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To Claude Viterbo on the occasion of his 60th birthday, with admiration.

Abstract. By a well-known theorem of Viterbo, the symplectic homol-
ogy of the cotangent bundle of a closed manifold is isomorphic to the
homology of its loop space. In this paper, we extend the scope of this
isomorphism in several directions. First, we give a direct definition of
Rabinowitz loop homology in terms of Morse theory on the loop space
and prove that its product agrees with the pair-of-pants product on
Rabinowitz Floer homology. The proof uses compactified moduli spaces
of punctured annuli. Second, we prove that, when restricted to pos-
itive Floer homology, resp. loop space homology relative to the con-
stant loops, the Viterbo isomorphism intertwines various constructions
of secondary pair-of-pants coproducts with the loop homology coprod-
uct. Third, we introduce reduced loop homology, which is a common
domain of definition for a canonical reduction of the loop product and
for extensions of the loop homology coproduct which together define
the structure of a commutative cocommutative unital infinitesimal anti-
symmetric bialgebra. Along the way, we show that the Abbondandolo–
Schwarz quasi-isomorphism going from the Floer complex of quadratic
Hamiltonians to the Morse complex of the energy functional can be
turned into a filtered chain isomorphism using linear Hamiltonians and
the square root of the energy functional.

1. Introduction

For a closed manifold M , there are canonical isomorphisms

H∗(Λ,Λ0; η) ∼= FH>0
∗ (T ∗M) ∼= SH>0

∗ (D∗M) ∼= SH1−∗
<0 (S∗M). (1)

Here, we use coefficients in any commutative ring R, twisted in the first group
by a suitable local system η which restricts to the orientation local system
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on the space Λ0 ⊂ Λ of constant loops (see Appendix A). The groups in the
above chain of isomorphisms are as follows: H∗(Λ,Λ0) denotes the homology
of the free loop space Λ = C∞(S1,M) relative to Λ0; FH>0

∗ (T ∗M) the pos-
itive action part of the Floer homology of a fibrewise quadratic Hamiltonian
on the cotangent bundle; SH>0

∗ (D∗M) the positive symplectic homology of
the unit cotangent bundle D∗M ; and SH1−∗

<0 (S∗M) the negative symplectic
cohomology of the trivial Liouville cobordism W = [1, 2] × S∗M over the
unit cotangent bundle S∗M . The first isomorphism is the result of work of
many people starting with Viterbo (see [1,3,5,7,17,30,34,35,39]); the sec-
ond one is obvious; and the third one is a restriction of the Poincaré duality
isomorphism from [22].

Restricting to field coefficients, all the groups in (1) carry natural co-
products of degree 1 − n:

• the loop homology coproduct (in the sequel simply called loop coprod-
uct) λ on H∗(Λ,Λ0; η) defined by Sullivan [36] and further studied by
Goresky and the second author in [27], see also [29];

• the (secondary) pair-or-pants coproduct λAS on FH>0
∗ (T ∗M) defined

by Abbondandolo and Schwarz [4];
• the varying weights coproduct λw on SH>0

∗ (D∗M) first described by
Seidel and further explored in [26];

• the continuation coproduct λF on SH>0
∗ (D∗M) described in [20];

• the Poincaré duality coproduct λPD on SH1−∗
<0 (S∗M) dual to the pair-

of-pants product on SH<0
1−∗(S

∗M), described in [16].

The first result of this paper is

Theorem 1.1. With field coefficients, all the above coproducts are equivalent
under the isomorphisms in (1).

Remark 1.2. (Coproducts and field coefficients) There is a formal algebraic
reason why we need to restrict to field coefficients when speaking about
homology coproducts. Given a chain complex C = C∗ and a chain map
C → C⊗C, we obtain a map H∗(C) → H∗(C⊗C). However, the latter factors
through H∗(C)⊗H∗(C) only if the Künneth isomorphism H∗(C)⊗H∗(C) �→
H∗(C ⊗C) holds, which is the case with field coefficients. All our coproducts
are defined at chain level with arbitrary coefficients, and we would not need
to restrict to field coefficients if we carried the discussion at chain level.

Remark 1.3. (Coefficients twisted by local systems) The chain of isomor-
phisms (1) also holds if one further twists each of the factors by an addi-
tional local system. If the latter is compatible with products in the sense of
Appendix A.5, then all groups still carry natural coproducts of degree 1 − n
and Theorem 1.1 continues to hold. This is particularly relevant when M is
orientable: the constant local system on Λ is indeed of the form σ−1 ⊗ η,
where σ is the transgression of the second Stiefel–Whitney class, so that
H∗(Λ,Λ0) � SH>0

∗ (D∗M ;σ−1). See Appendix A.9.

Remark 1.4. All our statements have counterparts for open strings, in which
the free loop space is replaced by the based loop space and symplectic homol-
ogy of T ∗M is replaced by wrapped Floer homology of the cotangent fibre
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T ∗
q M . See [16]. We do not spell out these results and focus on closed strings

in this paper.

The first two isomorphisms in (1) are obtained by dividing out the
constant loops, resp. the action zero part in the chain of isomorphisms

H∗(Λ; η) ∼= FH∗(T ∗M) ∼= SH∗(D∗M). (2)

According to Abbondandolo and Schwarz [3], these isomorphisms inter-
twine the Chas–Sullivan loop product [13] on the first group with the pair-
of-pants products on the other two groups. On the other hand, according
to [16,21], the product on SH∗(D∗M) and the coproduct on SH>0

∗ (D∗M)
are related to the pair-of-pants product and coproduct on SH∗(S∗M) by the
“almost split” exact sequence

SH1−∗
>0 (D∗M)

i

�����
���

���
��

j

��
�� SH−∗(D∗M)

ε �� SH∗(D∗M)

q

��

ι �� SH∗(S∗M)

p

�����
���

���
��

π �� SH1−∗(D∗M) ��

SH>0
∗ (D∗M)

(3)
where the maps have the following properties.

• The map ι intertwines the pair-of-pants products, and the map π inter-
twines the pair-of-pants coproducts.

• The “almost splitting” i satisfies π ◦ i = j and intertwines the prod-
uct dual to λF on SH1−∗

>0 (D∗M) with the pair-of-pants product on
SH∗(S∗M).

• The “almost splitting” p satisfies p◦ι = q and intertwines the coproduct
on SH∗(S∗M) with the continuation coproduct λF on SH>0

∗ (D∗M).
• The map ε lives only in degree 0 and factors through the constant

loops as the connecting map in the Gysin sequence for the cohomology
Hn−∗(S∗M)

SH−∗(D∗M) ε ��

��

SH∗(D∗M)

H−∗M e �� H∗M

��
(4)

Here, the map e is multiplication with the Euler characteristic of M in degree
0. From this perspective, and up to some discrepancy at the constant loops,
both the pair-of-pants product on SH∗(D∗M) and the product dual to λF

on SH1−∗
>0 (D∗M) appear as “components” of the pair-of-pants product on

SH∗(S∗M). See [21, §7].
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Our second goal is to define a topological counterpart of SH∗(S∗M).1

The starting point is the topological counterpart of diagram (4):

H−∗Λ ε ��

��

H∗Λ

H−∗M e �� H∗M

�� (5)

Here, the map ε is induced by a chain map on the Morse complex (with
respect to the energy functional)

c : MC−∗(Λ) → MC−∗(M) → MC∗(M) → MC∗(Λ),

where the exterior maps are induced by the inclusion of constant loops, and
the middle map lives in degree zero and is given by multiplication with the
Euler characteristic of M . We define the Rabinowitz loop homology as the
homology of the cone of c,

̂H∗Λ:=H∗(Cone(c)).

By general properties of the cone construction (see e.g. [22]), this fits into a
long exact sequence

�� H−∗Λ ε �� H∗Λ
ι �� ̂H∗Λ

π �� H1−∗Λ �� (6)

Our second result is

Theorem 1.5. The Rabinowitz loop homology ̂H∗Λ carries a natural product
of degree −n such that the map ι in (6) is a ring homomorphism. Moreover,
for n �= 2, there exists an isomorphism of rings SH∗(S∗M) ∼= ̂H∗Λ such that
the following diagram commutes:

· · · SH−∗(D∗M)
ε �� SH∗(D∗M)

∼=

��

ι �� SH∗(S∗M)

∼=
��

π �� SH1−∗(D∗M) · · ·

· · · H−∗Λ

∼=

��

ε �� H∗Λ
ι ��

̂H∗Λ
π �� H1−∗Λ · · ·

∼=

��

Remark 1.6. (a) In [16] we defined ̂H∗Λ as SH∗(S∗M), and with this defini-
tion Theorem 1.5 is a tautology. The point of the present paper is to define
̂H∗Λ in purely topological terms as above, in which case Theorem 1.5 becomes
an actual theorem. It can be seen as an upgrade of Viterbo’s isomorphism
[39] from symplectic homology to Rabinowitz Floer homology.

(b) The hypothesis n �= 2 is only an artefact of our proof and can be
removed by upgrading the theory of A+

2 -structures in [20] to a theory of
A+

3 -structures, which would take into account arity 3 operations.

1In [22] the group SH∗(S∗M) was called symplectic homology of (the trivial cobordism
over) S∗M , and in [15] it was proved to be isomorphic to the Rabinowitz Floer homol-
ogy group RFH∗(S∗M). In the sequel, we will allow ourselves to use both names. The

isomorphism ̂H∗Λ � SH∗(S∗M) motivates our terminology Rabinowitz loop homology for
̂H∗Λ.
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One difficulty with the proof of Theorem 1.5 is the lack of an obvious
chain map inducing the isomorphism SH∗(S∗M) ∼= ̂H∗Λ, due to the fact
that the natural chain maps inducing Viterbo’s isomorphisms on homology
and cohomology go in opposite directions. We overcome this difficulty using
the theory of A+

2 -structures from [20]. We will prove that the Abbondandolo–
Schwarz map on chain level yields a quasi-isomorphism of A+

2 -structures, and
then appeal to algebraic results from [20] concerning such structures and their
associated cones.

Starting from the exact sequence (6), we define in this paper reduced
loop homology and cohomology

H∗Λ = coker ε, H
∗
Λ = ker ε.

Theorem 1.7. ([21]) The loop product on H∗Λ descends to H∗Λ and the loop
coproduct on H∗(Λ,Λ0) extends to H∗Λ (canonically if we have H1M = 0).
Each such extension λ defines together with the loop product μ the structure
of a commutative cocommutative unital infinitesimal anti-symmetric bialgebra
on H∗Λ = H∗+nΛ. In particular, the following relation holds:

λμ = (μ ⊗ 1l)(1l ⊗ λ) + (1 ⊗ 1l)(λ ⊗ 1l) − (μ ⊗ μ)(1l ⊗ λ1 ⊗ 1l),

where we denote 1l the identity map and 1 the unit for the product μ.

We refer to [19,21] for the definition of a commutative cocommutative
unital infinitesimal anti-symmetric bialgebra. The extensions of the coproduct
depend on the choice of auxiliary data consisting of a Morse function on M
with a unique maximum, a Morse–Smale gradient vector field, and a vector
field with nondegenerate zeroes located away from the (n − 1)-skeleton. We
discuss this dependence in Sect. 4. The coproduct is independent of all choices
when H1M = 0 (Proposition 4.7), and in that case it also vanishes on the unit
1 (Corollary 4.9), so that the above relation becomes the unital infinitesimal
relation

λμ = (μ ⊗ 1l)(1l ⊗ λ) + (1 ⊗ 1l)(λ ⊗ 1l).

Structure of the paper. In Sect. 2, we define the notion of a special A+
2 -

structure and prove that the Morse complex of the energy functional on loop
space carries such a structure. In particular, this includes a Morse theoretic
definition of the loop coproduct.

In Sect. 3 we construct a special A+
2 -structure on the chain complexes

underlying symplectic homology of D∗M .
In Sect. 4, we discuss extensions of the loop coproduct to reduced ho-

mology, and also the dependence of these extensions on choices.
In Sect. 5, we revisit the Viterbo isomorphism between symplectic ho-

mology of the cotangent bundle and loop space homology. We show that the
Abbondandolo–Schwarz map

Ψ : SH∗(D∗M) �→ H∗(Λ; η),

which was originally constructed using asymptotically quadratic Hamiltoni-
ans and as such did not preserve the natural filtrations (at the source by the



59 Page 6 of 84 K. Cieliebak et al. JFPTA

non-Hamiltonian action, and at the target by the square root of the energy),
can be made to preserve these filtrations when implemented for the linear
Hamiltonians used in the definition of symplectic homology. As such, Ψ be-
comes an isomorphism at chain level. This uses a length vs. action estimate
inspired by [17].

In Sect. 6, we prove that the isomorphism Ψ intertwines the special A+
2 -

structures of Sect. 2 and Sect. 3, which together with algebraic results from
[20] yields Theorem 1.5. Our proof uses homotopies in certain compactified
moduli spaces of punctured annuli. In Remark 6.2, we discuss some related
open questions involving the two chain-level isomorphisms between Morse
and Floer complexes constructed by Abbondandolo–Schwarz in [1,6].

In Sect. 7, we restrict to positive symplectic homology on the symplectic
side, respectively, to loop homology rel constant loops on the topological side.
We relate there the coproduct λF resulting from Sect. 3 to the other secondary
coproducts mentioned above, thus proving Theorem 1.1. In particular, this
implies that the secondary coproduct defined by Abbondandolo and Schwarz
in [4] corresponds under the isomorphism Ψ (restricted to the positive range)
to the loop coproduct. For completeness, we also give a direct proof of this
last fact in Sect. 7.4.

In Sect. 8, we compute the extended coproducts on reduced loop homol-
ogy of odd-dimensional spheres Sn. For n ≥ 3, these coproducts are canonical,
but for n = 1 one sees explicitly the dependence on the choice of auxiliary
data discussed in Sect. 4.

The Appendix contains a complete discussion of local systems on free
loop spaces and their behaviour with respect to the loop product and coprod-
uct. Local systems are unavoidable in the context of manifolds which are not
orientable [7,31], and also in the context of the correspondence between sym-
plectic homology of D∗M and loop space homology of M [5,7,30]. They also
proved useful in applications [9].

2. A+
2 -structure for loop space homology

2.1. A+
2 -algebras

In this subsection, we recall from [20] the definition and basic properties of
A+

2 -algebras. We will restrict to the case of special A+
2 -algebras which suffices

for our purposes.
Let R be a commutative ring with unit, and (A, ∂) a differential graded

R-module. Let A∨
∗ = HomR(A−∗, R) be its graded dual, and ev : A∨⊗A → R

the canonical evaluation map. We denote

τ : A ⊗ A → A ⊗ A, a ⊗ b 
→ (−1)deg a deg bb ⊗ a.

Definition 2.1. A special A+
2 -structure on (A, ∂) consists of the following R-

linear maps:
• the continuation quadratic vector c0 : R → A ⊗ A, of degree 0;
• the secondary continuation quadratic vector Q0 : R → A ⊗ A, of degree

1;



Vol. 25 (2023) Loop coproduct in Morse and Floer homology Page 7 of 84 59

• the product μ : A ⊗ A → A, of degree 0;
• the secondary coproduct λ : A → A ⊗ A, of degree 1.

The continuation quadratic vector c0 gives rise to the continuation map

c:=(ev ⊗ 1)(1 ⊗ c0) : A∨ → A.

These maps are subject to the following conditions:

1. c0 is a cycle;
2. c0 is symmetric up to a homotopy given by Q0, i.e.

τc0 − c0 = [∂,Q0];

3. μ is a chain map;
4. λ satisfies the relation

[∂, λ] = (μ ⊗ 1)(1 ⊗ c0) − (1 ⊗ μ)(τc0 ⊗ 1);

5. Denoting λ = λc0,c0 and

λτc0,τc0 = λc0,c0 + (μ ⊗ 1)(1 ⊗ Q0) − (1 ⊗ μ)(τQ0 ⊗ 1),

λc0,τc0 = λc0,c0 + (μ ⊗ 1)(1 ⊗ Q0),

λτc0,c0 = λc0,c0 − (1 ⊗ μ)(τQ0 ⊗ 1),

we require that

(λc0,τc0 ⊗ 1)τc0 = (λτc0,c0 ⊗ 1)τc0 = (λτc0,τc0 ⊗ 1)c0 = 0.

We call the tuple (A, ∂, c0, Q0, μ, λ) a special A+
2 -algebra.

Proposition 2.2. ([20]) Let (A, ∂, c0, Q0, μ, λ) be a special A+
2 -algebra. Then,

the cone Cone(c) carries a canonical product μ which commutes with the
boundary operator and thus descends to homology. Moreover, in the long exact
sequence

�� H−∗(A)
c∗ �� H∗(A) ι �� H∗(Cone(c)) π �� H1−∗(A) ��

the map ι is a ring map with respect to μ and μ.

Next, we discuss morphisms (again only a special case).

Definition 2.3. A special morphism of special A+
2 -algebras (Ψ,Γ,Θ) : A → A′

consists of the following R-linear maps:

(i) a degree 0 chain map Ψ : A → A′ satisfying

c′
0 = (Ψ ⊗ Ψ)c0, Q′

0 = (Ψ ⊗ Ψ)Q0;

(ii) a degree 1 bilinear map Γ : A ⊗ A → A′ satisfying

[∂,Γ] = μ′(Ψ ⊗ Ψ) − Ψμ;

(iii) a degree 2 bilinear map Θ : A → A′ ⊗ A′ satisfying Θc = 0 and

[∂,Θ] = λ′Ψ − (Ψ ⊗ Ψ)λ − (Γ ⊗ Ψ)(1 ⊗ c0) + (Ψ ⊗ Γ)(τc0 ⊗ 1).
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Proposition 2.4. ([20]) Let (Ψ,Γ,Θ) : A → A′ be a special morphism of spe-
cial A+

2 -algebras such that the induced map Ψ∗ : H∗(A) → H∗(A′) is an iso-
morphism. Then, there exists a canonical ring isomorphism H∗(Cone(c)) ∼=
H∗(Cone(c′)) such that the following diagram commutes:

· · · H−∗(A)
c∗ �� H∗(A)

∼=Ψ∗
��

ι �� H∗(Cone(c))

∼=
��

π �� H1−∗(A) · · ·

· · · H−∗(A′)

∼=Ψ∗

��

c′
∗ �� H∗(A′) ι′

�� H∗(Cone(c′)) π′
�� H1−∗(A′) · · ·

∼=Ψ∗

��

Remark 2.5. The word “special” refers to the conditions (5) in Definition 2.1
and Θc = 0 in Definition 2.3. These conditions are imposed in order to sim-
plify the algebra in [20]. These conditions, as well as the hypothesis n �= 2
from Theorems 1.5 and 6.1, can be removed by upgrading the theory of
A+

2 -structure to a theory of A+
3 -structures, which would include arity 3 op-

erations.

Remark 2.6. (a) The conditions in Definition 2.1 imply (Proposition 2.2)
that μ and λ induce a product μ on H∗(Cone(c)). Associativity of μ re-
quires further compatibilities between μ and λ, one of them being the “unital
infinitesimal relation” [16,20,21].
(b) The conditions in Definition 2.1 imply that λ descends to the “reduced
homology” H∗(A/im c) and the map π in (6) intertwines it with a naturally
defined coproduct λ on the cone; see [21] for further details.

2.2. A+
2 -structure on the Morse complex of the loop space

Let now M be a closed connected manifold of dimension n. For simplicity, we
assume that M is oriented and we use untwisted coefficients in a commutative
ring R; the necessary adjustments with twisted coefficients are explained in
Appendix A. We denote

S1:=R/Z and Λ:=W 1,2(S1,M).

Our goal in this subsection is to construct an A+
2 -structure on the Morse

complex of Λ. The analysis underlying the Morse complex is identical to the
one in [1,24] and we refer to there for details.

The Morse complex. Consider a smooth Lagrangian L : S1 ×TM → R

which outside a compact set has the form L(t, q, v) = 1
2 |v|2 − V∞(t, q) for a

smooth potential V∞ : S1 × M → R. It induces an action functional

SL : Λ → R, q 
→
∫ 1

0

L(t, q, q̇)dt,

which we can assume to be a Morse function. This functional is continuously
differentiable and twice Gâteaux-differentiable on the space of loops of class
W 1,2, but in general it is not smooth (unless L is everywhere quadratic) [2].
Abbondandolo and Schwarz proved in [2] that it admits a negative pseudo-
gradient vector field which is smooth and Morse–Smale. The latter condition
means that for all a, b ∈ Crit(SL) the unstable manifold W−(a) and the
stable manifold W+(b) with respect to the negative pseudo-gradient intersect
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transversely in a manifold of dimension ind(a)− ind(b), where ind(a) denotes
the Morse index with respect to SL.

Let (MC∗, ∂) be the Morse complex of SL with R-coefficients. It is
graded by the Morse index and the differential is given by

∂ : MC∗ → MC∗−1, a 
→
∑

ind(b)=ind(a)−1

#M(a; b) b,

where #M(a; b) denotes the signed count of points in the oriented 0-dimen-
sional manifold

M(a; b):=
(

W−(a) ∩ W+(b)
)

/R.

Then, ∂ ◦ ∂ = 0 and its homology MH∗ is isomorphic to the singular homol-
ogy H∗Λ. We will assume in addition that near the zero section L(t, q, v) =
1
2 |v|2 − V (q) for a time-independent Morse function V : M → R such that
all nonconstant critical points of SL have action larger than −min V . Then,
the constant critical points define a subcomplex MC=0

∗ of MC∗ which agrees
with the Morse cochain complex of V on M , with degrees of q ∈ Crit(V )
related by ind(q) = n − indV (q).

We assume that L|M has a unique minimum q0 and a unique maximum
qMax. We denote by χ = χ(M) the Euler characteristic of M and define the
R-linear map c0 : R → MC0 ⊗ MC0 by

c0(1):=χ q0 ⊗ q0.

The element c0 is clearly a cycle and we actually have τc0 = c0. Note, however,
that the secondary continuation element Q0 that we construct in the sequel
may be nonzero. See also Sect. 4.

Remark 2.7. The operation c0 can also be defined by a count of pairs of
semi-infinite gradient lines with common starting point.

The product μ. For a path α : [0, 1] → M and τ ∈ [0, 1], we define the
restrictions α|[0,τ ], α|[τ,1] : [0, 1] → M by

α|[0,τ ](t):=α(τt), α|[τ,1](t):=α
(

τ + (1 − τ)t
)

. (7)

For paths α, β : [0, 1] → M with α(1) = β(0), we define their concatenation
α#β : [0, 1] → M by

α#β(t):=

{

α(2t) t � 1/2,

β(2t − 1) t � 1/2.

For a, b, c ∈ Crit(SL) set

M(a, b; c):=
{

(α, β, γ) ∈ W−(a) × W−(b) × W+(c) | γ = α#β
}

,

which is a transversely cut out manifold of dimension

dim M(a, b; c) = ind(a) + ind(b) − ind(c) − n.

If its dimension equals zero this manifold is compact and defines a map

μ : (MC ⊗ MC)∗ → MC∗−n, a ⊗ b 
→
∑

c

#M(a, b; c) c.
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If the dimension equals 1 it can be compactified to a compact 1-dimensional
manifold with boundary

∂M(a, b; c) =
∐

ind(a′)=ind(a)−1

M(a; a′) × M(a′, b; c)



∐

ind(b′)=ind(b)−1

M(b; b′) × M(a, b′; c)



∐

ind(c′)=ind(c)+1

M(a, b; c′) × M(c′; c).

corresponding to broken pseudo-gradient lines. Therefore, we have

μ(∂ ⊗ id + id ⊗ ∂) − ∂μ = 0, (8)

i.e. μ satisfies condition (3) in Definition 2.1. The induced map on homology

μ∗ : (MH ⊗ MH)∗ → MH∗−n

agrees with the loop product under the canonical isomorphism MH∗ ∼= H∗Λ.
The loop product is associative, and this is reflected at chain level by the fact
that μ is associative up to chain homotopy.

The critical point qMax is a cycle which is a two-sided unit for μ up
to homotopy. Moreover, the subcomplex of constant loops MC=0

∗ ⊂ MC∗ is
stable under μ and we can choose the Morse data such that qMax is a strict
unit for the restriction of μ to MC=0

∗ .
The coproduct λ. We fix a small vector field v on M with nondegenerate

zeroes such that the only periodic orbits of v with period � 1 are its zeroes.
(The last property can be arranged, e.g. by choosing v gradient-like near its
critical points; then the periods of nonconstant periodic orbits are uniformly
bounded from below by a constant c > 0, so v/2c has the desired property.)
Denote by

ft : M
∼=−→ M, t ∈ R

the flow of v, i.e. the solution of the ordinary differential equation d
dtft = v◦ft.

It follows that the only fixed points of f = f1 are the zeroes of v, each zero
q is nondegenerate as a fixed point, and

sign det(Tqf − id) = indv(q),

where indv(q) is the index of q as a zero of v. The map

f × id : M → M × M, q 
→ (

f(q), q
)

is transverse to the diagonal Δ ⊂ M × M and

(f × id)−1(Δ) = {q ∈ M | f(q) = q} = Fix(f).

Since for q ∈ Fix(f) the map TqM → TqM × TqM , w 
→ (

(Tqf − id)w, 0
)

fills up the complement to T(q,q)Δ, the induced orientation on Fix(f) =
(f × id)−1(Δ) endows q with the sign indv(q).
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Figure 1. Matching conditions for the definition of the loop
coproduct via Morse chains

Remark 2.8. Alternatively, we could use the exponential map of some Rie-
mannian metric to define a map M → M by q 
→ expq tv(q). Although this
map differs from ft above, for v sufficiently small it shares its preceding
properties and could be used in place of ft.

Consider now a generic family of vector fields vτ , τ ∈ [0, 1] which inter-
polates between v0 = v and v1 = −v. We denote fτ

t , t ∈ R the flow of vτ and
fτ = fτ

1 . Note that, while v and −v have nondegenerate zeroes, this condi-
tion cannot be guaranteed for vτ . Genericity of the family means that the
maps f0 ×1 : M → M ×M , f1 ×1 : M → M ×M , and [0, 1]×M → M ×M ,
(τ, p) 
→ (fτ (p), p), are transverse to the diagonal.

For each q ∈ M and τ ∈ [0, 1], we denote the induced path from q to
fτ (q) by

πτ
q : [0, 1] → M, πτ

q (t):=fτ
t (q),

and the inverse path by

(πτ
q )−1 : [0, 1] → M, (πτ

q )−1(t):=fτ
1−t(q).

Recall from above the restriction and concatenation of paths. Now, for a, b, c ∈
Crit(SL), we set

M1(a; b, c):=
{

(τ, α, β, γ) ∈ [0, 1] × W−(a) × W+(b) × W+(c) |
β = ατ

1 , γ = ατ
2

}

with

ατ
1(t):=α|[0,τ ]#(πτ

α(0))
−1 =

{

α(2τt) t � 1/2,

fτ
2−2t

(

α(0)
)

t � 1/2,

ατ
2(t):=πτ

α(0)#α|[τ,1] =

{

fτ
2t

(

α(0)
)

t � 1/2,

α
(

2τ − 1 + (2 − 2τ)t
)

t � 1/2.

See Fig. 1.
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Note that the matching conditions imply α(τ) = fτ ◦ α(0). This is a
codimension n condition and, as the family vτ is generic, M1(a; b, c) is a
transversely cut out manifold of dimension

dim M1(a; b, c) = ind(a) − ind(b) − ind(c) + 1 − n.

If its dimension equals zero this manifold is compact and defines a map

λ : MC∗ → (MC ⊗ MC)∗+1−n, a 
→
∑

b,c

#M1(a; b, c) b ⊗ c.

If the dimension equals 1 it can be compactified to a compact 1-dimensional
manifold with boundary

∂M1(a; b, c) =
∐

ind(a′)=ind(a)−1

M(a; a′) × M1(a′; b, c)



∐

ind(b′)=ind(b)+1

M1(a; b′, c) × M(b′; b)



∐

ind(c′)=ind(c)+1

M1(a; b, c′) × M(c′; c)


 M1
τ=1(a; b, c) 
 M1

τ=0(a; b, c).

Here, the first three terms correspond to broken pseudo-gradient lines and
the last two terms to the intersection of M1(a; b, c) with the sets {τ = 1}
and {τ = 0}, respectively. Therefore, we have

(∂ ⊗ id + id ⊗ ∂)λ + λ∂ = λ1 − λ0, (9)

where for i = 0, 1, we set

λi : MC∗ → (MC ⊗ MC)∗−n, a 
→
∑

b,c

#M1
τ=i(a; b, c) b ⊗ c.

Let us look more closely at the map λ1. For τ = 1 the matching conditions
in M1(a; b, c) imply that α(0) = q is a fixed point of f1, the time-one flow
of −v, and γ = q is the constant loop at q. Assuming that L|M has a unique
minimum q0 and the fixed points of f1 are in general position with respect
to the stable and unstable manifolds of L|M , the condition q ∈ W+(c) is only
satisfied for c = q0. Thus, M1

τ=1(a; b, c) is empty if c �= q0 and

M1
τ=1(a; b, q0) ∼=

∐

q∈Fix(f1)

{

(α, β) ∈ W−(a) × W+(b) | β = α#q
}

.

Choosing all fixed points of f1 closely together, we can achieve that the
terms on the right hand side corresponding to different q ∈ Fix(f1) are in
canonical bijection to each other. By the discussion before Remark 2.8, the
terms corresponding to a fixed point q come with the sign ind−v(q). Since
∑

q ind−v(q) = χ and W−(q0) = {q0}, we obtain

#M1
τ=1(a; b, q0)

=
∑

q∈Fix(f1)

#
{

(α, β) ∈ W−(a) × W+(b) | β = α#q
}
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=
∑

q∈Fix(f1)

(−1)ind−v(q)#
{

(α, β) ∈ W−(a) × W+(b) | β = α#q0

}

= χ #
{

(α, γ, β) ∈ W−(a) × W−(q0) × W+(b) | β = α#γ
}

= χ #M(a, q0; b).

Since the last moduli space is the one in the definition of μ, we conclude

λ1(a) = χ μ(a ⊗ q0) ⊗ q0,

or equivalently

λ1 = (μ ⊗ 1)(1 ⊗ c0).

Similarly, we have

λ0(a) = χq0 ⊗ μ(q0 ⊗ a),

or equivalently

λ0 = (1 ⊗ μ)(c0 ⊗ 1) = (1 ⊗ μ)(τc0 ⊗ 1).

In conclusion, we obtain condition (4) in Definition 2.1,

[∂, λ] = (μ ⊗ 1)(1 ⊗ c0) − (1 ⊗ μ)(τc0 ⊗ 1).

We define the secondary continuation quadratic vector Q0 by

Q0 = −λ(qMax).

Condition (2), i.e. τc0−c0 = [∂,Q0], follows by inserting qMax into the relation
for [∂, λ] and using that qMax is a strict two-sided unit for μ on MC=0

∗ . This
is an instance of unital A+

2 -structure [20]. Note that Q0 ∈ MC=0
∗ ⊗ MC=0

∗
for energy reasons.

We now prove condition (5) in Definition 2.1. For n = 1 it holds because
χ = 0, hence c = 0. We, therefore, assume w.l.o.g. n ≥ 2 and give the proof
in two steps.

1. We first prove λc = 0. This follows from λ(q0) = 0, which is seen as
follows. The coefficient 〈λ(q0), x ⊗ y〉 can only be nonzero if x, y are
critical points of K. Since λ has degree 1 − n, we must have 1 − n =
ind(x) + ind(y) − ind(q0) = n − indV (x) − indV (y) + indV (q0), hence
indV (x) + indV (y) = indV (q0) + 2n − 1 = 3n − 1. Since indV (x) +
indV (y) � 2n, this is impossible for n ≥ 2.

2. We now show that (1 ⊗ μ ⊗ 1)(a ⊗ b) = 0, where (a, b) = (τQ0, c0),
(τc0, Q0), (τQ0, τc0), (c0, τQ0). We identify MC=0

∗ (L) with the Morse
cochain complex MCn−∗(V ). The cohomological index of Q0 is 2n −
1, so its components must have degrees n − 1 and n. If n ≥ 2 these
degrees are both positive, and therefore any component of Q0 is killed
by multiplication with q0 because the latter has cohomological index n.
In summary, we have shown

Proposition 2.9. Each vector field v on M satisfying the preceding conditions
gives rise to a special A+

2 -structure (c0, Q0, μ, λ) on the Morse complex MC∗
of the functional SL : Λ → R.
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Remark 2.10. In the previous construction, we used an interpolating family
of vector fields vτ such that v1 = −v0. This choice is important because it
ensures that the product on the Rabinowitz loop homology obtained from
the A+

2 -structure via the cone construction is associative, and much more:
in view of the isomorphism with the A+

2 -structure on symplectic homology
proved in Sect. 6 and in view of [16,20], the resulting product fits into a
graded Frobenius algebra structure on ̂H∗Λ.

While the construction of an A+
2 -structure would have worked with

any choice of nondegenerate vector fields v0 and v1 at the endpoints of the
parametrising interval, the necessity of the condition v1 = −v0, which ensures
these fine properties of the product, would become visible at chain level within
a theory of A+

3 -structures. The development of such a theory is a matter for
further study.

Remark 2.11. The description of M1
τ=1(a; b, q0) and M1

τ=0(a; q0, c) above im-
plies that λ1, λ0 : MC∗ → (MC ⊗ MC)∗−n are chain maps. By Eq. (9) they
are chain homotopic, hence they induce the same “primary” coproduct

[λ0] = [λ1] : MH∗ → (MH ⊗ MH)∗−n

and the preceding discussion recovers [4, Lemma 5.1].

Remark 2.12. Alternatively, we could define the loop coproduct using the
spaces

˜M1(a; b, c):=
{

(τ, α, β, γ) ∈ [0, 1] × W−(a) × W+(b) × W+(c) |
β(t) = (fτ

t )−1 ◦ α(τt),

γ(t) = (fτ
1−t)

−1 ◦ α(τ + (1 − τ)t)
}

.

Again the matching conditions imply α(τ) = fτ ◦ α(0), and ˜M1(a; b, c) is a
transversely cut out manifold of dimension ind(a) − ind(b) − ind(c) + 1 − n
whose rigid counts define a map

˜λ : MC∗ → (MC ⊗ MC)∗+1−n, a 
→
∑

b,c

# ˜M1(a; b, c) b ⊗ c.

A discussion analogous to that for λ shows that Proposition 2.9 also holds
with ˜λ in place of λ. The obvious homotopies between the loops ατ

1 and ατ
2

in the definition of λ and the loops t 
→ (fτ
t )−1 ◦ α(τt) and t 
→ (fτ

1−t)
−1 ◦

α(τ + (1 − τ)t) in the definition of ˜λ provide a special morphism between
(c0, Q0, μ, λ) and (c0, ˜Q0, μ, ˜λ), where ˜Q0 = −˜λ(qMax). We will use the re-
striction of the map ˜λ to Morse chains modulo constants in the proof of
Proposition 7.4.

3. A+
2 -structure for symplectic homology

As in the previous section, let M be a closed oriented manifold. We pick
a Riemannian metric on M and denote by S∗M ⊂ D∗M ⊂ T ∗M its unit
sphere resp. unit disc cotangent bundle. The latter is a Liouville domain
whose completion is T ∗M . Its symplectic homology SH∗(D∗M) is defined
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as the direct limit of the Floer homologies FH∗(K) over Hamiltonians K :
S1 × T ∗M → R that are negative on D∗M and linear outside a compact
see; see [22] for general background on symplectic homology. The goal of this
section is to construct a special A+

2 -structure on the chain complex underlying
symplectic homology.

3.1. The continuation map cF

Recall from [22] that for Hamiltonians H � K, we have a continuation map
cH,K : FC∗(H) → FC∗(K), defined by counting Floer cylinders for an s-
dependent Hamiltonian ̂H(s, ·) which agrees with K for small s, with H for
large s, and which satisfies ∂s

̂H � 0. In this subsection, we will describe the
continuation map

cF = c−K,K : FC∗(−K) → FC∗(K)

for a smooth Hamiltonian K : T ∗M → R of the form

K(q, p) = k(|p|) + V (q)

for a convex function k with k(0) = 0 and k(r) = μr for large r, with
μ > 0 not in the length spectrum, and a potential V : M → R which has
a unique maximum q0 and a unique minimum qMax. For 1-periodic orbits x
of −K and y of K, the coefficient 〈cF x, y〉 is given by the count of solutions
u : R × S1 → T ∗M of the Floer equation

∂su + J(u)
(

∂tu − φ(s)XK(u)
)

= 0 (10)

converging to x as s → +∞ and to y as s → −∞. Here, φ : R → [−1, 1]
is a nonincreasing smooth function which equals 1 for small s and −1 for
large s. For action reasons the coefficient can only be nonzero if x, y are
constant solutions corresponding to critical points of V on the zero section
M ⊂ T ∗M , in which case the solutions u are t-independent and the Floer
equation becomes the Morse equation

∂su + φ(s)∇K(u) = 0. (11)

The Fredholm index of this problem is

CZ−K(x) − CZK(y) = −CZK(x) − CZK(y) = indV (x) + indV (y) − 2n � 0,

with equality iff x = y = q0 for the maximum q0 ∈ M of V . On the other
hand, solutions u of (11) are in one-to-one correspondence to points u(0) ∈
W−

x ∩ W−
y , where W−

x denotes the stable manifold of x with respect to ∇V .
This shows that the Fredholm problem given by (10) resp. (11) is degenerate.

To perturb it, we denote by Skelk(V ) ⊂ M the k-skeleton, i.e. the union
of the descending manifolds W−

x of critical points of index � k. We pick a
1-form η on M satisfying the following condition:

All zeroes of η are nondegenerate and lie in M \ Skeln−1(V ). (12)

It gives rise to the flow

F η
t : T ∗M → T ∗M, F η

t (q, p):=
(

q, p + tη(q)
)
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generated by the vector field η̂ on T ∗M ,

η̂(q, p):=
d
dt

∣

∣

∣

t=0
F η

t (q, p).

We pick a compactly supported function ρ : R → [0,∞) with
∫

R
ρ = 1 and

perturb Eqs. (10) and (11) to

∂su + J(u)
(

∂tu − φ(s)XK(u)
)

= ρ(s)η̂(u). (13)

and

∂su + φ(s)∇K(u) = ρ(s)η̂(u). (14)

To understand solutions of the perturbed Morse equation, we choose φ, ρ such
that φ ≡ 0 on [−1, 1] and supp(ρ) ⊂ [−1, 1]. Then, solutions u of (14) are in
one-to-one correspondence to points

u(1) ∈ W−
x ∩ F η

1 (W−
y ),

where the intersection is taken in T ∗M . By condition (12) this intersection
is empty unless x = y = q0, in which case intersection points correspond
to zeroes of η and their signed count equals the Euler characteristic χ of
M . This shows that the only nontrivial term in the continuation map cF :
FC∗(−K) → FC∗(K) is

cF q0 = χq0

and the corresponding quadratic vector cF
0 is given by

cF
0 (1) = χq0 ⊗ q0.

In particular, cF
0 satisfies the closedness condition in Definition 2.1, and it

is also symmetric τcF
0 = cF

0 . Note that this holds without any symmetry
assumptions on the data such as φ(−s) = −φ(s) or ρ(−s) = ρ(s). Note also
that, although the definition of cF

0 on the chain level requires the choice of
a pair (V, η) consisting of a Morse function V : M → R and a 1-form η on
M subject to condition (12), the result does not depend on this choice. In
contrast, the secondary continuation quadratic vector QF

0 which we construct
below may depend on this choice. See also Sect. 4.

3.2. The product μF and coproduct λF

The pair-of-pants product μF : FC∗(K) ⊗ FC∗(K) → FC∗(2K) (of degree
−n) counts maps from a pair-of-pants satisfying a Floer equation with weights
1 at the two positive punctures and weight 2 at the negative puncture. The
definition is entirely analogous to the one for the coproduct λF given below,
without the additional parameter τ . It is well-known that μF is a chain map
which is associative and graded commutative up to chain homotopy (see e.g.
[3]), so condition (2) in Definition 2.1 holds.

The critical point qMax is a constant orbit and is a cycle which is a two-
sided unit for μF up to homotopy. The subcomplex FC=0

∗ (K) ⊂ FC∗(K)
generated by small action orbits is stable under μF and we can choose the
auxiliary data such that qMax is a strict unit for the restriction of μF to
FC=0

∗ (K).
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In [21], a secondary coproduct λ is defined in terms of continuation maps
on the reduced symplectic homology of a large class of Weinstein domains
which includes cotangent bundles. See also [16,20]. In this subsection, we
recall its definition for D∗M ; we will call it the continuation coproduct and
denote it by λF .

The definition in [16,20] is described in terms of real parameters λ1, λ2 <
0 < μ1, μ2, μ satisfying μ � min(λ1 + μ2, μ1 + λ2). For simplicity, we choose
the parameters as λ1 = λ2 = −μ and μ1 = μ2 = 2μ for some μ > 0. We
assume that μ and 2μ do not belong to the action spectrum of S∗M .

As before, we denote by r = |p| the radial coordinate on T ∗M . Let
K = Kμ be a convex smoothing of the Hamiltonian which is zero on D∗M
and equals r 
→ μr outside D∗M . Then, 2K = K2μ and −K = K−μ are the
corresponding Hamiltonians of slopes 2μ and −μ, respectively.

Let Σ be the 3-punctured Riemann sphere, where we view one punc-
ture as positive (input) and the other two as negative (outputs). We fix
cylindrical coordinates (s, t) ∈ [0,∞) × S1 near the positive puncture and
(s, t) ∈ (−∞, 0] × S1 near the negative punctures. Consider a 1-form β on Σ
which equals B dt near the positive puncture and Aidt near the i-th negative
puncture (i = 1, 2) for some Ai, B ∈ R. We say that β has weights B,A1, A2.
We, moreover, require dβ � 0, which is possible iff

A1 + A2 � B.

We consider maps u : Σ → T ∗M satisfying the perturbed Cauchy–Riemann
equation

(du − XK ⊗ β)0,1 = 0.

Near the punctures this becomes the Floer equation for the Hamiltonians
BK and AiK, respectively, and the algebraic count of such maps defines a
(primary) coproduct

FC∗(BK) → FC∗(A1K) ⊗ FC∗(A2K)

which has degree −n and decreases the Hamiltonian action.
To define the secondary coproduct λF , we choose a 1-parameter family

of 1-forms βτ , τ ∈ (0, 1), with the following properties (see Fig. 2):

• dβτ � 0 for all τ ;
• βτ equals dt near the positive puncture and +2dt near each negative

puncture, i.e. βτ has weights 1, 2, 2;
• as τ → 0, βτ equals −dt on cylinders near the first negative puncture

whose length tends to ∞, so that β0 consists of a 1-form on Σ with
weights 1,−1, 2 and a 1-form with weights −1, 2 on an infinite cylinder
attached at the first negative puncture;

• as τ → 1, βτ equals −dt on cylinders near the second negative puncture
whose length tends to ∞, so that β1 consists of a 1-form on Σ with
weights 1, 2,−1 and a 1-form with weights −1, 2 on an infinite cylinder
attached at the second negative puncture.
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Figure 2. The continuation coproduct λF

Now, we consider pairs (τ, u) where τ ∈ [0, 1] and u : Σ → T ∗M satisfies
the perturbed Cauchy–Riemann equation

(du − XK ⊗ βτ )0,1 = 0.

The algebraic count of such pairs defines a (secondary) coproduct

λF : FC∗(K) → FC∗(2K) ⊗ FC∗(2K)

which has degree 1 − n and decreases the Hamiltonian action.
Let us analyse the contributions from τ = 0, 1. The algebraic count of

cylinders with weights −1, 2 defines the continuation map (of degree 0)

cF = c−K,2K : FC∗(−K) → FC∗(2K).

As explained in the previous subsection, to define cF , we perturb K by a
Morse function V : M → R with a unique maximum at q0 and a unique
minimum at qMax. Moreover, we choose a family of 1-forms ητ on M such
that η0 = η1 satisfies condition (12) (for all practical purposes one can think
of ητ as being constant). Finally, we choose a family of compactly supported
1-forms ατ on Σ which for τ = 0, 1 agree with ρ(s)ds supported in the split
off cylinder, for a function ρ : R → [0,∞) satisfying

∫

R
ρ = 1. For example,

we can take ατ = (1 − τ)α0 + τα1 where α0 = ρ(s)ds supported on the first
negative end, and α1 = ρ(s)ds supported on the second negative end (below
the level where the splitting happens at τ = 0, 1). With η̂τ the vector field
on T ∗M corresponding to ητ , we replace the Cauchy–Riemann equation in
the definition of λF by

(du − XK ⊗ βτ )0,1 = (η̂τ ⊗ ατ )0,1. (15)

With these choices, it follows from the discussion in the previous subsection
that the only nontrivial terms in the continuation maps at τ = 0, 1 are
cF q0 = χq0, where χ is the Euler characteristic of M .

As shown in Fig. 2, the contribution at τ = 0 consists of a pair-of-pants
with one positive puncture of weight 1 and two negative punctures of weights
−1 and 2, with a cylinder of weights −1 and 2 attached at the first negative
puncture. We reinterpret this as a pair-of-pants with two positive punctures
of weights 1 and one negative puncture of weight 2, with a cylinder with two
negative punctures of weights 2 and 1 attached at the first positive puncture.
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The preceding discussion shows that the count of these configurations corre-
sponds to the composition (1 ⊗ μF )(τcF

0 ⊗ 1). A similar discussion at τ = 1
establishes that λF satisfies condition (4) in Definition 2.1.

We define the secondary continuation quadratic vector QF
0 by

QF
0 = −λF (qMax).

Condition (2), i.e. τcF
0 − cF

0 = [∂,QF
0 ], follows by inserting qMax into the

relation for [∂, λF ] and using that qMax is a strict two-sided unit for μ on
FC=0

∗ (K). This is an instance of unital A+
2 -structure [20]. Note that QF

0 ∈
FC=0

∗ (K) ⊗ FC=0
∗ (K) for energy reasons. An inspection of the definition

shows that QF
0 coincides with the secondary continuation element defined

in Sect. 4.2 by interpolating between the perturbing 1-form η and its opposite
−η. See also [21].

It remains to prove condition (5) in Definition 2.1. For n = 1 it holds
because χ = 0, so that cF

0 = 0. We, therefore, assume w.l.o.g. n ≥ 2 and, as
in the Morse case, we prove condition (5) in two steps.

1. We first prove λF cF = 0. This follows from λF (q0) = 0, which is seen
as follows. For action reasons, the coefficient 〈λF (q0), x⊗y〉 can only be
nonzero if x, y are critical points of K. Since λF has degree 1 − n, we
must have 1 − n = CZ(x) + CZ(y) − CZ(q0) = n − indV (x) − indV (y) +
indV (q0), hence indV (x) + indV (y) = indV (q0) + 2n − 1 = 3n − 1. Since
indV (x) + indV (y) � 2n, this is impossible for n ≥ 2.

2. We are left to show that (1 ⊗ μF ⊗ 1)(a ⊗ b) = 0, where (a, b) =
(τQF

0 , cF
0 ), (τcF

0 , QF
0 ), (τQF

0 , τcF
0 ), (cF

0 , τQF
0 ). We identify the Floer sub-

complex FC=0
∗ (K) generated by orbits of small action with the Morse

cochain complex MCn−∗(V ). The cohomological index of QF
0 is 2n− 1,

so its components must have degrees n − 1 and n. If n ≥ 2 these de-
grees are both positive, and therefore any component of Q0 is killed by
multiplication with q0 because the latter has cohomological index n.
In summary, we have shown

Proposition 3.1. The operations cF
0 , QF

0 , μF , λF on the Floer chain complexes
FC∗(K) resp. FC∗(2K) satisfy the relations of a special A+

2 -structure.

The operations cF
0 , QF

0 μF , λF are compatible with Floer continuation
maps between different Hamiltonians H � K. We will refer to this structure
as being the special A+

2 -structure for symplectic homology SH∗(D∗M).

Remark 3.2. In the previous construction, we imposed the condition η0 = η1

at the endpoints of the family of 1-forms ητ for the same reason why we
imposed v1 = −v0 in the Morse case: this ensures that the product on Rabi-
nowitz Floer homology obtained from the A+

2 -structure via the cone construc-
tion coincides with the product from [16] and fits into a graded Frobenius
algebra structure on SH∗(S∗M).

The construction of an A+
2 -structure would have worked with any choice

of interpolating family ητ such that η0 and η1 satisfy (12). The necessity of
the condition η1 = η0 for this fine behaviour of the product would become
visible at chain level within a theory of A+

3 -structures.
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4. Reduced loop homology

This section expands material from [21, §4] in the particular case of cotan-
gent bundles. We assume that M is connected and orientable, and we work
either with constant coefficients on the loop space, or with local coefficients
η obtained by transgressing the 2nd Stiefel–Whitney class. In each of these
two cases we have a commutative diagram

H∗(Λ) ε ��

��

H∗(Λ)

H0(M)
ε0 �� H0(M),

��
H∗(Λ; η) ε ��

��

H∗(Λ; η)

H0(M)
ε0 �� H0(M),

��

where the vertical maps are restriction to, resp. inclusion of constant loops,
and ε0 is induced by multiplication with the Euler characteristic χ. From
now on, we omit from the notation the local system η.

Definition 4.1. We define reduced loop homology, resp. cohomology,

H∗(Λ) = coker ε, H
∗
(Λ) = ker ε.

In the sequel, we restrict the discussion to reduced homology. Reduced
cohomology features similar properties, with the roles of the product and
coproduct being exchanged (as yet another instantiation of Poincaré duality
for loop spaces [16]).

The behaviour of reduced homology with respect to the product is very
robust. The image of ε is an ideal in H∗(Λ) (see for example [38] or [16]), and
therefore the loop product canonically descends to reduced homology H∗(Λ).

In contrast, the behaviour of reduced homology with respect to the
coproduct is very subtle. To describe it, the following variant of reduced loop
homology arises naturally.

Definition 4.2. We define loop homology relative to χ· point as

H∗(Λ, χ · point) = H∗(C∗(Λ)/χC∗(point)).

A straightforward calculation shows that we have a canonical isomor-
phism

H∗(Λ) � H∗(Λ, χ · point)

whenever the map χH0(point) → H0(Λ) is injective, see Appendix A.8. This
is the case if M is orientable and if we use a local system that is constant on
the component of contractible loops, or if χ = 0, or if R is 2-torsion. We place
ourselves from now on in this setup, so that we do not need to distinguish
between H∗(Λ) and H∗(Λ, χ · point).

The loop coproduct is canonically defined on H∗(Λ,Λ0). We now ex-
plain that it always extends to H∗(Λ, χ · point) (and hence to H∗(Λ) under
our assumptions). However, this extension is not canonical. The extension de-
pends on a choice of vector field with nondegenerate zeroes and on the choice
of a Morse function on M . We will completely describe the dependence of
the extension on the choice of vector field, and give sufficient conditions for
independence of the extension on the choice of Morse function.
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4.1. Reduced symplectic homology

We work with symplectic homology of D∗M , our favourite model for loop
space homology. Recalling notation from Sect. 3.1, we fix the following con-
tinuation data:

• a Morse function V : M → R with a unique maximum q0.
• a 1-form η on M which satisfies condition (12), i.e. the zeroes of η are

nondegenerate and lie outside of Skeln−1(V ) (this is equivalent to a
vector field v on M whose zeroes have the same property).

We consider Hamiltonians K : T ∗M → R of the form K(q, p) =
k(|p|) + V (q), where k(0) = 0 and k = k(r) is a linear function of r out-
side a compact set, of positive slope not belonging to the length spectrum.
This data determines via Eq. (13) the Floer continuation map

cF : FC∗(−K) → FC∗(K),

which has the property that the only generator on which it may be nonzero
is q0. Moreover, we have computed in Sect. 3.1 that

cF (q0) = χq0.

The continuation map can be equivalently interpreted as a quadratic vector

cF
0 (1) = χq0 ⊗ q0 ∈ FC∗(K) ⊗ FC∗(K).

We emphasise that the chain-level expression of the continuation map is the
same for any choice of continuation data (V, η).

Definition 4.3. The reduced Floer complex of K is

FC∗(K) = FC∗(K)/im cF .

Its homology is the reduced Floer homology of K, denoted FH∗(K).

The reduced symplectic homology SH∗(D∗M) is the direct limit of re-
duced Floer homologies FH∗(K) over Hamiltonians K which vanish on D∗M
and are linear outside a compact set, perturbed to have the form k(|p|)+V (q)
near the zero section as above.2

The relation

[∂, λF ] = (μF ⊗ 1)(1 ⊗ cF
0 ) − (1 ⊗ μF )(τcF

0 ⊗ 1)

proved in Sect. 3.2, together with τcF
0 = cF

0 , shows that λF descends to a
chain map FC∗(K) → FC∗(2K) ⊗ FC∗(2K). These maps are compatible
with the continuation maps obtained by increasing the slope of K, giving
rise in the limit (with field coefficients) to a well-defined coproduct of degree
−n + 1, denoted

λF : SH∗(D∗M) → SH∗(D∗M) ⊗ SH∗(D∗M).

2This group is strictly speaking the analogue of H∗(Λ; χ · point). In [21], we use the more
precise notation FC∗(K; im cF ) and SH∗(D∗M ; im cF ).
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A straightforward enhancement of the Viterbo–Abbondandolo–Schwarz
isomorphism shows that the map Ψ induces an isomorphism between reduced
homologies

Ψ∗ : SH∗(D∗M) �−→ H∗(Λ).

In particular, associated to a choice of continuation data (V, η) is a co-
product on H∗(Λ). The key to understanding the dependence of the coprod-
uct on the choice of continuation data (V, η) is the secondary continuation
map, which we describe next.

4.2. The secondary continuation map

Homotopies between different choices of pairs (V, η) give rise to secondary
operations which we describe in this subsection.

Consider two pairs (Vi, ηi), i = 0, 1, satisfying the conditions of the
previous subsection, i.e. Vi : M → R is a Morse function with a unique
maximum qi and ηi a 1-form on M such that condition (12) holds. For i = 0, 1
let Ki : T ∗M → R be associated Hamiltonians as in the previous subsection.
After shifting V0, V1 by constants we may assume without loss of generality
that −K0 � −K1 � K1 � K0.

As in the previous subsection, we pick a function φ : R → [−1, 1] which
equals 1 for s � −1 and −1 for s � 1. Let Hσ : R×T ∗M → R, σ ∈ [0,∞), be
a smooth family of s-dependent Hamiltonians with the following properties:

• ∂sHσ(s, x) � 0 for all σ, s, x;
• H0(s, x) = φ(s)K0(x);
• Hσ(s, x) equals K0(x) for s � −σ − 1 and −K0(x) for s � σ + 1;
• Hσ(s, x) = φ(s)K1(x) for |s| � σ and σ � 1.

Let ησ, σ ∈ [0,∞), be a smooth family of 1-forms with ησ = η1 for all σ � 1.
We consider pairs (σ, u) with σ ∈ [0,∞) and u : R × S1 → T ∗M solving the
Floer equation

∂su + J(u)
(

∂tu − XHσ
(s, u)

)

= 0

and converging to 1-periodic orbits of ∓K0 as s → ±∞. Their algebraic count
gives rise to a degree 1 map

�Q : FC∗(−K0) → FC∗+1(K0)

satisfying

∂K0
�Q + �Q∂−K0 = c10c1c01 − c0, (16)

with the Floer continuation maps ci : FC∗(−Ki) → FC∗(Ki) for i = 0, 1,
c01 : FC∗(−K0) → FC∗(−K1), and c10 : FC∗(K1) → FC∗(K0). The map �Q

factors through the action zero part which we will denote by �Q=0. Since the Vi

have unique maxima qi, it follows from the previous subsection that the only
nontrivial contribution to c0 is c0(q0) = χq0. Similarly, the only nontrivial
contribution to the composition c10c1c01 sends q0 
→ q1 
→ χq1 
→ χq0. This
shows that the right hand side of Eq. (16) vanishes, and therefore �Q descends
to a map on homology

�Q : FH∗(−K0) → FH∗+1(K0)
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which factors through the action zero part
�Q=0 : FH=0

∗ (−K0) ∼= Hn+∗(M) → FH=0
∗+1(K0) ∼= Hn−∗−1(M).

For degree reasons nontrivial contributions can only occur for ∗ = 0 and
∗ = −1 and give maps

Hn(M) → Hn−1(M) resp. Hn−1(M) → Hn(M).

In particular, we have shown

Proposition 4.4. If H1(M) = 0, then the secondary continuation map �Q :
FH∗(−K0) → FH∗+1(K0) associated to any interpolation between pairs
(Vi, ηi), i = 0, 1, of continuation data vanishes. �
4.3. Dependence of the continuation coproduct on choices

In this subsection, we discuss the dependence of the continuation coproduct
λF on the data (V, η) of a Morse function and a 1-form on M .

We consider the setup of the previous subsection and retain the ter-
minology from there. Thus, we are given two pairs (Vi, ηi), i = 0, 1, with
associated Hamiltonians Ki : T ∗M → R satisfying −K0 � −K1 � K1 � K0.
They give rise to Floer continuation maps ci : FC∗(−Ki) → FC∗(Ki),
c01 : FC∗(−K0) → FC∗(−K1), and c10 : FC∗(K1) → FC∗(K0), and to
a degree 1 map �Q : FC∗(−K0) → FC∗+1(K0) satisfying Eq. (16).

We denote by λF
i : FC∗(Ki) → FC∗(2Ki)⊗FC∗(2Ki) the continuation

coproducts (of degree 1 − n) defined with the data (Vi, ηi) and families ηi,τ ,
τ ∈ [0, 1] such that ηi,0 = ηi,1 = ηi as in Sect. 3.2. Let

P : FC∗(K1) → FC∗(2K0) ⊗ FC∗(2K0)

be the degree 2−n map defined by the 2-parametric family of Floer problems
depicted in Fig. 3.

These Floer problems are defined in terms of a 2-parametric family of
Hamiltonian valued 1-forms on the 3-punctured sphere with asymptotics and
degenerations as in the figure, and a 2-parametric family of 1-forms on M
which agree with η1,τ , τ ∈ [0, 1] on the top side, with η1 on the two top
slanted sides, and with η0,τ , τ ∈ [0, 1] on the bottom side of the hexagon.

On the reduced Floer chain complex the compositions along the top
vertical sides vanish because they factor through the continuation map c1 :
FC∗(−K1) → FC∗(K1), so we obtain the relation

[∂, P ] = λF
0 c10 − (c10 ⊗ c10)λF

1 + (1 ⊗ �Q)λF
01c10 − ( �Q ⊗ 1)λF

00c10.

Here, λF
00 : FC∗(K0) → FC∗(−K0) ⊗ FC∗(2K0) and λF

01 : FC∗(K0) →
FC∗(2K0) ⊗ FC∗(−K0) are the degree −n operations appearing at the ends
of the continuation coproduct λF

0 as in Fig. 2.
All the maps appearing on the right hand side of the last displayed

equation are chain maps, so they descend to maps on reduced Floer homology
(denoted by the same letters) satisfying

(c10 ⊗ c10)λF
1 − λF

0 c10 = (1 ⊗ �Q)λF
01c10 − ( �Q ⊗ 1)λF

00c10.

Passing to the direct limit over Hamiltonians K0,K1 as above, we have there-
fore shown



59 Page 24 of 84 K. Cieliebak et al. JFPTA

Figure 3. The operation P

Proposition 4.5. The continuation coproducts λF
i on SH∗(D∗M) defined with

continuation data (Vi, ηi), i = 0, 1, satisfy the relation

λF
1 − λF

0 = (1 ⊗ �Q)λF
01 − ( �Q ⊗ 1)λF

00,

where �Q is the secondary continuation map of the previous subsection and
λF

00, λF
01 are induced by the maps defined above. �

Remark 4.6. The right hand side of the previous equation can be rephrased
in terms of the secondary continuation map and the product μF . We refer to
[21, §4.3] for further details.

Proposition 4.5 shows that in general the continuation coproduct may
depend on the data (V, η). If H1(M) = 0, however, the secondary coproduct
�Q vanishes by Proposition 4.4 and we obtain

Proposition 4.7. If H1(M) = 0, then the continuation coproduct on reduced
symplectic homology SH(D∗M) is independent of the choice of continuation
data (V, η). �

Remark 4.8. In Sect. 3.2, we defined the coproduct λF using a family ητ , τ ∈
[0, 1] with equal endpoints η0 = η1 = η. The proof of Proposition 4.5 shows
that, under the assumption H1(M) = 0, the coproduct can be defined using
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families ητ with arbitrary endpoints satisfying condition (12) (in particular,
we can take η1 = −η0). This observation simplifies the computations in Sect. 8
for spheres of dimension > 1 by allowing the use of constant families of vector
fields vτ ≡ v for the topological definition of the coproduct.

Corollary 4.9. If H1(M) = 0 then, denoting 1 ∈ SH∗(D∗M) the unit and
λF the canonical coproduct, we have λF (1) = 0.

A proof of this result in a more general setting is given in [21, §4],
based on the vanishing of the secondary continuation map. We give here a
topological proof, see also Sect. 8.2 for the case of spheres of odd dimension
≥ 3.

Proof. We work on the topological side H∗Λ and compute, as in Sect. 8.2,
the image of the fundamental class 1 by representing it by constant loops
and using a constant vector field vτ ≡ v with isolated nondegenerate zeroes.
If v has no zeroes then its image under the coproduct is zero because it is
represented by the empty chain. In the general case, the image is a degenerate
1-chain, hence vanishes in homology. �

5. Viterbo’s isomorphism revisited

As before, in this section, M is a closed oriented manifold, T ∗M its cotangent
bundle with the Liouville form λ = p dq, and D∗M ⊂ T ∗M its unit disc
cotangent bundle viewed as a Liouville domain. The symplectic homology
SH∗(D∗M ;σ) is isomorphic to the Floer homology FH∗(H;σ) of a fibrewise
quadratic Hamiltonian H : S1 × T ∗M → R. On the other hand, FH∗(H;σ)
is isomorphic to the loop homology H∗(Λ) (Viterbo [39], Abbondandolo–
Schwarz [1,5], Salamon–Weber [35], Abouzaid [7]). Here, we use coefficients
twisted by the local system σ defined by transgressing the second Stiefel–
Whitney class, cf. Appendix A. We drop the local system σ from the notation
in the rest of this section.

The construction most relevant for our purposes is the chain map

Ψ : FC∗(H) → MC∗(S)

from the Floer complex of a Hamiltonian H : S1 × T ∗M → R to the Morse
complex of an action functional S : Λ → R on the loop space defined in [4].
When applied to a fibrewise quadratic Hamiltonian H and the action func-
tional SL associated to its Legendre transform L, it induces an isomorphism
on homology

Ψ∗ : SH∗(D∗M) ∼= FH∗(H) → MH∗(SL) ∼= H∗Λ

intertwining the pair-of-pants product with the loop product [4].
One annoying feature of the map Ψ has been that, in contrast to its

chain homotopy inverse Φ : MC∗(SL) → FC∗(H), it does not preserve the
action filtrations. This would make it unsuitable for some of our applications
in [16] such as those concerned with critical values. Using an estimate inspired
by [17], we show in this section that Ψ does preserve suitable action filtrations
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when applied to fibrewise linear Hamiltonians rather than fibrewise quadratic
ones.

5.1. Floer homology

Consider a smooth time-periodic Hamiltonian H : S1 × T ∗M → R which
outside a compact set is either fibrewise quadratic, or linear with slope not
in the action spectrum. It induces a smooth Hamiltonian action functional

AH : C∞(S1, T ∗M) → R, x 
→
∫ 1

0

(

x∗λ − H(t, x)dt
)

.

Its critical points are 1-periodic orbits x, which we can assume to be nonde-
generate with Conley–Zehnder index CZ(x). Let J be a compatible almost
complex structure on T ∗M and denote the Cauchy–Riemann operator with
Hamiltonian perturbation on u : R × S1 → T ∗M by

∂Hu:=∂su + J(u)
(

∂tu − XH(t, u)
)

.

Let FC∗(H) be the free R-module generated by Crit(AH) and graded by the
Conley–Zehnder index. The Floer differential is given by

∂F : FC∗(H) → FC∗−1(H), x 
→
∑

CZ(y)=CZ(x)−1

#M(x; y) y,

where #M(x; y) denotes the signed count of points in the oriented
0-dimensional manifold

M(x; y):={u : R × S1 → T ∗M | ∂Hu = 0,

u(+∞) = x, u(−∞) = y}/R.

Then, ∂F ◦ ∂F = 0 and its homology FH∗(H) is isomorphic to the sym-
plectic homology SH∗(T ∗M) if H is quadratic. If H is linear, we obtain an
isomorphism to SH∗(T ∗M) in the direct limit as the slope goes to infinity.

5.2. The isomorphism Φ
Suppose now that H is fibrewise convex with fibrewise Legendre transform
L : S1 × TM → R. As in Sect. 2.2, we consider the Morse complex (MC∗, ∂)
of the action functional

SL : Λ → R, SL(q) =
∫ 1

0

L(t, q, q̇)dt.

Following [1], for a ∈ Crit(SL) and x ∈ Crit(AH), we consider the space

M(a;x):={u : (−∞, 0] × S1 → T ∗M | ∂H(u) = 0, u(−∞) = x,

π ◦ u(0, ·) ∈ W−(a)},

where W−(a) denotes the stable manifold for the pseudo-gradient flow of SL

and π : T ∗M → M is the projection. (It is sometimes useful to view W−(a)
as the unstable manifold for the negative pseudo-gradient flow of SL.) For
generic H this is a manifold of dimension

dim M(a;x) = ind(a) − CZ(x).
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Figure 4. Moduli spaces for the map Ψ

The signed count of 0-dimensional spaces M(a;x) defines a chain map

Φ : MC∗(SL) → FC∗(H), a 
→
∑

CZ(x)=ind(a)

#M(a;x)x. (17)

It was shown in [1] that the induced map on homology is an isomorphism

Φ∗ : MH∗(SL)
∼=−→ FH∗(H).

For u ∈ M(a;x) consider the loop (q, p) = u(0, ·) : S1 → T ∗M at s = 0. The
definition of the Legendre transform yields the estimate

AH(q, p) =
∫ 1

0

(

〈p, q̇〉 − H(t, q, p)
)

dt �
∫ 1

0

L(t, q, q̇)dt = SL(q).

It follows that

AH(x) � AH

(

u(0, ·)) � SL(q) � SL(a)

whenever M(a;x) is nonempty, so Φ decreases action.

5.3. The isomorphism Ψ
Consider once again a fibrewise quadratic Hamiltonian H : S1 × T ∗M → R

as in Sect. 5.2 with Legendre transform L. Following [4,17], for x ∈ Crit(AH)
and a ∈ Crit(SL), we define

M(x):={u : [0,∞) × S1 → T ∗M | ∂Hu = 0,

u(+∞, ·) = x, u(0, ·) ⊂ M}
and

M(x; a):={u ∈ M(x) | u(0, ·) ∈ W+(a)},

where W+(a) is the stable manifold of a for the negative pseudo-gradient
flow of SL, see Fig. 4.

For generic H, these are manifolds of dimensions

dim M(x) = CZ(x), dim M(x; a) = CZ(x) − ind(a).
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The signed count of 0-dimensional spaces M(x; a) defines a chain map

Ψ : FC∗(H) → MC∗(SL), x 
→
∑

ind(a)=CZ(x)

#M(x; a) a.

The induced map on homology is an isomorphism

Ψ∗ = Φ−1
∗ : FH∗(H)

∼=−→ MH∗(SL) ∼= H∗Λ,

which is the inverse of Φ∗ and intertwines the pair-of-pants product with
the loop product. This was shown by Abbondandolo and Schwarz [4] with
Z/2-coefficients, and by Abouzaid [7] (following work of Kragh [30], see also
Abbondandolo–Schwarz [5]) with general coefficients, twisted on H∗Λ by a
suitable local system, see Appendix A. Moreover, Abouzaid proved that Ψ∗
is an isomorphism of twisted BV algebras.

Unfortunately, the map Ψ does not preserve the action filtrations. This
already happens for a classical Hamiltonian H(q, p) = 1

2 |p|2 + V (q): For
u ∈ M(x; a) the loop q = u(0, ·) : S1 → M satisfies

AH(x) � AH

(

u(0, ·)) = −
∫ 1

0

V (q)dt

�
∫ 1

0

(1
2
|q̇|2 − V (q)

)

dt = SL(q) � SL(a),

so the middle inequality goes in the wrong direction (even if V = 0).

5.4. An action estimate for Floer half-cylinders

Now, we will replace the quadratic Hamiltonians from the previous subsec-
tions by Hamiltonians of the shape used in the definition of symplectic ho-
mology. For Floer half-cylinders of such Hamiltonians, we will estimate the
length of their boundary loop on the zero section by the Hamiltonian action
at +∞.

We equip M with a Riemannian metric and choose the following data.
The Riemannian metric on M induces a canonical almost complex struc-

ture Jst on T ∗M compatible with the symplectic form ωst = dp∧dq (Nagano
[32], Tachibana–Okumura [37], see also [11, Ch. 9]). In geodesic normal co-
ordinates qi at a point q and dual coordinates pi it is given by

Jst :
∂

∂qi

→ − ∂

∂pi
,

∂

∂pi

→ ∂

∂qi
.

We pick a nondecreasing smooth function ρ : [0,∞) → (0,∞) with ρ(r) ≡ 1
near r = 0 and ρ(r) = r for large r. Then,

J :
∂

∂qi

→ −ρ(|p|) ∂

∂pi
, ρ(|p|) ∂

∂pi

→ ∂

∂qi

(in geodesic normal coordinates) defines a compatible almost complex struc-
ture on T ∗M which agrees with Jst near the zero section and is cylindrical
outside the unit cotangent bundle.
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We view r(q, p) = |p| as a function on T ∗M . Then, on T ∗M\M , we
have

λ = rα, α:=
p dq

|p| .

Consider a Hamiltonian of the form H = h◦r : T ∗M → R for a smooth func-
tion h : [0,∞) → [0,∞) vanishing near r = 0. Then, its Hamiltonian vector
field equals XH = h′(r)R, where R is the Reeb vector field of (S∗M,α). The
symplectic and Hamiltonian actions of a nonconstant 1-periodic Hamiltonian
orbit x : S1 → T ∗M are given by

∫

x

α = h′(r), AH(x) = rh′(r) − h(r).

Given a slope μ > 0 which is not in the action spectrum of (S∗M,α) and any
ε > 0, we can pick h with the following properties:

• h(r) ≡ 0 for r � 1 and h′(r) ≡ μ for r � 1 + δ, with some δ > 0;
• h′′(r) > 0 and rh′(r)−h(r)−ε � h′(r) � rh′(r)−h(r) for r ∈ (1, 1+δ).

Specifically, we choose 0 < δ ≤ ε/μ, we consider a smooth function β :
[0,∞) → [0, 1] such that β = 0 on [0, 1], β = 1 on [1 + δ,∞) and β is strictly
increasing on (1, 1 + δ), and we define h : [0,∞) → [0,∞) by

h(r) = μ

∫ r

1

β(ρ) dρ.

We have rh′ − h − h′ = μ
(

(r − 1)β − ∫ r

1
β
)

. This expression differentiates
to μ(r − 1)β′ ≥ 0 and vanishes on [0, 1], hence it is nonnegative for r ≥ 0.
On the other hand, we have an upper bound μ

(

(r − 1)β − ∫ r

1
β
) ≤ μδ for

r ∈ (1, 1+δ), and indeed for r ≥ 0. Given our choice δ ≤ ε/μ, this establishes
the inequalities rh′(r) − h(r) − ε � h′(r) � rh′(r) − h(r) for all r ≥ 0.

These inequalities imply that for each nonconstant 1-periodic Hamil-
tonian orbit x, we have

AH(x) − ε �
∫

x

α � AH(x). (18)

With this choice of J and H, consider now as in the previous subsection a
map u : [0,∞) × S1 → T ∗M satisfying

∂Hu = 0, u(+∞, ·) = x, u(0, ·) ⊂ M.

Set q(t):=u(0, t) and denote its length by

�(q):=
∫ 1

0

|q̇|dt.

The following proposition is a special case of [17, Lemma 7.2]. Since the proof
was only sketched there, we give a detailed proof below.

Proposition 5.1. Let H,J, u be as above with q = u(0, ·) and a nonconstant
orbit x = u(+∞, ·). Then,

�(q) �
∫

x

α � AH(x).
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The first inequality is an equality if and only if u is contained in the half-
cylinder over a closed geodesic q, in particular x is the lift of the geodesic q.

The idea of the proof is to show that

0 �
∫

(0,∞)×S1
u∗dα =

∫

x

α − �(q).

Since the image u
(

(0,∞) × S1
)

can hit the zero section M where α is un-
defined, the quantity

∫

(0,∞)×S1 u∗dα has to be interpreted as an improper
integral as follows. Given ε > 0, let τ = τε : [0,∞) → [0,∞) be a smooth
function with τ ′(r) � 0 for all r, τ(r) = 0 near r = 0, and τ(r) = 1 for r � ε,
and consider the globally defined 1-form on T ∗M given by

αε:=
τ(|p|)p dq

|p| .

We now define
∫

(0,∞)×S1
u∗dα = lim

σ↘0
lim
ε↘0

∫

[σ,∞)×S1
u∗dαε. (19)

The proof of Proposition 5.1 is based on the following lemma.

Lemma 5.2. For any v ∈ T(q,p)T
∗Q, we have

dαε(v, Jv) � 0.

At points where τ ′(|p|) > 0, equality only holds for v = 0, whereas at points
where τ ′ = 0 and τ �= 0 equality holds if and only if v is a linear combination
of p∂p and p∂q.

Proof. In geodesic normal coordinates, we compute

dαε = d

(

∑

i

τ(|p|)pidqi

|p|

)

=
∑

i

τ(|p|)dpi ∧ dqi

|p| +
∑

i,j

(τ ′(|p|)|p| − τ(|p|))pipjdpi ∧ dqj

|p|3 .

For a vector of the form v =
∑

i aiρ(|p|)∂pi
, we obtain Jρv =

∑

i ai∂qi
and

hence by the Cauchy–Schwarz inequality

dαε(v, Jv) =
∑

i

τ(|p|)ρ(|p|)a2
i

|p| +
∑

i,j

(τ ′(|p|)|p| − τ(|p|))ρ(|p|)pipjaiaj

|p|3

=
τ(|p|)ρ(|p|)

|p|3 (|a|2|p|2 − 〈a, p〉2) +
τ ′(|p|)ρ(|p|)

|p|2 〈a, p〉2

� 0.

At points where τ ′ > 0, equality only holds for a = 0, and at points where
τ ′ = 0 and τ > 0 equality holds iff a is a multiple of p. Similarly, for a general
vector v =

∑

i aiρ(|p|)∂pi
− ∑

i bi∂qi
, we get dαε(v, Jv) � 0, with equality iff

either a = b = 0 or τ ′ = 0 and both a and b are multiples of p. �
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Proof of Proposition 5.1. The proof consists in 3 steps.
Step 1. We prove that

∫

(0,∞)×S1 u∗dα ≥ 0.
In view of Definition (19), it is enough to show that u∗dαε � 0 on all of

(0,∞)×S1. To see this, recall that u satisfies the equation ∂su+J(u)
(

∂tu−
XH(u)

)

= 0, so that

u∗dαε = dαε(∂su, ∂tu)ds ∧ dt = dαε

(

∂su, J(u)∂su + XH(u)
)

ds ∧ dt.

Now, at points in D∗M the Hamiltonian vector field XH vanishes. At points
outside D∗M , we have XH = h′(r)R and αε = α (we can assume w.l.o.g.
ε ≤ 1), so that iXH

dαε = h′(r)iRdα = 0. In either case, we have

u∗dαε = dαε(∂su, J(u)∂su)ds ∧ dt,

which is nonnegative by Lemma 5.2.
Step 2. Denote uσ = u(σ, ·) for σ > 0. We have

lim
σ↘0

lim
ε↘0

∫

S1
u∗

σαε = �(q).

To see this, we consider the map

q̃ : [0,∞) × S1 → T ∗M, q̃(s, t):=
(

q(t), sq̇(t)
)

,

and denote as above q̃σ = q̃(σ, ·) for σ > 0. Since J = Jst near the zero section,
the maps u and q̃ agree with their first derivatives along the boundary loop q
at s = 0, hence uσ and q̃σ are C1-close for σ close to 0. On the other hand αε

is C0-bounded near the zero section uniformly with respect to ε → 0. These
two facts imply that the integrals

∫

S1 u∗
σαε and

∫

S1 q̃∗
σαε are C0-close for σ

close to 0, uniformly with respect to ε → 0, and therefore

lim
σ↘0

lim
ε↘0

∫

S1
u∗

σαε = lim
σ↘0

lim
ε↘0

∫

S1
q̃∗
σαε.

We now prove that

lim
ε↘0

∫

S1
q̃∗
σαε = �(q) (20)

for all σ > 0, which implies the desired conclusion. Fix therefore σ > 0. Let
Iε = {t ∈ S1 : |σq̇(t)| ≤ ε}, so that Iε ⊂ Iε′ for ε ≤ ε′ and

∫

ε>0
Iε = I0 =

{t : q̇(t) = 0}. On the one hand, we have
∫

S1\Iε

q̃∗
σαε =

∫

S1\Iε

q̃∗
σα =

∫

S1\Iε

α(q(t),σq̇(t)) · ˙̃q(t)

=
∫

S1\Iε

σ|q̇(t)|2
|σq̇(t)| dt =

∫

S1\Iε

|q̇(t)|dt = �(q|S1\Iε
).

We can, therefore, estimate
∣

∣

∣

∣

∫

S1
q̃∗
σαε − �(q|S1\Iε

)
∣

∣

∣

∣

=
∣

∣

∣

∣

∫

Iε

q̃∗
σαε

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

Iε

αε(q̃σ(t)) · ˙̃qσ(t)dt

∣

∣

∣

∣

≤ C · ε

σ
· m(Iε) → 0 for ε → 0.

Here, m(Iε) is the measure of Iε, uniformly bounded by the length of the
circle, C > 0 is a C0-bound on αε near the 0-section, uniform with respect
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to ε → 0, and ε/σ is by definition the bound on |q̇(t)| on Iε. The estimate
follows from ˙̃qσ = (q̇, σq̈) and the fact that the 1-form αε only acts on the
first component of the vector ˙̃qσ.

Since lim
ε↘0

�(q|S1\Iε
) = �(q|S1\I0) = �(q), equality (20) follows.

Step 3. We prove
∫

(0,∞)×S1
u∗dα =

∫

x

α − �(q).

Indeed, for σ, ε > 0 Stokes’ theorem gives
∫

[σ,∞)×S1
u∗dαε =

∫

x

α −
∫

uσ

αε.

(The 1-form αε is equal to α near the orbit x.) The desired equality follows
from the definition of

∫

(0,∞)×S1 u∗dα and Step 2.
Conclusion. Combining Step 3 with Step 1, we obtain the first inequality

�(q) �
∫

x
α in Proposition 5.1. Moreover, Lemma 5.2 (in the limit ε → 0)

shows that this inequality is an equality if and only if u is contained in the
half-cylinder over a closed geodesic.

The second inequality
∫

x
α � AH(x) follows from (18). �

5.5. The isomorphism Ψ from symplectic to loop homology

Now, we adjust the definition of Ψ to symplectic homology. For J,H as in
the previous subsection and x ∈ Crit(AH), we define as before

M(x):={u : [0,∞) × S1 → T ∗M | ∂Hu = 0,

u(+∞, ·) = x, u(0, ·) ⊂ M}.

By Proposition 5.1, the loop q = u(0, ·) satisfies �(q) � AH(x). Moreover,
the loop q is smooth and in particular has Sobolev class H1, hence follow-
ing Anosov [10] it has a unique H1-reparametrisation q : S1 → M , with
|q̇| ≡ const and q(0) = q(0) (we say that q is parametrized proportionally to
arclength, or PPAL). We have

�(q) = �(q) =
∫ 1

0

|q̇|dt =
(

∫ 1

0

|q̇|2dt
)1/2

= E(q)1/2

with the energy

E : Λ → R, E(q):=
∫ 1

0

|q̇|2dt.

The energy defines a smooth Morse–Bott function on the loop space whose
critical points are constant loops and geodesics parametrized proportionally
to arclength. We denote by W±(a) the unstable/stable manifolds of a ∈
Crit(E) with respect to ∇E. Now, for x ∈ Crit(AH) and a ∈ Crit(E), we
define

M(x; a):={u ∈ M(x) | u(0, ·) ∈ W+(a)}.

An element u in this moduli space still looks as in Fig. 4, where now the loop
q = u(0, ·) is reparametrized proportionally to arclength and then flown into
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a using the flow of −∇E. By Proposition 5.1, for u ∈ M(x; a), we have the
estimate

AH(x) � �(q) = E(q)1/2 � E(a)1/2. (21)

To define the map Ψ, we now perturb H and E by small Morse functions
near the constant loops on M and the closed geodesics, and we generically
perturb the almost complex structure J from the previous subsection. For
generic such perturbations, each M(x; a) is a manifold of dimension

dim M(x; a) = CZ(x) − ind(a).

The signed count of 0-dimensional spaces M(x; a) defines a chain map

Ψ : FC∗(H) → MC∗(E1/2), x 
→
∑

ind(a)=CZ(x)

#M(x; a) a.

Here, MC∗(E1/2) denotes the Morse chain complex of E : Λ → R, graded
by the Morse indices of E, but filtered by the square root E1/2 (which is
decreasing under the negative gradient flow of E). The action estimate (21)
continues to hold for the perturbed data up to an arbitrarily small error,
which we can make smaller than the smallest difference between lengths of
geodesics below a given length μ. Thus, Ψ preserves the filtrations

Ψ : FC<b
∗ (H) → MC<b

∗ (E1/2).

The induced maps on filtered Floer homology

Ψ∗ : FH
(a,b)
∗ (H) → MH

(a,b)
∗ (E1/2) ∼= H

(a,b)
∗ Λ

have upper triangular form with respect to the filtrations with ±1 on the
diagonal (given by the half-cylinders over closed geodesics in Proposition 5.1),
so they are isomorphisms. It follows from [4,7] that Ψ∗ intertwines the pair-
of-pants product with the loop product, as well as the corresponding BV
operators. Passing to the direct limit over Hamiltonians H, we have thus
proved

Theorem 5.3. The map Ψ induces isomorphisms on filtered symplectic ho-
mology

Ψ∗ : SH
(a,b)
∗ (D∗M)

∼=−→ MH
(a,b)
∗ (E1/2) ∼= H

(a,b)
∗ Λ,

where the left hand side is filtered by non-Hamiltonian action and the right
hand side by the square root of the energy. These isomorphisms intertwine
the pair-of-pants product with the Chas–Sullivan loop product, as well as the
corresponding BV operators. �

6. Viterbo’s isomorphism intertwines A+
2 -structures

We keep the setup from the previous section, so M is a closed oriented Rie-
mannian manifold and D∗M ⊂ T ∗M its unit disc cotangent bundle. In this
section, we prove Theorem 1.5, which will be an immediate consequence of
earlier results and the following theorem.



59 Page 34 of 84 K. Cieliebak et al. JFPTA

Theorem 6.1. The chain maps underlying the isomorphism

Ψ∗ : SH∗(D∗M)
∼=−→ H∗Λ

from Theorem 5.3 are morphisms of special A+
2 -algebras. For n �= 2 these

morphisms are special.

Proof of Theorem 1.5. The first assertion follows from Proposition 2.9 and
Proposition 2.2. The second assertion follows from Theorem 6.1 and Propo-
sition 2.4. �

Remark 6.2. (open questions about the various identifications between Morse
and Floer complexes for cotangent bundles) We have already discussed
in Sect. 5.2 the action-preserving chain-level isomorphism Φ : MC∗(SL) →
FC∗(H) of Abbondandolo–Schwarz [1], defined for an asymptotically qua-
dratic Hamiltonian H. It would be interesting to clarify whether Φ also de-
fines a morphism of special A+

2 -algebras.
Abbondandolo–Schwarz constructed in [6] an action-preserving chain-

level isomorphism ΨAS : FC∗(H) → MC∗(SL) which is a chain homotopy
inverse of Φ. They also argued that, from the perspective of the Legendre
transform, the moduli spaces that define ΨAS arise naturally from the moduli
spaces for Φ. We expect that ΨAS and our morphism Ψ can be connected by
a suitable chain homotopy (we know that they induce the same map Φ−1

∗ in
homology). It would also be interesting to clarify whether ΨAS is a morphism
of special A+

2 -algebras. We expect this to hold or fail for both ΨAS and Φ
simultaneously.

One can further ask whether ΨAS and Ψ are homotopic as morphisms
of A+

2 -structures. This would require in particular to develop the discussion
of A+

2 -structures from [20] by defining such a notion of homotopy.

To prove Theorem 6.1, we need to verify the conditions in Definition 2.3
for each chain map Ψ : FC∗(K) → MC∗(E1/2) associated to a Hamiltonian
K = Kμ as in the previous subsection. The first part of condition (i) holds
because Ψq0 = q0, which follows directly from the definition of Ψ. More-
over, seen through the canonical identifications FC=0

∗ (K) ≡ MC=0
∗ (E1/2) ≡

MCn−∗(V ), the restriction of Ψ to the energy zero Floer subcomplex acts as
the identity. This shows that the second part of condition (i) is also satisfied.

The map Γ : FC∗(K) ⊗ FC∗(K) → MC∗(E1/2) in condition (ii) is de-
fined by the count of elements in 0-dimensional moduli spaces of solutions to
a 1-parametric mixed Floer–Morse problem which we describe below. Inspec-
tion of the boundary of the 1-dimensional moduli spaces of solutions shows
that Γ satisfies condition (ii). This fact was previously proved in [4], which
contains the description of an essentially equivalent map Γ.

The 1-parametric Floer–Morse problem is a count of Floer discs in T ∗M
with two positive punctures and boundary on the zero section, followed by
a Morse pseudo-gradient line in the loop space of M . It is obtained as a
concatenation of 3 distinct 1-parametric Floer–Morse problems described by
Fig. 5. On the first interval of parametrisation the underlying moduli space
of curves is that of discs with 2 interior punctures and one boundary marked
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Figure 5. The map Γ

point, where the punctures and the marked point are requested to be aligned.
At the negative end of the interval the 2 interior punctures collide and form
a sphere bubble (this gives rise to the term −ΨμF in the expression of [∂,Γ]),
whereas at the positive end of the interval the second puncture collides with
the marked point and gives rise to a disc bubble containing the marked point.
In this configuration the interior punctures, the node and the marked point
are all aligned. On the second interval of parametrisation, we allow the marked
point to move clockwise towards the node. At the positive end of this interval
the marked point collides with the node and forms a disc bubble. However,
this disc bubble is constant because the 0-section is an exact Lagrangian, so
that we directly replace the configuration by one where the marked point
lies at the node. On the third and last interval of parametrisation, we insert
length T > 0 pseudo-gradient lines before imposing the incidence condition
at the marked point. The positive end of this interval of parametrisation
corresponds to T = ∞ and gives rise to the term μ(Ψ ⊗ Ψ) in the expression
of [∂,Γ].

In Fig. 5, the dashed lines represent pseudo-gradient flow lines for the
energy functional on loop space. We only represent them in the last two con-
figurations depicted in Fig. 5 in order not to burden excessively the drawing.
However, the reader should be aware that such pseudo-gradient lines are also
present in the first five configurations from Fig. 5.

For further reference, it is convenient to write

Γ = Γ1 + Γ2 + Γ3, (22)

where Γi, i = 1, 2, 3 corresponds to the count of elements in the 0-dimensional
moduli spaces of solutions to the Floer–Morse problem restricted to the i-th
interval of parametrisation for Γ.

The remainder of this section is devoted to the proof of condition (iii).
For this, we need to construct a chain homotopy

Θ : FC∗(K) → MC∗(E1/2) ⊗ MC∗(E1/2)
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satisfying ΘcF = 0 and

[∂,Θ] = λΨ − (Ψ ⊗ Ψ)λF − (Γ ⊗ Ψ)(1 ⊗ cF
0 ) + (Ψ ⊗ Γ)(τcF

0 ⊗ 1). (23)

The map Θ will be defined by a count of Floer maps to T ∗M defined over a
2-parametric family of punctured annuli. In the first subsection, we describe
the underlying moduli space of conformal annuli.

6.1. Conformal annuli

A (conformal) annulus is a compact genus zero Riemann surface with two
boundary components. By the uniformisation theorem (see for example [12]),
each annulus is biholomorphic to [0, R] × R/Z with its standard complex
structure for a unique R > 0 called its (conformal) modulus. The exponential
map s + it 
→ e2π(s+it) sends the standard annulus onto the annulus

AR = {z ∈ C | 1 � |z| � e2πR} ⊂ C.

It will be useful to consider slightly more general annuli in the Riemann
sphere S2 = C∪{∞}. A circle in S2 is the transverse intersection of S2 ⊂ R

3

with a plane. We will call a disc in S2 an open domain D ⊂ S2 bounded by a
circle, and an annulus in S2 a set D \ D′ for two discs D,D′ ⊂ S2 satisfying
D′ ⊂ D (with the induced complex structure).

Lemma 6.3. Every annulus A in S2 of conformal modulus R can be mapped
by a Möbius transformation onto the standard annulus AR ⊂ C ⊂ S2 above.

Proof. Write A = D \ D′ for discs D,D′ ⊂ S2. After applying a Möbius
transformation, we may assume that D is the disc {z ∈ C | |z| < e2πR}. Let
D1 ⊂ D be the unit disc. There exists a Möbius transformation φ of D sending
a point z′ ∈ ∂D′ to a point z1 ∈ ∂D1 and the positive tangent direction to
∂D′ at z′ to the positive tangent direction to ∂D1 at z1. Thus, φ sends ∂D′

to a circle tangent to ∂D1 at z1, and since the annuli D\D′ and D\D1 both
have modulus R, we must have φ(∂D′) = ∂D1, hence φ(D′) = D1. �

For each R, the standard annulus [0, R] × R/Z carries two canonical
foliations: one by the line segments [0, R]×pt and one by the circles pt×R/Z.
Moreover, these two foliations are invariant under the automorphism group
of the annulus. Hence, by Lemma 6.3 each annulus in S2 also carries two
canonical foliations, one by circle segments connecting the two boundary
components and one by circles, such that the foliations are orthogonal and
the second one contains the two boundary loops. These two foliations can be
intrinsically described as follows: the automorphism group of an annulus A
is Aut(A) � S1. The second foliation consists of the orbits of the S1-action.
The first foliation is the unique foliation orthogonal to the first one. Its leaves
connect the two boundary components because this is the case for a standard
annulus.

Figure 6 shows a 1-parametric family of annuli in C whose conformal
moduli tend to 0 together with their canonical foliations. The domain at
modulus 0 is the difference of two discs touching at one point, the node.
Putting the node at the origin, the inversion z 
→ 1/z maps this domain onto
a horizontal strip in C (with the node at ∞) with its standard foliations by
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Figure 6. Conformal annuli and their canonical foliations

straight line segments and lines. Opening up the node, we can conformally
map it onto the standard disc with two boundary points corresponding to
the node (since the map is not a Möbius transformation, the two foliations
will not be by circle segments).

Annuli with aligned marked points. The relevant domains for our pur-
poses are annuli with 3 marked points, one interior and one on each bound-
ary component. We require that the 3 points are aligned, by which we mean
that they lie on the same leaf of the canonical foliation connecting the two
boundary components. (In the next subsection, the interior marked point will
correspond to the input from the Floer complex and the boundary marked
points will be the initial points of the boundary loops on the zero section.)

Figure 7 shows the moduli space of such annuli with fixed finite confor-
mal modulus. It is an interval over which the interior marked point moves
from one boundary component to the other. Each end of the interval corre-
sponds to a rigid nodal curve consisting of an annulus with one boundary
marked point and a disc with an interior and a boundary marked point,
where the marked point and the node are aligned in the annulus, and the two
marked points and the node are aligned in the disc (i.e. they lie on a circle
segment perpendicular to the boundary).

Figure 8 shows the moduli space of such annuli with varying conformal
modulus. It is a pentagon in which we will view the two lower sides as being
“horizontal” (although they meet at an actual corner). Then, in the vertical
direction the conformal modulus increases from 0 (on the top side) to ∞
(on the two lower sides), while in the horizontal direction the interior marked
point moves from one boundary component to the other. In all configurations
the marked points and nodes are aligned. The interior nodes occurring along
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Figure 7. Annuli with aligned marked points and fixed modulus

Figure 8. Annuli with aligned marked points and varying
modulus

the bottom sides carry asymptotic markers (depicted as arrows) that are
aligned with the boundary marked points. In particular, each interior node
comes with an orientation reversing isomorphism between the tangent circles
matching the asymptotic markers (this is the “decorated compactification”).

6.2. Floer annuli

Now, we define a moduli space of Floer maps into T ∗M over the moduli space
P of annuli in Fig. 8. For this, we choose a family of 1-forms βτ , τ ∈ P, with
the following properties (see Fig. 9):

• dβτ � 0 for all τ ;
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Figure 9. The hexagon of Floer annuli

• βτ equals dt near the (positive) interior puncture, and 2 dt in coordinates
(s, t) ∈ [0, ε) × R/Z near each (negative) boundary component, i.e. it
has weights 1, 2, 2;

• on annuli of infinite modulus, βτ has weights at the punctures (positive
or negative) as shown in the figure.

In the figure, the (black) bottom circles are boundary components,
(blue) intermediate circles are interior punctures (viewed as positive or neg-
ative when going upwards or downwards), and (red) numbers denote the
weights. Such a family βτ exists because on each component of each broken
curve the sum of negative weights is greater or equal to the sum of positive
weights.

The annuli carry two marked points on their boundary circles (depicted
as black dashes) which are aligned with the interior puncture. Again, all
interior punctures carry asymptotic markers (not drawn) that are aligned
with the boundary marked points, also over broken curves and are matching
across each pair of positive/negative punctures.

Note that the bottom corner of the pentagon in Fig. 8 has been replaced
by a new side over which the underlying stable domain is fixed, but the
weights at the positive/negative puncture vary as depicted with a ∈ [−1, 2].
Thus, the conformal modulus is 0 along the top side, and ∞ along the three
bottom sides.

We fix a nonnegative Hamiltonian K : T ∗M → R as in Sect. 3.2. For
τ ∈ P, we denote by Στ the corresponding (possibly broken) annulus with
one positive interior puncture z+ and two numbered boundary marked points
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z1, z2 on the boundary components C1, C2, equipped with the 1-form βτ .
Given x ∈ FC∗(K), we define the moduli space

P(x):={(τ, u) | τ ∈ P, u : Στ → T ∗M, (du − XK ⊗ βτ )0,1 = 0,

u(z+) = x, u(Ci) ⊂ M for i = 1, 2},

where the condition u(z+) = x is understood as being C∞-convergence
u(s, ·) → x as s → ∞ in cylindrical coordinates (s, t) ∈ [0,∞) × S1 near the
positive puncture z+. By Anosov [10], the restriction u|Ci

can be uniquely
parametrized over [0, 1] as an H1-curve proportionally to arclength such that
time 0 corresponds to the marked point zi, i = 1, 2. Viewing u|Ci

with these
parametrisations thus yields a boundary evaluation map

ev∂ : P(x) → Λ × Λ, (τ, u) 
→ (u|C1 , u|C2).

Note that this map is also canonically defined over the boundary of P. In-
deed, this is clear everywhere except possibly over the two vertical sides where
one boundary loop is split into two. There one component of Στ is an an-
nulus without interior puncture, on which the map u is therefore constant
(see the next subsection). Hence, in the split boundary loop, one compo-
nent is constant, and we map it simply to the other component parametrized
proportionally to arclength.

The expected dimension of P(x) is

dim P(x) = nχ(Στ ) + CZ(x) + dimP = CZ(x) + 2 − n,

where χ(Στ ) = −1 is the Euler characteristic of the punctured annulus.
However, the moduli space P(x) is not transversely cut out over the vertical
sides of P. Indeed, the moduli space of non-punctured annuli appearing there
has Fredholm index nχ(A)+1 = 1, where χ(A) = 0 is the Euler characteristic
of the annulus A and the +1 corresponds to the varying conformal modulus.
But the actual dimension of this space is n + 1, where n is the dimension of
the space of constant maps A → M . In the following subsections, we explain
how to achieve transversality by perturbing the Floer equation by a section
in the obstruction bundle.

6.3. Moduli problems and obstruction bundles

To facilitate the discussion in the next subsection, we introduce in this sub-
section a general setup for moduli problems and obstruction bundles. Our
notion of a moduli problem will be a slight generalisation of that of a G-
moduli problem in [18] for the case of the trivial group G, which allows us to
work with integer rather than rational coefficients.

A moduli problem is a quadruple (B,F ,S,Z) with the following prop-
erties:

• p : F → B is a Banach fibre bundle over a Banach manifold;
• Z ⊂ F is a Banach submanifold transverse to the fibres3;

3In particular, TzZ ⊂ TzF is a closed subspace which has a closed complement for all
z ∈ Z.
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• S : B → F is a smooth section such that the solution set

M:=S−1(Z) ⊂ B
is compact and for each b ∈ M the composed operator

DbS : TbB TbS−→ TS(b)F −→ TS(b)F/TS(b)Z
is Fredholm with constant index ind(S) = ind(DbS), and its determi-
nant bundle

det(S) = Λtop ker(DS) ⊗ Λtopcoker(DS)∗ → M
is oriented.

A morphism between moduli problems (B,F ,S,Z) and (B′,F ′,S ′,Z ′)
is a pair (ψ,Ψ) with the following properties:

• ψ : B ↪→ B′ is a smooth embedding;
• Ψ : F → F ′ is a smooth injective bundle map covering ψ such that

S ′ ◦ ψ = Ψ ◦ S, M′ = ψ(M), Z ′ = Ψ(Z).

Moreover, the linear operators Tbψ : TbB → Tψ(b)B′ and DzΨ : TzF/
TzZ → TΨ(z)F/TΨ(z)Z induce for each b ∈ M isomorphisms

Tbψ : ker DbS → ker Dψ(b)S ′, DS(b)Ψ : cokerDbS → cokerDψ(b)S ′

such that the resulting isomorphism from det(S) to det(S ′) is orientation
preserving.

Proposition 6.4. Each moduli problem (B,F ,S,Z) has a canonical Euler class

χ(B,F ,S,Z) ∈ Hind(S)(B;Z).

Moreover, if (ψ,Ψ) is a morphism between moduli problems (B,F ,S,Z) and
(B′,F ′,S ′,Z ′), then ind(S) = ind(S ′) and

ψ∗
(

χ(B,F ,S,Z)
)

= χ(B′,F ′,S ′,Z ′) ∈ Hind(S)(B′;Z).

Proof. This follows directly from the corresponding results in [18]. To con-
struct the Euler class, we compactly perturb S to a section ˜S which is trans-
verse to Z; then ˜M = ˜S−1(Z) is a compact manifold of dimension d = ind(S)
which inherits a canonical orientation and thus represents a class in Hd(B;Z),
and it is easy to see that this class is independent of the choice of perturba-
tion. The assertion about morphisms is obvious. �

A special case of a moduli problem arises if F = E → B is a Banach
vector bundle and Z = ZE is the zero section in E . In this case DbS is the
vertical differential of S at b ∈ M = S−1(0) and we arrive at the usual notion
of a Fredholm section. This is the setup considered in [18]; the general case
can be reduced to this one (via a morphism of moduli problems) by passing
to the normal bundle of Z.

Consider now a moduli problem (B,F ,S,Z) such that
(i) M = S−1(Z) ⊂ B is a smooth submanifold, and
(ii) ker(DbS) = TbM for each b ∈ M.
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Then, the cokernels coker(DbS) fit together into the smooth obstruction bun-
dle

O:=coker(DS) → M
whose rank is related to the Fredholm index of S by

dim M = ind(S) + rkO.

We thus obtain a finite-dimensional moduli problem (M,O, 0,ZO), where
0 : M → O denotes the zero section and ZO ⊂ O its graph.

Lemma 6.5. In the preceding situation, there exists a canonical morphism of
moduli problems

(ι, exp) : (M,O, 0,ZO) → (B,F ,S,Z),

where ψ = ι : M ↪→ B is the inclusion and exp : O ↪→ F is a fibrewise
exponential map.

Proof. Choose N → Z a smooth Banach vector bundle such that for each
z ∈ Z,

Nz ⊂ TzFp(z) and TzF = TzZ ⊕ Nz.

Since N represents the normal bundle to Z in F , we can assume that DS
takes values in N and O is a subbundle of N complementary to im DS. Pick
a fibrewise Riemannian metric on F whose exponential map restricts to a
fibre preserving embedding

exp : O ↪→ F , Oz ↪→ Fp(z).

Now, it is easy to check that (ι, exp) with the inclusion ι : M ↪→ B defines a
morphism (M,O, 0,ZO) → (B,F ,S,Z). �

In the situation of Lemma 6.5, the Euler class of (B,F ,S,Z) is therefore
represented by the zero set η−1(0) of a section η : M → O in the obstruction
bundle which is transverse to the zero section. Concretely, keeping the nota-
tion from the proof, exp ◦η defines a section of the fibre bundle F|M → M.
We extend the bundle O → M to a bundle ˜O → ˜B on a neighbourhood ˜B ⊂ B
of M and η to a section η̃ of the bundle ˜O → ˜B vanishing near the boundary
of ˜B. Then, the perturbed section ˜S = S + exp ◦η̃ of F → B is transverse to
Z and its solution set ˜S−1(Z) represents the Euler class of (B,F ,S,Z).

Remark 6.6. (orientations) In the situation of Lemma 6.5, we are given an
orientation of

det(S) = ΛtopTM ⊗ ΛtopO∗. (24)

Let now η : M → O be a section transverse to the zero section. Its zero
set A:=η−1(0) ⊂ M is a submanifold and at each b ∈ A the linearisation
Dbη : TbM → Ob is surjective with kernel ker Dbη = TbA, so we get a
canonical isomorphism of line bundles

ΛtopTM|A ∼= ΛtopTA ⊗ ΛtopO|A → A.
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Combined with (24) this yields a canonical isomorphism

ΛtopTA ∼= det(S)|A,

so an orientation of det(S) induces an orientation of A. In the case ind(S) = 0
this can be made more explicit as follows. Then, rkO = dimM and an
orientation of det(S) induces an isomorphism

ΛtopTM ∼= ΛtopO.

For b ∈ η−1(0), we define the sign σ(b) to be +1 if the isomorphism Dbη :
TbM

∼=−→ Ob preserves orientations, and −1 otherwise. Then, the signed
count

χ(O) =
∑

b∈η−1(0)

σ(b)

is the Euler number of the obstruction bundle O → M.

Finally, consider a moduli problem (B,F ,S,Z) which splits as follows:
• p = (p0, p1) : F = F0 ×B F1 → B;
• Z = Z0 ×B Z1;
• S = S0 × S1 for sections Si : B → Fi such that S1 is transverse to Z1.

Lemma 6.7. In the situation above, there exists a reduced moduli problem

(B,F ,S,Z) =
(S−1

1 (Z1),F0|B,S0|B,Z0|B
)

and a morphism (ψ,Ψ) of moduli problems from (B,F ,S,Z) to
(B,F ,S,Z), with ψ : B ↪→ B the inclusion and Ψ(f0) =

(

f0, S1 ◦ p0(f0)
)

.

Proof. Since S1 is transverse to Z1, it follows that B ⊂ B is a submanifold
and (B,F ,S,Z) defines a moduli problem. Now, it follows directly from the
definitions that (ψ,Ψ) as in the lemma induces for b ∈ B the canonical
identities

Tbψ : ker DbS = ker DbS0 ∩ ker DbS1 = ker Dψ(b)S,

DS(b)Ψ : cokerDbS = coker(DbS0|ker DbS1) = cokerDψ(b)S,

hence it defines a morphism of moduli problems. �
6.4. Constant Floer annuli

In this subsection, we apply the results of the previous subsection to moduli
spaces of annuli. We begin with a rather general setup. Let (Σ, j) be a compact
Riemann surface with boundary, and (V, J) be an almost complex manifold
with a half-dimensional totally real submanifold L ⊂ V . For m ∈ N and
p ∈ R with mp > 2, we consider the Banach manifold

B = Wm,p
(

(Σ, ∂Σ), (V,L)
)

and the Banach space bundle E → B whose fibre over u ∈ B is

Eu = Wm−1,p
(

Σ,Hom0,1(TΣ, u∗TV )
)

.

Denote ZE the zero section. The Cauchy–Riemann operator

∂u = (du)0,1 =
1
2
(

du + J(u) ◦ du ◦ j
)
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defines a Fredholm section ∂ : B → E . Assuming a setup in which the space of
solutions ∂

−1
(ZE) is compact (e.g. if J is tamed by an exact symplectic struc-

ture on V , the totally real submanifold L is exact Lagrangian, and Σ has a
compact group of automorphisms), we obtain a moduli problem (B, E , ∂̄,ZE).

Constant annuli of positive modulus. Now, we apply the preceding
discussion to the moduli space of constant annuli appearing in the previ-
ous subsection. Consider a fixed annulus (Σ, j) of finite conformal modulus
R > 0, equipped with a 1-form β as above satisfying dβ � 0 and β = 2dt
in cylindrical coordinates near the two (negative) boundary loops. Let K
be the nonnegative Hamiltonian from Sect. 3.2. Then, the Floer operator
∂Ku:=(du−XK ⊗β)0,1 defines a Fredholm section in the appropriate bundle
E → B over the Banach manifold

B = Wm,p
(

(Σ, ∂Σ), (T ∗M,M)
)

.

We denote its zero set by M:=∂
−1

K (0). For u ∈ M the usual energy estimate
(see e.g. [34]) gives

E(u) =
1
2

∫

Σ

|du − XK(u) ⊗ β|2volΣ � −A2K(u|∂Σ) = 0,

where the Hamiltonian action of u|∂Σ vanishes because both the Liouville
form and the Hamiltonian K vanish on the zero section M . This implies that
du−XK(u)⊗β ≡ 0. Since XK vanishes near the zero section, it follows that
du ≡ 0 near ∂Σ and therefore, by unique continuation, u is constant equal
to a point in M . Hence, the moduli space

M = M

consists of points in M , viewed as constant maps Σ → M . Since XK vanishes
near the zero section, the Floer operator ∂K agrees with the Cauchy–Riemann
operator ∂ near M, so we can and will replace ∂K by ∂ in the following
discussion of obstruction bundles.

We identify Σ with the standard annulus [0, R] × R/Z and its trivial
tangent bundle TΣ = Σ × C. Consider a point u ∈ M , viewed as a constant
map u : Σ → M . We identify

T ∗
uM = R

n, TuM = iRn, Tu(T ∗M) = C
n.

Then, we have

TuB = Wm,p
(

(Σ, ∂Σ), (Cn, iRn)
)

,

Eu = Wm−1,p
(

Σ,Hom0,1(C,Cn)
)

= Wm−1,p(Σ,Cn),

where for the last equality, we use the canonical isomorphism

Hom0,1(C,Cn)
∼=−→ C

n, η 
→ η(∂s).

With these identifications, the linearized Cauchy–Riemann operator reads

Du∂ : Wm,p
(

(Σ, ∂Σ), (Cn, iRn)
) → Wm−1,p(Σ,Cn), ξ 
→ ∂sξ + i∂tξ.

An easy computation using Fourier series (see [14]) shows that

ker(Du∂) = iRn = TuM, coker(Du∂) = R
n = T ∗

uM.
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Therefore, the Cauchy–Riemann operator, and thus the Floer operator, sat-
isfies conditions (i) and (ii) in the previous subsection with the obstruction
bundle

O = coker(D∂K) ∼= T ∗M → M = M,

and Lemma 6.5 implies

Corollary 6.8. In the preceding situation, there exists a canonical morphism
of moduli problems

(ι, I) : (M,T ∗M, 0,ZT ∗M ) → (B, E , ∂,ZE),

where ι : M ↪→ B is the inclusion as constant maps and I converts a cotangent
vector into a constant (0, 1)-form. �

Note in particular that ∂K has index zero. A section in the obstruction
bundle transverse to the zero section corresponds under the isomorphism
O ∼= T ∗M to a 1-form η on M with nondegenerate zeroes p1, . . . , pk, and the
zero set of the perturbed Floer operator ∂K + η̃ consists of p1, . . . pk viewed as
constant maps Σ → M . Having chosen the orientation of det(∂̄) to be induced
by the canonical isomorphism TM ∼= T ∗M , we obtain that the signed count

k
∑

i=1

σ(pi) = χ(T ∗M)

agrees with the Euler number of T ∗M . Note that the Euler number of T ∗M
equals the Euler characteristic of M (this follows from the canonical isomor-
phism T ∗M ∼= TM and the Poincaré–Hopf theorem).

Constant annuli of modulus zero. Annuli of conformal modulus zero can
be viewed as moduli problems in two equivalent ways. For the first view, we
take as domain the compact region A ⊂ C bounded by two circles touching at
one point, the node. Given (V, J) and L ⊂ V as above, we, therefore, obtain
a moduli problem (BA, EA,SA,ZEA) with

BA = Wm,p
(

(A, ∂A), (V,L)
)

, EA
u = Wm−1,p

(

A,Hom0,1(TA, u∗TV )
)

,

the Cauchy–Riemann operator SA = ∂
A
, and the zero section ZEA ⊂ EA.

For the second view, we take as domain the closed unit disc D ⊂ C with
±i viewed as nodal points which are identified. This gives rise to a moduli
problem (BD,FD,SD,ZD) with

BD = Wm,p
(

(D, ∂D), (V,L)
)

,

FD = ED × (L × L), ED
u = Wm−1,p

(

D,Hom0,1(TD, u∗TV )
)

,

SD = ∂
D × ev : BD → ED × (L × L), ev(u) =

(

u(i), u(−i)
)

,

ZD = ZED × Δ, Δ = {(q, q) | q ∈ L} ⊂ L × L.

Note that the indices of the two moduli problems agree,

ind(SD) = ind(∂
D

) − n = ind(SA).
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Let φ : D → A be a continuous map which maps ±i onto the nodal point and
is otherwise one-to-one, and which is biholomorphic in the interior.4 Then,
composition with φ defines a diffeomorphism

BD ⊃ ev−1(Δ) ∼= BA

(where we use as area form on A the pullback under φ of an area form on
D). Since ev : BD → L × L is transverse to the diagonal Δ, we are in the
situation of Lemma 6.7. We conclude that there exists a morphism of moduli
problems

(ψ,Ψ) : (BA, EA,SA,ZEA) → (BD,FD,SD,ZD),

where ψ : BA = ev−1(Δ) ↪→ BD is the inclusion and Ψ(u; η) =
(

u; η, ev(u)
)

.
Now, we specialise to the case (V,L) = (T ∗M,M) with its canonical

almost complex structure J . Then, both solution spaces MA = (∂
A
)−1(0)

and MD = (SD)−1(ZD) = (∂
D

)−1(0) = M consist of constant maps to M .
Moreover, in view of the preceding discussion and the fact that the Cauchy–
Riemann operator ∂

D
: BD → ED over the disc is transverse to the zero

section, they both satisfy the hypotheses (i) and (ii) of Lemma 6.5, so com-
bined with the preceding discussion, we obtain

Corollary 6.9. There exists a commuting diagram of morphisms of moduli
problems

(BA, EA,SA,ZEA)
(ψ,Ψ) �� (BD,FD,SD,ZD)

(M,T ∗M, 0T ∗M ,ZT ∗M )

(ιA,ΨA)

��

(id,exp) �� (M,M × M, ev,Δ)

(ιD,ΨD)

��

where ιA : M ↪→ BA and ιD : M ↪→ BD are the inclusions as constant maps,
the bundle M ×M → M is given by projection onto the first factor, and exp :
T ∗M → M × M is the composition of the isomorphism T ∗M ∼= TM induced
by a metric on M with the exponential map TM → M ×M . Thus, the Euler
class of each of these moduli problems is represented by the nondegenerate
zeroes p1, . . . , pk of a 1-form η on M (or equivalently, of a vector field v on
M), with signs that add up (up to a global sign) to the Euler characteristic χ
of M . �
6.5. Proof of Theorem 6.1

Now, we can conclude the proof of Theorem 6.1.
For x ∈ FC∗(K) consider the moduli space P(x) of Floer annuli de-

scribed in Sect. 6.2 with its boundary evaluation map ev∂ : P(x) → Λ × Λ.
Pick a 1-form η on M with nondegenerate zeroes p1, . . . , pk. As in Sect. 6.4,
we view η as a section of the obstruction bundle over the vertical sides of the
hexagon in Fig. 9. We extend this section by a cutoff function to a section η̃

4We may construct φ as a composition φ = ϑ◦log ◦ψ where ψ is the Möbius transformation
sending D onto the upper halfplane H with ψ(−i) = 0 and ψ(i) = ∞, log is the logarithm

sending H onto the strip S = {z ∈ C | 0 � Im z � π}, and ϑ is the Möbius transformation
sending S onto A.
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over the whole hexagon and add it as a right hand side to the Floer equation.
We choose the data such that the moduli space P(x) is transversely cut out,
and thus defines a compact manifold with corners of dimension CZ(x)+2−n.

We may assume without loss of generality that M is connected. We pick
a C2-small Morse function V : M → R with a unique maximum at q0 ∈ M
such that p1, . . . , pk flow to q0 under the positive gradient flow of V . Let
MC∗(S) denote the Morse complex of the perturbed energy functional

S : Λ → R, S(q):=
∫ 1

0

(|q̇|2 − V (q)
)

dt

(note that there is no factor 1/2 in front of |q̇|2). For x ∈ FC∗(K) and
a, b ∈ MC∗(S), we define

P(x; a, b):={(τ, u) ∈ P(x) | ev∂(u) ∈ W+(a) × W+(b)},

where W+(a) is the stable manifold of a with respect to the negative pseudo-
gradient flow of S. Recall that the boundary evaluation map involves repar-
ametrisation of the boundary loops proportionally to arclength. For generic
choices, these are manifolds of dimension

dim P(x; a, b) = CZ(x) − ind(a) − ind(b) + 2 − n.

If the dimension is 0 these spaces are compact and their signed counts

Θ1(x):=
∑

a,b

#Pdim=0(x; a, b) a ⊗ b

define a degree 2 − n map

Θ1 : FC∗(K) → MC∗(S) ⊗ MC∗(S).

Next, we consider a 1-dimensional moduli space Pdim=1(x; a, b) and com-
pute its boundary. Besides splitting off index 1 Floer cylinders and negative
pseudo-gradient flow lines, which give rise to the term [∂,Θ1], there are con-
tributions from the sides of the hexagon in Fig. 9 which we analyse separately.
Note that the indices now satisfy

CZ(x) − ind(a) − ind(b) = n − 1.

Vertical left side: Here, the broken curves consist of a half-cylinder at-
tached at a boundary node to an annulus without interior puncture, where the
two boundary loops flow into a, b under the negative pseudo-gradient flow of
S. By the discussion in Sect. 6.4 the moduli space of annuli is [0,∞]×η−1(0),
where [0,∞] encodes the conformal modulus and η−1(0) consists of the points
p1, . . . , pk (with signs σ(pi)). In particular, we must have b = q0 and therefore
ind(b) = ind(q0) = 0. The half-cylinders belong to the moduli space

M(x; a) = {u : [0,∞) × S1 → T ∗M | (du − XK ⊗ β)0,1 = η̃,

u(∞, ·) = x, u(0, ·) ∈ W+(a)}.

They carry a boundary nodal point which is aligned with the boundary
marked point (0, 0) and the puncture at ∞, and is therefore given by (0, 1/2).
The evaluation at the nodal point defines an evaluation map

ev1/2 : M(x; a) → M, u 
→ u(0, 1/2).
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Figure 10. Degenerating the half-cylinders

For the broken curve to exist this evaluation map must meet one of the
constant annuli, i.e. one of the points p1, . . . , pk ∈ M , which generically does
not happen because

dim M(x; a) = CZ(x) − ind(a) = n − 1.

Hence, the vertical left side gives no contribution to the boundary.
Vertical right side: Similarly, the vertical right side gives no contribution

to the boundary.
Lower left side: Here, the broken curves consist of a disc with two inte-

rior punctures, one positive and one negative, attached at its negative punc-
ture to the positive puncture of a half-cylinder along an orbit in FC∗(−K),
where the two boundary loops flow into a, b under the negative pseudo-
gradient flow of S. By choosing the 1-form β equal to dt on a long cylin-
drical piece of the half-cylinder, we can achieve that these half-cylinders are
in one-to-one correspondence with broken curves consisting of a cylinder with
weights (−1, 1) and a half-cylinder with weights (1, 2), as shown in the middle
of Fig. 10. Reinterpreting these curves as on the right of that figure, we see
that their count corresponds to the composition −(Γ1 ⊗ Ψ)(1 ⊗ cF

0 ), where
we recall that Γ1 denotes the first term in the expression Γ = Γ1 + Γ2 + Γ3

from (22).
Lower right side: Similarly, the contribution from the lower right side

corresponds to the composition (Ψ ⊗ Γ1)(cF
0 ⊗ 1).

The discussion so far shows that

[∂,Θ1] = (Ψ ⊗ Γ1)(τcF
0 ⊗ 1) − (Γ1 ⊗ Ψ)(1 ⊗ cF

0 ) + Θtop + Θbottom, (25)

where Θtop and Θbottom are the degree 1 − n maps arising from the con-
tributions of the top and bottom sides of the hexagon to the boundary of
Pdim=1(x; a, b) which we discuss next.

Bottom side: The family of broken curves on the bottom side can be
deformed in an obvious way to the family of broken curves shown in Fig. 11.
Since the half-cylinders with weights (2, 2) define the map Ψ and the family
of 3-punctured spheres above them defines the continuation coproduct λF

from Sect. 3.2, this shows that Θbottom is equal to −(Ψ ⊗ Ψ)λF .
Top side: The family on the top side of the hexagon consists of punc-

tured annuli of modulus 0, i.e. punctured discs with two nodal points on the
boundary that are identified to a node. Moreover, the boundary carries two
marked points that are separated by the nodal points and aligned with the
interior puncture. We wish to relate this family to the loop coproduct, but



Vol. 25 (2023) Loop coproduct in Morse and Floer homology Page 49 of 84 59

Figure 11. Degenerating the curves on the bottom side

for this we face two problems: First, the boundary loops carry two marked
points whereas the loops for the loop coproduct carry only one (the initial
time t = 0); and second, the self-intersection of the boundary loop occurs at
the nodal points and not at one of the marked points.

Both problems are resolved simultaneously as follows. We enlarge this
1-parametric family to a 2-parametric family in which we keep the two bound-
ary marked points aligned, but drop the condition that the interior puncture
is aligned with them. The 2-parametric family forms the hexagon shown in
Fig. 12. Here, the interior puncture is depicted as a cross, the aligned bound-
ary marked points as endpoints of a dashed line, and the nodal points as
thick dots. The bottom side of the hexagon (drawn in black) corresponds to
the 1-parametric family on the top side of Fig. 9. Note that here we made a
choice by letting the interior puncture move freely above the dashed line con-
necting the two boundary marked points; we could equally well have taken
the mirror hexagon where the interior puncture moves below the dashed line.

The hexagon in Fig. 12 defines a deformation from the bottom (black)
side to the top side (drawn in red). The configurations in this figure are to
be interpreted as follows.

• Each configuration has two boundary loops obtained by going around
in the counterclockwise direction: the first loop from the bottom to the top
nodal point, and the second one from the top to the bottom nodal point.
Each boundary loop carries a marked point. As before, each boundary loop
of the zero section is reparametrized proportionally to arclength and then
flown into a critical point on Λ under the negative pseudo-gradient flow of
the functional S : Λ → R.

• In each configuration, the unique component carrying the interior
puncture (which may be nonconstant) is drawn as a large disc, so the small
discs are all constant. In particular, each small disc carrying the two nodal
points is a constant annulus of modulus zero. Under the perturbation of
the Cauchy–Riemann equation described in Corollary 6.9, such a component
lands on the transverse zeroes p1, . . . , pk of a 1-form η and further flows into
the basepoint q0. In particular, since the signs add up to χ we have that all
configurations on the upper and lower left sides land in Rχq0 ⊗ MC∗(S),
while those on the upper and lower right sides land in MC∗(S) ⊗ Rχq0. The
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Figure 12. Floer annuli of modulus zero

Figure 13. Interpreting the curves on the top side

upper and lower left sides therefore compute −(Γ2 ⊗Ψ)(1⊗ cF
0 ), whereas the

lower and upper right sides compute (Ψ ⊗ Γ2)(τcF
0 ⊗ 1), with Γ2 being the

second term in (22).
Thus, the hexagon in Fig. 12 provides a chain homotopy Θ2 from Θtop

(defined by the bottom side) to the operation ˜Θtop + (Ψ ⊗ Γ2)(τcF
0 ⊗ 1) −

(Γ2 ⊗ Ψ)(1 ⊗ cF
0 ), where ˜Θtop is defined by the top side, i.e.

[∂,Θ2] = ˜Θtop + (Ψ ⊗ Γ2)(τcF
0 ⊗ 1) − (Γ2 ⊗ Ψ)(1 ⊗ cF

0 ) − Θtop. (26)

• Consider now the top side. Since both marked points and the black
nodal point lie on the same constant component, we can remove this com-
ponent and replace the three points by one nodal/marked point as shown in
Fig. 13.

The boundary of these configurations consists of loops q : [0, 1] → M
with one (black) marked/nodal point at time 0 and an additional (red) nodal
point at time s which moves from 0 to 1 as we traverse the side from left to
right. In view of Corollary 6.9 and Remark 6.6, the map ˜Θtop : FC∗(K) →
MC∗(S)⊗MC∗(S) is defined by counting isolated configurations consisting of
punctured discs as in the definition of the moduli spaces M(x) from Sect. 5.5,
additionally decorated with two marked points, with an incidence condition
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at the marked points, followed by semi-infinite negative pseudo-gradient lines
of S starting at the de-concatenated loops. Now, we deform ˜Θtop once more
by inserting a negative pseudo-gradient trajectory of S of finite length T ≥ 0
between the boundary loop of the disc and the loop on which we impose the
incidence condition at the marked points. As T → ∞ this becomes the chain
map Ψ : FC∗(K) → MC∗(S) followed by the Morse theoretic coproduct
λ, whereas on the boundary of the top side we see appear the terms (Ψ ⊗
Γ3)(τcF

0 ⊗ 1)− (Γ3 ⊗Ψ)(1⊗ cF
0 ), with Γ3 being the third term from (22). We

obtain therefore a homotopy Θ3 between the operation ˜Θtop defined by the
top side and λΨ + (Ψ ⊗ Γ3)(τcF

0 ⊗ 1) − (Γ3 ⊗ Ψ)(1 ⊗ cF
0 ), i.e.

[∂,Θ3] = λΨ + (Ψ ⊗ Γ3)(τcF
0 ⊗ 1) − (Γ3 ⊗ Ψ)(1 ⊗ cF

0 ) − ˜Θtop. (27)

Summing together Eqs. (25), (26) and (27), and recalling that Γ =
Γ1 + Γ2 + Γ3, we obtain the desired relation (23).

For n �= 2, the condition ΘcF = 0 follows by an index argument analo-
gous to the proof of the relation λF cF = 0 in Proposition 3.1. Together with
the discussion at the beginning of this section, this concludes the proof of
Theorem 6.1. �

Remark 6.10. (Perturbation by 1-form/vector field) Let us analyse how the
perturbation by a 1-form η with transverse zeroes propagates to the diagrams
in the preceding proof. Along the left hand sides of the hexagon in Fig. 9,
we perturb the Floer operator by η̃ at the second output. This continues
along the left hand sides of the hexagon in Fig. 12 as the perturbation of
the constant modulus zero annuli by the vector field v corresponding to η
at the second output. As a result, the left hand configuration in Fig. 13 is
perturbed by applying the time-one-map f of v as we go counterclockwise
from the black to the red dot. This means for s � 0 close to 0 the evaluations
of the corresponding loops q : [0, 1] → M at time 0 (the black dot) and s (the
red dot) are related by q(s) = f(q(0)).
Along the right hand sides of the hexagon in Fig. 9, we perturb the Floer
operator by η̃ at the first output. As a result, the right hand configuration in
Fig. 13 is perturbed by applying the time-one-map f of v as we go clockwise
from the black to the red dot. This means that for s � 1 close to 1 the
evaluations of the corresponding loops q : [0, 1] → M at time 0 (the black
dot) and s (the red dot) are related by q(0) = f(q(s)), or equivalently, q(s) =
f−1(q(0)).
Therefore, the perturbation by the 1-form η on the Floer side translates on
the loop side into the perturbation by an s-dependent vector field which
agrees with v near s = 0 and with −v near s = 1.

7. Relation to other Floer-type coproducts

The continuation coproduct λF discussed in the previous sections descends to
positive action symplectic homology SH>0

∗ (D∗M) (since the action inequality
implies that if the input orbit is constant, then so must be the output orbits).
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In this section we relate λF to other coproducts on SH>0
∗ (D∗M) that have

appeared in the literature, thus proving Theorem 1.1 from the Sect. 1.
In particular, we will prove that λF agrees with the Abbondandolo–

Schwarz coproduct λAS defined in [4]. Abbondandolo and Schwarz defined in
[4] the ring isomorphism Ψ∗ : SH∗(D∗M)

∼=−→ H∗Λ and they asserted [4, The-
orem 1.4] that its reduction modulo constant loops Ψ>0

∗ : SH>0
∗ (D∗M)

∼=−→
H∗(Λ,Λ0) intertwines the coproduct λAS with the loop coproduct λ. How-
ever, to our knowledge no proof of this result has appeared. We will actually
give two proofs in this section: the first one uses Theorem 6.1 and the iden-
tification λF = λAS , the second one uses a direct argument and suitable
interpolating moduli spaces.

This section is structured as follows. In Sect. 7.1, we recall from [20] the
definition of the varying weights coproduct λw, which coincides with λF by
[20, Lemma 7.2] and which can be more easily related to λAS . In Sect. 7.2,
we recall from [4] the definition of the Abbondandolo–Schwarz coproduct
λAS . In Sect. 7.3, we show that λAS is equal to λw. In Sect. 7.4, we prove
directly that λAS corresponds to the loop coproduct λ under the isomorphism
SH>0

∗ (D∗M) ∼= H∗(Λ,Λ0).
The situation is summarised in the following diagram.

λ
§7.4

Theorem 6.1

λAS §7.3
λw [20]

λF . (28)

The whole discussion concerns the free loop space, but it carries over
verbatim to the based loop space.

For simplicity, we assume throughout this section that M is oriented and
we use untwisted coefficients in a commutative ring R; the necessary adjust-
ments in the nonorientable case and with twisted coefficients are explained
in Appendix A. We denote

S1:=R/Z and Λ:=W 1,2(S1,M).

7.1. Varying weights coproduct

We recall the definition of the varying weights coproduct λw on SH>0
∗ (V )

from [20, §7.1]. Since there we actually describe the algebraically dual product
on SH<0

∗ (V, ∂V ), we will recap in some detail the necessary notation and
arguments. The construction goes back to Seidel, see also [26]. We work with
a Liouville domain V of dimension 2n, the symplectic completion is denoted
̂V = V ∪ [1,∞)×∂V and the radial coordinate in the positive symplectisation
[1,∞) × ∂V is denoted r.

Let Σ be the genus zero Riemann surface with three punctures, one
of them labelled as positive χ+ and the other two labelled as negative υ−,
ζ−, endowed with cylindrical ends [0,∞) × S1 at the positive puncture and
(−∞, 0] × S1 at the negative punctures. Denote (s, t), t ∈ S1 the induced
cylindrical coordinates at each of the punctures. Consider a smooth family
of 1-forms βτ ∈ Ω1(Σ), τ ∈ (0, 1) satisfying the following conditions:

• (nonpositive) dβτ ≤ 0;
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• (weights) βτ = dt near each of the punctures;
• (interpolation) we have βτ = τdt on [−R(τ), 0]×S1 in the cylindrical

end near υ−, and βτ = (1−τ)dt on [−R(1−τ), 0]×S1 in the cylindrical
end near ζ−, for some smooth function R : (0, 1) → R>0. In other words,
the family {βτ} interpolates between a 1-form which varies a lot near
υ− and very little near ζ−, and a 1-form which varies a lot near ζ− and
very little near υ−;

• (neck stretching) we have R(τ) → +∞ as τ → 0.

We can assume without loss of generality that for τ close to 0 we have βτ =
fτ (s)dt in the cylindrical end at the negative puncture υ−, with f ′

τ ≤ 0,
fτ = 1 near −∞, and fτ = τ on [−R(τ), 0], and similarly for τ close to 1 in
the cylindrical end at the negative puncture ζ−.

Let H : ̂V → R be a convex smoothing localised near ∂V of a Hamil-
tonian which is zero on V and linear with respect to r with positive slope
on [1,∞)×∂V . The Hamiltonian H further includes a small time-dependent
perturbation localised near ∂V , so that all 1-periodic orbits are nondegen-
erate. Assume the slope is not equal to the period of a closed Reeb orbit.
Denote P(H) the set of 1-periodic orbits of H. The elements of P(H) are
contained in a compact set close to V .

Let J = (Jζ
τ ), ζ ∈ Σ, τ ∈ (0, 1) be a generic family of compatible almost

complex structures, independent of τ and s near the punctures, cylindrical
and independent of τ and ζ in the symplectisation [1,∞) × ∂V . For x, y, z ∈
P(H) denote

M1(x; y, z):=
{

(τ, u)
∣

∣ τ ∈ (0, 1), u : Σ → ̂V ,

(du − XH ⊗ βτ )0,1 = 0,

lim
s→+∞

ζ=(s,t)→χ+

u(ζ) = x(t),

lim
s→−∞

ζ=(s,t)→υ−

u(ζ) = y(t), lim
s→−∞

ζ=(s,t)→ζ−

u(ζ) = z(t)
}

.

In the symplectisation [1,∞)×∂V , we have H ≥ 0 and therefore d(Hβ) ≤ 0,
so that elements of the above moduli space are contained in a compact set.
The dimension of the moduli space is

dim M1(x; y, z) = CZ(x) − CZ(y) − CZ(z) − n + 1.

When it has dimension zero the moduli space M1
dim=0(x; y, z) is compact.

When it has dimension 1 the moduli space M1
dim=1(x; y, z) admits a natural

compactification into a manifold with boundary

∂M1
dim=1(x; y, z) =

∐

CZ(x′)=CZ(x)−1

M(x;x′) × M1
dim=0(x

′; y, z)



∐

CZ(y′)=CZ(y)+1

M1
dim=0(x; y′, z) × M(y′; y)



∐

CZ(z′)=CZ(z)+1

M1
dim=0(x; y, z′) × M(z′; z)
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 M1
τ=1(x; y, z) 
 M1

τ=0(x; y, z).

Here, M1
τ=1(x; y, z) and M1

τ=0(x; y, z) denote the fibres of the first projec-
tion M1

dim=1(x; y, z) → (0, 1), (τ, u) 
→ τ near 1, respectively near 0. (By
a standard glueing argument the projection is a trivial fibration with finite
fibre near the endpoints of the interval (0, 1).)

Consider the degree −n + 1 operation

λw : FC∗(H) → FC∗(H) ⊗ FC∗(H)

defined on generators by

λw(x) =
∑

CZ(y)+CZ(z)=CZ(x)−n+1

#M1
dim=0(x; y, z)y ⊗ z,

where #M1
dim=0(x; y, z) denotes the signed count of elements in the 0-dime-

nsional moduli space M1
dim=0(x; y, z). Consider also the degree −n opera-

tions

λw
i : FC∗(H) → FC∗(H) ⊗ FC∗(H), i = 0, 1

defined on generators by

λw
i (x) =

∑

CZ(y)+CZ(z)=CZ(x)−n

#M1
τ=i(x; y, z)y ⊗ z,

where #M1
τ=i(x; y, z) denotes the signed count of elements in the 0-dimen-

sional moduli space M1
τ=i(x; y, z).

Denote by ∂F the Floer differential on the Floer complex of H. The
formula for ∂M1

dim=1(x; y, z) translates into the algebraic relation

∂F λw + λw(∂F ⊗ id + id ⊗ ∂F ) = λw
1 − λw

0 . (29)

We now claim that

Im(λw
0 ) ⊂ FC=0

∗ (H) ⊗ FC∗(H), Im(λw
1 ) ⊂ FC∗(H) ⊗ FC=0

∗ (H).

To prove the claim for λw
0 , note that this map can be expressed as a composi-

tion (c⊗id)◦λ0, where λ0 : FC∗(H) → FC∗(τH)⊗FC∗(H) is a pair-of-pants
coproduct with τ > 0 small, and c : FC∗(τH) → FC∗(H) is a continuation
map. Taking into account that τH has no nontrivial 1-periodic orbits for τ
small, and because the action decreases along continuation maps, we obtain
c(FC∗(τH)) ⊂ FC=0

∗ (H), which proves the claim. The argument for λw
1 is

similar.
It follows that λw induces a degree −n + 1 chain map

λw : FC>0
∗ (H) → FC>0

∗ (H) ⊗ FC>0
∗ (H). (30)

Passing to the limit as the slope of H goes to +∞, we obtain the degree
−n + 1 varying weights coproduct λw on SH>0

∗ (V ).

Proposition 7.1. ([20, Lemma 7.2]) The continuation coproduct and the vary-
ing weights coproduct coincide on SH>0

∗ (V ):

λF = λw.

�
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Figure 14. The moduli spaces M1,AS(x; y, z)

7.2. Abbondandolo–Schwarz coproduct

In this subsection, we recall from [4] the definition of a secondary pair-of-
pants product on Floer homology of a cotangent bundle, which we will refer
to as the Abbondandolo–Schwarz coproduct λAS . We recall the notation and
conventions from Sect. 5.1 regarding the Floer complex. In particular near
the zero section H(q, p) = ε|p|2 +V (q) for a small ε > 0 and a Morse function
V : M → R such that all nonconstant critical points of AH have action larger
than min V .

For x, y, z ∈ Crit(AH), set (see Fig. 14)

M1,AS(x; y, z)

:=
{

(τ, u, v, w)
∣

∣ τ ∈ [0, 1], u : [0,∞) × S1 → T ∗M

v,w : (−∞, 0] × S1 → T ∗M, ∂Hu = ∂Hv = ∂Hw = 0,

u(+∞, ·) = x, v(−∞, ·) = y, w(−∞, ·) = z,

v(0, t) = u(0, τ t), w(0, t) = u(0, τ + (1 − τ)t)
}

.

Note that the matching conditions imply u(0, τ) = u(0, 0).

Lemma 7.2. ([4, §5]) For generic choices of Hamiltonian and almost com-
plex structure the space M1,AS(x; y, z) is a transversely cut out manifold of
dimension

dim M1,AS(x; y, z) = CZ(x) − CZ(y) − CZ(z) − n + 1.

�

The dimension of M1,AS(x; y, z) is calculated in [4] using an equivalent
description of the moduli space as follows. Define ṽ, w̃ : (−∞, 0] × [0, 1] →
T ∗M by ṽ(s, t) = v(s, t) and w̃(s, t) = w(s, t), and also ỹ, z̃ : [0, 1] → T ∗M by
ỹ(t) = y(t) and z̃(t) = z(t). Then, there is a canonical identification between
elements of M1,AS(x; y, z) and elements of

˜M1,AS(x; ỹ, z̃)

:=
{

(τ, u, ṽ, w̃)
∣

∣ τ ∈ [0, 1], u : [0,∞) × S1 → T ∗M

ṽ, w̃ : (−∞, 0] × [0, 1] → T ∗M,

∂Hu = ∂H ṽ = ∂Hw̃ = 0,
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u(+∞, ·) = x, ṽ(−∞, ·) = ỹ, w̃(−∞, ·) = z̃,
(

ṽ(s, 0),Cṽ(s, 1)
) ∈ N∗Δ,

(

w̃(s, 0),Cw̃(s, 1)
) ∈ N∗Δ,

ṽ(0, t) = u(0, τ t), w̃(0, t) = u(0, τ + (1 − τ)t)
}

.

Here, C : T ∗M → T ∗M is the antisymplectic involution (q, p) 
→ (q,−p),
Δ ⊂ M × M is the diagonal, and N∗Δ ⊂ T ∗(M × M) its conormal bun-
dle. The space ˜M1,AS(x; ỹ, z̃) is a moduli space with jumping Lagrangian
boundary conditions as in [3], so for generic H and J it is a transversely cut
out manifold. Its dimension is given by the Fredholm index of the linearised
problem [4, (37)].

If M1,AS(x; y, z) has dimension zero it is compact and defines a map

λAS : FC∗ → (FC ⊗ FC)∗−n+1, x 
→
∑

y,z

#M1,AS
dim=0(x; y, z) y ⊗ z.

If it has dimension 1, it can be compactified to a compact 1-dimensional
manifold with boundary

∂M1,AS
dim=1(x; y, z) =

∐

CZ(x′)=CZ(x)−1

M(x;x′) × M1,AS
dim=0(x

′; y, z)



∐

CZ(y′)=CZ(y)+1

M1,AS
dim=0(x; y′, z) × M(y′; y)



∐

CZ(z′)=CZ(z)+1

M1,AS
dim=0(x; y, z′) × M(z′; z)


 M1,AS
τ=1 (x; y, z) 
 M1,AS

τ=0 (x; y, z).

Here, the first three terms correspond to broken Floer cylinders and the last
two terms to the intersection of M1,AS(x; y, z) with the sets {τ = 1} and
{τ = 0}, respectively. Therefore, we have

(∂F ⊗ id + id ⊗ ∂F )λAS + λAS∂F = λAS
1 − λAS

0 , (31)

where for i = 0, 1, we set

λAS
i : FC∗ → (FC ⊗ FC)∗−n, x 
→

∑

y,z

#M1,AS
τ=i (x; y, z) y ⊗ z.

Let us look more closely at the map λAS
1 . For τ = 1 the matching conditions in

M1,AS(x; y, z) imply that w(0, t) = u(0, 0) is a constant loop. For action rea-
sons z must then be a critical point, so that Im(λAS

1 ) ⊂ FC∗(H)⊗FC=0
∗ (H).

Similarly, we have Im(λAS
0 ) ⊂ FC=0

∗ (H) ⊗ FC∗(H), and therefore λAS de-
scends to a chain map

λAS : FH>0
∗ → (FH>0 ⊗ FH>0)∗−n+1 (32)

with FC>0
∗ = FC∗(H)/FC=0

∗ (H). Note that we have FH>0
∗ (H) ∼= SH>0

∗
(D∗M) for the quadratic Hamiltonians considered in this section.
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Figure 15. A pair-of-pants Σ with large cylindrical ends

7.3. The varying weights coproduct equals the Abbondandolo–Schwarz
coproduct

Proposition 7.3. Let M be a closed connected oriented manifold. The sec-
ondary coproducts λw defined via (30) and λAS defined via (32) agree on
SH>0

∗ (D∗M).

Proof. We assume without loss of generality that the Hamiltonian used in the
definition of the coproduct λAS is the same as the one used in the definition
of the coproduct λw, i.e. a convex smoothing of a Hamiltonian which vanishes
on D∗M and is linear with respect to the radial coordinate r = |p| outside
of D∗M . The point of the proof is to exhibit the Floer problem defining the
moduli spaces M1,AS(x; y, z) for λAS as a limiting case of the Floer problem
defining the moduli spaces M1(x; y, z) for λw.

Note first that for 0-dimensional moduli spaces M1,AS
dim=0(x; y, z), we can

restrict τ to (0, 1). Given τ ∈ (0, 1) a triple (u, v, w) as in the definition of
M1,AS(x; y, z) can be interpreted as a single map ũ : Σ → T ∗M satisfying
(dũ − XH ⊗ βτ )0,1 = 0, where Σ is a Riemann surface and βτ is a 1-form
explicitly described as follows. The Riemann surface is

Σ = R × [−τ, 0] 
 R × [0, 1 − τ ] / ∼
with

(s,−τ) ∼ (s, 1 − τ), (s, 0−) ∼ (s, 0+) for s ≥ 0,

(s,−τ) ∼ (s, 0−), (s, 0+) ∼ (s, 1 − τ) for s ≤ 0.

(We use the notation (s, 0−) for points in R × {0} ⊂ ∂(R × [−τ, 0]), and
(s, 0+) for points in R × {0} ⊂ ∂(R × [0, 1 − τ ]).) This is a smooth Riemann
surface with canonical cylindrical ends [0,∞) × S1 at the positive puncture
and (−∞, 0] × R/τZ and (−∞, 0] × R/(1 − τ)Z at the negative punctures.
See Fig. 15.

A conformal parametrisation of Σ near the point (0, 0) is induced from
the map C → C, z 
→ z2.5 The Riemann surface Σ carries a canonical smooth

5Consider the half-pair-of-pants Σ 1
2

= R×[−τ, 0] �R×[0, 1−τ ] / ∼, where (s, 0−) ∼ (s, 0+)

for s ≥ 0. A conformal parametrisation near (0, 0) is given by the map z �→ z2 defined
in a neighbourhood of 0 ∈ {Re z ≥ 0}. This map actually establishes a global conformal
equivalence between H = {z ∈ C : Re z ≥ 0, 2(Re z)(Im z) ∈ [−τ, 1 − τ ]} and Σ 1

2
.
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closed 1-form dt.6 Upon identifying the cylindrical ends at the negative punc-
tures with (−∞, 0] × S1, this canonical 1-form becomes equal to τdt, respec-
tively (1−τ)dt at those punctures. The 1-form βτ is defined to be the discon-
tinuous 1-form equal to dt on the cylindrical end [0,∞) × S1 at the positive
puncture, equal to 1

τ dt on the cylindrical end (−∞, 0]×R/τZ at the first nega-
tive puncture, and equal to 1

1−τ dt on the cylindrical end (−∞, 0]×R/(1−τ)Z
at the second negative puncture. Equivalently, upon normalising the cylindri-
cal ends at the negative punctures into (−∞, 0]×S1, the 1-form βτ is simply
dt. This discontinuous 1-form βτ can be interpreted as a limit of 1-forms
which are obtained by interpolating from τ dt and (1− τ)dt (near 0) towards
dt (near −∞) in the normalised cylindrical ends at the negative punctures,
where the interpolation region shrinks and approaches s = 0. It was noted
in Sect. 7.2 that the limit case defines a Fredholm problem ˜M1,AS(x; ỹ, z̃)
with jumping Lagrangian boundary conditions. The Fredholm problem be-
fore the limit is naturally phrased in terms of the Riemann surface Σ without
boundary, but it can be reinterpreted as a problem with Lagrangian bound-
ary conditions by cutting Σ open along {s = 0}. As such, it converges in the
limit to the Fredholm problem with jumping Lagrangian boundary conditions
described above. By regularity and compactness, the two Fredholm problems
are equivalent near the limit, and the corresponding counts of elements in
0-dimensional moduli spaces are the same. �
7.4. Abbondandolo–Schwarz coproduct equals loop coproduct

Recall the Hamiltonian H : S1×T ∗M → R from Sect. 7.2 and its fibrewise Le-
gendre transform L : S1 ×TM → R from Sect. 2.2. Also recall from Sect. 2.2
the notations concerning the Morse complex MC∗ of the action functional
SL which we will use freely. In particular, ∂ denotes the Morse boundary
operator and ˜λ the coproduct from Remark 2.12.

We assume that M is oriented and we use the Morse complex twisted
by the local system σ obtained by transgressing the second Stiefel–Whitney
class.

Following [4], for x ∈ Crit(AH) and a ∈ Crit(SL), we define

M(x):={u : [0,∞) × S1 → T ∗M | ∂Hu = 0,

u(+∞, ·) = x, u(0, ·) ⊂ M}
and

M(x; a):={u ∈ M(x) | u(0, ·) ∈ W+(a)}, (33)

where W+(a) is the stable manifold of a for the negative pseudo-gradient
flow of SL. See Fig. 4.

Footnote 5 continued
The Riemann surface Σ admits a natural presentation as the glueing of two copies of
Σ 1

2
. Accordingly, it can be identified to H ∪ −H/ ∼ where the equivalence relation ∼

stands for suitable identifications of boundary components. The map z �→ z2 defined in
a neighbourhood of 0 ∈ H ∪ −H/ ∼ provides a conformal parametrisation of Σ near the
point (0, 0).
6Read through the identification of Σ with H ∪ −H/ ∼, this is 2d(xy) in a neighbourhood
of 0.
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For generic H these are manifolds of dimensions

dim M(x) = CZ(x), dim M(x; a) = CZ(x) − ind(a).

The signed count of 0-dimensional spaces M(x; a) defines a chain map

Ψ : FC∗ → MC∗, a 
→
∑

ind(a)=CZ(a)

#M(x; a) a.

The induced map on homology is an isomorphism

Ψ∗ : FH∗
∼=−→ MH∗ ∼= H∗(Λ;σ)

intertwining the pair-of-pants product with the loop product.

Proposition 7.4. The map Ψ descends to an isomorphism on homology mod-
ulo the constant loops

Ψ∗ : FH>0
∗

∼=−→ MH>0
∗ ∼= H∗(Λ,Λ0;σ)

which intertwines the Abbondandolo–Schwarz coproduct λAS with the loop
coproduct λ.

Proof. For x ∈ Crit(AH) and b, c ∈ Crit(SL) define

M+(x):=
{

(σ, τ, u, v, w)
∣

∣ σ ∈ [0,∞), τ ∈ [0, 1],

u : [σ,∞) × S1 → T ∗M,v,w : [0, σ] × S1 → T ∗M,

∂Hu = ∂Hv = ∂Hw = 0,

u(+∞, ·) = x, v(0, t) ∈ M, w(0, t) ∈ M,

v(σ, t) = u(σ, τt), w(σ, t) = u(σ, τ + (1 − τ)t)
}

,

M+(x; b, c):={(σ, τ, u, v, w) ∈ M+(x) |
v(0, ·) ∈ W+(b), w(0, ·) ∈ W+(c)},

M−(x; b, c):=
{

(σ, τ, u, α, β, γ)
∣

∣ σ ∈ (−∞, 0], τ ∈ [0, 1], u ∈ M(x),

α = φ−σ(u(0, ·)), β ∈ W+(b), γ ∈ W+(c),

β(t) = α(τt), γ(t) = α(τ + (1 − τ)t)
}

,

where M(x) was defined above and φs : Λ → Λ for s � 0 denotes the flow
of the negative pseudo-gradient of SL. Note that α, β, γ in the definition of
M−(x; b, c) are actually redundant and just included to make the definition
more transparent. As above it follows that for generic H these spaces are
transversely cut out manifolds of dimensions dimM+(x) = CZ(x) − n + 2
and

dim M+(x; b, c) = dimM−(x; b, c) = CZ(x) − ind(b) − ind(c) − n + 2.

We set

M2(x; b, c):=M+(x; b, c) 
 M−(x; b, c).

If this space has dimension zero it is compact and defines a map

Θ : FC∗ → (MC ⊗ MC)∗−n+2, x 
→
∑

b,c

#M2
dim=0(x; b, c) b ⊗ c.
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If it has dimension 1 it can be compactified to a compact 1-dimensional
manifold with boundary

∂M2
dim=1(x; b, c) =

∐

CZ(x′)=CZ(x)−1

M(x;x′) × M2
dim=0(x

′; b, c)



∐

ind(b′)=ind(b)+1

M2
dim=0(x; b′, c) × M(b′; b)



∐

ind(c′)=ind(c)+1

M2
dim=0(x; b, c′) × M(c′; c)



∐

y,z

M1
dim=0(x; y, z) × M(y; b) × M(z; c)



∐

a

M(x; a) × ˜M1
dim=0(a; b, c)


 M2
τ=1(x; b, c) 
 M2

τ=0(x; b, c),

where ˜M1(a; b, c) are the moduli spaces in Remark 2.12 defining the coprod-
uct ˜λ with ft = id. Here, the first term corresponds to splitting off of Floer
cylinders, the second and third ones to splitting off of Morse pseudo-gradient
lines, the fourth one to σ = +∞, the fifth one to σ = −∞, and the last two
terms to the intersection of M2(x; b, c) with the sets {τ = 1} and {τ = 0},
respectively. The intersections of M±(x; b, c) with the set {σ = 0} are equal
with opposite orientations and thus cancel out. Therefore, we have

(∂ ⊗ id + id ⊗ ∂)Θ + Θ∂F = (Ψ ⊗ Ψ)λAS − ˜λΨ + Θ1 − Θ0, (34)

where for i = 0, 1, we set

Θi : FC∗ → (MC ⊗ MC)∗−n+1, x 
→
∑

b,c

#M2
τ=i(x; b, c) b ⊗ c.

Arguing as in the previous subsection, we see that the Θ0 has image in
MC=0

∗ ⊗ MC∗, and Θ1 has image in MC∗ ⊗ MC=0
∗ . Together with Eq. (34)

this shows that Θ descends to a map

Θ : FC>0
∗ → (MC>0 ⊗ MC>0)∗−n+2

between the positive chain complexes which is a chain homotopy between
(Ψ ⊗ Ψ)λAS and ˜λΨ, which concludes the proof. �

8. Loop coproduct for odd-dimensional spheres

In this section, we compute the loop coproduct on reduced loop homology
H∗(ΛSn) = H∗(ΛSn) of odd-dimensional spheres Sn. For its definition, we
use a Morse function Sn → R with only two critical points, the minimum
and the maximum, and a vector field v (or equivalently a 1-form η) which
is nowhere vanishing. By Proposition 4.7, the coproduct does not depend on
these choices if n � 2. For the same reason, in the definition of the loop
coproduct, we can use a constant family vτ ≡ v instead of the family vτ

interpolating between v0 = v and v1 = −v from Sect. 2.2 (see Remark 4.8).
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In the case n = 1, we will see that the loop coproduct actually depends on
the choice of v.

For our computation, we first give a third definition of the loop coprod-
uct on reduced loop homology in terms of singular homology.

8.1. Topological description of the loop coproduct

We define the loop coproduct on singular loop homology relative to χ·point.
It is induced by a densely defined operation

λ : C∗(Λ) → C∗+1−n(Λ × Λ)

on singular chains constructed as follows. The beginning of the construction is
like in Sect. 2.2. We fix a small vector field v on M with nondegenerate zeroes
such that the only periodic orbits of v with period � 1 are its zeroes, and
we consider a generic family of vector fields vτ , τ ∈ [0, 1] which interpolates
between v0 = v and v1 = −v. We denote fτ

t : M
∼=−→ M , t ∈ R the flow of

vτ , and fτ = fτ
1 . For each q ∈ M , we denote as in Sect. 2.2 the induced path

from q to fτ (q) by πτ
q : [0, 1] → M , πτ

q (t):=fτ
t (q), and the inverse path by

(πτ
q )−1.

In the spirit of [13], let a : Ka → Λ be a chain such that the map

eva : Ka × [0, 1] → M × M, (x, τ) 
→
(

fτ
(

a(x)(0)
)

, a(x)(τ)
)

is transverse to the diagonal Δ ⊂ M × M . Then,

Kλ(a):=ev−1
a (Δ) = {(x, τ) ∈ Ka × [0, 1] | a(x)(τ) = fτ

(

a(x)(0)
)}

is a compact manifold with corners and we define

λ(a) : Kλ(a) → Λ × Λ

by

λ(a)(x, τ):=
(

a(x)|[0,τ ]#(πτ
a(x)(0))

−1, πτ
a(x)(0)#a(x)|[τ,1]

)

.

See Fig. 1 where α = a(x). At τ = 0 and τ = 1 the condition in Kλ(a) becomes
a(x)(0) = q ∈ Fix(f0), respectively a(x)(1) = q ∈ Fix(f1), and denoting the
constant loop at q by the same letter we find

λ(a)(x, 1) =
(

a(x)#q, q
)

, λ(a)(x, 0) =
(

q, q#a(x)
)

.

It follows that

∂λ(a) ± λ(∂a) =
∑

q∈Fix(f1)

ind−v(q)(a • q) × q −
∑

q∈Fix(f0)

indv(q)q × (q • a),

where q is viewed as a 0-chain and the loop products with the constant loop
q are given by

a • q : Ka•q = {x ∈ Ka | a(x)(0) = q} → Λ, x 
→ a(x)#q,

q • a : Kq•a = {x ∈ Ka | q = a(x)(0)} → Λ, x 
→ q#a(x).

Here, the signs ind±v(q) arise from the discussion before Remark 2.8, noting
that the restriction of eva to τ = 0 or τ = 1 is the composition of the
evaluation Ka → M , x 
→ a(x)(0) and the map M → M ×M , q 
→ (

f0(q), q
)

,
respectively q 
→ (

f1(q), q
)

.
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Let us now fix a basepoint q0 ∈ M and consider a such that the map

eva,0 : Ka → M, x 
→ a(x)(0)

is transverse to q0. We choose all zeroes of v (i.e. fixed points of f0 and f1)
so close to q0 that eva,0 is transverse to each of them. Then, after identifying
the domains Kq•a with Kq0•a and transferring loops at q to loops at q0, we
have

∂λ(a) ± λ(∂a) = χ
(

(a • q0) × q0 − q0 × (q0 • a)
)

, (35)

where χ =
∑

q∈Fix(f1) ind−v(q) =
∑

q∈Fix(f0) indv(q) is the Euler character-
istic of M . Recalling the notation C∗(Λ, χpt):=C∗(Λ)/χRq0 for the chains
relative to χ·point, we see that λ induces a chain map C∗Λ → (C(Λ, χpt) ⊗
C(Λ, χpt))∗+1−n. Moreover, this factors through C∗(Λ, χpt): if n ≥ 2 this
holds for degree reasons, and if n = 1 this holds tautologically because
the Euler characteristic is zero. The outcome is a coproduct H∗(Λ, χpt) →
(H(Λ, χpt)⊗H(Λ, χpt))∗+1−n on the homology relative to χ·point. Under our
standing assumption of orientability on M , this is the same as a coproduct
on reduced loop homology H∗Λ → (HΛ ⊗ HΛ)∗+1−n.

8.2. Loop coproduct for spheres of odd dimension n � 3
In this subsection, we use Z-coefficients and assume n � 3 is odd. Recall from
[23] that the degree shifted homology of the free loop space of Sn is the free
graded commutative algebra

H∗(ΛSn) = H∗+n(ΛSn) ∼= Λ[A,U ], |A| = −n, |U | = n − 1,

where the shifted degree |a| is related to the geometric degree by |a| = deg a−
n. Here, A is the class of a point (of geometric degree 0) and U is represented
by the descending manifold of the Bott family of simple great circles tangent
at their basepoint to a given non-vanishing vector field on the sphere (of
geometric degree 2n − 1). Since χ(Sn) = 0, the coproduct λ is defined on
H∗(ΛSn) and has shifted degree 1−2n (and geometric degree 1−n). The unit
1 is represented by the fundamental chain of all constant loops (of geometric
degree n).

We begin with some explicit computations of coproducts, to be com-
pared to [29].

Lemma 8.1. For n ≥ 3 odd, the loop coproduct on H∗(ΛSn) satisfies
(a) λ(A) = λ(1) = 0,
(b) λ(AU) = A ⊗ A,
(c) λ(AU2) = A ⊗ AU + AU ⊗ A,
(d) λ(U) = A ⊗ 1 − 1 ⊗ A.

Proof. We will actually prove these relations in H∗(ΛSn), in which case (a-c)
remain unchanged, but (d) becomes λ(U) = A ⊗ 1 + 1 ⊗ A (the sign change
comes from the odd degree shift by n).

We recall the observation made at the beginning of this section that in
the definition of the loop coproduct, we can use a constant family of vector
fields vτ ≡ v. We fix such a choice in the sequel, with v small and nowhere
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vanishing. We denote fτ
t = ft the flow of vτ = v, and we denote fτ = f the

time-one flow.
(a) To prove λ(A) = 0, we represent A by the constant loop at q0. Then,

fτ (q0) �= q0 for all values of τ ∈ [0, 1] and therefore λ(A) is supported by the
empty set. To prove λ(1) = 0, we represent 1 by the Sn-family of constant
loops and note that fτ (q) �= q for all q ∈ Sn. Thus, λ(1) is supported by the
empty set.

(b) We fix a unit tangent vector v0 at q0 and we represent AU by
the (n − 1)-chain a : Kn−1 → ΛSn of all circles with fixed initial point
q0 and initial direction v0. (Kn−1 is the (n − 1)-disc of all 2-planes in R

n+1

through q0 containing the vector v0, whose boundary is mapped to q0.) Then,
a(k)(0) = q0 for all k ∈ Kn−1. Since the evaluation map (k, τ) 
→ a(k)(τ)
covers Sn once, there exists a unique (k, τ) for which a(k)(τ) = fτ (q0) =
f(q0). Therefore, λ(a) is homologous to the 0-cycle A ⊗ A.

(c) We represent AU2 by the (2n − 2)-chain a : K2n−2 → ΛSn of all
circles with fixed initial point q0. (K2n−2 is a fibre bundle Kn−1 → K2n−2 →
Sn−1, where Sn−1 is the (n−1)-sphere of all initial directions at q0 and Kn−1

is the (n−1)-disc from (b) of all circles through q0 in a given initial direction.)
Then, a(k)(0) = q0 for all k ∈ K2n−2. Recall that f(q0) �= q0 is a point close
to q0. Let us fix some initial direction v0 at q0. For every sufficiently large
circle (whose diameter is bigger than the distance from q0 to f(q0)) with
initial point q0 and initial direction v0 there exist precisely two rotations of
the initial direction such that the rotated circles pass through f(q0). One
of these rotated circles passes though f(q0) near τ = 0 and the other one
near τ = 1. As the circle varies over the (n − 1)-chain Kn−1 of all circles
with initial point q0 and initial direction v0 (and we let f(q0) move to q0),
these two families of rotated circles give rise to cycles representing the classes
A ⊗ AU and AU ⊗ A, respectively.

(d) We represent U by the (2n−1)-chain a : K2n−1 → ΛSn of all circles
starting at their basepoint q ∈ Sn in direction v(q). (K2n−1 is a fibre bundle
Kn−1 → K2n−1 → Sn, where Sn corresponds to the initial points and Kn−1

is the (n − 1)-disc from (b).) For every q, there exists a unique circle a(xq)
starting at q in direction v(q) and passing through f(q). Since all the circles
constituting the chain a are simple, there is a unique τq such that a(xq)(τq) =
f(q) = fτq (a(xq)(0)). By splitting each a(xq) at the parameter value τq using
the path πq(t) = ft(q), we obtain a cycle s : Sn → Λ×Λ that represents λ(a).
This cycle has degree n, it sits over the diagonal Δ ⊂ Sn × Sn as an element
of the fibration (ev, ev) : Λ × Λ → Sn × Sn, and denoting π : Λ ×Sn Λ → Sn

the restriction of this fibration to the diagonal, we have π ◦ s = IdSn . On the
other hand, Hn(Λ ×Sn Λ) has rank 1, generated by the class of the diagonal:
that the rank is at most 1 follows by inspection of the spectral sequence of
the fibration ΩSn × ΩSn ↪→ Λ ×Sn Λ → Sn, using the fact that H∗(ΩSn) is
a polynomial ring on one generator in degree n − 1, and that it is at least
one follows from the fact that the diagonal is a section. This implies that the
cycle s is homologous to the diagonal Δ ⊂ Sn ×Sn in Λ×Sn Λ, hence also in
Λ×Λ, and we conclude λ(U) = [Δ] = [pt]⊗ [Sn]+ [Sn]⊗ [pt] = A⊗1+1⊗A
in H∗(Λ) ⊗ H∗(Λ).



59 Page 64 of 84 K. Cieliebak et al. JFPTA

The previous proof uses an algebraic argument related to the diagonal.
An alternative, entirely geometric proof can be given in case the sphere Sn

admits two orthogonal non-vanishing vector fields. (By Adams’ theorem [8],
this is the case if and only n+1 is divisible by 4.) We pick v to be one of these
and denote w the other one. We represent U by the (2n−1)-chain a : K2n−1 →
ΛSn of all circles starting at their basepoint q ∈ Sn in direction w(q). Thus,
for every q ∈ Sn, there exists a unique circle a(xq) starting at q in direction
w(q) and passing through f(q), and since all the circles constituting the chain
a are simple there is a unique τq such that a(xq)(τq) = f(q) = fτq (a(xq)(0)).
Since v is orthogonal to w, each circle a(xq) is small and the resulting cycle
λ(a) can be deformed in Λ × Λ to the diagonal Δ ⊂ Λ0 × Λ0. In turn, this is
represented in H∗(Λ0)⊗H∗(Λ0) by [q0]⊗ [Λ0]+ [Λ0]⊗ [q0], i.e. A⊗ 1+1⊗A.

�

Note that Lemma 8.1 is compatible with graded cocommutativity of λ
on H∗Λ, i.e. τλ = −λ. To compute the full expression of the coproduct, we
use the following structural result from [21].

Theorem 8.2. ([21, Theorem 6.4]) Let M be a closed manifold of dimension
n ≥ 2. Then, the loop homology H∗(ΛM) endowed with the loop product μ and
the loop coproduct λ is a commutative and cocommutative unital infinitesimal
anti-symmetric bialgebra. In particular, the following “unital infinitesimal
relation” holds:

λμ = (μ ⊗ 1l)(1l ⊗ λ) + (1l ⊗ μ)(λ ⊗ 1l) − (μ ⊗ μ)(1l ⊗ λ1 ⊗ 1l),

where we denote 1l the identity map and 1 the unit for the product. �

For M = Sn with n � 3 odd, we proved in Lemma 8.1 that λ1 = 0, so the
unital infinitesimal relation reduces to the so-called “infinitesimal relation”,
or “Sullivan relation”

λμ = (μ ⊗ 1l)(1l ⊗ λ) + (1l ⊗ μ)(λ ⊗ 1l).

Such a relation was conjectured in [36]. Note that Sullivan’s relation is not
satisfied by the “extension by 0” loop coproduct from [29].

Proposition 8.3. For n � 3 odd, the loop coproduct on H∗(ΛSn) satisfies for
all k � 0

λ(Uk) =
∑

i,j�0, i+j=k−1

(

AU i ⊗ U j − U i ⊗ AU j
)

,

λ(AUk) =
∑

i,j�0, i+j=k−1

AU i ⊗ AU j .

Proof. The proof is a straightforward induction on k using knowledge of μ,
Sullivan’s relation, and the values λ(A) = 0 and λ(U) = A ⊗ 1 − 1 ⊗ A
from Lemma 8.1. As an example, the values of λ(AU) and λ(AU2) from
Lemma 8.1 can be recovered as follows. For the computation, recall that the
shifted degrees of A, AU , λ are odd, the shifted degree of U is even, and
A2 = 0.
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λ(AU) = λμ(A ⊗ U)

= (μ ⊗ 1l)(1l ⊗ λ)(A ⊗ U) + (1l ⊗ μ)(λ ⊗ 1l)(A ⊗ U)

= −(μ ⊗ 1l)(A ⊗ λ(U)) + (1l ⊗ μ)(λ(A) ⊗ U)

= −(μ ⊗ 1l)(A ⊗ (A ⊗ 1 − 1 ⊗ A))
= A ⊗ A.

λ(AU2) = λμ(AU ⊗ U)

= (μ ⊗ 1l)(1l ⊗ λ)(AU ⊗ U) + (1l ⊗ μ)(λ ⊗ 1l)(AU ⊗ U)

= −(μ ⊗ 1l)(AU ⊗ λ(U)) + (1l ⊗ μ)(λ(AU) ⊗ U)

= −(μ ⊗ 1l)(AU ⊗ (A ⊗ 1 − 1 ⊗ A)) + (1l ⊗ μ)(A ⊗ A ⊗ U)
= AU ⊗ A + A ⊗ AU.

�

Remark 8.4. We note in particular that this extended coproduct on reduced
homology has contributions from the constant loops, unlike the one from
[29]. These contributions from the constant loops play an essential role for
the unital infinitesimal algebra structure.

The previous computation allows us to recover the Sullivan–Goresky–
Hingston coproduct on H∗(ΛSn,Λ0) = H∗+n(ΛSn,Λ0) [27,29]. Our method
ultimately relies on the infinitesimal relation and involves a minimal geomet-
ric input in the form of Lemma 8.1 (a) and (d). In comparison, the compu-
tation from [29] of the coproduct on H∗(ΛSn,Λ0) relies on geometric input
which is quite involved. In a sense, the “algebra” of the infinitesimal relation
replaces the “geometry” of spaces of circles from [29].

Corollary 8.5. For n ≥ 3 odd, the Sullivan–Goresky–Hingston coproduct on
H∗(ΛSn,Λ0) is given by

λ(Uk) =
∑

i,j�1, i+j=k−1

(

AU i ⊗ U j − U i ⊗ AU j
)

,

λ(AUk) =
∑

i,j�1, i+j=k−1

AU i ⊗ AU j .

Proof. It is enough to discard the terms involving constant loops from the
formulas of Proposition 8.3. �

8.3. Loop coproduct for S1

In this section, we study the loop coproduct on the loop space of S1 = R/Z.
The degree shifted loop homology with R-coefficients is as a ring with respect
to the loop product given by

H∗(ΛS1) = H∗+1(ΛS1) = Λ[A,U,U−1], |U | = 0, |A| = −1,

where the classes AUk and Uk are represented by the cycles

AUk(t) = kt, Uk(r, t) = r + kt, r, t ∈ S1, k ∈ Z.



59 Page 66 of 84 K. Cieliebak et al. JFPTA

To define the loop coproduct λ (of shifted degree −1), we need to pick a
nowhere vanishing vector field on S1. Up to homotopy there are two choices
of non-vanishing vector fields on S1,

v±(x) = ±ε,

for some fixed small ε > 0. We associate to v± the τ -dependent vector fields

vτ
±(x) = ±(1 − 2τ)ε, τ ∈ [0, 1]

which agree with v± at τ = 0 and with −v± at τ = 1. Their time-one maps
are

fτ
±(x) = x ± (1 − 2τ)ε.

In the next Proposition, we compute the coproducts λ± associated to this
choice of τ -dependent vector fields.

Proposition 8.6. The loop coproducts λ± on H∗(ΛS1) defined with the τ -
dependent vector fields vτ

± are given for k ∈ Z by

λ+(AUk) =

{

∑k
i=0 AU i ⊗ AUk−i, k � 0,

−∑−1
i=k+1 AU i ⊗ AUk−i, k < 0,

λ+(Uk) =

{

∑k
i=0(AU i ⊗ Uk−i − U i ⊗ AUk−i), k � 0,

−∑−1
i=k+1(AU i ⊗ Uk−i − U i ⊗ AUk−i), k < 0,

λ−(AUk) =

{

∑k−1
i=1 AU i ⊗ AUk−i, k > 0,

−∑0
i=k AU i ⊗ AUk−i, k � 0,

λ−(Uk) =

{

∑k−1
i=1 (AU i ⊗ Uk−i − U i ⊗ AUk−i), k > 0,

−∑0
i=k(AU i ⊗ Uk−i − U i ⊗ AUk−i), k � 0.

Proof. Let us compute λ±(AUk). By definition, we need to determine the
times τ ∈ (0, 1) such that

AUk(τ) = kτ = fτ
±(AUk(0)) = ±(1 − 2τ)ε mod Z,

i.e. kτ = i± (1−2τ)ε with i ∈ Z. In other words, we are looking for the i ∈ Z

such that

τ =
i ± ε

k ± 2ε
∈ (0, 1).

For λ+, we obtain

τ =
i + ε

k + 2ε
∈ (0, 1) ⇐⇒

{

i = 0, . . . , k, k � 0,

i = k + 1, . . . ,−1, k < 0,

while for λ−, we get

τ =
i − ε

k − 2ε
∈ (0, 1) ⇐⇒

{

i = 1, . . . , k − 1, k > 0,

i = k, . . . , 0, k � 0.

This yields the expressions for λ±(AUk), and λ±(Uk) is computed similarly.
�
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Proposition 8.6 shows that for M = S1 the coproduct on reduced loop
homology does depend on the choice of a nowhere vanishing vector field. One
can verify that both coproducts λ± define together with the loop product
a commutative cocommutative infinitesimal anti-symmetric bialgebra in the
sense of [21] with

λ±(1) = ±(A ⊗ 1 − 1 ⊗ A).

The unital infinitesimal relation reads now

λ±μ = (μ ⊗ 1l)(1l ⊗ λ±) + (1l ⊗ μ)(λ± ⊗ 1l) − (μ ⊗ μ)(1l ⊗ λ±(1) ⊗ 1l).

Remark 8.7. Just like in the case of higher dimensional spheres, the expres-
sions of the coproducts λ± on H∗(ΛS1) can be derived from the unital in-
finitesimal relation combined with knowledge of the product μ and of the
values

λ±(1) = ±(A ⊗ 1 − 1 ⊗ A),

λ±(A) = ±A ⊗ A,

λ+(U) = (A ⊗ U − U ⊗ A) + (AU ⊗ 1 − 1 ⊗ AU),

λ−(U) = 0.

For example, to compute λ±(U−1) one applies the unital infinitesimal relation
to U⊗U−1, to compute λ±(AU−1) one applies the unital infinitesimal relation
to A ⊗ U−1 (or to AU−1 ⊗ U) etc.

Remark 8.8. The example of the circle is very rich in that it also shows that
the condition v1 = −v0 for the family of vector fields vτ is necessary in order
for the coproducts to have a good algebraic behaviour. For example, with a
constant family vτ ≡ v+, we find an operation λv+,v+ given by

λv+,v+(AUk) =

{

∑k−1
i=0 AU i ⊗ AUk−i, k � 0,

−∑−1
i=k AU i ⊗ AUk−i, k < 0,

λv+,v+(Uk) =

{

∑k−1
i=0 (AU i ⊗ Uk−i − U i ⊗ AUk−i), k � 0,

−∑−1
i=k(AU i ⊗ Uk−i − U i ⊗ AUk−i), k < 0.

A direct check shows that this operation is neither coassociative, nor cocom-
mutative, though it satisfies the unital infinitesimal relation with λv+,v+(1) =
0, i.e. Sullivan’s relation. Similarly, with the constant family vτ ≡ v−, we find
an operation λv−,v− given by

λv−,v−(AUk) =

{

∑k
i=1 AU i ⊗ AUk−i, k > 0,

−∑0
i=k+1 AU i ⊗ AUk−i, k � 0,

λv−,v−(Uk) =

{

∑k
i=1(AU i ⊗ Uk−i − U i ⊗ AUk−i), k > 0,

−∑0
i=k+1(AU i ⊗ Uk−i − U i ⊗ AUk−i), k � 0.

Again, this is neither coassociative, nor cocommutative, though it satisfies
Sullivan’s relation.
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Appendix A: Local systems

We describe in this section the loop product and the loop coproduct with
general twisted coefficients. This allows us in particular to dispose of the
usual orientability assumption for the underlying manifold. To the best of
our knowledge, the Chas–Sullivan product on loop space homology was con-
structed for the first time on nonorientable manifolds by Laudenbach [31],
and the BV algebra structure by Abouzaid [7]. In this appendix, we extend
the definitions to more general local systems, we take into account the coprod-
uct, and we discuss the adaptations to reduced homology and cohomology
groups H∗Λ and H

∗
Λ. We also discuss the formulation and properties of the

isomorphism between symplectic homology and loop homology with twisted
coefficients.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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A.1. Conventions

We use the following conventions from [7, §9.7]. Given a finite-dimensional
real vector space V , its determinant line is the 1-dimensional real vector
space det V = ΛmaxV . We view it as being a Z-graded real vector space
supported in degree dimR V . To any 1-dimensional graded real vector space
L, we associate an orientation line |L|, which is the rank 1 graded free abelian
group generated by the two possible orientations of L, modulo the relation
that their sum vanishes. The orientation line |L| is by definition supported
in the same degree as L. When L = det V , we denote its orientation line |V |.

Given a Z-graded line � (rank 1 free abelian group), its dual line �−1 =
HomZ(�,Z) is by definition supported in opposite degree as �. There is a
canonical isomorphism �−1 ⊗ � ∼= Z induced by evaluation.

Given a Z-graded object F , we denote F [k] the Z-graded object obtained
by shifting the degree down by k ∈ Z, i.e. F [k]n = Fn+k. For example, the
shifted orientation line |V |[dim V ] is supported in degree 0. A linear map
f : E → F between Z-graded vector spaces or free abelian groups has degree
d if f(En) ⊂ Fn+d for all n. In an equivalent formulation, the induced map
f [d] : E → F [d] has degree 0. For example, the dual of a vector space or
free abelian group supported in degree k is supported in degree −k. This
is compatible with the grading convention for duals of Z-graded orientation
lines. Given a Z-graded rank 1 free abelian group �, we denote � the same
abelian group with degree set to 0. For example |V | = |V |[dim V ].

Given two oriented real vector spaces U and W , we induce an orien-
tation on their direct sum U ⊕ W by defining a positive basis to consist
of a positive basis for U followed by a positive basis for W . This defines a
canonical isomorphism at the level of orientation lines

|U | ⊗ |W | ∼= |U ⊕ W |.
Given an exact sequence of vector spaces

0 → U → V → W → 0,

we induce an orientation on V out of orientations of U and W by defining
a positive basis to consist of a positive basis for U followed by the lift of a
positive basis for W . This defines a canonical isomorphism

|U | ⊗ |W | ∼= |V |.
The following example will play a key role in the sequel.

Example A.1. (normal bundle to the diagonal) Let M be a manifold of di-
mension n. Consider the diagonal Δ ⊂ M × M and denote νΔ its normal
bundle. Let p1,2 : M × M → M be the projections on the two factors, so
that we have a canonical isomorphism T (M × M) ∼= p∗

1TM ⊕ p∗
2TM . When

restricted to Δ the projections coincide with the canonical diffeomorphism
p : Δ �−→ M . We obtain an exact sequence of bundles

0 → TΔ → p∗TM ⊕ p∗TM → νΔ → 0.

This gives rise to a canonical isomorphism |Δ| ⊗ |νΔ| ∼= p∗|M | ⊗ p∗|M |
and, because p∗|M | ⊗ p∗|M | is canonically trivial, we obtain a canonical
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isomorphism

|Δ| ∼= |νΔ|.
Explicitly, this isomorphism associates to the equivalence class of a basis
((v1, v1), . . . , (vn, vn)), vi ∈ TqM of T(q,q)Δ the equivalence class of the basis
([(0, v1)], . . . , [(0, vn)]) of ν(q,q)Δ.

A.2. Homology with local systems

By local system, we mean a local system of Z-graded rank 1 free Z-modules.
On each path-connected component of the underlying space, we think of such
a local system in one of the following three equivalent ways: either as the data
of the parallel transport representation of the fundamental groupoid, or as
the data of the monodromy representation from the fundamental group π
to the multiplicative group {±1} together with the data of an integer (the
degree), or as the data of a Z-graded Z[π]-module which is free and of rank
1 as a Z-module. Isomorphism classes of local systems on a path-connected
space X are thus in bijective correspondence with H1(X;Z/2) × Z, where
the first factor corresponds to the monodromy representation and the second
factor to the grading. Here, and in the sequel, we identify the multiplicative
group {±1} with the additive group Z/2. We refer to [9] for a comprehensive
discussion with emphasis on local systems on free loop spaces. One other
point of view on local systems describes these as locally constant sheaves,
but we will only marginally touch upon it in §A.3.

Given a local system ν, we can change the coefficients to any commu-
tative ring R by considering νR = ν ⊗Z R. The monodromy of such a local
system still takes values in {±1}, and this property characterises local sys-
tems of rank 1 free R-modules which are obtained from local systems of rank
1 free Z-modules by tensoring with R.

Let X be a path-connected space admitting a universal cover X̃. Denote
its fundamental group at some fixed basepoint π = π1(X). Interpreting a local
system ν on X as a Z[π]-module, one defines singular homology/cohomology
with coefficients in ν in terms of singular chains on X̃ as

H∗(X; ν) = H∗(C∗(X̃;Z) ⊗Z[π] ν),

H∗(X; ν) = H∗(HomZ[π](C∗(X̃;Z), ν)).

The homology/cohomology with local coefficients extended to a commutative
ring R are the R-modules

H∗(X; νR) = H∗(C∗(X̃;Z) ⊗Z[π] νR),

H∗(X; νR) = H∗
(

HomZ[π](C∗(X̃;Z), νR)
)

.

In our grading convention, the cohomology with constant coefficients is sup-
ported in nonpositive degrees and equals the usual cohomology in the opposite
degree. The induced differential on the dual group HomZ[π](C∗(X̃;Z), νR) has
degree −1.

The tensor product ν1 ⊗ ν2 of two local systems is again a local system.
Its Z[π]-module structure is the diagonal one and its degree is the sum of the
degrees of the factors. Note that viewing ν1, ν2 as elements in H1(X;Z/2)×Z,
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their tensor product is given by their sum ν1 + ν2. Operations like cap or
cup product naturally land in homology/cohomology with coefficients in the
tensor product of the coefficients of the factors.

Homology/cohomology with local coefficients behave functorially in the
following sense. Given a continuous map f : X → Y and a local system ν
on Y described as a Z[π1(Y )]-module, the pullback local system f∗ν on X
is defined by inducing a Z[π1(X)]-module structure via f∗. We then have
canonical maps

f∗ : H∗(X; f∗ν) → H∗(Y ; ν), f∗ : H∗(Y ; ν) → H∗(X; f∗ν).

The algebraic duality isomorphism with coefficients in a field K takes
the form

H−k(X; ν−1
K

)
∼=−→ Hk(X; νK)∨, k ∈ Z.

The map is induced by the canonical evaluation of cochains on chains. We
check that degrees fit in the case of graded local systems: given a local system
νK of degree d, and recalling our notation νK = νK[d] and ν−1

K
= ν−1

K
[−d], we

have

Hk(X; νK) = Hk−d(X; νK), H−k(X; ν−1
K

) = H−k+d(X; ν−1
K

),

so Hk(X; νK)∨ and H−k(X; ν−1
K

) both live in degree d − k.

A.3. Poincaré duality

Consider a manifold M of dimension n. We denote by |M | the local system
on M whose fibre at any point q ∈ M is the orientation line |TqM |, supported
by definition in degree n. We refer to |M | as the orientation local system of
M . The monodromy along a loop γ is +1 if the loop preserves the orientation
(i.e. the pullback bundle γ∗TM is orientable), and −1 if the loop reverses it.
The local system |M | is trivial if and only if the manifold M is orientable.
A choice of orientation is equivalent to the choice of one of the two possible
isomorphisms |M | � Z. The local system |M |⊗Z/2 is trivial, and this reflects
the fact that any manifold is Z/2-orientable.

Suppose now that M is closed. Then, it carries a fundamental class
[M ] ∈ Hn(M ; |M |) = H0(M ; |M |−1).

For any local system ν on M , the cap product with a fundamental class
defines a Poincaré duality isomorphism

H∗(M ; ν)
∼=−→ H∗(M ; ν ⊗ |M |−1), α 
→ [M ] ∩ α.

Remark A.2. Here is a description of the fundamental class using the inter-
pretation of local systems as locally constant sheaves (see for example [28],
Lemma 3.27 and Example 3 H.3). Let M ′ p→ M be the orientation double
cover. Given the constant local system Z on M ′, the pushforward p∗Z to M
has rank 2 and can be decomposed as |M | ⊕ Z (the map Z ⊕ Z → Z ⊕ Z,
(x, y) 
→ (y, x) fixes the diagonal and acts by −Id on the anti-diagonal).
The composition H∗(M ′;Z)

p∗→ H∗(M ; p∗Z) �→ H∗(M ; |M |) ⊕ H∗(M ;Z) is
an isomorphism because p∗ is an isomorphism. Since Hn(M ;Z) = 0 if M
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is nonorientable, we obtain that Hn(M ; |M |) has rank 1. A generator is the
image of a generator in Hn(M ′;Z) via the above composition.

A.4. Thom isomorphism and Gysin sequence

Let E
p−→ X be a real vector bundle of rank r, and denote Ė the complement

of the zero section. Let |E| be the local system on X whose fibre at a point
x ∈ X is the orientation line |Ex| of the fibre of E at x. The local system |E|
is called the orientation local system of E and is supported in degree r. The
Thom class is a generator

τ ∈ H−r(E, Ė; p∗|E|) = H0(E, Ė; p∗|E|).
The Thom isomorphism takes the form

Hk(E, Ė) �−→ Hk−r(X; |E|) = Hk(X; |E|), k ∈ Z

(cap product with τ), respectively

Hk(X; |E|−1) = Hk+r(X; |E|−1) �−→ Hk(E, Ė), k ∈ Z

(cup product with τ). More generally, for any local system ν on X, we have
isomorphisms

Hk(E, Ė; p∗ν) �−→ Hk−r(X; ν ⊗ |E|) = Hk(X; ν ⊗ |E|),
Hk(X; ν ⊗ |E|−1) = Hk+r(X; ν ⊗ |E|−1) �−→ Hk(E, Ė; p∗ν).

Pulling back the Thom class under the inclusion i : X → E of the zero section
yields the Euler class

e = i∗τ ∈ H−r(X; |E|) = H0(X; |E|).
Denote by S ⊂ Ė the sphere bundle with projection π = p|S : S → X. Then,
the long exact sequence of the pair (E, Ė) fits into the commuting diagram

· · · Hk(E, Ė) �� Hk(E)

i∗ ∼=
��

�� Hk(Ė) �� Hk−1(E; Ė) · · ·

· · · Hk(X; |E|−1)

∪τ ∼=
��

∪e �� Hk(X) π∗
�� Hk(S)

π∗ �� Hk−1(X; |E|−1) · · ·
∪τ ∼=

��

where the lower sequence is the Gysin sequence. More generally, for each local
system ν on X, we get a Gysin sequence

· · · Hk(X; ν ⊗ |E|−1) ∪e−→ Hk(X; ν)
π∗

−→ Hk(S;π∗ν) π∗−→ Hk−1(X; ν ⊗ |E|−1) · · ·

A.5. Spaces of loops with self-intersection

Let M be a manifold of dimension n, Λ = ΛM its space of free loops of
Sobolev class W 1,2, and evs : Λ → M the evaluation of loops at time s. We
define

F = {(γ, δ) ∈ Λ × Λ | γ(0) = δ(0)} ⊂ Λ × Λ
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(pairs of loops with the same basepoint), and

Fs = {γ ∈ Λ | γ(s) = γ(0)} ⊂ Λ, s ∈ (0, 1)

(loops with a self-intersection at time s). Denoting f : Λ × Λ → M × M ,
f = ev0 × ev0 and fs : Λ → M × M , fs = (ev0, evs), we can equivalently
write

F = f−1(Δ), Fs = f−1
s (Δ).

The maps f and fs are smooth and transverse to the diagonal Δ, so that
F and Fs are Hilbert submanifolds of codimension n. Denoting νF and νFs

their normal bundles, we obtain canonical isomorphisms

νF ∼= f∗νΔ, νFs
∼= f∗

s νΔ.

In view of Example A.1, we infer canonical isomorphisms

|νF| ∼= f∗|Δ| ∼= ev∗
0|M |, |νFs| ∼= f∗

s |Δ| ∼= ev∗
0|M |, (36)

where, in the first formula, ev0 : F → M is the evaluation of pairs of loops
at their common origin.

Denote i : F ↪→ Λ × Λ and is : Fs ↪→ Λ the inclusions. Recall the
restriction maps (7). Define the cutting map at time s

cs : Fs → F , cs(γ) = (γ|[0,s], γ|[s,1])

and the concatenation map at time s

gs : F → Fs, gs(γ1, γ2)(t) =

{

γ1( t
s ), t ∈ [0, s],

γ2( t−s
1−s ), t ∈ [s, 1].

The maps cs and gs are smooth diffeomorphisms inverse to each other. The
situation is summarised in the diagram

Λ × Λ F
i

��
gs

∼ �� Fs
cs

�� is

�� Λ.

Lemma A.3. Let ν be a local system (of rank 1 free abelian groups) on Λ
supported in degree 0. Denote p1,2 : Λ × Λ → Λ the projections on the two
factors. The following two conditions are equivalent:

c∗
s(p

∗
1ν ⊗ p∗

2ν)|F � ν|Fs
, (37)

and

(p∗
1ν ⊗ p∗

2ν)|F � g∗
s (ν|Fs

). (38)

Proof. The first condition is c∗
si

∗(p∗
1ν ⊗ p∗

2ν) � i∗sν. Since gs is a homeomor-
phism, this is equivalent to

g∗
sc∗

si
∗(p∗

1ν ⊗ p∗
2ν) � g∗

s i∗sν.

In view of csgs = IdFs
, this is the same as the second condition. �

Definition A.4. A degree 0 local system ν on Λ is compatible with products if
it satisfies the equivalent conditions of Lemma A.3.
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A local system ν which is compatible with products must necessarily
have degree 0 (and rank 1). Also, ν|M must be trivial: restricting both sides
of (37) or (38) to the constant loops yields ν|M ⊗ ν|M � ν|M .

Remark A.5. Local systems which are compatible with products play a key
role in the sequel definition of the loop product and loop coproduct with local
coefficients. Condition (37) is the one that ensures the coproduct is defined
with coefficients twisted by ν, whereas condition (38) is the one that ensures
the product is defined with coefficients twisted by ν. That the two conditions
are equivalent can be seen as yet another instance of Poincaré duality for free
loops.

We refer to Remark A.11 for an additional condition on the isomor-
phisms (38) which is needed for the associativity of the product and coasso-
ciativity of the coproduct.

Example A.6. (Transgressive local systems) Let Λ = �αΛαM be the de-
composition of the free loop space into connected components, indexed by
conjugacy classes α in the fundamental group. We view loops γ : S1 → Λ
as maps γ × S1 : S1 × S1 → M , (u, t) 
→ γ(u)(t). This induces a map
π1(ΛαM) → H1(ΛαM ;Z) → H2(M ;Z), [γ] 
→ [γ × S1]. Dually, and special-
ising to Z/2-coefficients, any cohomology class c ∈ H2(M ;Z/2) determines a
cohomology class τc ∈ H1(Λ;Z/2) =

∏

α Hom(π1(ΛαM);Z/2) via

〈τc, [γ]〉 = 〈c, [γ × S1]〉.
We denote the corresponding local system on Λ also by τc. Degree 0 local
systems obtained in this way are called transgressive [7].

Transgressive local systems are compatible with products. Indeed, the
identity (38) is a direct consequence of the equality [gs(γ1, γ2) × S1] = [γ1 ×
S1] + [γ2 × S1], which holds in H2(M ;Z) for all (γ1, γ2) : S1 → F .

The transgressive local system

σ = τw2 (39)

defined by the second Stiefel–Whitney class w2 ∈ H2(M ;Z/2) will play a
special role in the sequel.

Example A.7. Following Abouzaid [7], define for each loop γ ∈ Λ the shift

w(γ) =
{

0, if γ preserves the orientation,
−1, if γ reverses the orientation.

Define the local system

õ = ev∗
0|M |−w (40)

to be trivial on the components where γ preserves the orientation, and equal
to ev∗

0|M | on components where γ reverses the orientation.
The local system õ is compatible with products: the equality w(γ1) +

w(γ2) = w(gs(γ1, γ2)) holds in Z/2 for all (γ1, γ2) ∈ F . Note that the local
system õ is not transgressive and, in case M is nonorientable, it is nontrivial
on all connected components ΛαM whose elements reverse orientation.
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Question A.8. Characterise in cohomological terms the local systems on Λ
which are compatible with products. For example, it follows from [9, Lemma 1]
that, on a simply connected manifold, a local system ν is compatible with
products if and only if ν|M is trivial. A mild generalisation is given by [9,
Proposition 10].

A.6. Loop product with local coefficients

Following [27], we view the loop product as being defined by going from left
to right in the diagram

Λ × Λ ←↩ F g−→ Λ,

where g = isgs for some fixed s ∈ (0, 1). More precisely, the loop product with
integer coefficients is defined as the composition

Hi(Λ;Z) ⊗ Hj(Λ;Z) ε×−→ Hi+j(Λ × Λ;Z)

−→ Hi+j(νF , ν̇F ;Z)
�−→ Hi+j(F ; ev∗

0|M |)
g∗−→ Hi+j(Λ; ev∗

0|M |).
The first map is the homology cross-product corrected by a sign ε = (−1)n(i+n)

([29, Appendix B]), the second map is the composition of the map induced
by inclusion Λ×Λ ↪→ (Λ×Λ,Λ×Λ\F) with excision and the tubular neigh-
bourhood isomorphism, and the third map is the Thom isomorphism. In case
M is not orientable the loop product does not land in homology with integer
coefficients and thus fails to define an algebra structure on H∗(Λ;Z). This
can be corrected by using at the source homology with local coefficients.

Definition A.9. Define on Λ the local system

μ:=ev∗
0|M |−1.

The archetypal loop product is the bilinear map

• : Hi(Λ;μ) ⊗ Hj(Λ;μ) → Hi+j(Λ;μ)

defined as the composition

Hi(Λ;μ) ⊗ Hj(Λ;μ) ε×−→ Hi+j(Λ × Λ; p∗
1μ ⊗ p∗

2μ)

−→ Hi+j(νF , ν̇F ; p∗
1μ ⊗ p∗

2μ|νF )
�−→ Hi+j(F ; (p∗

1μ ⊗ p∗
2μ)|F ⊗ ev∗

0|M |)
g∗−→ Hi+j(Λ;μ).

The description of the maps is the same as above, with ε = (−1)ni be-
cause of the shift Hi(Λ;μ) = Hi+n(Λ;μ). However, one still needs to check
that the local systems of coefficients are indeed as written. For the first, sec-
ond and third map the behaviour of the coefficients follows general patterns.
For the last map, we use that

(p∗
1μ ⊗ p∗

2μ)|F ⊗ ev∗
0|M | � g∗μ,

which is true for our specific μ = ev∗
0|M |−1.
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The archetypal loop product is associative, graded commutative, and it
has a unit represented by the fundamental class

[M ] ∈ H0(M ; |M |−1) = Hn(M ; |M |)
from §A.3. With our grading conventions, the archetypal loop product has
degree 0 and the local system μ is supported in degree −n. In the case where
M is oriented, we recover the usual loop product.

More generally, the loop product can be defined with further twisted
coefficients.

Definition A.10. Let ν be a degree 0 local system (of rank 1 free Z-modules)
on Λ which is compatible with products. The loop product with coefficients
twisted by ν is the bilinear map

• : Hi(Λ; ν ⊗ μ) ⊗ Hj(Λ; ν ⊗ μ) → Hi+j(Λ; ν ⊗ μ)

(with μ = ev∗
0|M |−1 as above) defined as the composition

Hi(Λ; ν ⊗ μ) ⊗ Hj(Λ; ν ⊗ μ)
ε×−→ Hi+j(Λ × Λ; (p∗

1ν ⊗ p∗
2ν) ⊗ (p∗

1μ ⊗ p∗
2μ))

−→ Hi+j(νF , ν̇F ; (p∗
1ν ⊗ p∗

2ν) ⊗ (p∗
1μ ⊗ p∗

2μ)|νF )
�−→ Hi+j(F ; (p∗

1ν ⊗ p∗
2ν) ⊗ (p∗

1μ ⊗ p∗
2μ)|F ⊗ ev∗

0|M |)
g∗−→ Hi+j(Λ; ν ⊗ μ).

As before, we have ε = ni. For the last map, we use the isomorphism
(p∗

1μ ⊗ p∗
2μ)|F ⊗ ev∗

0|M | � g∗μ, and the isomorphism (p∗
1ν ⊗ p∗

2ν)|F � g∗ν
which expresses the compatibility with products for ν.

The loop product with twisted coefficients is graded commutative and
unital. Recalling that the compatibility with products for ν forces its restric-
tion to M to be trivial, the unit is again represented by the fundamental
class

[M ] ∈ H0(M ; ν|M ⊗ |M |−1) = H0(M ; |M |−1) = Hn(M ; |M |).

Remark A.11. Associativity of the loop product with twisted coefficients
depends on the following associativity condition on the isomorphisms (37)
and (38). Given s, s′ ∈ (0, 1) denote s′′ = (s′ − ss′)/(1 − ss′), so that
gs′ ◦ (gs × id) = gss′ ◦ (id × gs′′). Denoting Φs : (p∗

1ν ⊗ p∗
2ν)|F �→ g∗

sν|Fs

the isomorphism from (38), we require the associativity condition

Φss′ ◦ (Id ⊗ Φs′′) = Φs′ ◦ (Φs ⊗ Id).

This holds for the transgressive local systems from Example A.6 and for the
local system in Example A.7.

Also, because (37) and (38) are equivalent, this condition on (38) will
guarantee coassociativity of the coproduct, see below.
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A.7. Loop coproduct with coefficients

Again following [27], we view the primary coproduct on loop homology as
being defined by going from left to right in the diagram

Λ ←↩ Fs
cs−→ Λ × Λ

for some fixed s ∈ (0, 1), where cs stands for ics in the notation of §A.5.
We restrict in this section to coefficients in a field K and all local systems
are accordingly understood in this category. The reason for this restriction is
explained below. The primary coproduct with constant coefficients is defined
as the composition

Hk(Λ;K) �� Hk(νFs, ν̇Fs;K) Hk(Fs; ev∗
0|M |)���

cs∗ �� Hk(Λ × Λ; p∗
1ev

∗
0|M |) AW �� ⊕

i+j=k Hi(Λ; ev∗
0|M |) ⊗ Hj(Λ;K).

The first map is the composition of the map induced by inclusion Λ → (Λ,Λ\
Fs) with the excision isomorphism towards the homology rel boundary of a
tubular neighbourhood of Fs. The second map is the Thom isomorphism. For
the third map, we use that c∗

sp
∗
1ev

∗
0 = ev∗

0. The fourth map is the Alexander–
Whitney diagonal map followed by the Künneth isomorphism.7 Just like for
the loop product, we see that if M is nonorientable the primary coproduct
fails to define a coalgebra structure on H∗(Λ;K). This is corrected using
homology with local coefficients as follows.

Definition A.12. Define on Λ the local system

o:=ev∗
0|M | = μ−1.

The archetypal primary coproduct is the bilinear map

∨s : Hk(Λ; o) →
⊕

i+j=k

Hi(Λ; o) ⊗ Hj(Λ; o)

(for some fixed s ∈ [0, 1]) defined as the composition

Hk(Λ; o) −→ Hk(νFs, ν̇Fs; o|νFs
)

�←− Hk(Fs; o ⊗ ev∗
0|M |)

cs∗−→ Hk(Λ × Λ; p∗
1o ⊗ p∗

2o)
AW−→

⊕

i+j=k

Hi(Λ; o) ⊗ Hj(Λ; o).

With our grading conventions, this coproduct has degree 0. Taking into
account that o = ev∗

0|M | is supported in degree n, this results in the coprod-
uct having the usual degree −n in ungraded notation. In the orientable case
it recovers the usual primary coproduct.

Just like the product, the primary coproduct can be defined with further
twisted coefficients.
7The Alexander–Whitney diagonal map [25, VI.12.26] takes values in H∗(C∗(Λ; ev∗

0|M |)⊗
C∗(Λ)) with arbitrary coefficients. In order to further land in H∗(Λ; ev∗

0|M |) ⊗ H∗(Λ), we

need to restrict to field coefficients so the Künneth isomorphism holds. Alternatively, one
needs to modify the target of the coproduct to be H∗(Λ × Λ; p∗

1ev∗
0|M |), see [29].
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Definition A.13. Let ν be a degree 0 local system (of rank one K-vector
spaces) on Λ which is compatible with products. The primary coproduct with
twisted coefficients is the bilinear map

∨s : Hk(Λ; ν ⊗ o) →
⊕

i+j=k

Hi(Λ; ν ⊗ o) ⊗ Hj(Λ; ν ⊗ o)

(with o = ev∗
0|M | as above and some fixed s ∈ [0, 1]) defined as the compo-

sition

Hk(Λ; ν ⊗ o) −→ Hk(νFs, ν̇Fs; ν ⊗ o|νFs
)

�←− Hk(Fs; ν ⊗ o⊗2)
cs∗−→ Hk(Λ × Λ; p∗

1(ν ⊗ o) ⊗ p∗
2(ν ⊗ o))

AW−→
⊕

i+j=k

Hi(Λ; ν ⊗ o) ⊗ Hj(Λ; ν ⊗ o).

In the definition, we use c∗
s(p

∗
1o⊗p∗

2o) � o⊗o, and the condition c∗
s(p

∗
1ν⊗

p∗
2ν) � ν|Fs

which is part of the condition of being compatible with products
for ν.

The arguments of Goresky–Hingston [27, §8] which show that, in the
orientable case, there is a secondary coproduct of degree −n + 1 defined on
relative homology H∗(Λ,Λ0;K), apply verbatim in the current setup involving
local coefficients. As an outcome, we obtain the following.

Definition-Proposition A.14. For any degree 0 local system ν of rank one K-
vector spaces on Λ which is compatible with products, there is a well-defined
(secondary) loop coproduct with twisted coefficients (abbreviate o = ev∗

0|M |)
∨ : Hk(Λ,Λ0; ν ⊗ o) →

⊕

i+j=k+1

Hi(Λ,Λ0; ν ⊗ o) ⊗ Hj(Λ,Λ0; ν ⊗ o).

�

As explained in [29], in order for this secondary coproduct to be coas-
sociative in the case of a constant local system ν, we need to correct the
ij-component of the secondary product induced by the previously defined
primary product by a sign ε = (−1)(n−1)(j−n) (see [29, Definition 1.7] and
note the shift in grading Hj(Λ,Λ0; ν ⊗ o) = Hj−n(Λ,Λ0; ν ⊗ o)). With this
correction, the coproduct with constant local system ν is also graded cocom-
mutative if gradings are shifted so that it has degree 0. However, it has no
counit (this would contradict the infinite dimensionality of the homology of
Λ).

In the case of coefficients twisted by a local system ν which is noncon-
stant, coassociativity further requires that the isomorphisms Φs expressing
compatibility with products for ν satisfy the condition from Remark A.11.
The coproduct is then also cocommutative.

One obtains dually a cohomology product [27,29]. Note that, in contrast
to the loop coproduct, the dual loop cohomology product is defined with
arbitrary coefficients because its definition does not require the Künneth
isomorphism.
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Definition-Proposition A.15. For any degree 0 local system ν of rank 1 free
abelian groups on Λ which is compatible with products, there is a well-defined
cohomology product with twisted coefficients (abbreviate μ = ev∗

0|M |−1)

� : Hi(Λ,Λ0; ν ⊗ μ) ⊗ Hj(Λ,Λ0; ν ⊗ μ) → Hi+j−1(Λ,Λ0; ν ⊗ μ).

�

The cohomology product with twisted coefficients is associative. It is
also graded commutative when viewing it as a degree 0 product on H∗−1

(Λ,Λ0; ν ⊗ μ).

A.8. Reduced- vs. loop homology relative to χ·point

We explain in this section the interplay between reduced loop homology and
loop homology relative to χ·point in the presence of local coefficients.

Recall the previous notation o = ev∗
0|M | = μ−1, and let ν be a local

system compatible with products. The arguments of Sect. 2.2 carry over
verbatim to give a description of the loop product and coproduct in Morse
homology with local coefficients in ν ⊗ μ, respectively ν ⊗ o. For a definition
of Morse homology with local coefficients, we refer to [7, §11.3] or [33, §7.2].

The reduced loop (co)homology groups MH∗ and MH
∗

are defined with
local coefficients as follows. Recall that ν|M is trivial. We consider the map
ε given as the composition

H∗(Λ; ν ⊗ μ) ε ��

��

H∗(Λ; ν ⊗ μ)

H0(M ;μ)
ε0

�� H0(M ;μ)

��

where the vertical maps are restriction to, respectively inclusion of constant
loops, and ε0 is induced by multiplication with the Euler characteristic. We
then define

MH
∗
(Λ; ν ⊗ μ) = ker ε, MH∗(Λ; ν ⊗ μ) = coker ε.

Thus, MH∗(Λ; ν⊗μ) = MH∗−n(Λ; ν⊗μ) and MH∗(Λ; ν⊗o) = MH∗+n(Λ; ν⊗
μ). Similarly to Sect. 2.2, the loop product descends to MH∗(Λ; ν ⊗ μ) be-
cause im ε ⊂ H∗(Λ; ν ⊗ μ) is an ideal.

The loop (co)homology groups relative to χ·point are defined with local
coefficients as follows. Recall again that ν|M is trivial. Consider the embed-
ding χRq0 → MC∗(Λ; ν ⊗ o) given by the inclusion χR ↪→ R and define the
Morse chains relative to χ·point as MC∗(Λ, χpt; ν⊗o) = MC∗(Λ; ν⊗o)/χRq0.
Similarly consider the projection π : MC∗(Λ; ν ⊗ μ) → Rq0 and define the

Morse cochains relative to χ·point to be MC∗(Λ, χpt; ν⊗μ) = π−1 ker(R
·χ−→

R). The loop (co)homology groups relative to χ·point are

MH∗(Λ, χpt; ν ⊗ o) = H∗(MC∗(Λ, χpt; ν ⊗ o)),
MH∗(Λ, χpt; ν ⊗ μ) = H∗(MC∗(Λ, χpt; ν ⊗ μ)).

The arguments of Sect. 2.2 carry over verbatim in order to show that the loop
coproduct extends to MH∗(Λ, χpt; ν⊗o) (for algebraic reasons, we need to use



59 Page 80 of 84 K. Cieliebak et al. JFPTA

field coefficients as in §A.7). Interpreted dually as a product on cohomology,
this is defined with arbitrary coefficients on MH∗(Λ, χpt; ν ⊗ μ).

The comparison between reduced loop homology and loop homology rel-
ative to a point goes as follows. Recalling that μ = o, we have a commutative
diagram

Rq0
·χ ��

·χ
��

MC∗(Λ; ν ⊗ μ)

0 �� χRq0
�� MC∗(Λ; ν ⊗ o) �� MC∗(Λ, χpt; ν ⊗ μ) �� 0

which induces

R
·χ ��

·χ
��

MH∗(Λ; ν ⊗ μ) �� MH∗(Λ; ν ⊗ μ)

���
�
�

. . . �� χR �� MH∗(Λ; ν ⊗ o) �� MH∗(Λ, χpt; ν ⊗ o) �� . . .

We thus get a canonical map

MH∗(Λ; ν ⊗ μ) −→ MH∗(Λ, χpt; ν ⊗ o) (41)

which is an isomorphism if and only if the map χR → MH0(Λ; ν ⊗ o) is
injective. To study its injectivity, we can restrict without loss of generality to
the component of contractible loops, in which case the target of this map is
R if ν ⊗ o is trivial and R/2R if ν ⊗ o is nontrivial on that component. We
thus obtain injectivity of this map, and an isomorphism in (41), under any
of the following conditions:

(i) ν ⊗ o is trivial on the component of contractible loops.
(ii) χ = 0.
(iii) R is 2-torsion.

A.9. Isomorphism between symplectic homology and loop homology

We spell out in this section the isomorphism between the symplectic homol-
ogy of the cotangent bundle and the homology of the free loop space with
twisted coefficients.

For the next definition, recall the local systems

σ = τw2 , õ = ev∗
0|M |−w

from (39) and (40), as well as the orientation local systems

μ = ev∗
0|M |−1 = o−1.

Definition A.16. (Abouzaid [7]) The fundamental local system for symplectic
homology of the cotangent bundle is the local system on Λ given by

η = σ ⊗ μ ⊗ õ.
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The fundamental local system η is supported in degree −n. Our previ-
ous discussion shows that the loop product is defined and has degree 0 on
H∗(Λ; η), and the loop coproduct is defined and has degree +1 on H∗(Λ,
Λ0; η−1). We can view the loop product as being defined on H∗(Λ; η), where
it has degree −n, and the loop coproduct as being defined (with field coeffi-
cients) on H∗(Λ,Λ0; η), where it has degree 1−n. This point of view is useful
when considering H∗(Λ; η), which is a common space of definition (to which
the product descends and the coproduct extends).

As proved in [5,7], the chain map Ψ = Ψquadratic discussed in Sect. 5.3
associated to a quadratic Hamiltonian acts as

Ψ : FC∗(H) → MC∗(SL; η)

and induces an isomorphism SH∗(D∗M) �−→ H∗(Λ; η). Given any local sys-
tem ν, the same map acts as Ψ : FC∗(H; ν) → MC∗(SL; ν ⊗ η) and induces
an isomorphism SH∗(D∗M ; ν) �−→ H∗(Λ; ν ⊗ η).

Our filtered chain map Ψ = Ψlinear from Sect. 5.5 associated to a linear
Hamiltonian is a chain isomorphism FC∗(H) �−→ MC≤μ

∗ (E1/2; η), with μ
the slope of the Hamiltonian. Given any local system ν, we obtain a filtered
chain isomorphism FC∗(H; ν) �−→ MC≤μ

∗ (E1/2; ν ⊗ η).
In case the local system ν is compatible with products, the arguments

of [1,3,7] adapt in order to show that the map Ψ intertwines the pair-of-
pants product on the symplectic homology side with the homology product
on the Morse side. The arguments of Theorem 6.1 adapt in order to show
that the map Ψ descends on homology relative to the constant loops, where
it intertwines the continuation coproduct with the loop coproduct (with field
coefficients).

Theorem A.17. ([1,3,5,7], Theorem 5.3, Theorem 6.1) Given any local system
ν compatible with products, the filtered chain level map Ψ induces filtered
isomorphisms

Ψ∗ : SH∗(D∗M ; ν) �−→ H∗(Λ; ν ⊗ η),

Ψ>0
∗ : SH>0

∗ (D∗M ; ν) �−→ H∗(Λ,Λ0; ν ⊗ η).

Moreover,
– Ψ∗ intertwines the pair-of-pants product with the Chas–Sullivan loop

product,
– Ψ>0

∗ intertwines the continuation coproduct with the loop coproduct (with
field coefficients).

�

There are also reduced versions of the map Ψ which intertwine the
product, and which also intertwine the coproducts provided both are defined
using the same continuation data at the endpoints. The statements for the
coproducts can, moreover, be interpreted as dual statements about products
in cohomology.
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[12] Buser, P.: Geometry and Spectra of Compact Riemann Surfaces. Modern
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