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Escherichia coli, as an indicator of fecal contamination, can move from manure-
amended soil to groundwater under rainfall or irrigation events. Predicting its 
vertical transport in the subsurface is essential for the development of engineering 
solutions to reduce the risk of microbiological contamination. In this study, 
we collected 377 datasets from 61 published papers addressing E. coli transport 
through saturated porous media and trained six types of machine learning 
algorithms to predict bacterial transport. Eight variables, including bacterial 
concentration, porous medium type, median grain size, ionic strength, pore water 
velocity, column length, saturated hydraulic conductivity, and organic matter 
content were used as input variables while the first-order attachment coefficient 
and spatial removal rate were set as target variables. The eight input variables 
have low correlations with the target variables, namely, they cannot predict target 
variables independently. However, using the predictive models, input variables 
can effectively predict the target variables. For scenarios with higher bacterial 
retention, such as smaller median grain size, the predictive models showed better 
performance. Among six types of machine learning algorithms, Gradient Boosting 
Machine and Extreme Gradient Boosting outperformed other algorithms. In most 
predictive models, pore water velocity, ionic strength, median grain size, and 
column length showed higher importance than other input variables. This study 
provided a valuable tool to evaluate the transport risk of E.coli in the subsurface 
under saturated water flow conditions. It also proved the feasibility of data-driven 
methods that could be used for predicting other contaminants’ transport in the 
environment.
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Highlights

 • The predictive models showed better performance when bacterial retention was high.
 • Spatial removal rate is a better target variable than first-order attachment coefficient.
 •  Algorithms based on gradient boosting outperformed other machine learning algorithms.
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1. Introduction

Microbiologically contaminated drinking water is estimated to 
cause 485,000 diarrhoeal deaths each year (WHO, 2022). Manure-
borne pathogens, as an important source of microbiological 
contamination, can be transported from surface soil to groundwater 
through manure disposal, storage, and land application, posing a 
threat to public health (Pachepsky et  al., 2006; Alegbeleye and 
Santana, 2020). The vertical transport of bacteria in soil is an 
important route for microbiological contamination, especially in the 
area with shallow groundwater level (Guo et al., 2020). Numerous 
flow-through experiments, from lab-scale to field-scale, were 
conducted to identify the key parameters and explore the mechanism 
of bacterial transport through porous media or natural soils 
(Schinner et al., 2010; Bradford et al., 2013; Yang et al., 2019; Oudega 
et al., 2021; He et al., 2022). The results showed that the bacterial 
transport process was controlled by environmental factors (e.g., soil 
texture, particle size, soil surface charges, organic matter content, 
water content, ionic strength, water flow velocity) and bacterial 
properties (e.g., concentration, cell size, cell surface charge, 
hydrophobicity) (Sepehrnia et al., 2017; Zhong et al., 2017). Based on 
these experimental data, mathematical models, such as attachment/
detachment model and filtration theory, were used to describe and 
compare the bacterial transport behaviors (Šimunek et al., 2012). 
These studies are rigorous enough to emphasize some specific factors 
of bacterial transport in each independent study. However, they have 
two obvious limitations. One is the difficulty to evaluate many 
variables at one time, specifically, as the number of variables 
increases, the workload of experiments will grow exponentially. 
Second, the model parameters from one specific experiment may 
be not suitable for predicting bacterial transport in other scenarios 
because of different soil properties, scales, and water flow conditions. 
Therefore, data-driven methods beyond the experiments are needed 
for the prediction of bacterial transport under a wide range 
of scenarios.

In recent years, data-driven methods have been developed fast 
due to the advances in machine learning (Solomatine et al., 2009; 
Hiemer and Zapperi, 2021). Machine learning is the process of 
generating models that learning from historic data to make predictions 
for the future or other scenarios (Samanpour et al., 2018). Previous 
bacterial flow-through experiments produced large amount of data, 
providing a foundation for developing data-driven models such as 
machine learning. However, the machine learning approach demands 
a high level of technical sophistication in model selection and 
hyperparameter tuning, constituting an obstacle for non-machine 
learning experts (Hutter et  al., 2019). Thus, automated machine 
learning (AML) was proposed in recent years. The AML approach can 
automatically optimize machine learning process by integrating 
feature engineering, model selection, hyperparameter optimization, 
and model evaluation (Waring et al., 2020). The recent AML models 
include AutoWEKA (Kotthoff et al., 2019), Auto-sklearn (Feurer et al., 
2020), AutoGluon (Erickson et al., 2020), H2O AutoML (LeDell and 
Poirier, 2020), and TPOT (Olson and Moore, 2016). They were used 
for analysis and prediction in many areas of environmental science, 
such as groundwater redox conditions, landslide hazard analysis, 
methane production in anaerobic digestion, and groundwater 

radioactivity (Wilson et al., 2020; Qi et al., 2021; Fallatah et al., 2022; 
Xu et  al., 2022). However, they have not been applied to predict 
environmental fates of pathogens and pollutants.

The first step for AML modeling is to define the input variables 
(known as features) and target variables (Waring et al., 2020). For the 
vertical transport of bacteria in soil, the input variables can be bacterial 
properties and environmental factors, while the target variables 
should be parameters that can effectively describe the transport and 
retention behaviors of bacteria using the advection-dispersion 
equation as follows,
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In the equation, C (cell mL−1) is the bacterial concentration, t (h) 
is time, x  (cm) is travel distance, D is dispersion coefficient (cm2 h−1), 
v (cm h−1) is the pore water velocity and k  (h−1) is first-order 
attachment coefficient (Kretzschmar et al., 1997). For a given scenario, 
the parameter C t x D v, , , ,  can be easily measured or calculated. If k  
can be  predicted as a target variable, the bacterial transport and 
retention can be described. The simplified bacterial retention in soil 
can be written as

 
dC
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This exponential decay function describes that the bacterial 
concentration decreases at a rate proportional to its current 
concentration value, and k  is an exponential decay constant. Besides, 
the bacterial removal can also be described from distance perspective,

 
dC
dx

C= −λ
 

(3)

where λ (cm−1) is spatial removal rate of bacteria (Kretzschmar 
et al., 1997; Pang, 2009). The exponential decay function describes that 
the bacterial concentration decreases along the distance at a rate 
proportional to its current concentration value, and λ is an exponential 
decay constant.

Both parameters k  and λ describe the bacterial transport and 
retention in soil. The former is time based, while the latter is distance 
based. The relation between k  and λ under steady state flow is k v= λ .

Escherichia coli (E. coli) is commonly used as a common indicator 
of fecal contamination (Odonkor and Ampofo, 2013). In this study, 
we extracted 377 datasets of E. coli vertical transport in saturated 
porous media from 61 papers. The objective of this study was to 
predict the two main parameters of E. coli transport in saturated 
porous media using an AML model. The input variables were bacterial 
concentration, porous medium type, median grain size, ionic strength, 
pore water velocity, column length, saturated hydraulic conductivity, 
and organic matter content, and the target variables were first-order 
attachment coefficient and spatial removal rate. Based on the AML 
model (H2O AutoML), six types of machine learning algorithms and 
20 predictive models were trained, and their performances 
were evaluated.
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2. Materials and methods

2.1. Data collection and analysis

A literature search was conducted on the Web of Science to collect 
data regarding the E. coli transport in soil/sand (Supplementary Table S1). 
Reducing the number of input variables is beneficial for improving the 
model prediction performance. From the collected literature, 
we selected eight most frequently investigated factors as input variables, 
including bacterial concentration, porous medium type, median grain 
size, ionic strength, pore water velocity, column length, saturated 
hydraulic conductivity, and organic matter content. Some bacterial 
properties, such as cell size (with a length of 1–2 μm and a radius of 
0.5 μm) and hydrophobicity (mostly hydrophilic), were not considered 
because their difference among different E. coli strains was small. The 
bacterial zeta potential (−10 ~ −50 mV) was not considered because it 
was strongly correlated with the ionic strength of liquid phase. Among 
the eight input variables, porous medium type was categorical variable 
(i.e., sand, intact soil, and disturbed soil), and the other seven variables 
were numerical variables.

The target variable (the first-order attachment coefficient k) was 
collected through the following ways: (1) when the first-order 
attachment model (Equation 1) was used to fit break-through curves, 
k  was an optimized parameter; (2) if the breakthrough curves were 
not fitted with models or not fitted by the first-order attachment 
model, k  was converted from λ based on k v= λ .

The target variable (spatial removal rate λ) was collected through 
the following two ways. First, in breakthrough curves, when the 
effluent concentration reached a plateau, λ was calculated from the 
following equation:

 
λ = −
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where L is the length of the soil column, C0 is the bacterial input 
concentration, and C f  is the effluent concentration at the plateau of 
the breakthrough curve (Kretzschmar et al., 1997). Second, for the 
breakthrough curves without a plateau, λ was calculated using the 
following equation:
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where is Min the total injected bacterial mass and Meff is the total 
effluent bacterial mass (Kretzschmar et al., 1997).

If k is easily obtained, λ is converted by k v= λ . In the study, the 
values of k and λ was extracted from the literature or otherwise 
calculated from the breakthrough curves.

2.2. Automated machine learning model

We used an automated machine learning model, H2O AutoML 
(LeDell and Poirier, 2020). The H2O AutoML integrated many 

common machine learning algorithms, including Deep Learning, 
Distributed Random Forest (DRF), Generalized Linear Model 
(GLM), Gradient Boosting Machine (GBM), Extremely 
Randomized Trees (XRT), and Extreme Gradient Boosting 
(XGBoost) (LeDell and Poirier, 2020). The H2O AutoML provides 
some function calls for automatically training the candidate 
models. The codes in R for modeling training and model 
performance evaluation were shown in the Supplementary material. 
The variables and machine learning model training process are 
shown in Figure 1.

2.3. Model performance measures

The collected bacterial transport datasets were randomly 
divided into two datasets: 80% training dataset and 20% test 
dataset. The training dataset was used to train the machine 
learning models and the test dataset was used to evaluate the 
model performance. 5-fold cross-validation was performed. Based 
on the test dataset and the model predicted target variables, three 
statistical measures were used to evaluate the model performance: 
root mean squared error (RMSE), mean absolute error (MAE) and 
absolute relative residual (ARR). For each predicted value, there 
is one ARR value (Li et al., 2020).
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where ˆiy is the model predicted value, yi is the observed value, 
and n is the number of data points in the test dataset.

2.4. Explainable analysis

In H2O AutoML, 20 machine learning algorithms was 
synchronously examined, and their ranking was listed on a 
leaderboard based on their performance. Variable importance and 
Shapley additive explanations (SHAP) were used to analyze the 
importance and contribution of the input variables (LeDell and 
Poirier, 2020). The variable importance is ranged from 0 to 100% and 
represents the importance of each input variable for the target variable. 
SHAP shows the contribution of each variable in each row of data and 
the trend of the variable’s influence, i.e., positive, or negative influence 
(Lundberg and Lee, 2017).
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3. Results and discussion

3.1. Overview of the collected datasets

The column scatter plot of collected dataset is shown in Figure 2. 
For the input variables, the bacterial concentration ranged from 103 to 
109 cell mL−1; the ionic strength of liquid phase was normalized as 
NaCl solution ranging from 10−3 to 103 mM; the column length was 
ranged from 0.25 to 2,565 cm; the median grain sizes of porous media 
varied from 42 to 1,500 μm; the pore water velocity ranged from 0.09 
to 618 cm h−1; the saturated hydraulic conductivity ranged from 0.08 

to 55.8 cm h−1; the organic matter content ranged from 0.05 to 3.84%; 
the number of datasets for sand, intact soil, and disturbed soil was 314, 
37, and 28, respectively. Because literature usually described particle 
size distribution of sand and soil in different ways, i.e., median grain 
size is usually used for sand; while soil texture is described by sand, 
silt, and clay percentage (here we use saturated hydraulic conductivity 
to reflect soil texture property). Thus, in our datasets, most sand 
lacked saturated hydraulic conductivity data and most soil lack 
median grain sizes data. Regarding the target variables, the first-order 
attachment coefficient (k) ranged from 0.009 to 111.6 h−1, and the 
spatial removal rate (λ) ranged from 0.00008 to 1.379 cm−1. Overall, 

FIGURE 1

The variables and machine learning model training process in this study.

FIGURE 2

Statistics of model input and target variables datasets.

https://doi.org/10.3389/fmicb.2023.1152059
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fmicb.2023.1152059

Frontiers in Microbiology 05 frontiersin.org

the collected datasets covered the range in a variety of flow-
through experiments.

The Pearson correlation coefficient (r) between pairwise 
variables is shown in Figure 3. The r values of k and λ with other 
eight input variables ranged from −0.25 to 0.34 and − 0.22 to 0.17, 
respectively. The weak Pearson correlations imply that the eight 
input variables could not be a valid predictor independently. The r 
between k and λ was 0.68, indicating that these two target variables 
were moderately correlated in positive manner (k = λv). However, 
when v varies, the increased k does not necessarily indicate an 
increase in λ.

Determination of variables and data collection are the two key 
prerequisites for training machine learning models. In the study, two 
types of factors were not considered. The first type of factors has small 
differences but may influence bacterial transport behaviors. For 
example, cell surface characteristics (e.g., physiological state, flagella 
type, and extracellular polymeric substances) were reported to affect 
bacterial transport in sand or soil (Madumathi et al., 2017; Du et al., 
2021; Zhang et al., 2021). These variables were not included into the 
AML model because they were not clearly defined in most literature. 
The second type may affect bacterial transport, but the effects are 
minor, such as temperature and bacterial starvation (Kim and Walker, 
2009; Walczak et al., 2012).

3.2. Model performance

Based on the results of 5-fold cross-validation, the correlation 
between predicted values and observed values for the test datasets was 
plotted in Figures 4A,B. During the H2O AutoML training process, 
20 models (six types of machine learning algorithms) were trained 
simultaneously, and their ranking based on RMSE and MAE was listed 
in Supplementary Table S2. For the predictions of k and λ, the best 

model was GBM, followed by XGboost. The slope of linear fitting in 
GBM was close to 1. The R2 of linear regression using GBM was 0.82 
and 0.85 in Figures 4A,B, respectively. XRT, Deep learning and DRF 
showed similar performance, belonging to the second tier. GLM 
showed the worst performance among six machine 
learning algorithms.

The data points were plotted in log scale, some negative values 
in predicted values cannot be shown in figures. The summary of 
negative values was as follows. The number of negative values in 
predicting k with GBM, XGboost, XRT, Deep learning, DRF and 
GLM was 14, 31, 0, 9, 0, and 17, respectively. The number of 
negative values in predicting λ with GBM, XGboost, XRT, Deep 
learning, DRF and GLM was 4, 19, 0, 4, 0, and 13, respectively. The 
numbers of negative values indicated that although XGboost 
showed similar performance as GBM in the statistical measures 
(RSME, MAE, R2), many negative predicted values greatly affected 
its reliability. Compared to the prediction of k, prediction of λ 
showed fewer negative values.

Although GBM showed the best model performance, the 
hyperparameters affected the model performance greatly. In 
Supplementary Table S2, the number that attached to each machine 
learning algorithm refers to different hyperparameter settings, which 
can be extracted from the H2O AutoML for further tuning in a regular 
machine learning model. For example, the GBM_5 was ranked first 
while the GBM_1 was ranked eighteenth for predicting k. The RMSE 
of GBM_1 was two times of that of GBM_5. Compared with regular 
machine learning model training, the automatically set 
hyperparameters in the H2O AutoML significantly improved the 
efficiency of model training (LeDell and Poirier, 2020).

To better analyze the results from predictive models, we chose the 
best performed model GBM to continue the statistical analysis. The 
absolute relative residuals (ARR) in GBM predictive model for 
predicting k and λ are shown in Figures 5A,B. Because the target 

FIGURE 3

Pearson product-moment correlation coefficient (r) between pairwise variables (porous media type: 1-sand; 2-distubed soil; 3-intact soil).
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variable values were widely distributed (cover 4–5 orders of 
magnitude), the basic statistical measures (RMSE, MAE, R2) cannot 
reflect the errors of all the values equally. In contrast, the ARR value 
can provide more information (Li et al., 2020). As the increase of 
observed values, the ARR decreased. Namely, when k and λ was high, 
the ARR was relatively small. Specifically, for scenarios with higher 
bacterial retention, such as smaller median grain size, higher ionic 
strength, and longer bacterial transport distance, the predictive 
models showed better performance. Compared to the ARR values for 
predicting k, that for predicting λ were slightly lower. It indicates that 
predicting λ is a better choice than predicting k. Besides, in 
Figures 5A,B, the ARR values of three types of porous media were 
separately plotted. It showed that there was no obvious difference 
among sand, intact soil, and disturbed soil.

3.3. Analysis of variable importance

The importance of variables in six types of machine learning 
algorithms is shown in Figures 6A,B. The variable importance for 
predicting k and λ was similar, ranking as pore water velocity =  
ionic strength > median grain size > column length > bacterial 
concentration > organic content > porous medium type = saturated 
hydraulic conductivity.

The SHAP contribution of GBM is demonstrated in 
Figures 7A,B. In the SHAP summary plot, the color represents the 
normalized values of each data point in the testing dataset. The SHAP 
contribution value represents the positive or negative contribution of 
each data point for predicting target variables. As shown in the SHAP 
summary plot, larger median grain size and column length contributed 

FIGURE 4

(A) Linear regression between observed target variables and predicted target variables for first-order attachment coefficient (k ); (B) linear regression 
between observed target variables and predicted target variables for spatial removal rate (λ).
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to smaller k and λ value, larger ionic strength led to bigger k and λ 
value, and bacterial concentration, organic matter content, porous 
medium type and saturated hydraulic conductivity did not influence 
k and λ value. Besides, pore water velocity showed opposite effect on 
k and λ value because of the inverse relation (i.e., k v= λ ) between k 
and λ when pore water velocity is a constant.

Pore water velocity showed highest importance in the predictions 
of k and λ. This is because bacterial transport could be increased by 
increasing pore water velocity (Bradford et al., 2006; Choi et al., 2007; 
Chen et  al., 2022). Higher pore water velocity is accompanied by 
higher water shear force and less bacteria-soil contact time, which can 
reduce bacterial mechanical filtration and bacterial attachment, 
respectively (Hendry et al., 1999; Li et al., 2005; Syngouna and 
Chrysikopoulos, 2011). The responses of k and λ to pore water velocity 
agree with the filtration theory (Logan et al., 1995). Ionic strength is 
another important variable. Higher ionic strength favored bacterial 
retention as manifested by larger k and λ values. The responses of k 
and λ to solution ionic strength agree with the DLVO theory (Kim and 
Walker, 2009; Walczak et al., 2012; Wang et al., 2013; Bai et al., 2017).

Median grain size of porous media is correlated to soil texture 
and soil porosity. The bigger median grain size of porous media was 
favorable to reduce bacterial retention (i.e., smaller k and λ). This 
trend has been well confirmed in previous studies (Gannon et al., 
1991; Balkhair, 2017; Sepehrnia et  al., 2017). The effect of soil 
column length can be regarded as a scale effect (Hijnen et al., 2005; 
Knappett et al., 2014). As shown in the SHAP contribution figures, 
the upscaling of bacterial transport resulted in smaller k and λ. The 
distribution of column length data points was more scattered for 
predicting λ than predicting k, suggesting that λ is more sensitive to 
column length. This result is consistent with a recent study that the 
upscaling effect is more pronounced for λ than k (Oudega 
et al., 2021).

For porous medium type, bacterial concentration, organic 
content, and saturated hydraulic conductivity, the SHAP contribution 
shows relatively aggregated distribution. Many studies showed that the 
intact soil could greatly facility bacterial transport because of 
preferential flow in macropore-dominated pathways (McLeod et al., 
1998; Safadoust et al., 2011; Chen et al., 2022). Nevertheless, the effect 
of intact soil or disturbed soil was not obvious in our predictive 
models. The reason may be the database of soil was small, which is not 
enough for distinguishing the contribution of intact or disturbed soil. 
Similarly, the contribution of organic content, and saturated hydraulic 
conductivity faced with the same problem (small database limited the 
variable importance analysis). Previous studies showed that increase 
in bacterial concentration may either increase or decrease bacterial 
retention by blocking or ripening, respectively (Bradford and Bettahar, 
2006; Zhang et al., 2010). This concentration effect may also be related 
to solution ionic strength (Bradford et al., 2009). Therefore, it is not 
possible to conclude the positive or negative contribution of bacterial 
concentration to the transport.

3.4. Comparison of different machine 
learning algorithms

Among six machine learning algorithms, GBM and XGBoost 
belongs to gradient boosting algorithms; DRF and XRT are random 
forest-based algorithms; Deep Learning is based on artificial neural 
networks; GLM is a flexible generalization of ordinary linear 
regression (Mahesh, 2020). From the perspective of regression 
performance, the algorithms based on gradient boosting outperformed 
other algorithms, because they can optimize on different loss functions 
to make the function fit very flexible. Thus, they have higher accuracy 
than random forest-based algorithms, artificial neural networks and 
generalized linear model (Madeh Piryonesi and El-Diraby, 2021). The 
GLM always showed the worst performance, implying that GLM has 
weak ability to predict when the problem is complicated 
(many variables).

Although GBM and XGBoost showed better performance than 
other algorithms, some predicted values from them were negative, 
which violates the physics of bacterial transport and retention in 
porous media. In contrast, the random forest-based algorithms, such 
as DRF and XRT, are more consistent with physical laws. Therefore, to 
predict bacterial transport parameters, different machine learning 
algorithms may be used in a combination way. For example, under 
most conditions, GBM and XGBoost are suitable. Once the negative 
values appear, the random forest-based algorithms, such as DRF and 
XRT can be used as a supplement.

FIGURE 5

(A) Absolute relative residual in GBM predictive model for predicting 
first-order attachment coefficient (k ); (B) Absolute relative residual in 
GBM predictive model for predicting spatial removal rate (λ).

FIGURE 6

(A) Variable importance in six predictive models for predicting first-
order attachment coefficient (k ); (B) variable importance in six 
predictive models for predicting spatial removal rate (λ).
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3.5. Limitations and future application

The main limitation of the predictive models is that the datasets 
of soil in database is small (17.2%), which makes that predictive 
models were not sensitive to porous medium type, saturated hydraulic 
conductivity, and organic matter content. This study only collected 
data from the transport of E coli. Therefore, the data in literature was 
not enough. Further studies, such as building a bigger database 
comprising of different bacteria or microorganisms, may provide 
more extensive and accurate predictive models.

Compared to previous studies based on controlled variables, the 
data-driven machine learning algorithms provides an advantageous 
approach for regression problems. With machine learning algorithms, 
many input variables that have low correlations with the target 
variables can predict the target variables with very high accuracy. This 
extraordinary performance of the AML model has been confirmed in 
other studies (Wilson et al., 2020; Qi et al., 2021; Fallatah et al., 2022; 
Xu et al., 2022).

The collected datasets and R code for the H2O AutoML are shown 
in the Supplementary material. The users may use the collected 
datasets and their own data to train an AML model and then use it to 
predict transport parameters for E. coli under saturated flow 
conditions. When combined with mechanism-based models and 
software, such as Hydrus, the bacterial transport can be simulated and 
visualized (Šimunek et  al., 2012). The users may also add more 
variables to expand to a more comprehensive prediction for solute and 
colloid transport in the vadose zone.

4. Conclusion

In this study, literature-based data regarding E. coli transport 
through saturated sand or soil were used to train an AML model 
(H2O AutoML). We used bacterial concentration, porous medium 
type, median grain size, ionic strength, pore water velocity, column 
length, saturated hydraulic conductivity, and organic matter content 
as input variables to predict first-order attachment coefficient (k) and 
spatial removal rate (λ). The results showed that the trained machine 
learning models were reliable tools to predict key parameters for 
E. coli transport through saturated porous media. Among six types of 

machine learning algorithms, the gradient boosted based algorithms, 
such as Gradient Boosting Machine and Extreme Gradient Boosting, 
outperformed other machine learning algorithms. The predictive 
models showed better performance when bacterial retention was high. 
Besides, spatial removal rate is a better target variable than first-order 
attachment coefficient. Compared with traditional controlled variable 
experiments, the data-driven AML accomplished the goal that 
predicting bacterial transport from a comprehensive perspective. This 
approach offers a new way of thinking for predicting environmental 
fates of various pollutants.
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