ\0, there is T [ t0 and a
solution h : ½t0; T 
 ! ð0;1Þ such that h0 	 0 and h0ðTÞ ¼ 0.

Proof Let h : ½t0; T1Þ ! R, T1 2 ðt0;1
 be a maximal solution. We do not want to

decide whether T1 ¼ 1 or T1\1 and show that both cases lead to the desired

conclusion. The quantity

CðtÞ :¼ h
1
aðtÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h0ðtÞ2
q

is constant as can be seen by differentiating. Also CðtÞ[ 0 because of the initial

conditions, and h is bounded from below by Cðt0Þa.
Suppose first T1 ¼ 1. If h0ðtÞ\0 for all t� t0, then h is decreasing and

h00ðtÞ ¼ 1þ h0ðtÞ2

a � hðtÞ �
1

a � hðtÞ �
1

a � hðt0Þ
¼: b[ 0

implies h0ðtÞ� bðt � t0Þ þ h0ðt0Þ, which is a contradiction. Hence there is T [ t0
with h0ðTÞ ¼ 0.

If T1\1, we consider the trajectory of ðhðtÞ; h0ðtÞÞ in the phase diagram. Since

C(t) is constant, this trajectory lies on the level set C�1ðCðt0ÞÞ. Because T1\1, this

trajectory leaves every compact subset of R2. The shape of the level set is so that

this implies limt!T1
hðtÞ ¼ þ1. Hence by Rolle’s theorem, h0ðTÞ ¼ 0 for some

(minimal) T[ t0. h

Remark 3.16 One can solve (3.15) explicitly, using that C is conserved. The above

proof seems more efficient to us, though.

Proof of Proposition 3.8 We first construct a piecewise C2 curve a and a homotopy

ak of such curves. By a smoothing procedure, we obtain a homotopy bk of smooth
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curves which will yield Ck by a suitable reparametrization. We begin with the curve

a ¼ a1. Let us pick some constants first.

(1) Choose a[ 2
k�2

(note that � 2
aþ k � 2[ 0).

(2) Choose q[ r0 arbitrarily.

(3) 0\r1	 r0 is chosen, so that the curvature estimate from Lemma 3.11 is valid

for r	 r1, with a constant C[ 0.

(4) Next, we choose 0\r2	 r1 so that

r2	
k � 1

C

(5) and pick r3 2 ð0; r2Þ arbitrarily.

Let us explain the choice of r2. h

Claim 3.17 If c is an immersed curve in the region fðy; rÞjr 2 ð0; r2
g whose signed
curvature j is nonpositive, then scalðgcÞ�Bg.

To see this, estimate

ðk � 1Þðk � 2Þ sin2ðhÞ
r2

� C
sinðhÞ2

r
¼ sinðhÞ2

r

�ðk � 1Þðk � 2Þ
r

� C
	

� sinðhÞ2

r
ðk � 3ÞC� 0;

ð3:18Þ

using r	 r2. If j	 0, then

jjj
�
�signðjÞ 2ðk � 1Þ sinðhÞ

r
� C sinðhÞ

	
¼ sinðhÞjjj

�2ðk � 1Þ
r

� C
	
� 0:

ð3:19Þ

Together with Lemma 3.11, these two inequalities establish Claim 3.17.

Let us now construct the first part of a. One device to construct a (unit speed)

curve is by prescribing its curvature function. More precisely, let J � R be an

interval and s0 2 J. If a function j : J ! R and initial values cðs0Þ and _cðs0Þ (the

latter of unit length) are given, then the solution to the differential equation

€cðsÞ ¼ jðsÞ
�1

1

� �
_cðsÞ

is a unit speed curve with curvature function j. If j is piecewise continuous, then c
is piecewise C2. We write hðsÞ for the angle of the curve cðsÞ.
(1) Choose 0\d\ r2�r3

3
. Consider the function1 jðsÞ ¼ qv½d;2d
ðsÞ, for some

q[ 0, and the unit speed curve a on ½0;1Þ with initial values að0Þ ¼
ðy2; r2Þ :¼ ð0; r2Þ and _að0Þ ¼ ð0;�1Þ and curvature function j. If qd\ p

2
, the

1 vS : X ! f0; 1g denotes the characteristic function of a subset S � X.
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angle of the curve a will always be less than p
2
, and so it crosses the horizontal

line of height r3 in some point ðy3; r3Þ, with an angle

h0 ¼ qd\
p
2
:

If q satisfies

q
�2ðk � 1Þ

r3

þ C
	
	 1

2
g;

we claim that scalðgaÞ�Bg � 1
2
g. This follows from (3.18), Lemma 3.11, and

the estimate

� 2ðk � 1Þj � sinðhÞ
r

� Cjjj sinðhÞ� � 2ðk � 1Þq
r3

� Cq� � 1

2
g: ð3:20Þ

(2) Now we pick r4 [ 0 so that r4	 �0, r4\r3 and

r4	
ðk � 1Þ sinðh0Þ2ð� 2

aþ k � 2Þ
Cð1þ 1

aÞ
:

Between height r3 and r4, the curve a follows the straight line of slope h0

(there is no problem with the psc condition, by Claim 3.17). It crosses the

horizontal line of height r4 at a certain point ðy4; r4Þ. If after that point, the

curve a satisfies

h0	 h	 p
2
; 0	 j	 sinðhÞ

ar
; 0\r	 r4; ð3:21Þ

we estimate, using that a[ 2
k�2

,

jjj
�
�signðjÞ 2ðk � 1Þ sinðhÞ

r
� C sinðhÞ

	
þ
�ðk � 1Þðk � 2Þ sinðhÞ2

r2
� C

sinðhÞ2

r

	
�

sinðhÞ
ar

�
� 2ðk � 1Þ sinðhÞ

r
� C sinðhÞ

	
þ
�ðk � 1Þðk � 2Þ sinðhÞ2

r2
� C

sinðhÞ2

r

	
¼

sinðhÞ2ðk � 1Þ
r2

�
� 2

a
þ k � 2

	
� C sinðhÞ2

r

�
1þ 1

a

	
�

sinðh0Þ2ðk � 1Þ
rr4

�
� 2

a
þ k � 2

	
� C

r

�
1þ 1

a

	
¼

1

r

�sinðh0Þ2ðk � 1Þð� 2
aþ k � 2Þ

r4

� Cð1þ 1

a
Þ
	
� 0

by the definition of r4. Altogether, Lemma 3.11 shows that (3.21) implies

1 vS : X ! f0; 1g denotes the characteristic function of a subset S � X.
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scalðgcÞ�Bg ð3:22Þ

in this region. We construct the curve a satisfying (3.21) as the graph of a

function f : ½y4; y5
 ! R. For curves of the form t 7!ðt; f ðtÞÞ, we have

j ¼ f 00

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 02

p
Þ3
; sinðhÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 02
p ;

see, e.g. [1, p. 41]. Hence if we take f as the solution of the ordinary

differential equation

f 00 ¼ 1þ f 02

af

with initial values

f ðy4Þ ¼ r4; f
0ðy4Þ ¼ �

cosðh0Þ
sinðh0Þ

\0;

then the curve aðtÞ ¼ ðt; f ðtÞÞ satisfies (3.21). By Lemma 3.14, there is a

solution f : ½y4; y5
 ! ð0;1Þ with f 0 	 0 and f 0ðy5Þ ¼ 0. Let r5 :¼ f ðy5Þ[ 0,

and we let a be the graph of f in this region.

(3) From the point ðy5; r5Þ on, the curve a follows a straight horizontal line, of

length 2‘ (a little more than ‘ would suffice), until it reaches the point

ðy6; r6Þ :¼ ðy5 þ 2‘; r5Þ. Since j � 0, there is no problem with the psc

condition here, by Claim 3.17. We let r1 :¼ r5 ¼ r6. The last piece of the

curve (until it hits the y-axis) will be constructed at the end of the proof.

Now we parametrize the curve a by arclength, beginning at the point aðs2Þ ¼ ð0; r2Þ
and call the reparametrized curve also a. Let s6 [ s5 [ s4 [ s3 [ s2 be the points

with aðsiÞ ¼ ðyi; riÞ. The curve a is entirely determined by its curvature function j.

The function j is zero outside the intervals ½s0 þ d; s0 þ 2d
 and ½r4; r5
. We have

jj½s0þd;s0þ2d
 ¼ q[ 0; j½r4;r5
[ 0:

Now we pick 0\x minðr5

2
; d; ‘Þ. Let us now construct a homotopy of piecewise

C2-curves, which are defined on intervals of varying length ½s2; s6ðkÞ
. Let s6ð1Þ :
¼ s6 and a1 :¼ a. During the homotopy interval ½1

2
; 1
, we shrink down the size of

the horizontal piece until it is x (so that s6ð12Þ ¼ s5 þ x), and siðkÞ ¼ si, for

i ¼ 2; 3; 4; 5, k 2 ½1
2
; 1
.

For k 2 ½0; 1
2

, consider the curvature function jk :¼ v½s2;s2þ2kðs5�s2Þ
j and let s5ðkÞ

be the point where the curve ak with curvature function jk reaches the horizontal

line of height r5 (it is always the case that s5ðkÞ� 2kðs5 � s2Þ) and put

s6ðkÞ :¼ s5ðkÞ þ x.

By construction, the curves ak satisfy the psc condition scalðgakÞ�Bg � g
2
, a0 is

the straight line on the r-axis, and a1 ¼ a. The curves ak are C1 and piecewise C2,

and we need to smoothen them.
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To that end, pick an even, smooth, nonnegative bump function n with support in

ð� 1
4
; 1

4
Þ and integral 1 and let nuðtÞ :¼ 1

u nðutÞ. For u 2 ð0;x
, we define the smooth

curve

bk;u :¼ nu � ak

using convolution. If u	x, then bk;u � bk near s6ðkÞ and near s2, and b0;u lies on

the r-axis. This holds because nu � f ðtÞ ¼ f ðtÞ if f is linear near t.
For small enough u, the curve bk;u satisfies the positive scalar curvature

condition, namely scalðgbk;uÞ�Bg � g. This is no issue at points near which jk is

continuous. Near the discontinuity points, the angle and height of bk;u is close to that

for ak, while the curvature of bk;u oscillates between the minimum and maximum

value of jk. The decisive estimates (3.18), (3.20) and (3.22) all hold if j lies

between 0 and the allowed maximum value. Note, however, that we might loose a

bit scalar curvature.

To construct the last piece of the curves bk;u on an interval ½s6ðkÞ; s7ðkÞ
, we take

a smooth family of curves ck : ½s6ðkÞ; s7ðkÞ
 ! R2, such that

• ck begins at the point bk;uðs6ðkÞÞ, as a straight line with the same angle as bk;u,
• ckðs7ðkÞÞ lies on the y-axis, and except on the interval ½s6ðkÞ; s6ðkÞ þ x
, it is a

circle,

• the curvature of ck is 	 0.

These conditions enforce that c0 lies on the r-axis. The construction of such curves

is easy and left to the reader. By Claim 3.17, there is no problem with the psc

condition.

Finally, the curve Ck is obtained by reparametrization (of the form

CkðsÞ :¼ bk;uðs7ðkÞ � sÞ). It is extended to all of ½0;1Þ, so that above q, it is just

the curve s 7!ð0; sÞ. h

Remark 3.23 The above proof is almost the same as that of the corresponding result

in [21] or [28]. The difference is that in loc.cit., the slightly incorrect version of the

curvature formula (3.11) is used. This allows the choice a ¼ 2 in the quoted papers.

In that case, the differential equation (3.15) has a simple explicit solution. We can

pick a ¼ 2 if k[ 4, but if k ¼ 3, we need a[ 2, and the argument in loc.cit. does

not work as stated there.

3.4 Completion of the proof of Proposition 3.3

We now give the proof of Proposition 3.3. We shall use the following well-known

criterion for a map to be a weak equivalence.

Proposition 3.24 Let j : X ! Y be the inclusion of a subspace. Then the following
are equivalent:

(1) j is a weak homotopy equivalence,
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(2) for every n� 0 and every map G0 : Dn ! Y such that G0ðSn�1Þ � X, there

exists a homotopy Gs starting with G0 such that G1ðDnÞ � X and GsðSn�1Þ �
X for all s 2 ½0; 1
.

So we let

ð3:25Þ

be a commutative diagram, and we have to produce a homotopy G : ½0; 1
 � Dn !
RþðMÞ such that Gð0; xÞ ¼ G0ðxÞ for all x 2 Dn and Gðs; xÞ 2 RþrotðMÞ if

ðs; xÞ 2 ðf1g � DnÞ [ ð½0; 1
 � Sn�1Þ. Recall that RþrotðMÞ denotes the space of psc

metrics which are of the form gN þ g0 on N � Bk
R, for some normalized rotationally

symmetric metric g0 on Bk
R with scalðg0Þ[ 0.

The first step is an application of Proposition 3.5.

Lemma 3.26 There is a family G0ðs; xÞ, ðs; xÞ 2 ½0; 1
 � Dn, of Riemannian metrics
on M and r0 2 ð0;RÞ such that

(1) the metric G0ð0; xÞ has positive scalar curvature,

(2) G0ð0; xÞ 2 RþrotðMÞ for all x 2 Sn�1,

(3) the map G0ð0; Þ : ðDn; Sn�1Þ ! ðRþðMÞ;RþrotðMÞÞ is homotopic to G0 (as a
map of space pairs),

(4) for all ðs; xÞ 2 ½0; 1
 � Dn, the metric G0ðs; xÞ is normalized on the r0-tube
around N,

(5) for all ðs; xÞ 2 ð½0; 1
 � Sn�1Þ [ ðf1g � DnÞ, the metric G0ðs; xÞ is rotationally
symmetric on the r0-tube around N, i.e. G0ðs; xÞ ¼ gN þ gðs; xÞ for some
rotationally symmetric g(s, x).

In short, we make the metrics G(0, x) normalized on some tube, but in addition,

we also take a crude interpolation of G(0, x) to some rotationally symmetric metric,

without taking the psc condition into account.

Proof Choose a Riemannian metric g on M such that gjN�Bk
R
¼ gN þ g0, where g0 is

a rotationally symmetric normalized metric on Bk
R. For example, we can take g0 to be

the Euclidean metric. Let ~Gðs; xÞ :¼ ð1� sÞG0ðxÞ þ sg, for ðs; xÞ 2 ½0; 1
 � Dn. We

apply Proposition 3.5 to the map ~G with K ¼ ½0; 1
 � Dn and L ¼ f0g � Sn�1 [
f1g � Dn and let F be the isotopy from that Proposition. Put

G0ðs; xÞ :¼ Fð1; s; xÞ� ~Gðs; xÞ. This has all the desired properties. h

Now we replace the map G0 in (3.25) by the map G0ð0; Þ.
For x 2 Sn�1, we write G0ð0; xÞ ¼ gN þ g0ðxÞ on N � Bk

R. Let
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A:¼ inf scalðgNÞ 2 R:

Choose g[ 0 so that

8x 2 Dn : inf scalðG0ð0; xÞÞ � 2g� 0

and

8x 2 Sn�1 : inf scalðG0ð0; xÞjN�Bk
R
Þ � 2g�A:

The second condition is implied by the first one if A	 0. If A[ 0, then for each

point g 2 RþrotðMÞ which is of the form gN þ g0 on N � Bk
R, we have

scalðgjN�Bk
R
Þ[A since otherwise g0 will not be a psc metric.

Therefore, if we can produce a homotopy G : ½0; 1
 � Dn ! RþðMÞ, so that

(1) Gð0; Þ ¼ G0ð0; Þ,
(2) inf scalðGðk; xÞÞ� inf scalðG0ð0; xÞÞ � g and

(3) Gðk; xÞjN�Bk
R

is of the form gN þ g0ðk; xÞ for

ðk; xÞ 2 ð½0; 1
 � Sn�1Þ [ ðf1g � DnÞ, with some rotationally symmetric nor-

malized metric g0ðk; xÞ,

then g0ðk; xÞ will have positive scalar curvature for all ðk; xÞ 2 ½0; 1
 � Sn�1, and

G is a relative homotopy, and so we have finished the proof of Proposition 3.3.

Next, we determine the parameters �0 and ‘ for the Gromov–Lawson curve.

• Let �1 [ 0 be small enough, so that for all � 2 ð0; �1Þ and for all (s, x), the

restriction of G0ðs; xÞ to the sphere N � Sk�1
� has scalar curvature [ maxð0;AÞ.

This is possible by Corollary 3.13.

Lemma 3.27 For all B 2 R, there exists �0 2 ð0; �1
 such that for all
ðs; xÞ 2 ½0; 1
 � Dn, the metric ðG0ðs; xÞÞc has scalar curvature at least B, where c
is a curve in the plane with the following properties.

(1) There is � 2 ð0; �0
 such that 0	 r	 �, � 1
� 	 j	 0 and h 2 ½0; p

2

,

(2) if r	 �ffiffi
2
p , then c is a circle of radius �, and if r� �ffiffi

2
p , then h� p

4
.

Proof This is an application of Lemma 3.11, but much easier than Proposition 3.8.

Pick r1 so that the curvature estimate of Lemma 3.11 holds for all G(s, x), with some

constant C. At the points where c is a circle, we have j ¼ � 1
� and sinðhÞ� ¼ r.

Therefore, Lemma 3.11 yields

scalðG0ðs; xÞcÞ� scalðG0ðs; xÞÞ þ 1

�2
kðk � 1Þ � 2C

�
:

In the region �ffiffi
2
p 	 r	 �, Lemma 3.11 yields
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scalðG0ðs; xÞcÞ� scalðG0ðs; xÞÞ � 2C

�
þ ðk � 1Þðk � 2Þ

2�2
:

h

• Now we choose �0 [ 0 so that �0\r0 and that the conclusion of Lemma 3.27

holds with B ¼ Aþ 2g. According to Proposition 3.8, there exists a Gromov–

Lawson curve C with parameters g and �0, which has an inner width r1 	 �0.

Let gs;x :¼ G0ðs; xÞjN�Sk�1
r1

. This metric on N � Sk�1
r1

has scalar curvature at least

Aþ 2g by Lemma 3.27. We get a continuous map ½0; 1
 � Dn ! RþðN � Sk�1
r1
Þ,

ðs; xÞ7!gs;x.
Next let f : R! ½0; 1
 be a smooth function such that f � 0 near ð�1; 0
 and

f � 1 near ½1;1Þ and define b :¼ maxfkf 0kC0 ; kf 00kC0g.
For each L[ 0, we get an induced map

Dn � ½0; 1
 ! RðN � Sk�1
r1
� ½0;L
Þ; ðx; kÞ7!gkf ð tLÞ;x þ dt2: ð3:28Þ

The first two derivatives of t 7!kf ð tLÞ are

jkf ð t
L
Þ0j 	 k

L
b; jkf ð t

L
Þ00j 	 k

L2
b:

• We pick L so large that k
L b;

k
L2 b	K, where K[ 0 is the constant provided by

Lemma 2.5. With these choices, we obtain

scalðgkf ð tLÞ;x þ dt2Þ�Aþ g: ð3:29Þ

• Finally, put ‘ :¼ Lþ R.

End of the proof of Proposition 3.3 We consider a diagram as in (3.25) and replace

G0 by G0ð0; Þ, where G0ðs; xÞ is a family of Riemannian metrics with the properties

stated in Lemma 3.26. Let �0 be as in Lemma 3.27. By Proposition 3.8, there exists a

Gromov–Lawson curve C with parameters �0 and ‘. Let EC : ½0; 1
 �M ! ðM �
f0gÞ [ ðN � Rk � RÞ be the isotopy of embeddings determined by C (as in (3.7)).

Now we define Gðk; xÞ 2 RþðMÞ for k 2 ½0; 1
2

 by

Gðk; xÞ :¼ E�C;2kðG0ð0; xÞ þ dy2Þ

and for k 2 ½1
2
; 1
 by

Gðk; xÞ :¼ E�C;1ðG0ðð2k� 1Þf ðy� y5

‘
Þ; xÞ þ dy2Þ:

By construction, scalðGðk; xÞÞ[ 0 for all x; k, and if x 2 Sn�1, then

scalðGðk; xÞÞ[A. These metrics are not normalized, but the curve t 7!ðp; tvÞ is a
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variable speed geodesic. This can be rectified by a reparametrization (pull back by

an isotopy of N � Rk which is the identity outside a compact set and which is of the

form ðp; vÞ7!ðp; hkðkvkÞvÞ for a smooth odd function hk). After such a

reparametrization, the metrics Gðk; xÞ are normalized on the r0-tube when k ¼ 1 and

x 2 Dn. If x 2 Sn�1, they stay rotationally symmetric, and the geometric size of the

region where they are does not decrease with k. Hence, after reparametrization,

Gðk; xÞ is rotationally symmetric and normalized on the R-tube, for all x 2 Sn�1 and

all k 2 ½0; 1
. This completes the proof. h

4 The space of rotationally symmetric metrics

In this section, we complete the proof of Theorem 3.1. Let us first recall some

notation. Let A :¼ inf scalðgNÞ 2 R. We choose d[ 0 so that 1
d2 ðk � 1Þðk � 2Þ þ

A[ 0 and pick a torpedo metric gktor on Rk of radius d, which is cylindrical outside

the disc of radius R, for some R[ 0. Recall that RþrotðMÞ � RþðMÞ is the space of

all psc metrics g on M such that

gjN�Bk
R
¼ gN þ g0

for some rotationally symmetric normalized psc metric g0 on Bk
R. Furthermore,

RþðM;uÞ � RþrotðMÞ is the subspace of those g such that g0 ¼ gktor. The goal is to

prove the following result, which together with Proposition 3.3 completes the proof

of Theorem 3.1.

Proposition 4.1 The inclusion map

RþðM;uÞ ! RþrotðMÞ

is a weak homotopy equivalence.

4.1 Preliminary remarks

A rotationally symmetric normalized metric on Bk
R is of the form

g ¼ dt2 þ f ðtÞ2dn2, for some warping function f : ½0;R
 ! R with the properties

stated in Lemma 2.6. We also recall the curvature formula

rðf Þ:¼scalðdt2 þ f ðtÞ2dn2Þ ¼ ðk � 1Þ ðk � 2Þ 1� f 02

f 2
� 2

f 00

f

� �
: ð4:2Þ

The torpedo metric gktor is given by the warping function hd as in (2.10). For the

metric gN þ dt2 þ f ðtÞ2dn2 to have positive scalar curvature, we need to have

Aþ ðk � 1Þ ðk � 2Þ 1�f 02
f 2 � 2 f 00

f

� 	
[ 0. To allow for more convenient notation when

A	 0, we introduce
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B :¼ maxf0;�Ag� 0:

Then

0	B\
1

d2
ðk � 1Þðk � 2Þ;

and the condition on f becomes

ðk � 1Þ ðk � 2Þ 1� f 02

f 2
� 2

f 00

f

� �
[B:

The most delicate step in the proof of Proposition 4.1 is the following.

Proposition 4.3 Let

be a commutative diagram. Then there exists a homotopy G : ½0; 1
 � Dn ! RþrotðMÞ
of maps of space pairs ðDn; Sn�1Þ ! ðRþrotðMÞ;RþðM;uÞÞ such that Gð0; Þ ¼
G0ð Þ and such that the warping function ft;x of G(t, x) satisfies

(1) 0	 f1;x	 d and f 001;x	 0 on [0, R],

(2) f 01;x � 0 near R.

We will prove Proposition 4.3 in Sect. 4.2, and in Sect. 4.3, we complete the

proof of Proposition 4.1.

4.2 Introducing collars

To prove Proposition 4.3, we will change the warping function f by composition

with another function h or a 1-parameter family thereof. The composition f � h will

have a different domain of definition. To obtain a well-defined family of

Riemannian metrics on M, we introduce the following construction.

We fix, once and for all, diffeomorphisms ua;b of ð0;1Þ for each 0\a	 b such

that

• ua;bðbÞ ¼ a,

• ua;a ¼ id,

• ua;bj½0;a
2

[½2b;1Þ ¼ id,

• u0a;b � 1 near b,

• ua;b depends smoothly on a, b.
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The formula /a;bðx; vÞ :¼ ðx;
uðkvkÞ
kvk vÞ defines diffeomorphisms of N � Rk. These are

compactly supported and can be extended by the identity to M.

Lemma 4.4 Let g 2 RþrotðMÞ given by g ¼ gN þ dt2 þ f ðtÞ2dn2 on N � Bk
R. Let

h : ½0;1Þ ! ½0;1Þ be smooth with hð0Þ ¼ 0, h0 � 1 near 0 and 0	 h0 	 1. Let
S 2 ð0;1Þ be such that hðSÞ ¼ R (this enforces S�R). Then the formula

Kðg; h; SÞ :¼ gN þ dt2 þ f ðhðtÞÞ2dn2 on N � Bk
S;

/R;S
�g else,

(

defines a smooth Riemannian metric on M in each of the following cases:

(1) f 0 � 0 near R, or
(2) h0 � 1 near S.

Proof We need to show that gN þ dt2 þ f ðhðtÞÞ2dn2 and /R;S
�g coincide on N �

Bk
SnN � Bk

S�� for some �[ 0. But near N � Sk�1
S , we have

/R;S
�g ¼ gN þ u0R;SðtÞ

2
dt2 þ f ðuR;SðtÞÞ2dn2 ¼near S

gN þ dt2 þ f ðt � Sþ RÞ2dn2

because uR;S
0 � 1 and uR;SðtÞ ¼ t � Sþ R near S. Now in either of the two cases we

have f ðt � Sþ RÞ ¼ f ðhðtÞÞ for t near S: If f 0 ¼ 0 near R, we have f ðt � Sþ RÞ ¼
f ðRÞ and h(t) is close to R near S; and if h0 ¼ 1 near S, then hðtÞ ¼ t � Sþ R near S.

h

Let us record some further simple properties of this construction. We omit the

easy proof.

Lemma 4.5

(1) In the situation of Lemma 4.4, Kðg; h; SÞ is rotationally symmetric and

normalized on Bk
S � Bk

R.

(2) Let X be a space and let g : X ! RrotðMÞ, h : X ! C1ð½0;1Þ;RÞ and S :
X ! ð0;1Þ be continuous maps such that h(x) and S(x) satisfy the
requirements of Lemma 4.4 and assume that for each x 2 X, one of the two
conditions from Lemma 4.4 is satisfied. Then X !
RrotðMÞ; x 7!KðgðxÞ; hðxÞ; SðxÞÞ is continuous.

From now on, we only change the warping function inside the R-disc. Note that

the metric Kðg; h; SÞ, restricted to the complement of N � Bk
S, is isometric to the

metric g. Hence we only need to control the scalar curvature of Kðg; h; SÞ inside Bk
S,

where it is determined by (4.2). In particular, our consideration will only involve the

metrics on Bk
S, not on N. Let us make a few observations: if

scalðdt2 þ f ðtÞ2dn2Þ�B0[ 0, then L’Hôpital’s rule shows that
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B0 	 lim
t!0
ðk � 1Þ ðk � 2Þ 1� f 0ðtÞ2

f ðtÞ2
� 2

f 00ðtÞ
f ðtÞ

 !

¼ ðk � 1Þ lim
t!0

ðk � 2Þ�2f 0ðtÞf 00ðtÞ
2f ðtÞf 0ðtÞ � 2

f 00ðtÞ
f ðtÞ

� �

¼ �ðk � 1Þk lim
t!0

f 00ðtÞ
f ðtÞ ¼ �kðk � 1Þ lim

t!0

f 000ðtÞ
f 0ðtÞ ¼ �kðk � 1Þf 000ð0Þ

and hence

f 000ð0Þ	 �B0
kðk � 1Þ : ð4:6Þ

If h is a function as in Lemma 4.4, then the scalar curvature of dt2 þ ðf � hÞ2dn2 is

given by

ðk � 1Þ ðk � 2Þ 1� f 0ðhÞ2h02

f ðhÞ2
� 2

f 00ðhÞ
f ðhÞ h

02 � 2
f 0ðhÞ
f ðhÞ h

00

 !

¼ h02ðk � 1Þ ðk � 2Þ 1� f 0ðhÞ2

f ðhÞ2
� 2

f 00ðhÞ
f ðhÞ

 !
þ ð1� h02Þ ðk � 1Þðk � 2Þ

f ðhÞ2

ð4:7Þ

using the self-explanatory notation f ðhÞ :¼ f � h.

Lemma 4.8 Let f be the warping function of a metric g satisfying f 0 2 ½0; 1
 and
scalðgÞ�B00[B0[ 0 and let h be as above. Assume also that for some r[ 0

(1) B00f 2	ðk � 1Þðk � 2Þ on [0, r] and

(2) h00 	 1
2
B00�B0
k�1

f whenever h	 r, say hð½0; s
Þ � ½0; r
.

Then scalðdt2 þ f ðhðtÞÞ2dn2Þ�B0 on [0, s].

Proof From (4.7), we get scalðdt2 þ f ðhðtÞÞ2dn2Þ�

h02B00 þ ð1� h02ÞB00 � f 0ðhÞðB00 � B0Þ �B00 � ðB00 � B0Þ ¼ B0:

h

Remark 4.9 If f ¼ hd is the torpedo function of radius d and if

B00 	 1
d2 ðk � 1Þðk � 2Þ, then hypothesis (1) of 4.8 is satisfied for each r[ 0.

The following two elementary lemmas are slightly adapted versions of [3,

Lemma 3.5 and Lemma 3.7].

Lemma 4.10 (Existence of sloping functions) Let b 2 ð0;RÞ, 0\a\ 8
10
b and let

p[ 0. Then there exists q 2 ð0; 1Þ, only depending on p and b, a family ur;s : R!
R of functions and cr;s 2 R, both depending continuously on ðr; sÞ 2 ½0; 1
 � ½0; 1

such that
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(1) ur;0 ¼ id and ur;s ¼ id on ð�1; 8
10
a
 for all r, s,

(2) ur;sðcr;sÞ ¼ b,

(3) u00r;s	 pr,

(4) u00r;sj½ 810
a;a
 	 0, u00r;sj½ 810

cr;s;cr;s
 � 0 and u00r;s ¼ 0 outside these intervals,

(5) u0r;s ¼ 1� sq on ½a; 8
10
cr;s
 and u0r;s ¼ ð1� sqþ rsqÞ on ½cr;s;1Þ,

(6) 0	 u0r;s	 1 for all r, s.

We call ur;s a sloping function with parameters a, b, p and q the resulting slope. The
situation is depicted in the following figure.

Proof We construct ur;s by constructing its second derivative, and do this by first

constructing a piecewise continuous approximation to the second derivative of ur;s.

Choose q	 b
10
p. Define a piecewise continuous function wr;s : R! R by

wr;s ¼ �sv½17
20
a;19

20
a


10q

a
þ rsv½17

20
er;s;

19
20
er;s


10q

er;s
;

where er;s is to be determined. Let vr;sðxÞ :¼
R x

0

R t
0
wr;sðyÞdy and choose er;s� b to be

the unique point such that vr;sð 8
10
er;sÞ ¼ 8

10
b. Now let n� 0 be a smooth, even,

nonnegative function with compact support and
R
R
nðxÞdx ¼ 1 and let

n�ðxÞ :¼ 1
� nðx�Þ. The function

ur;sðxÞ :¼ n� � vr;s

has, if � is sufficiently small, all desired properties. Finally, we define cr;s as the

unique point with ur;sðcr;sÞ ¼ b. h

Lemma 4.11 (Existence of bending functions) Let C[ 0 and b[ 0. Then there
exists a 2 ð0; bÞ and a family of functions vr;s : R! R and dr;s 2 R, depending
continuously on ðr; sÞ 2 ð0; 1
 � ½0; 1
 such that

(1) vr;0 ¼ id and vr;s ¼ id on ð�1; a
2

,
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(2) vr;sðdr;sÞ ¼ b,

(3) v0r;1 � 0 near a,

(4) v00r;s	C r
t and v00r;s	 0 on the complement of ½2a; dr;s
,

(5) v0r;s � 1� sþ rs on ½dr;s;1Þ.
(6) 0	 v0r;s	 1 for all r, s.

We call vr;s a family of bending functions with parameters C; b. The point a is called
the attacking point. The following figure depicts the situation.

Proof This is by a similar method as the proof of Lemma 4.10. Let c :¼ b
2

and

a :¼ b
4
e�

1
C. We consider the piecewise continuous function

fr;s ¼ �sv½4
6
a;5

6
a


6

a
þ rsv½2a;c


C

t

and set

wr;sðtÞ:¼
Z t

0

�
1þ

Z x

0

fr;sðyÞdy
	

dx:

A straightforward, but lengthy integral computation reveals that wr;s has all the

desired properties, except that it is only piecewise C2. For sufficiently small �,
consider the convoluted function

vr;s:¼n� � wr;s:

The point dr;s is the unique point with vr;sðdr;sÞ ¼ b. h

Proof of Proposition 4.3 We may assume that G0ðxÞ ¼ G0ð x
kxkÞ for kxk� 1

2
,

otherwise we perform an obvious homotopy beforehand to achieve this. We write

the metric G0ðxÞ as gN þ gðxÞ for a rotationally symmetric metric g(x) on Bk
R. Recall
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that B 2 ½0; 1
d2 ðk � 1Þðk � 2ÞÞ and scalðgðxÞÞ[B for all x 2 Dn. Let fx : ½0;R
 ! R

be the warping function of G0ðxÞ. The proof begins with making some choices:

(1) Pick

B\B0\B00\
1

d2
ðk � 1Þðk � 2Þ

so that scalðgðxÞÞ�B00 for all x 2 Dn.

(2) By (4.6), there is S 2 ð0;RÞ such that f 0x 2 ½0; 1
 and f 00x 	 0 on [0, S] for all

x 2 Dn. We can furthermore pick S so that B00S2	ðk � 1Þðk � 2Þ and S	 d.

(3) Let F :¼ infx2Dn fxð 8
10
SÞ[ 0 and p :¼ 1

2ðk�1Þ ðB00 � B0ÞF	 8
10

1
2ðk�1Þ ðB00 � B0ÞS.

(4) Let q be the resulting slope (see Lemma 4.10) of a sloping function with

parameters ða; S; pÞ, for a\ 8
10
S (recall the constant q only depends on p and

S, not on a, which we have to pick later).

(5) Now we pick T 2 ð0; 8
10
S
 and C[ 0 so that

B0T2 þ 2ðk � 1ÞC	ðk � 1Þðk � 2Þð1� ð1� qÞ2Þ:

(6) Pick a family of bending functions vr;s for the parameters (C, T) and let a[ 0

be the attacking point of this family of bending functions. The numbers

dr;s 2 R are as in Lemma 4.11.

(7) Pick a family of sloping functions ur;s for the parameters ða; S; pÞ. The

numbers cr;s are as in Lemma 4.10.

Now we construct the homotopy G : ½0; 1
 � Dn ! RþrotðMÞ. We first construct it on

the part ½0; 1
 � Dn
1
2

, the disc of radius 1
2
.

(1) On ½0; 1
3

 � Dn

1
2

, we define

Gðk; xÞ :¼ KðgðxÞ; u1;3k; c1;3kÞ

and claim that scalðGðk; xÞÞ�B0 for all such x and k. In the region where

u001;3k	 0, there is no problem: there fxðu1;3kÞ	 S, and we picked S small

enough to satisfy the first hypothesis of Lemma 4.8. In the region where

u001;3k� 0, we have by construction u1;3k� 8
10
S, and hence fxðu1;3kÞ�F.

Therefore

u001;3k	 p ¼ FðB00 � B0Þ
2ðk � 1Þ 	

B00 � B0

2ðk � 1Þ fx

and the claim follows from Lemma 4.8.

(2) The warping function f ¼ fx;1
3

of Gðx; 1
3
Þ satisfies f 0 	 1� q on the interval

½a; T 
. Furthermore, the scalar curvature of Gðx; 1
3
Þ is bounded from below by

B0. Now we define G : ½1
3
; 2

3

 � Dn

1
2

by
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Gðk; xÞ :¼ KðGð1
3
; xÞ; v1;3k�1; d1;3k�1Þ:

We claim that scalðgðx; kÞÞ�B0 for all such k and x. Again, there is no

problem in the region where v001;3k�1	 0. In the region where v001;3k�1� 0, we

have f 0 	 1� q, 0	 v0 	 1, f 00 	 0 and f 	 T . Therefore,

ðk � 1Þ
�
ðk � 2Þ 1� f 02v02

f 2
� 2

f 00

f
v02 � 2

f 0

f
v00
	
� B0

� ðk � 1Þ
�
ðk � 2Þ 1� ð1� qÞ2

f 2
� 2

f 0

f
v00
	
� B0

¼ 1

f 2

�
ðk � 1Þðk � 2Þð1� ð1� qÞ2Þ � 2ðk � 1Þff 0v00 � B0f 2

	
:

But now f 0 	 1 in the relevant region, which implies f ðtÞ	 t. Since

0	 v00 	 C
t , the last term is bounded below by

1

f 2

�
ðk � 1Þðk � 2Þð1� ð1� qÞ2Þ � 2ðk � 1Þt C

t
� B0T2

	

¼ 1

f 2

�
ðk � 1Þðk � 2Þð1� ð1� qÞ2Þ � 2ðk � 1ÞC � B0T2

	
;

using that f 	 T . But this is nonnegative, by our choice of T.

(3) Now we turn to the region kxk� 1
2
. Here we have fx ¼ hd, the torpedo

function of radius d. In the region 1
2
	kxk	 2

3
and 0	 k 2

3
, we merely change

the point where the warping function obtained by composition with v::: or u:::
is glued to the original metric, until this gluing is done in the region where the

warping function fx ¼ hd is constant. There is no problem in doing this, as all

the functions u1;s and v1;s are linear with slope 1 beyond c1;s and d1;s. The

concrete realization by formulas is

Gðk; xÞ:¼
KðgðxÞ; u1;3k; c1;3k þ 6ðR� SÞkxk þ 3ðS� RÞÞ k	 1

3

Kðgð1
3
; xÞ; v1;3k�1; d1;3k�1 � 3ðc1;1 þ R� S� TÞ þ 6ðc1;1 þ R� S� TÞkxkÞ 1

3
	 k	 2

3
:

8><
>:

For kxk ¼ 2
3
, we have

Gðk; xÞ:¼
KðgðxÞ; u1;3k; c1;3k þ R� SÞ k	 1

3

Kðgð1
3
; xÞ; v1;3k�1; d1;3k þ c1;1 þ R� S� TÞ 1

3
	 k	 2

3
;

8><
>:

and since u1;3kðc1;3k þ R� SÞ ¼ R and v1;3k�1ðd1;3k�1 þ c1;1 þ R� S� TÞ ¼
T þ c1;1 þ R� S� T ¼ c1;1 þ R� S, the gluing now takes place in the region

where fx ¼ hd is constant. Hence (compare Lemma 4.4), we are now free to

change the functions u1;3k and v1;3k�1 by functions whose derivative at the

37 Page 28 of 43 J. Ebert, G. Frenck



relevant point is not equal to 1. We use this additional freedom to construct

the homotopy in the region kxk� 2
3
.

(4) In the region 2
3
	kxk	 5

6
, we use the first parameter in the sloping and

bending function and ‘‘dampen’’ those. To that end, let us pick g 2 ð0; 1Þ (we

have to pick g small enough so that the next step goes through). We set, for
2
3
	kxk	 5

6
,

Gðk; xÞ:¼
KðgðxÞ; u6ðg�1Þkxkþ5�4g;3k; ~ckxk;3kÞ k	 1

3

Kðgð1
3
; xÞ; v6ðg�1Þkxkþ5�4g;3k�1; ~dkxk;3k � 1Þ 1

3
	 k	 2

3
;

8><
>:

where ~ckxk;3k is the unique point with u6ðg�1Þkxkþ5�4g;3kð~ckxk;3kÞ ¼ R and

~dkxk;3k�1 is the unique point with v6ðg�1Þkxkþ5�4g;3k�1ð ~dkxk;3k � 1Þ ¼ ~ckxk;1. All

the curvature estimates done in this proof so far apply as well when the

sloping function u1;3k is replaced by ur;3k and the bending function v1;3k�1 is

replaced by vr;3k�1, for r[ 0. Hence, the above formula defines metrics of

positive scalar curvature. For kxk ¼ 5
6
, we can write

Gðk; xÞ ¼ KðgðxÞ; hk; akÞ;

where

hk :¼
ug;3k k	 1

3

ug;1 � vg;3k�1 k� 1

3
;

8><
>:

and ak 2 ð0;1Þ is the point with hkðakÞ ¼ R. By Lemmas 4.10, 4.11 and the

chain rule, we have

Fig. 2 hk;6Rkxk�5R for various values of kxk
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h00k 	 max gp; g
C

2a

� �
¼ gmax p;

C

2a

� �
: ð4:12Þ

(5) In the region 5
6
	kxk	 1, we change the function hk and ‘‘pull it away from

zero to the region around R’’. More precisely, we set

hk;sðtÞ :¼ hkðt � sÞ þ s

and let ak;s be the point with hk;sðak;sÞ ¼ R. Now we put, for k 2 ½0; 2
3

 and

5
6
	kxk	 1:

Gðk; xÞ ¼ KðgðxÞ; hk;6Rkxk�5R; ak;6Rkxk�5RÞ: ð4:13Þ

If kxk ¼ 1, then hk;6Rkxk�5R � id on [0, R] (Fig. 2). In other words, the metric

Gðk; xÞ coincides with the original metric on Bk
R (but it is changed outside this

disc), so that we indeed get a relative homotopy. It remains to show that (4.13)

defines a psc metric, and for this, we have to pick g sufficiently small. The

functions hk;s are just translated versions of hk, and so their second derivatives

still satisfies (4.12). But recall Lemma 4.8 and Remark 4.9: together, they show

that (4.13) defines a psc metric, as long as we pick g small enough so that

gmax p;
C

2a

� �
	 B00 � B0

2ðk � 1Þ d:

(6) Let us summarize what we have achieved so far: The map G : ½0; 2
3

 � Dn !

RþrotðMÞ is continuous, Gð½0; 2
3

 � Sn�1Þ � RþðM;uÞ. For k ¼ 2

3
, the metric

Gðx; 2
3
Þ has a warping function f2

3
;x, which we constructed in such a way that

f 02
3
;x
� 0 near

sðxÞ :¼
a kxk	 5

6

maxR; aþ 6Rkxk � 5R kxk� 5

6
:

8><
>:

(7) The last step is to stretch the collar around sðxÞ. This does not require us to be

careful anymore. Let �[ 0 so that f 02
3
;x
� 0 on ½sðxÞ � �; sðxÞ þ �
. Pick a

family ðhk;xÞðk;xÞ2½2
3
;1
�Dn of smooth functions and ak;x 2 R, depending

continuously on k and x so that

• h2
3
;x ¼ id,

• hk;xj½0;sðxÞ��
 ¼ id for all k,

• hk;xj½sðxÞþ�;1Þ � sðxÞ for k� 5
6
,

• h00k;x	 0, 0	 h0k;x	 1 for all k.
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• ak;x ¼ sðxÞ for k 2 ½2
3
; 5

6

,

• a1;x ¼ R for all x,

• ak;x is monotone increasing in k.

The desired deformation of the metric on ½2
3
; 1
 � Dn is

Gðk; xÞ :¼ Kðgð2
3
; xÞ; hk;x; ax;kÞ:

h

4.3 Deforming to a torpedo and adjusting widths

Now we are able to finish the proof of Proposition 4.1 and hence of Theorem 3.1.

Consider a commutative diagram

ð5:2Þ

By Proposition 4.3, we may assume that G0ðxÞ is given, on N � Bk
R, by

gN þ dt2 þ fxðtÞ2dn2, where the warping function fx satisfies

• f 0x � 0 near R,

• fx	 d, and we define dx :¼ fxðRÞ,
• 0	 f 0x 	 1 and f 00x 	 0 on [0, R],

• for kxk� 1
2
, fx is the d-torpedo function hd (in 4.3, this is only required for

kxk ¼ 1, but an obvious homotopy achieves this condition for kxk� 1
2
).

Furthermore, there are constants
ðk�1Þðk�2Þ

d2 [B00[B0[B� 0 so that

ðk � 1Þ
�
ðk � 2Þ 1� f 02x

f 2
x

� 2
f 00x
fx

	
�B00:

Let us make three observations.

Observation 4.15 By a collar stretching homotopy as in the last step of the proof of
Proposition 4.3, we may also assume that the metrics G0ðxÞ are rotationally

symmetric on a bigger disc Bk
R1

and the warping function is constant on ½R;R1
, for
R1 as large as we want. For a given R1[R, pick a smooth function a : R! ½0; 1

such that ajð�1;R
 � 0 and aj½R1;1Þ � 1. For b 2 ð0; d
 and p; q 2 ½b; d
, let

ap;qðtÞ :¼ ð1� aðtÞÞpþ aðtÞq:

Then
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rðap;qÞ ¼ ðk � 1Þ ðk � 2Þ 1

a2
p;q

� ðk � 2Þ
a02p;q
a2
p;q

� 2
a00p;q
ap;q

 !

�ðk � 1Þ k � 2

d2
� ðk � 1Þðk � 2Þðq� pÞ2a02

b2
þ jp� qjja00j

b

� ðk � 1Þðk � 2Þ
d2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
�B00

�d2 ðk � 1Þðk � 2Þa02

b2
þ d
ja00j
b

:

So, if R1 is large enough, there exists a function a such that the latter term is at
least B0.

Observation 4.16 If f0; f1 are two warping functions such that 0	 f 0i 	 1 and f 00i 	 0,

and such that rðfiÞ[ 0 on [0, R], then for any k 2 ½0; 1
, rðð1� kÞf0 þ kf1Þ[ 0 on
[0, R]. This follows from (4.2) and (4.6). Since by (4.6), we have

ðð1� kÞf0ð0Þ þ kf1ð0ÞÞ000\0, it follows that ðð1� kÞf0ðtÞ þ kf1ðtÞÞ0\1 for t[ 0

and ðð1� kÞf0ðtÞ þ kf1ðtÞÞ00 	 0. Hence the scalar curvature is positive.

Observation 4.17 For 0\h and a warping function f, let f hðtÞ :¼ hf ð thÞ. Then

f hðtÞ0 ¼ f 0ð thÞ and f hðtÞ00 ¼ 1
h f
00ð thÞ and we get

rðf hðtÞÞ ¼ 1

h2
ðk � 1Þ ðk � 2Þ

1� f 0ð thÞ
2

f ð thÞ
2
� 2

f 00ð thÞ
f ð thÞ

 !
¼ 1

h2
rðf ð t

h
ÞÞ:

Proof of Proposition 4.1 Consider a diagram as in (), with the properties provided

by Proposition 4.3, and furthermore, by Observation 4.15, we may assume that the

metric G(0, x) is given by a warping function fx : ½0;R1
 ! R, with R1 as in 4.15.

The function fx is constant on ½R;R1
, and it is convenient to extend it to all of

½0;1Þ, by f ðtÞ :¼ f ðR1Þ for t[R1.

The goal is to deform fx into a function which is equal to the torpedo function hd
on [0, R], while retaining this property if kxk ¼ 1.

By 4.16, there exists A[ 0, so that

rðð1� kÞfx þ khdÞ�A

for all ðx; kÞ 2 Dn � ½0; 1
. It follows from 4.17 that there is a continuous function

h : Dn ! ð0; 1
 such that

rðð1� kÞf hðxÞx þ khhðxÞd Þ�B00

for all k 2 ½0; 1
, x 2 Dn and t 2 ½0;R
. Since fx ¼ hd when kxk� 1
2
, we can, fur-

thermore, assume that hðxÞ ¼ 1 for kxk ¼ 1.

The desired deformation of warping functions is given on the interval [0, R] by

the formula (note that hhd ¼ hhd)
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fx;kðtÞ :¼

f
3khðxÞþ1�3k
x ðtÞ k 2 ½0; 1

3



ð2� 3kÞf hðxÞx ðtÞ þ ð3k� 1ÞhhðxÞdx
ðtÞ k 2 ½1

3
;
2

3



hð3�3kÞhðxÞdxþð3k�2ÞdðtÞ k 2 ½2
3
; 1
:

8>>>>><
>>>>>:

Now, let

b :¼ min
ðx;kÞ2Dn�½0;1


ffx;kðRÞ; fxðRÞg	 d;

and pick R1[R large enough so that there exists an a as in 4.15. Finally, on the

interval ½R;R1
, we define

fx;kðtÞ ¼ afx;kðRÞ;fxðRÞðtÞ:

h

5 The fibration theorem and Theorem 1.6

5.1 Proof of the fibration theorem

We now present the proof of Theorem 1.1.

Lemma 5.1 Let M be a closed manifold, P a compact space and G : P� ½0; 1
 !
RþðMÞ be continuous. Then there is a continuous map

C : P� ½0; 1
 � ½0; 1
 ! RþðMÞ; ðp; s; tÞ7!Cðp; s; tÞ

such that

(1) C is smooth in t-direction,

(2) all derivatives in M- and t-direction are continuous,
(3) for all ðp; tÞ 2 P� ½0; 1
, we have Cðp; 0; tÞ ¼ Gðp; 0Þ,
(4) for all ðp; sÞ 2 P� ½0; 1
, we have Cðp; s; 0Þ ¼ Gðp; 0Þ, and

Cðp; s; 1Þ ¼ Gðp; sÞ,
(5) if K � M is a codimension 0 submanifold and Gðp; tÞjK is independent of t,

then Cðp; s; tÞjK is independent of s and t.

Moreover, there is a continuous function K : ½0; 1
 ! ð0;1
 with Kð0Þ ¼ 1, such
that if k : R! ½0; 1
 is a smooth function with jk0j; jk00j 	KðsÞ, then the metric

dt2 þ Cðp; s; kðtÞÞ

on R�M has positive scalar curvature for all p 2 P.

Proof To construct C, let Uni ¼ ði�1
n ; iþ1

n Þ \ ½0; 1
 and let Un be the open cover

ðUniÞi¼0;...;n of [0, 1]. Let ðkniÞi¼0;...;n be a subordinate smooth partition of unity.

Define
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Cnðp; s; tÞ :¼
Xn
i¼0

G p; s
i

n

� �
kniðtÞ 2 RðMÞ:

This has all the desired properties, except that the scalar curvature of Cnðp; s; tÞ is

not necessarily positive. Since RþðMÞ � RðMÞ is open, a routine compactness

argument shows that that for sufficiently large n, the scalar curvature of Cnðp; s; tÞ is

positive for all p, s, t. Define C :¼ Cn for such an n.

The existence of the function K with the asserted property follows from the

properties of C, from the compactness of P and from Lemma 2.5.

Proof of Theorem 1.1 Let P be a disc and consider a lifting problem

ð5:3Þ

Since P is compact, we find d[ 0 such that FðP� f0gÞ � RþðWÞ2d. This follows

from a general property of colimits [24][Lemma 3.6] which can be applied here as

the inclusion mapsRþðMÞb ! RþðMÞc are closed embeddings when c\b. We will

construct a continuous map K : P� ½0; 1
 ! Rþð½0; d
 �MÞ with the properties

that

(1) Kðp; sÞ ¼ Gðp; sÞ near f0g �M,

(2) Kðp; sÞ ¼ Gðp; 0Þ near fdg �M.

Then define Hðp; sÞ 2 RþðWÞ to be equal to K(p, s) on ½0; d
 �M and equal to F(p)

on Wnð½0; d
 �MÞ. This is a solution to the lifting problem (5.2).

Let C : P� ½0; 1
 � ½0; 1
 ! RþðMÞ and K : ½0; 1
 ! ð0;1
 be as in Lemma 5.1.

Now let

aðsÞ :¼ max

ffiffiffiffiffiffiffiffiffiffi
3

KðsÞ

s
;

3

KðsÞ

 !
þ 1;

b :¼ sup
s
aðsÞ;

and fix a smooth function f : R! ½0; 1
 such that

(1) f ¼ 0 near ð�1; 0
, f ¼ 1 near ½1;1Þ,
(2) jf 0j; jf 00j 	 3.

With these choices, the Riemannian metric

Lðp; sÞ :¼ dt2 þ C p; s; f
t

aðsÞ

� �� �
ð5:4Þ

on R�M has positive scalar curvature, is cylindrical near ð�1; 0
 �M and near
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½b;1Þ �M and lies in Rþð½0; b
 �MÞGðp;0Þ;Gðp;sÞ. Choose a diffeomorphism h :

½0; d
 ! ½0; b
 such that h0[ 0, h0 ¼ 1 near 0 and d. Then ðp; sÞ7!Kðp; sÞ :¼
ðh� idMÞ�Lðp; sÞ is the desired family of psc metrics on ½0; d
 �M. h

5.2 Proof of Theorem 1.6

The proof uses an auxiliary construction. For r� 0, we let Wr :¼ W [ ðM � ½0; r
Þ
be the result of gluing an external collar of length r to W and define Nr analogously.

We extend the metric gN on N to one denoted gN;r on Nr cylindrically. The

embedding u : N � Rk ! W gets extended in the obvious way to an embedding

ur : Nr � Rk ! Wr. We let RþðWr;urÞ � RþðWrÞ be the space of psc metrics

which are of the form gN;r þ gktor on urðNr � Bk
RÞ. Extending psc metrics

cylindrically over M � ½0; r
 defines maps RþðWrÞ ! RþðWsÞ and

RþðWr;urÞ ! RþðWs;usÞ for s[ r. Restriction to the boundary of Wr defines

restriction maps res0 : RþðWrÞ ! RþðMÞ and RþðWr;urÞ ! RþðM; ouÞ which

are compatible. In the colimit, we obtain a commutative diagram

ð5:6Þ

Lemma 5.5 The left vertical map in (5.4) is a Serre fibration.

Let us postpone the proof of Lemma 5.5 for the moment, and explain how to

finish the proof of Theorem 1.6.

Proof of Theorem 1.6 The bottom horizontal map in (5.4) is a weak equivalence, by

Theorem 1.2. The inclusion maps RþðWrÞ ! RþðWsÞ are weak homotopy

equivalences, and hence so is the inclusion map RþðWÞ ! colimr!1RþðWrÞ.
This is proven in the same way as the elementary [2, Lemma 2.1 and Corollary 2.3].

Each individual map RþðWr;urÞ ! RþðWrÞ is a weak equivalence, by

Theorem 1.2 and hence so is the top horizontal map in (5.4). It follows that the

inclusion RþðW ;uÞ ! colimr!1RþðWr;urÞ is a weak equivalence.

The right vertical map in (5.4) is a Serre fibration. This follows easily from

Theorem 1.1 and a colimit argument.

Together with Lemma 5.5, it follows that the induced map on fibres is a weak

equivalence. Over g 2 RþðM; ouÞ, this is the bottom map of the diagram

ð5:6Þ

and we want to know that the top map is a weak equivalence. Thus to conclude the

proof of Theorem 1.6, it enough to prove that the two vertical maps in (5.6) are

weak equivalences. For the right hand vertical map, this follows immediately from
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[2][Lemma 2.1], and for the left hand side map, we use [5][Corollary 2.5.4] (whose

proof is elementary, but slightly lengthy). h

Proof of Lemma 5.5 This is similar to, but easier than the proof of Theorem 1.1. Let

P be a disc and consider a lifting problem

By compactness of P, there is r� 0 so that FðP� f0gÞ � RþðWr;urÞ. Define

L(p, s) by the formula (5.3) and let b as in loc.cit. Define Hðp; sÞ 2 RþðWrþb;urþbÞ
to be equal to L(P, s) on M � ½r; r þ b
 and equal to F(p, s) on Wr. This has all the

desired properties (H(p, s) lies in RþðWrþb;urþbÞ because of property (5) of

Lemma 5.1). h

6 Cobordism invariance of the space of psc metrics

This section is devoted to the proof of Theorem 1.5.

Definition 6.1 Let M0 and M1 be closed ðd � 1Þ-manifolds and let W : M0,M1 be

a cobordism. We say that W has handle type [k, l] if there exists a handlebody

decomposition of W relative to M0 all whose handles have index in

fk; k þ 1; . . .; l� 1; lg.

The first step in the proof of Theorem 1.5 is the following corollary of

Theorem 1.2.

Corollary 6.2 (to Theorem 1.2) Let M0 and M1 be two closed ðd � 1Þ-manifolds and
assume that there is a cobordism W : M0,M1 of handle type ½0; d � 3
. Then there

exists a map RþðM0Þ ! RþðM1Þ, which can be chosen to be a weak homotopy
equivalence if the handle type of W is ½3; d � 3
.

Proof Let M be a closed ðd � 1Þ-manifold and let / : Sm�1 � Rd�m ! M be an

embedding. The result of a surgery on M is

M/ :¼ Mnð/ðSm�1 � Dd�mÞ [ Dm � Sd�m�1. The opposite embedding of / is

/op : Rm � Sd�m�1 ! M/, and we obtain M back from M/ by a surgery on /op.

There is a zigzag of maps

RþðMÞ  RþðM;/Þ ffi RþðM/;/
opÞ ! RþðM/Þ:

By Theorem 1.2, the arrow pointing to the left is a weak equivalence if m	 d � 3.

By inverting the arrow up to homotopy, we obtain a map RþðMÞ ! RþðM/Þ. If

m� 3, then the arrow pointing to the right is a weak equivalence, and so is the map

RþðMÞ ! RþðM/Þ.
If W has handle type ½0; d � 3
, we can obtain M1 from M0 by a sequence of

surgeries on embedded copies of Sm�1 � Rd�m with d � m� 3, which gives the
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map, and if the handle type is ½3; d � 3
, this map is a weak homotopy equiva-

lence. h

Because of Corollary 6.2, Theorem 1.5 follows from the next two results.

Proposition 6.3 Let h : B! BOðdÞ be a fibration and let M0, M1 be two closed
ðd � 1Þ-dimensional h-manifolds such that the structure maps Mi ! B are 2-
connected. Assume that d� 6 and that there is a h-cobordism W : M0,M1. Then
there exists a h-cobordism W 0 : M0,M1 such that both inclusions Mi ! W 0 are
2-connected.

Proposition 6.4 Let W : M0,M1 be a d-dimensional cobordism between closed
manifolds such that the inclusions Mi ! W are 2-connected. Then

(1) if d� 7, W has handle type ½3; d � 3
,
(2) if d ¼ 6, then there is r such that the connected sum W]rðS3 � S3Þ with

sufficiently many copies of S3 � S3 has handle type [3, 3].

In both Propositions, the case B ¼ BSpin follows quickly from the proof of the h-

cobordism theorem for simply connected manifolds, which has found its way into

textbooks [15, 17], and is described in [29]. The general case requires techniques

from the proof of the s-cobordism theorem, which are not so well known. Therefore,

we include the proof here, for sake of completeness.

Proof of Proposition 6.3 To simplify the notation, we assume that B is 0-connected.

If we could assume that the space is of type ðF3Þ [25], we can perform h-surgeries in

the interior of W, giving a cobordism W 0 such that the structure map W 0 ! B is 3-

connected. It follows that the inclusion maps Mi ! W are both 2-connected.

However, the assumptions of the proposition only imply that B is of type ðF2Þ, and

an additional argument is required (which goes back to [20][Theorem 2.2] and is

explained also in [10]). By h-surgeries in the interior of W, we can replace W by a

cobordism W 0 so that W 0 ! B is 2-connected. Hence we can assume, without loss of

generality, that W ! B is 2-connected. This condition implies that both inclusions

Mi ! W induce isomorphisms on fundamental groups. Let p be the common

fundamental group. The long exact homotopy sequence of the pair ðW ;M0Þ gives

the diagram

Now p2ðW ;M0Þ is a finitely generated Z½p
-module, by [25][§1]. Using that the

structure map M0 ! B is 2-connected, a diagram chase shows that there are

elements x1; . . .; xr 2 p2ðWÞ whose image in p2ðW ;M0Þ generate p2ðW ;M0Þ as a

Z½p
-module and which lie in the kernel of ð‘WÞ� : p2ðWÞ ! p2ðBÞ.
Because d� 5, we can represent xi by an embedded 2-sphere. Because

ð‘WÞ�ðxiÞ ¼ 0, it follows that the normal bundle of those embeddings is trivial,
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and that xi is represented by an embedding S2 � Rd�2 ! W . We may assume that

those embeddings are disjoint, by general position. We can perform h-surgeries on

those spheres, and obtain a new h-cobordism W 0 so that M0 ! W 0 is 2-connected.

Rename W :¼ W 0.
To make the inclusion of M1 2-connected as well, we use the same argument with

M0 replaced by M1, but we have to be careful to not destroy the 2-connectivity of

M0 ! W . For an embedding f :
‘r S2 � Dd�2 ! W , let W� :¼ WnImðf Þ� and

W 0 ¼ W� [oImðf Þ ð
‘r D3 � Sd�3Þ. By general position, the inclusion W� ! W 0 is 2-

connected, and W� ! W is ðd � 3Þ� 3-connected (here we use that d� 6). The

diagram

shows that M0 ! W� is 2-connected, and so is M0 ! W 0 h

Proof of Proposition 6.4 Part (1) follows quickly from handle trading [14, 26]. If

d ¼ 6, handle trading implies that W is of handle type [2, 3]. But handle trading is

not enough: we can only barter the 2-handles for 4-handles. In fact, it is not correct

that a 6-dimensional cobordism W : M0,M1 with both inclusions 2-connected has

handle type [3, 3]: look at a 6-dimensional h-cobordism with nontrivial Whitehead

torsion to see why. To deal with part (2), we invoke the following result, whose

proof is contained in the proof of [7, Lemma 6.21] (and which has its origins in

[16]). Let W : M0,M1 be a cobordism of dimension 2n� 6 such that both

inclusions Mi ! W are ðn� 1Þ-connected. Then for sufficiently large r, the

cobordism W]rðSn � SnÞ has handle type [n, n]. h

Appendix A: Curvature calculation

A.1. Proof of Lemma 2.4

Fix a local coordinate system ðx1; . . .; xdÞ on M and define a coordinate system on

R�M by taking x0 ¼ t, the R-variable. We now let gij be the components of g in

these coordinates and hij those of h. Let gij and hij be the components of the inverses

of the metric tensors. Note that

hij ¼
gij i; j� 1;

1 i ¼ j ¼ 0;

0 otherwise

8><
>:

and
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hij ¼
gij i; j� 1;

1 i ¼ j ¼ 0;

0 otherwise:

8><
>:

We write Ck
ij, R

i
jkl and S for the Christoffel symbols, the components of the curvature

tensor and the scalar curvature of h and use the symbols ckij, r
i
jkl and s for those

associated with g. Without any further comment, we use the Einstein summation

convention. With these notations in place, we have, essentially by definition,

Ck
ij ¼

1

2
hklðhil;j þ hjl;i � hij;lÞ

Rk
lij ¼ Ck

jl;i � Ck
il;j þ Ck

imC
m
jl � Ck

jmC
m
il

S ¼ hjlRk
jkl;

see [13, Corollary 3.3.1, (3.1.31), (3.3.6) and (3.3.19)]. The symmetry property

Ck
ij ¼ Ck

ji

is obvious. The same formulas of course hold for g and its associated objects. Using

these formulas, one computes

Ck
ij ¼

ckij i; j; k 6¼ 0;

� 1

2
gij;0 k ¼ 0; i; j 6¼ 0;

1

2
gklðgjl;0Þ k; j 6¼ 0; i ¼ 0;

1

2
gklðgil;0Þ k; i 6¼ 0; j ¼ 0;

0 otherwise:

8>>>>>>>>>><
>>>>>>>>>>:

The relevant components of the curvature tensor are

Rk
0k0 ¼ þ

1

4
gkigjlgij;0gkl;0 �

1

2
gklgkl;00;

R0
j0l ¼ �

1

2
gjl;00 þ

1

4
gmiglm;0gij;0

and (for j; k; l 6¼ 0)

Rk
jkl ¼ rkjkl þ

1

4
gkigil;0gkj;0 �

1

4
gkigik;0glj;0:

Altogether, we obtain (making an exception of the rule that we use the summation

convention)
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S ¼
Xd
k¼0

Rk
0k0 þ

X
j;l 6¼0

gjlR0
j0l þ

X
j;k;l 6¼0

gjlRk
jkl ¼

(switching back to the summation convention)

1

4
gkigjlgij;0gkl;0 �

1

2
gklgkl;00 �

1

2
gjlgjl;00 þ

1

4
gjlgmiglm;0gij;0 þ s

þ 1

4
gjlgkigil;0gkj;0 �

1

4
gjlgkigik;0glj;0 ¼

sþ 3

4
gkigjlgij;0gkl;0 � gklgkl;00 �

1

4
gjlgkigik;0glj;0:

A.2: Proof of Lemma 3.11

We fix an orthonormal frame ðE1; . . .;EdÞ at a point p 2 Qc � N � Rk � R such that

E1 ¼ _c, E2; . . .;Ek are tangent to Sk�1ðrÞ and Ekþ1; . . .;Ed are tangent to N. By the

Gauß curvature equation, we have

scalðgcÞ ¼ scalðgþ dt2Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼scalðgÞ

þ2
X
i\j

�
hIIðEi;EiÞ; IIðEj;EjÞi � hIIðEi;EjÞ; IIðEi;EjÞi

	
:

We will now estimate the entries of second fundamental form. First we note that for

g the normal vector field of Qc in N � Rk � R we have

_c ¼ sinðhÞot � cosðhÞor g ¼ cosðhÞot þ sinðhÞor:

We get for i� 2:

r _cg ¼ r _cðcosðhÞot þ sinðhÞorÞ
¼ �h0ðsÞ sinðhÞot þ cosðhÞ r _cot|ffl{zffl}

¼0

þh0ðsÞ cosðhÞor þ sinðhÞ r _cor|ffl{zffl}
¼0

¼ �h0ðsÞ _c

rEi
g ¼ rEi

ðcosðhÞot þ sinðhÞorÞ ¼
� h0ðsÞ sinðhÞot þ cosðhÞrEi

ot|fflffl{zfflffl}
¼0

þh0ðsÞ cosðhÞor þ sinðhÞrEi
or

¼ �h0ðsÞ _cþ sinðhÞrEi
or

:

Since Qc is a hypersurface, the direction of IIðEi;EjÞ is always g and we will omit

this. We deduce for 2	 i\j:
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IIðE1;E1Þ ¼ �hr _cg; _ci ¼ j

IIðE1;EiÞ ¼ �hr _cg;Eii ¼ 0

IIðEi;EjÞ ¼ � sinðhÞhrEi
or;Eji ¼ sinðhÞIIMðEi;EjÞ;

where IIM denotes the second fundamental form of N � Sk�1ðrÞ in N � Rk with

respect to the normal vector field or. We have the following estimate on IIM due to

Hoelzel [12, Lemma 2.6]2:

IIMðEi;EjÞ ¼ �
1

r
� hpðEiÞ;Eji þ Oð1Þ;

where p : TðN � Sk�1ðrÞÞ !VTðN � Sk�1ðrÞÞ denotes the projection onto the

vertical tangent bundle with respect to the map N � Sk�1ðrÞ ! N. Hence, pðEiÞ ¼
Ei if 2	 i	 k and pðEiÞ ¼ 0 for i� k þ 1. This shows that IIMðEi;EjÞ ¼ Oð1Þ if

i 6¼ j or i; j� k þ 1. For 2	 i	 k we have IIMðEi;EiÞ ¼ � 1
r þ OðrÞ (see [28][Ap-

pendix]). This assembles to

IIðEi;EjÞ ¼

j if i ¼ j ¼ 1

0 if 1 ¼ i\j

sinðhÞð� 1

r
þ OðrÞÞ if 2	 i ¼ j	 k

sinðhÞOð1Þ if 2	 i\j or j[ k:

8>>>><
>>>>:

Therefore, we get3:

X
i\j

IIðEi;EjÞ2 ¼ Oð1Þ � sinðhÞ2

2 Note that there is a sign difference because Hoelzel uses a different sign convention for the second

fundamental form: In his article, he defines IIðV ;WÞ ¼ �gðrVW; gÞ � g whereas we adapt to the

convention IIðV ;WÞ ¼ �gðrVg;WÞ � g. This difference is, however, not relevant to us since

hpðEiÞ;Eji ¼ 0 for i 6¼ j.

3 This is where the error in [28] occurs:
k � 1

2

� �
¼ ðk�1Þðk�2Þ

2
is miscounted as ðk � 1Þðk � 2Þ.
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X
i\j

IIðEi;EiÞIIðEj;EjÞ ¼j
Xk
i¼2

IIðEi;EiÞ þ j
Xd
i¼kþ1

IIðEi;EiÞ

þ
X

2	 i\j	 k

IIðEi;EiÞIIðEj;EjÞ

þ
X

2	 i	 k\j	 d

IIðEi;EiÞIIðEj;EjÞ

þ
X

k\i\j	 d

IIðEi;EiÞIIðEj;EjÞ

¼ sinðhÞ � j � ðk � 1Þ �
�
� 1

r
þ OðrÞ

�
þ j � Oð1Þ � sinðhÞ

þ ðk � 1Þðk � 2Þ
2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼
k � 1

2

� �
�
�
� 1

r
þ OðrÞ

�2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼
�

1
rð Þ

2þOð1Þ
	
� sinðhÞ2

þ
�
� 1

r
þ OðrÞ

�
� Oð1Þ � sinðhÞ2 þ Oð1Þ � sinðhÞ2:

Rearranging all terms finishes the proof.
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