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Various materials and solid-fluid mixtures of engineering and biomedical interest can be 
modelled as generalised Newtonian fluids, as their apparent viscosity depends locally on 
the flow field. Despite the particular features of such models, it is common practice to 
combine them with numerical techniques originally conceived for Newtonian fluids, which 
can bring several issues such as spurious pressure boundary layers, unsuitable natural 
boundary conditions and coupling terms spoiling the efficiency of nonlinear solvers and 
preconditioners. In this work, we present a finite element framework dealing with such 
issues while maintaining low computational cost and simple implementation. The building 
blocks of our algorithm are (i) an equal-order stabilisation method preserving consistency 
even for lowest-order discretisations, (ii) robust extrapolation of velocities in the time-
dependent case to decouple the rheological law from the overall system, (iii) adaptive time 
step selection and (iv) a fast physics-based preconditioned Krylov subspace solver, to tackle 
the relevant range of discretisation parameters including highly varying viscosity. Selected 
numerical experiments are provided demonstrating the potential of our approach in terms 
of robustness, accuracy and efficiency for problems of practical interest.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Complex fluids such as blood and polymer melts can respond to stresses in different ways depending on their com-
position and the flow regime. In hemodynamics, while the assumption of Newtonian behaviour is generally reasonable in 
large arteries, non-Newtonian characteristics can play an essential role in smaller vessels, especially in the presence of mor-
phological changes such as aneurysms and stenoses [1,2]. The most popular approach when modelling such features is to 
consider a generalised Newtonian (also known as quasi-Newtonian) behaviour. This consists of allowing for local variations 
of the viscosity depending on the instant, local shear rate. Alternative models exist that can also account for viscoelastic-
ity [1,3,4], but they introduce an additional tensor-valued field that more than doubles the number of unknowns in the 
problem. The quasi-Newtonian approach is thus preferred in most practical applications, as it is capable of reproducing 
important hemodynamic phenomena such as shear thinning and plug flow, while maintaining a low computational cost. 
Similar models are also popular for polymeric flows [5].
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Regardless of the viscous model employed, the finite element basis functions used for velocity and pressure must be 
chosen carefully in incompressible flows. Selecting the same polynomial orders for both flow quantities violates the famous 
Ladyzhenskaya–Babuška–Brezzi (LBB) condition and therefore results in unstable methods. Nonetheless, since the findings 
of Hughes and co-workers in the 1980’s [6,7], it has become a standard to use residual-based stabilisation methods such as 
pressure-stabilised Petrov–Galerkin (PSPG) [6] or Galerkin least-squares (GLS) [7] to circumvent the LBB condition and allow 
equal-order interpolation of all variables. Most stabilisation methods, however, rely on relaxed incompressibility equations 
devised under the assumption of constant viscosity. Perhaps for that reason, the use of LBB-compatible finite element spaces 
is somewhat more common in the literature for generalised Newtonian fluids [8–17]. Another stable class of discretisations 
is that of discontinuous Galerkin (DG) methods, which due to their local formulation are not subject to the classic LBB 
condition [18]. The use of these methods for quasi-Newtonian flow problems, although still incipient, has been successfully 
reported [19–22]. High-order DG schemes are nowadays among the most robust tools in computational fluid dynamics (CFD), 
as they combine the local conservation properties of finite volumes with the great versatility and accuracy of finite elements 
[23]. Moreover, they provide a natural framework for mesh and degree adaptivity, which is particularly advantageous in 
under-resolved flows. For recent overviews on high-order and discontinuous Galerkin methods in CFD, see [23–25].

While discontinuous and compatible finite elements offer an ideal setting from a mathematical standpoint (due to 
e.g. natural stability, optimal convergence and/or local conservation), they require data structures that are not always avail-
able in standard open source codes. Hence, there is still a great practical appeal in the use of first-order elements – especially 
in biomedical applications, where higher-order meshes are rarely an option. There are a few stabilisation methods which 
are solely based on pressure and can therefore be applied to non-Newtonian problems straightforwardly. The most popular 
of them, the penalty method, relaxes incompressibility to decouple velocity and pressure. Although used quite often for gen-
eralised Newtonian fluids [26–29], this approach yields poor pressure approximations even with quadratic discretisations, 
as shown by Sobhani et al. [29]. The pressure Poisson stabilisation of Brezzi and Pitkäranta [30] was reported by Knauf 
et al. [31] to also perform poorly in the non-Newtonian case, inducing spurious pressure boundary layers. This issue can be 
overcome by the pressure gradient projection method by Codina and Blasco [32], but at the cost of nearly doubling the size 
of the system to be solved. The local pressure projection method by Dohrmann and Bochev [33] is a more viable alternative 
and has been used successfully in non-Newtonian hemodynamics [2]. Another simple and efficient equal-order approach is 
our recently introduced generalised pressure Poisson framework [34] decoupling velocity and pressure. Although residual-
based formulations such as PSPG and variational multiscale (VMS) methods may also be employed [35–38], their incomplete 
residual for linear elements can also lead to numerical artifacts, as we shall discuss later on.

To the best of our knowledge, there are only a few works in the literature dedicated to developing stabilisation techniques 
for the generalised Newtonian problem. Most of them require treating the viscous stress as an additional tensor-valued un-
known [39,40], which leads to prohibitive computational costs in three-dimensional problems. The variational multi-scale 
approach devised by Masud and Kwack [36] is a more viable alternative, but – as all standard residual-based methods – 
can suffer from spurious pressure boundary layers and poor conservation in low-order discretisations [41]. In this context, 
the present work introduces a fully consistent residual-based stabilisation for equal-order finite element approximations of 
quasi-Newtonian problems. Our method combines a generalised Laplacian form of the momentum equation with a stabilised 
incompressibility-preserving continuity equation. The resulting stabilisation method can be seen as a modified version of 
the PSPG formulation to retain the viscous part of the residual even for linear elements. Moreover, even when used for 
higher-order elements, our method does not require second-order derivatives, which is an advantage from the computa-
tional standpoint. Besides the complete residual (i.e., full consistency), a major advantage of our method is not relaxing 
incompressibility, which leads to accurate results over a wide range of stabilisation parameters.

Regarding the fast solution of the resulting problems, a typical standpoint might be (see e.g. [42,43]) that (block) solvers 
coupling the velocity and pressure fields within the fluid are preferred for stationary flow, while instationary problems are 
better tackled using projection schemes decoupling those fields [44]. Nonetheless, one is faced with restrictions on the time 
step size when using projection schemes, limiting their performance in some cases even if state-of-the-art parallel multigrid 
solvers are used. On the other hand, preconditioning the resulting linear systems becomes a critical task when considering 
the coupled approach. In the past decades, however, well-performing algorithms have been developed which are especially 
efficient in instationary problems (see e.g. [45–48]). Within the class of methods coupling velocity and pressure, multigrid-
preconditioned Krylov subspace methods have proven to be among the fastest and most robust solution methods. Therein, 
the key lies in successfully approximating the Schur complement of the block system, which can be achieved in a variety of 
ways.

Patankar and Spalding [49] outlined the so-called SIMPLE method, which was later used as a preconditioner by Vuik 
et al. [50] and further improved by ur Rehman et al. [51]. Satisfactory results were achieved especially for instationary 
problems or low-Reynolds flows, but performance is somewhat limited for elements with high aspect ratio since the ap-
proximation of the velocity-velocity block uses its diagonal components only. Another approach was taken by Silvester 
et al. [52] and Kay et al. [53], with a convection-diffusion operator on the pressure space defined analogously to the discrete 
velocity operator to mimic the action of the inverse Schur complement. This approach is directly applicable to stabilised flow 
problems, while the purely algebraic counterpart [54] was later extended to be used together with stabilised formulations 
[55]. A third family of methods is based on manipulating the resulting system in a consistent way, such that the difficulty 
of approximating the Schur complement is simplified considerably, shifting the numerical effort to the approximation of 
the velocity-velocity block inverse. These augmented-Lagrangian-based methods result in iteration counts independent of 
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discretisation or physical parameters including high-Reynolds flow as shown by Benzi and Olshanskii [56]. Such schemes 
were also successfully extended to the case of stabilised formulations by Benzi et al. [57]. Similar results were achieved by 
augmenting the velocity-velocity block with a grad-div term by Heister and Rapin [58].

Studies comparing those approaches revealed that augmented-Lagrangian-based solvers may outperform least-squares-
commutator and pressure-convection-diffusion preconditioned ones, which themselves showed to be more robust than 
SIMPLE and related methods [59–61]. Such a statement is clearly too strict, though: in the time-dependent case, all of 
the methods showed at least partly satisfactory performance even for stretched grids and high Reynolds numbers. Some 
of the existing concepts can be straightforwardly extended to effectively account for highly varying rheological parameters, 
as e.g. in [62–64]. Applying an operator-splitting technique [45], we approximate the action of the Schur complement via 
operators defined on the pressure space, following Elman et al. [48] and incorporating ideas from [58,64] to account for the 
viscosity possibly spanning a few orders of magnitude.

Practical applications of fluid flows pose challenges even to high-performance computing clusters, highlighting that pre-
conditioning is merely one (mandatory) part of fast solvers. Only when combined with adaptively chosen time steps to 
“follow the physics” and appropriate linearisations do such algorithms turn out to be really competitive. Schemes of this 
kind were presented for convection-diffusion-reaction equations by Gresho et al. [65], for the (Newtonian) incompressible 
Navier–Stokes equations by Kay et al. [66], and for buoyancy-driven flow by Elman et al. [67]. Moreover, an additional aspect 
of practical applications is the resulting size of spatial discretisations, easily reaching several million nodes. Taking arterial 
blood flow simulations as an example, it is obvious that some of these discretely described domains are bounded in an 
inherently lower-order fashion as a consequence of being reconstructed from voxelated data. Therefore, consistent stabilised 
formulations are of great relevance, but have not yet been combined with the aforementioned ideas.

Respecting these considerations, we present here a robust framework for non-Newtonian fluid flows combining low-
order stabilised methods with a modern physics-based preconditioned linear solver, adaptive time integration schemes and 
linearisations of the fundamental equations. The remainder of this article is then organised as follows: in Section 2 we state 
the generalised Newtonian problem; in Section 3, our fully consistent stabilisation method is introduced; Section 4 deals 
with further aspects of discretisation in space and time including time step selection based on heuristic error measures. 
Thereafter, Section 5 focuses on the solution techniques applied including linearisation and construction of the precondi-
tioner. Several representative numerical experiments are performed in Section 6, including stationary, periodic and transient 
problems in two and three dimensions.

2. Problem statement

We consider the balance of linear momentum and mass for an incompressible flow, described by the system

ρ

[
∂u

∂t
+ (∇u)u

]
− ∇ · S + ∇p = ρg in � × (0, T ] , (1)

∇ · u = 0 in � × (0, T ] , (2)

where the fluid velocity and pressure are denoted by u and p, respectively, the fluid density by ρ , the (given) external 
acceleration by g, and the flow domain by � ∈ Rd in the time interval from t = 0 to t = T . The viscous stress tensor S for 
a generalised Newtonian fluid is

S = 2μ∇su , (3)

in which the dynamic viscosity μ may further depend on ∇su := ½[∇u + (∇u)�]. This nonlinear dependence is typically 
expressed in terms of the shear rate γ̇ := √

½∇su : ∇su. Taking blood or polymeric flows as an example, the well-established 
Carreau model [68]

μ = η(γ̇ ) = μ∞ + (μ0 − μ∞)
[

1 + (λγ̇ )2
] ζ−1

2
(4)

may be used, in which ζ ≤ 1 and the remaining parameters are positive material constants. The system (1)–(2) is supple-
mented by a generic initial condition for the velocity,

u(x,0) = u0 in � , (5)

and is further subject to boundary conditions on the non-overlapping parts 	D and 	N of the boundary 	 := ∂�:

u = uD on 	D × (0, T ] , (6)

(μ∇u − pI)n = t̃ on 	N × (0, T ] , (7)

where n is the unit outward normal vector, I is the d × d identity tensor, uD is a prescribed velocity and t̃ is a so-called 
pseudo-traction, which might either be set to zero (a “do-nothing” condition) or used for prescribing mean pressures over 
boundary segments [69].
3
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3. Stabilised formulations

We now present the most classical residual-based stabilisation method for continuous equal-order elements, followed by 
a new global stabilisation approach. For concision, we will present the formulations for the stationary case and drop the 
body force. The time-dependent setting is considered in Section 4.

3.1. Pressure-stabilised Petrov–Galerkin method

The PSPG method is the most popular stabilisation approach for equal-order incompressible flow solvers. It consists of 
relaxing the divergence-free constraint (2) with an element-weighted residual of the momentum equation. Denoting by 
〈·, ·〉, 〈·, ·〉�e and 〈·, ·〉	N the L2 scalar products in �, �e and 	N , respectively, the discrete variational formulation seeks 
(uh, ph) ∈ Xh

d × Xh , with u|	D = uD , such that for all (wh,qh) ∈ Xh
d × Xh , with w|	D = 0,

〈wh, (ρ∇uh)uh〉 + 〈∇swh,2μ(∇suh)∇suh
〉− 〈∇ · wh, ph〉 = 〈wh, t〉	N , (8)

〈qh,∇ · uh〉 +
Ne∑

e=1

〈δe∇qh,∇ph − ∇ · Sh + (ρ∇uh)uh〉�e
= 0 , (9)

where Xh is a continuous finite element space, t = (2μ∇su − pI)n are normal boundary tractions, Ne is the number of 
elements �e , and δe is a positive parameter dependent on the element size he . Let us also define h = max{he}. For δe
within an appropriate range, the system is stable for continuous equal-order pairs [70,71]. The term actually responsible for 
providing stability is the bilinear form 〈δe∇qh, ∇ph〉, which breaks the saddle-point structure of the problem and the LBB 
requirement [71]. As a matter of fact, the original stabilisation by Brezzi and Pitkäranta [30] uses only this pressure-pressure 
term. If that is the case, then what are the remaining terms in Eq. (9) for?

The idea behind including the whole residual is that the perturbation of the continuity equation be smaller where the 
solution is already accurate enough. While this should not affect asymptotic convergence rates, it is critical for the accuracy 
and quality of the approximations [72,73] – and here arises the issue of using PSPG with linear elements. In that case, 
and when using simplicial elements, the velocity gradient is piecewise constant and, consequently, so is the viscous stress. 
Hence:

Ne∑
e=1

〈δe∇qh,−∇ · Sh〉�e
=

Ne∑
e=1

〈δe∇qh,0〉�e
= 0 ,

i.e., the viscous contribution to the residual is completely lost. This means that, regardless of how fine the mesh is, the 
added residual will never vanish. Of course, the formulation will still be consistent if δe → 0 as he → 0, but an incomplete 
residual can spoil coarse grid accuracy and restrict the choice of the stabilisation parameter [41]. As a matter of fact, it 
can be shown that an “inviscid” stabilisation residual induces so-called spurious pressure boundary layers (cf. Section 6.1.1). 
These effects may be milder in convection-dominated flows, but for lower Reynolds numbers there can be considerable loss 
of accuracy. This is why it is common practice to use projection-based techniques such as the ones proposed by Jansen 
et al. [73] and Bochev and Gunzburger [74] to reconstruct the viscous term [37,75].

Another shortcoming of the standard formulation (8) is its natural boundary conditions (BCs) in terms of real tractions t. 
Although very often done [2], setting t = 0 on open boundaries leads to spurious velocity and pressure behaviour [76,77,69]. 
For fluids with constant viscosity, there is a simple remedy: using the Laplacian form of the stress divergence, that is,

∇ · S = μ∇ · (2∇su
)= μ [�u + ∇ (∇ · u)] = μ�u .

Then, integration by parts will result in pseudo-tractions t̃ = (μ∇u)n − pn as natural BCs. The outflow boundary condition 
t̃ ∝ n is not only satisfied by Poiseuille and Womersley flows, but also allows vortices to leave the computational domain 
with minimal upstream disturbance [76]. Therefore, pseudo-tractions are the preferred natural BCs for truncated outlets. 
When the viscosity is no longer constant, we can formulate the problem in a generalised Laplacian form by writing

∇ · S = ∇ · (2μ∇su
)= μ [�u + ∇ (∇ · u)] + 2∇su∇μ = μ�u + 2∇su∇μ , (10)

and using integration by parts only for the term μ�u in order to yield the same pseudo-traction BCs as in the classical 
Newtonian case. For a test function w such that w|	D = 0, we have

− 〈w,μ�u + 2∇su∇μ − ∇p
〉= 〈∇u,∇(μw)〉 − 〈p,∇ · w〉 − 〈w, (μ∇u)n − pn〉	 − 〈w,2∇su∇μ

〉
= 〈∇u,μ∇w + w ⊗ ∇μ〉 − 〈p,∇ · w〉 − 〈w, (μ∇u)n − pn〉	N

− 〈w,2∇su∇μ
〉

= 〈∇w,μ∇u〉 + 〈w,∇u∇μ〉 − 〈p,∇ · w〉 − 〈w, t̃
〉
	N

− 〈w,2∇su∇μ
〉

= 〈∇w,μ∇u〉 −
〈
w, (∇u)� ∇μ

〉
− 〈∇ · w, p〉 − 〈w, t̃

〉
	N

.
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The weak form of the discrete momentum equation then becomes

〈wh, (ρ∇uh)uh〉 + 〈∇wh,μh∇uh〉 −
〈
wh, (∇uh)

� ∇μh

〉
− 〈∇ · wh, ph〉 = 〈wh, t̃〉	N , (11)

where μh is a continuous L2 projection of the viscosity field, as discussed later on.

3.2. A fully consistent residual-based stabilisation

Regardless of whether using the stress-divergence or generalised Laplacian form of the momentum equation, devising a 
consistent stabilisation method for equal-order pairs is critical for an accurate approximation. In what follows, we introduce 
a residual-based formulation which preserves the full residual even for lowest-order pairs.

3.2.1. Strong form
Before introducing our stabilisation method, we construct an equivalent PDE system to replace the classical momentum-

mass system (1)–(2). The proposed boundary value problem reads:

(ρ∇u)u − 2∇su∇μ − μ [�u + χ∇(∇ · u)] + ∇p = 0 in � , (12)

− �p = ∇ · [(ρ∇u)u − 2∇su∇μ
]+ [∇ × (∇ × u)] · ∇μ − β∇ · u in � , (13)

∂ p

∂n
= n · [2∇su∇μ − (ρ∇u)u − μ∇ × (∇ × u)

]
on 	 , (14)

where β is a positive parameter to be defined later, and χ is a factor used simply to switch between the stress-divergence 
(χ = 1) and generalised Laplacian (χ = 0) formulations. The momentum equation BCs were omitted because they play no 
role in the following discussion.

As shall become clear in the remainder of this section, the main advantage of system (12)–(14) is allowing piecewise 
linear approximation for velocity and pressure by rewriting (13) with only first-order terms. Yet, we first need to show that, 
for sufficiently regular p and u, the new system is equivalent to the classical one ((1)–(2)).

Lemma 3.1. For u and p sufficiently regular, Eqs. (1) and (2) imply (12)–(14).

Proof. The equivalence between Eqs. (12) and (1) for a divergence-free flow has already been shown in Eq. (10). Proving 
that Eqs. (1) and (2) lead to Eq. (14) is also straightforward: we dot Eq. (1) by n and use Eq. (2) to write

�u ≡ ∇(∇ · u) − ∇ × (∇ × u) = −∇ × (∇ × u) . (15)

To derive Eq. (13), we apply again relation (15) to Eq. (1), and take minus the divergence of both sides, resulting in

−�p = ∇ · [(ρ∇u)u − 2∇su∇μ − μ∇ × (∇ × u)
]
, (16)

but

∇ · [μ∇ × (∇ × u)] = [∇ × (∇ × u)] · ∇μ + μ∇ · [∇ × (∇ × u)] = [∇ × (∇ × u)] · ∇μ ,

since the divergence of a curl is zero. Furthermore, due to Eq. (2), we can arbitrarily add the term −β∇ · u to the right-hand 
side of (16), which completes the proof. For a more general form of the so-called pressure Poisson equation (PPE) (16)
allowing compressibility, see [78]. �
Lemma 3.2. The system (12)–(14) implies Eqs. (1) and (2).

Proof. The first step is to apply the divergence operator to Eq. (12), leading to

�p = ∇ · [μ�u + χμ∇(∇ · u) + 2∇su∇μ − (ρ∇u)u
]

= ∇ · [2∇su∇μ − (ρ∇u)u
]+ ∇μ · [�u + χ∇(∇ · u)] + μ [∇ · (�u) + χ�(∇ · u)] ,

(17)

which when added to Eq. (13) gives

0 = [�u + ∇ × (∇ × u) + χ∇(∇ · u)] · ∇μ + μ [∇ · (�u) + χ�(∇ · u)] − β∇ · u

≡ (χ + 1)μ� (∇ · u) + (χ + 1)∇μ · [∇(∇ · u)] − β∇ · u

≡ −β∇ · u + (χ + 1)∇ · [μ∇(∇ · u)] ,

(18)

since �u + ∇ × (∇ × u) ≡ ∇ (∇ · u) and ∇ · (�u) ≡ � (∇ · u).
5
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Therefore, introducing φ := ∇ · u, we have the diffusion-reaction equation

−∇ · (μ∇φ) + β

χ + 1
φ = 0 . (19)

We can obtain Neumann BCs for this equation by dotting Eq. (12) with n and substracting from (14), which gives

0 = μn · [χ∇(∇ · u) + �u + ∇ × (∇ × u)]

= (χ + 1)μn · [∇ (∇ · u)]

= (χ + 1)μ
∂φ

∂n
,

(20)

i.e., we have zero Neumann data for φ on 	. The solution of Eq. (19) is thus φ ≡ 0, that is, ∇ · u = 0 in �, as we wanted. 
Now that we have proved incompressibility, the equivalence between Eqs. (12) and (1) is straightforward. �
Remark. We have kept the factor χ in the derivations to show that our modified system is well posed regardless of whether 
the stress-divergence or (generalised) Laplacian formulation is employed. Since χ does not feature in the pressure Poisson 
problem (13)–(14), the stabilisation method presented herein is independent of the form selected for the momentum equa-
tion. That being said, we shall henceforth stick with the generalised Laplacian description in our algorithms and numerical 
examples.

3.2.2. Variational formulation
The modified pressure Poisson problem (13)–(14) is the basis for deriving our stabilised formulation. The first step is to 

use Green’s first formula on the PPE (13) to yield

〈∇q,∇p〉 −
〈
q,

∂ p

∂n

〉
	

= 〈q,∇ · [(ρ∇u)u − 2∇su∇μ
]〉+ 〈q, [∇ × (∇ × u)] · ∇μ − β∇ · u〉 .

Integrating by parts the first term on the right-hand side and enforcing the Neumann BC (14) gives

〈q, β∇ · u〉 + 〈∇q,∇p + (ρ∇u)u〉 =
〈
∇q,

[
∇u + (∇u)�

]
∇μ
〉
+ 〈q, [∇ × (∇ × u)] · ∇μ〉 − 〈qn,μ∇ × (∇ × u)〉	 ,

(21)

but

〈qn,μ∇ × (∇ × u)〉	 = 〈q,μ∇ · [∇ × (∇ × u)]〉 + 〈∇(qμ),∇ × (∇ × u)〉
= 〈∇q,μ∇ × (∇ × u)〉 + 〈q,∇μ · [∇ × (∇ × u)]〉 .

Therefore, the right-hand side of Eq. (21) reduces to〈
∇q,

[
∇u + (∇u)�

]
∇μ
〉
− 〈∇q,μ∇ × (∇ × u)〉 .

As in the PSPG formulation, we still have a second-order term that cannot be approximated by low-order finite element 
spaces. It is only possible to preserve the full viscous residual if we can rewrite this term using only first-order derivatives. 
We can in fact use integration by parts once again to write

〈μ∇q,∇ × (∇ × u)〉 = 〈∇q × n,μ∇ × u〉	 + 〈∇ × (μ∇q) ,∇ × u〉 ,

and

〈∇ × (μ∇q) ,∇ × u〉 = 〈μ∇ × (∇q) + ∇μ × ∇q,∇ × u〉 = 〈∇μ × ∇q,∇ × u〉
≡ 〈∇q, (∇ × u) × ∇μ〉 ≡

〈
∇q,

[
∇u − (∇u)�

]
∇μ
〉
.

Thus, some terms cancel out and the weak form simplifies to

〈q, β∇ · u〉 +
〈
∇q,∇p + (ρ∇u)u − 2(∇u)�∇μ

〉
+ 〈∇q × n,μ∇ × u〉	 = 0 ,

which is now free of second-order derivatives.
There is one last issue to be addressed. In this weak form, as well as in the generalised Laplacian form of the momentum 

equation (see Eq. (11)), the term ∇μ is present. Since the viscosity in general depends on ∇su, computing ∇μ in the 
variational formulation would increase the regularity requirements on the velocity interpolant and therefore prohibit the 
use of standard Lagrangian finite elements. This can be avoided by projecting the viscosity onto a continuous space, or, in 
6
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other words, enforcing the rheological law weakly. Our final variational formulation is then to find (u, p,μ) ∈ X × Y × Z , 
with u|	D = uD , such that for all (w,q, r) ∈ X̃ × Ỹ × Z̃ , with w|	D = 0,

〈w, (ρ∇u)u〉 + 〈∇w,μ∇u〉 −
〈
w, (∇u)�∇μ

〉
− 〈∇ · w, p〉 = 〈w, t̃〉	N , (22)

〈q, β∇ · u〉 +
〈
∇q,∇p + (ρ∇u)u − 2(∇u)�∇μ

〉
+ 〈∇q × n,μ∇ × u〉	 = 0 , (23)〈

r,μ − η
(
γ̇
(∇su

))〉= 0 , (24)

with continuous test and trial spaces. We shall refer to this formulation as boundary vorticity stabilisation (BVS), as the key 
to a consistent residual is the first-order boundary term proportional to the vorticity ∇ × u. For a homogeneous Newtonian 
fluid, all terms proportional to ∇μ vanish, recovering the method recently presented in [41]. Notice that another advantage 
of weakly coupling μ to u is that the resulting regularity requirements allow the stabilisation term to be computed globally, 
instead of the usual restriction to element interiors. Local mesh size effects can be handled by the parameter β in the 
divergence term, as discussed next.

3.2.3. The stabilisation parameter
A quick comparison between our stabilised form (23) and the relaxed continuity equation (9) in the PSPG method leads 

to the simple choice β = 1/δe , with δe being the local PSPG stabilisation parameter. Different definitions exist for δe , a 
popular one being

δe =
[(

α1μh

he
2

)2

+
(

α2ρ|uh|
he

)2

+
(α3ρ

�t

)2
]−1/2

, (25)

where �t is the time step size used for the temporal discretisation, |uh| denotes the Euclidian norm of uh , and α1 , α2 , 
α3 are stabilisation factors. A common choice is α1 = 2α2 = 2α3 = 4 [35]. We use α2 = 0 in our examples, since our 
focus are diffusion-dominated flows where convective stabilisation is not needed. For linear elements, α1 = 12 is also often 
recommended [70], and in stationary diffusive flows one can use simply [71]

β|�e = 1

δe
= μh

αhe
2

, (26)

with α being a positive parameter. We will use this expression in Section 6.1 to assess the influence of the stabilisation 
parameter on the performance of our method. In this case, our stabilised continuity equation reads

〈
∇qh,∇ph + (ρ∇uh)uh − 2(∇uh)

�∇μh

〉
+ 〈∇qh × n,μh∇ × uh〉	 + 1

α

Ne∑
e=1

he
−2 〈qh,μh∇ · uh〉�e

= 0 ,

that is, the stabilisation term is computed globally, whereas the divergence term is computed in an element-weighted 
manner, conversely to classical residual-based formulations. Having laid out the basic concept for our new stabilisation 
approach, we proceed with discretisation aspects in the more general time dependent case.

4. Discretisation aspects

The discretisation in time is done with the help of the generalised θ -scheme as a basic ingredient. So, let us divide the 
time interval (0, T ] into Nt steps, {ti}Nt

i=1 , and abbreviate un = u(x, tn). For the current time step �tn from tn to tn+1 , i.e., 
�tn = tn+1 − tn , the semi-discrete problem is the following: Given (un, pn) and boundary data un+1

D and t̃n+1 , compute the 
solution (un+1, pn+1) at time tn+1 via

ρ

�tn

(
un+1 − un)+ θfn+1 + θ ′fn = 0 in � , (27)

∇ · un+1 = 0 in � , (28)

μ∞ + (μ0 − μ∞)
(

1 + 0.5λ2∇sun+1 : ∇sun+1
) ζ−1

2 = μn+1 in � , (29)

un+1 = un+1
D on 	D , (30)(

μn+1∇un+1 − pn+1I
)

n = t̃n+1 on 	N , (31)

with the shorthand notation f := (ρ∇u)u − ρg + ∇p − 2∇su∇μ − μ�u. As can be seen from Eq. (29), the rheological law 
may be exchanged effortlessly, which is why we limit the discussion to the Carreau model (4). Fixing the parameters θ and 
θ ′ in (27), one can choose a specific time integration scheme, e.g., θ = 1 and θ ′ = 0 corresponding to the implicit Euler 
7
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scheme or θ = θ ′ = 1/2 for the Crank–Nicolson (CN) scheme. Note, however, that the pressure is integrated consistently 
in time applying a so-called pressure-corrected θ -scheme [79] and as a consequence, for θ �= 1, the pressure pn from the 
previous time step or an initial condition for the pressure p(x, 0) = p0 is needed. The simplest and most usual way to dodge 
this complication is to use a (small) initial implicit Euler step. Moreover, the divergence-free condition (28) is enforced on 
the discrete velocity un+1 at every point in time. In doing so, errors in mass conservation do not accumulate over time, 
while (28) is equivalent to a time-integrated form in the case of an initially divergence-free velocity field [80,81]. Similar 
reasoning lies behind the choice of (29), enforcing the time-independent rheological law at every point in time.

Rothe’s method is applied to discretise first in time and then in space based on the variational formulation presented in 
Section 3. The fully discrete problem is to find (un+1

h , pn+1
h , μn+1

h ) ∈ Xh × Yh × Zh , with un+1
h |	D = un+1

D , such that for all 
(wh, qh, rh) ∈ X̃h × Ỹh × Z̃h , with wh|	D = 0,〈

wh,ρun+1
h + θ̃

[
(ρ∇un+1

h )vn+1
h − (∇un+1

h )�∇μn+1
h

]〉
+
〈
∇wh, θ̃μn+1

h ∇un+1
h

〉
−
〈
∇ · wh, θ̃ pn+1

h

〉
=〈

wh,ρ(un
h + θ̃gn+1) − θ̃ ′ [(ρ∇un

h)un
h − ρgn − (∇un

h)
�∇μn

h

]〉
−
〈
∇wh, θ̃

′μn
h∇un

h

〉
+
〈
∇ · wh, θ̃

′ pn
h

〉
+ 〈wh, θ̃ t̃n+1 + θ̃ ′ t̃n〉	N , (32)〈

qh,∇ · un+1
h

〉
= 0 , (33)〈

rh,μ
n+1
h − (μ0 − μ∞)

(
1 + 0.5λ2∇svn+1

h : ∇svn+1
h

) ζ−1
2

〉
= 〈rh,μ∞〉 , (34)

with θ̃ = θ�tn and θ̃ ′ = θ ′�tn and the (convective) velocity vn+1
h . Taking vn+1

h equal to un+1
h introduces nonlinearities to the 

weak form of the balance of linear momentum and couples the velocity and viscosity solution components in a nonlinear 
fashion through the diffusion terms. As a consequence, nonlinear solvers such as a fixed-point or Newton’s method have 
to be applied, resulting in several iterations per time step in each of which a 3 × 3 block-system has to be appropriately 
preconditioned and solved. Alternatively, we extrapolate the velocity linearly, which gives

vn+1
h =

(
1 + �tn

�tn−1

)
un

h − �tn

�tn−1
un−1

h . (35)

This is much simpler, since it decouples the viscosity from the overall system and linearises the convective term. Thus, 
only an L2 projection for the viscosity, followed by a velocity-pressure system solve are needed per time step. Similar 
linearisations have been proposed for Newtonian fluids [82,42,83] and buoyancy-driven flow problems [67], where they 
showed to be a worthwhile compromise between speed, accuracy and stability.

4.1. Equal-order stabilisation

The discrete function spaces are still undefined, since we use either (i) isoparametric Taylor–Hood elements, featuring 
quadratic velocity interpolation and linear pressure functions, or (ii) linear elements for velocity and pressure together with 
a modification of (33). For the latter choice, the time dependent counterpart of the PSPG method (8)–(9) replaces the 
continuity equation (33) in system (32)–(34) by

〈
qh,∇ · un+1

h

〉
+

Ne∑
e=1

〈
δe∇qh,ρ(un+1

h − un
h) + θ̃fn+1

h + θ̃ ′fn
h

〉
�e

= 0 , (36)

with fh = ρ [(∇uh)vh − g] + ∇ph − 2∇suh∇μh − μh�uh being the discrete counterpart of f with possibly extrapolated 
convective velocity vn+1

h (but of course vn
h = un

h). Alternatively, applying our BVS formulation, we replace the continuity 
equation (33) in (32)–(34) by

〈
∇qh,ρ(un+1

h − un
h) + θ̃ f̃n+1

h + θ̃ ′ f̃n
h

〉
+ 〈∇qh × n, θ̃μn+1

h ∇ × un+1
h + θ̃ ′μn

h∇ × un
h〉	 +

Ne∑
e=1

〈
δe

−1qh,∇ · un+1
h

〉
�e

= 0 ,

(37)

with f̃h = (ρ∇uh)vh − ρg + ∇ph − 2(∇uh)�∇μh free of second-order derivatives. Comparing (36) and (37) from an algo-
rithmic point of view, we see that either second-order derivatives (PSPG) or domain boundary integration (BVS) must be 
employed – then, in fact, one ends up with very similar element integration routines.

Mass conservation is further improved by grad-div stabilisation [84]. This penalty term is commonly used for LBB-stable 
and especially for stabilised formulations in order to enhance conservation of mass, simply adding [71]
8
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+
Ne∑

e=1

〈
γ̃e∇ · wh,∇ · un+1

h

〉
�e

,
γ̃e

�tn
= γe =

{
0.1 for Q 2/Q 1 pairs,

0.5 he for Q 1/Q 1 pairs
(38)

to the momentum equation (32).

4.2. Time step selection

4.2.1. Predictor-corrector approach
The CN time integration scheme is a particularly popular method, as it is easy to implement, second-order accurate and 

A-stable [85]. Its non-dissipative nature is an attractive feature when pure convection or convection-dominated problems are 
considered. Unfortunately though, applying the CN scheme with (large) fixed time steps can be problematic as thoroughly 
investigated in literature, including works critically comparing CN to other available time-stepping algorithms or operator-
splitting methods [86,43]. Various remedies have been presented to consistently introduce slight numerical damping to 
account for, e.g., rough initial or boundary data. Strategies like introducing intermediate implicit Euler (θ = 1) steps [87,88], 
periodic averaging [89,90,65,66] or shifting the θ parameter slightly to the implicit side [85] are among the methodologies 
resorted to. Here, we settle for a variant of the Rannacher time-stepping (R), introducing backward Euler steps in-between 
CN steps. The discussion regarding this choice is continued in Section 6, where we compare different approaches.

To control the step size, a predictor-corrector approach (see e.g. [91,65–67]) is taken, controlling the time step of the CN 
method by comparing it to an explicit Adams–Bashforth method of second order (AB2), which computes the velocity as

ũn+1 = un + �tn

2

[(
2 + �tn

�tn−1

)
u̇n − �tn

�tn−1
u̇n−1

]
, (39)

approximating the time derivatives using solutions uh obtained with the implicit CN scheme in the previous step by

u̇n
h = 2

�tn
(un+1

h − un
h) − u̇n−1

h . (40)

Based on the solutions ũn+1
h and un+1

h , the new time step size is computed as

�tn+1 = ξ�tn

(
εv

en+1

) 1
3

with en+1 =
∣∣∣∣∣ un+1

h − ũn+1
h

3(1 + �tn−1/�tn)

∣∣∣∣∣ , (41)

where εv is some specified tolerance on the L2 norm of the truncation error in the velocity components and the safety 
factor ξ ∈ (0, 1] is introduced.

Two issues are encountered when implementing the AB2 scheme. First, it is not self-starting, which is why an initial 
implicit Euler step of small size is used together with u̇n−1

h ≈ u̇n
h or u̇n−1

h ≈ 0 if the boundary conditions are ramped up 
in a consistent way [45]. Second, the explicit AB2 integrator is prone to ringing and therefore stabilised by averaging the 
solution vectors

u̇n−1
h = 1

2

(
u̇n

h + u̇n−1
h

)
and u̇n

h = 1

�tn
(un+1

h − un
h) , (42)

in every N∗-th step. This averaging step and the Euler step within the Rannacher scheme are executed at the same time. 
Similar stabilised predictor-corrector schemes were proposed by [65–67], where an averaging such as (42) is also applied to 
the velocity components used in the implicit scheme. In order to treat the pressure in the implicit scheme, this averaging 
step is replaced by an implicit Euler step. N∗ is a fixed value being a compromise between accuracy and stability. Choosing 
N∗ too low spoils accuracy, while setting it too high causes the integrator to stall at a certain step size, even if larger time 
steps might not violate the target tolerance.

4.2.2. Fractional step θ -scheme
The stabilised predictor-corrector approach is compared to a pressure-corrected fractional step θ -scheme [79] (FS), which 

is second-order accurate as well, but strongly A-stable. Having an implementation of the generalised θ -scheme available, it 
can be straightforwardly extended to the FS scheme by simply grouping three steps of the generalised θ -scheme to one 
macro step from tm to tm+1 of size �tm and setting the time integration parameters and step lengths according to Table 1, 
with κ = 1 − 1/

√
2, κ̃ = 1 − 2κ , α = κ̃/(1 − κ) and β = 1 − α.

Adaptive time step control is directly enabled by interpreting the FS scheme as a Runge–Kutta method as done by 
Rang [79], leading to a representation with the Butcher tableau

c A

b� =

0 0 0 0 0
κ κβ κα 0 0

κ + κ̃ κβ (κ + κ̃)α κ̃β 0
1 κβ (κ + κ̃)α (κ + κ̃)β κα

κβ (κ + κ̃)α (κ + κ̃)β κα

(43)
9
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Table 1
Time integration parameters and step lengths for the FS scheme.

Step θ θ ′ �tn tn tn+1

1 α β κ�tm tm tm + κ�tm

2 β α κ̃�tm tm + κ�tm tm + (1 − κ)�tm

3 α β κ�tm tm + (1 − κ)�tm tm+1

with an embedded method of order 1 with coefficient vector b̃ as given by [92]

b̃ =

⎛
⎜⎜⎝

0.11785113033497070959
0.49509379160690495120
0.29636243203812433921
0.09069264621404818692

⎞
⎟⎟⎠ . (44)

Already put as an open problem in [79], bundling three steps of the generalised θ -method to one macro step, it is not 
immediately clear how the embedded scheme can be utilised given intermediate solutions. However, one can recover the 
coefficient vectors necessary to do so. This is particularly convenient, since the algorithm might then be based on an already 
existing code using a simple generalised θ -method for time stepping. To make our point clear (and for the convenience of 
the reader), we briefly introduce Runge–Kutta methods and the connection of the FS scheme to the generalised θ -scheme, 
while referring to [79,92] for a more detailed discussion.

Let us consider the system

∂u

∂t
= − 1

ρ
f(t,u, p) = g − (∇u)u − 1

ρ

(∇p − 2∇su∇μ − μ�u
)
, (45)

0 = g(t,u, p) = ∇ · u (46)

and assume for now consistent initial conditions u(x, 0) = u0 and p(x, 0) = p0 given. Then, we define an s-stage Runge–
Kutta method via the updates

um+1 = um + �tm

s∑
i=1

bik
i , pm+1 = pm + �tm

s∑
i=1

bil
i (47)

and auxiliary equations for i = 1, ..., s

ki = − 1

ρ
f

⎛
⎝tm + ci�tm, um + �tm

s∑
j=1

Ai jk
j, pm + �tm

s∑
j=1

Ai jl
j

⎞
⎠ , (48)

0 = g

⎛
⎝tm + ci�tm, um + �tm

s∑
j=1

Ai jk
j, pm + �tm

s∑
j=1

Ai jl
j

⎞
⎠ . (49)

Note however, that due to the absence of a pressure time derivative in the continuity equation, the coefficients li are not 
well defined through (49). Therefore, we insert (47) into (48) and (49) to get

k1 = −f
(
tm,um, pm)/ρ , 0 = g

(
tm,um, pm) , (50)

k2 = −f
(

tm + κ�tm,uI, pI
)

/ρ , 0 = g
(

tm + κ�tm,uI, pI
)

, (51)

k3 = −f
(

tm + (κ + κ̃)�tm,uII, pII
)

/ρ , 0 = g
(

tm + (κ + κ̃)�tm,uII, pII
)

, (52)

k4 = −f
(

tm+1,uIII, pIII
)

/ρ , 0 = g
(

tm+1,uIII, pIII
)

, (53)

with solutions defined at intermediate steps

uI = um + κ�tm

(
βk1 + αk2

)
, pI = pm + κ�tm

(
βl1 + αl2

)
, (54)

uII = uI + κ̃�tm

(
αk2 + βk3

)
, pII = pI + κ̃�tm

(
αl2 + βl3

)
, (55)

uIII = uII + κ�tm

(
βk3 + αk4

)
, pIII = pII + κ�tm

(
βl3 + αl4

)
. (56)
10
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With the help of (47) it is then easily verified that uIII = um+1 and pIII = pm+1 and combining the auxiliary equations for 
ki , i.e., (50)–(53) and (54)–(56), we obtain exactly the systems corresponding to the fractional step θ -scheme. Now, the 
embedded scheme for the velocity components is

ũm+1 = um + �tm

s∑
i=1

b̃ik
i, (57)

but since neither the update formula (47) nor the intermediate solution definitions (54)–(56) or A4 j = b j can be used to 
recover the ki – even with the solution vectors um , uI , uII and uIII given – a projection is employed. Taking (50) and given 
the solution at the macro time step start t = tm , i.e., (um

h , pm
h , μm

h ) ∈ Xh × Yh × Zh , find k1
h ∈ Zh , such that

〈
wh,ρk1

h

〉= 〈wh,ρgm − (ρ∇um
h )um

h + (∇um
h )�∇μm

h

〉
− 〈∇wh,μ

m
h ∇um

h

〉+ 〈∇ · wh, pm
h

〉+ 〈wh, t̃m〉	N (58)

for all wh ∈ Z̃h . Then, we can compute the remaining ki
h reformulating (54)–(56) by

k2
h = 1

α

(
uI

h − um
h

κ�tm
− βk1

h

)
, k3

h = 1

β

(
uII

h − uI
h

κ̃�tm
− αk2

h

)
, k4

h = 1

α

(
uIII

h − uII
h

κ�tm
− βk3

h

)
, (59)

which finally allows controlling the step size via the PI-controller [93]

�tm+1 = ξ
�t2

m

�tm−1

(
εv em

e2
m+1

) 1
2

with em+1 =
∣∣∣um+1

h − ũm+1
h

∣∣∣ , (60)

with safety factor ξ ∈ (0, 1].
Altogether, using the projection (58), i.e., a mass solve for the vector-valued k1

h , one can enable adaptive time step 
selection only based on a simple generalised θ -method time stepping. In the present case, the added numerical effort is 
close to negligible, since the projection is easily computed (at the end of every macro-step), especially when comparing to 
the effort involved in solving the velocity-pressure system.

Choosing any of the heuristic adaptive time-stepping schemes presented, we introduce an additional safety measure 
by repeating steps which either resulted in a time step reduction by more than 30% of the current step size or lead to 
non-convergence of the linear solver in the (final non-linear) step.

5. Linear systems and iterative solution

We aim to obtain a linear system from the consistently stabilised form using (32), (34) and (37), omitting the other 
forms for brevity. Standard continuous finite element spaces

Xh = span
{
ψ i

}3 Nu

i=1 , Yh = span {φi}N p

i=1 , Zh = span {ϕi}Nμ

i=1 (61)

are used, denoting by ψ i , φi and ϕi the vector- or scalar-valued shape functions corresponding to nodal degrees of freedom 
(DOFs) for velocity, pressure and viscosity fields. The nonlinearities in the system are treated either via Picard iterations or 
extrapolation (35). The nonlinear solver is used only for comparison, whereas the reason for choosing Picard is two-fold: 
(i) Newton’s method introduces additional coupling terms, which hinder the decoupling of the equation governing viscosity, 
and (ii) fixed-point iterations have been shown to be as efficient as linearisation via Newton’s method for three-dimensional 
incompressible flow problems in [94]. Then, discretisation naturally leads to the decoupled (scaled) viscosity and velocity-
pressure sub-systems

Mμ̃ = h and

(
A B
B̃ C

)(
un+1

pn+1

)
=
(

f
g

)
(62)

with scaled viscosity μ̃ = μn+1/μ∞ and entries of matrices and vectors as defined in Appendix A. This particularly con-
venient decoupling of the overall system is not possible applying Newton’s method, and allows for a sequential solution 
procedure, where first the scaled viscosity is computed and then plugged into the second system as μn+1

h = μ̃μ∞ . This also 
means that exchanging the fluid’s rheological law is as easy as adapting the right hand side h.

To improve the solver’s convergence behaviour in the nonlinear case of vn+1
h = un+1

h , we apply Aitken’s relaxation [95,96]. 
Therefore, relax the two individual sub-problem’s solutions x̃k+1 in iteration k + 1 with ωk+1 recursively defined as [97]

xk+1 = ωk+1 x̃k+1 + (1 − ωk+1) xk, with ωk+1 = −ωk
rk · (rk+1 − rk)

|rk+1 − rk|2 and rk+1 = x̃k+1 − xk. (63)
11
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The linear algebraic systems (62) are solved in each iteration of the nonlinear scheme, or once at each time step in the 
linearised scheme. For both the viscosity sub-system and the projection to obtain k1

h via (58), a conjugate gradient method 
[98] in combination with a single V-cycle of the algebraic multigrid method (AMG) as preconditioner, provided by [99], is 
found effective. The iterative solution of the velocity-pressure sub-system is known to be delicate – therefore, we employ a 
flexible generalised minimal residual method (FGMRES) [100] with the right preconditioner P−1 defined as [47]:

P−1 =
(

A B
0 S

)−1

=
(

A−1 0
0 I

)(
I −B
0 I

)(
I 0
0 S−1

)
, (64)

with the Schur complement S := C − B̃A−1B. Exact application of P−1 would result in the outer Krylov method converging 
in at most two iterations, see [47], but is unfeasible in applications – however, the action of S−1 and A−1 and thus the 
action of P−1 on a vector within the FGMRES method can be approximated. The inverse of A is accounted for by a single 
AMG cycle, whereas obtaining a good representation of S−1 is based on investigating the contributions to A as defined in 
(A.4). We interpret A as a sum [45]

A = ρMu + Nu(vn+1
h ,∇μn+1

h ) + Lu(μn+1
h , γ̃ ) , (65)

where Mu is the velocity mass matrix, Nu contains the convective and viscosity gradient terms, and Lu composed of the 
diffusion and grad-div terms. Each of those constituents, or rather their inverses within the Schur complement, are then 
considered as

S−1 ≈
(

C − B̃ diag(ρMu)−1B
)−1 − M−1

p FpL−1
p + M−1

μ,γ . (66)

Here, the matrix composed of reaction and stabilisation terms is explicitly computed to rigorously account for correct 
boundary conditions and stabilisation terms. The matrices defined on the pressure space are

[Mp]i j = 〈φi, φ j〉 , [Lp]i j = 〈∇φi,∇φ j〉 and

[Fp]i j =
〈
φi,ρφ j + θ̃ρ∇φ j · vn+1

h

〉
+
〈
∇φi, θ̃μn+1

h ∇φ j

〉
, (67)

with Lp incorporating homogeneous essential boundary conditions on Neumann boundaries of the flow problem and zero 
Neumann conditions elsewhere. The discrete operator Fp resembles the convection-diffusion-reaction operator on the veloc-
ity space and features the Robin boundary condition [101]

−μn+1∇pn+1 · n + (un+1 · n) = 0 on ∂� . (68)

This whole strategy is a variation of the well-known pressure-convection-diffusion (PCD) preconditioner [53], which is 
slightly adapted here to tackle highly variable viscosity fields, taking inspiration from [62,58]:

[Mμ,γ ]i j =
〈
φi, (μ

n+1
h + γ̃ )−1φ j

〉
. (69)

All the inverses appearing in the Schur complement approximation are also approximated by single cycles of an AMG 
method, making them cheap in execution. For each application of the preconditioner on a vector, one thus needs to execute 
altogether three AMG cycles on pressure matrices, one AMG cycle on the velocity-velocity block and two matrix-vector 
products.

6. Computational results

In this section, we assess the accuracy and robustness of our stabilised framework in two parts. First, we focus on 
establishing a systematic comparison between our BVS formulation and more conventional residual-based stabilisations. For 
that we consider stationary benchmark problems in two dimensions, focusing solely on the accuracy of the formulations 
per se. Once that is completed, expected convergence rates in space and time are confirmed also for the instationary solver 
using a manufactured solution. Then, flow in a straight pipe in two and three space dimensions is considered to assess 
solver performance with regards to time step selection and number of (non-)linear iterations in the case of quasi-stationary 
and periodic flow conditions. In a final example, we tackle the simulation of blood flow in the idealised geometry of 
an aneurysmatic vessel, demonstrating solver performance in a realistic setting with physiological inflow conditions and 
highlighting the importance of rheological modelling in hemodynamics. All examples in the latter part are implemented 
using the finite element toolbox deal.II [102]. In the examples varying α and/or checking convergence rates, parallel 
direct linear solves are executed [103].
12
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Fig. 1. Carreau channel flow: coarsest mesh used in the refinement study.

6.1. Stationary problems

We begin with two stationary examples to assess the accuracy of our stabilised formulation in comparison to the classical 
PSPG approach. Since we consider stationary problems with low Reynolds numbers, a stabilisation parameter in the form of 
Eq. (26) is employed. The approximation errors will be measured in relative L2 norms:

‖p − ph‖0 := ‖p − ph‖L2(�)

‖p‖L2(�)

, ‖u − uh‖0 := ‖u − uh‖L2(�)

‖u‖L2(�)

.

6.1.1. Carreau fluid in straight channel
In a two-dimensional channel � = (0, L) × (−H/2, H/2) with a constant pressure drop per unit length equal to k, the 

developed Carreau flow has a known solution:

u(x) =
(

u1(x2)

0

)
, p(x) = |k|(L − x1) , with u1 (x2) =

|x2|∫
H/2

f (y) dy

and f (y) solving the nonlinear equation{
μ∞ + (μ0 − μ∞)

[
1 + (λ f /2)2

] ζ−1
2

}
f = −|k|y, y ∈

[
0,

H

2

]
. (70)

The exact solution can then be used for measuring approximation errors in velocity and pressure. We consider a problem 
with L = 3H = 3 mm and a pressure drop of 9 Pa across the channel’s length. The hemodynamic parameters for a represen-
tative setting are [68]: ρ = 1050 kg/m3 , μ∞ = 3.45 mPa·s, μ0 = 56 mPa·s, ζ = 0.3568 and λ = 3.313 s. As for the BCs, we 
impose no-slip on the walls, i.e., u|x2 =±H/2 = 0, and enforce the pressure drop by setting t̃|x1 =0 = (pin,0)� and t̃|x1 = L = 0, 
with pin = 9 Pa.

We first carry out a convergence study with linear triangular elements, starting from the mesh depicted in Fig. 1 and 
then performing 6 levels of uniform refinement. Fig. 2 shows a comparison between the BVS and PSPG methods for a 
stabilisation factor α = 1. We see that, while the velocity errors are quite similar, the BVS method performs clearly better in 
the approximation of pressure. At the finest level, the BVS error is already thirty times smaller than that attained by PSPG, 
and this difference shows an increasing trend if the refinement continues.

In fact, the similarity in the velocity errors does not hold in general; if α is not small, the incomplete PSPG residual 
ends up over-relaxing incompressibility, which leads to larger velocity errors. Fig. 3 shows the error behaviour for a wide 
range of stabilisation factors. For small α, the methods perform similarly because the divergence-free constraint dominates 
over the stabilisation terms. However, increasing the stabilisation factor leads to a much faster increase in the velocity error 
for PSPG than for our method. For instance, from α = 0.1 to α = 10 the PSPG method experiences a 1000% increase in the 
velocity error, in contrast to only 12% in the BVS case. This is due to the improved mass conservation of our approach. As 
a matter of fact, although we stick here to low-order pairs, a thorough comparison between BVS and PSPG presented by 
Pacheco et al. [41] for the Newtonian case reveals a similar gain in parameter-robustness also for higher-order elements.

Additionally to the possible over-relaxation of incompressibility, standard low-order residual-based formulations have 
another well-known shortcoming: the induction of spurious pressure boundary layers – and the straight channel flow is a 
perfect example for illustrating that. For this problem, the momentum equation simplifies to

∇p = μ�u + ∇u∇μ ,

so that dividing both sides by μ and taking the divergence of the result gives us

∇ · (μ−1∇p
)= � (∇ · u) + ∂

(
μ−1 ∂u1 ∂μ

)
= 0 .
∂x1 ∂x2 ∂x2

13
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Fig. 2. Carreau channel flow: uniform refinement study (triangles indicate quadratic convergence).

Fig. 3. Carreau channel flow: effect of the stabilisation parameter.

Thus, we can also write

∇ · u − δ∇ · (μ−1∇p
)= 0 (71)

for any arbitrary δ. Let us now turn our attention to the stabilised formulation. In a uniform mesh with linear triangular 
elements, we have (∇ ·Sh)|�e = 0 and he = h for all elements. Hence, the PSPG stabilisation for this example reads simply

〈qh,∇ · uh〉 + αh2
〈
∇qh,μ

−1
h ∇ph

〉
= 0 , (72)

which is the weak form of

∇ · u − αh2∇ · (μ−1∇p
)= 0 in � , (73)

∂ p

∂n
= 0 on 	 , (74)

i.e., although Eq. (73) is consistent with Eq. (71), the PSPG term induces zero Neumann BCs (74) for the pressure as a 
numerical artifact. This results in loss of accuracy close to the boundary, especially if the stabilisation factor α is not small 
[104]. Therefore, α must be large enough to attain stability, but not so large that spurious pressure boundary layers become 
relevant – and this, of course, restricts the choice of the stabilisation parameter. In Fig. 4 we plot the pressure field along 
x2 = 0, for different values of α. The induced Neumann BCs can be clearly seen in the PSPG solution, and the affected 
region becomes larger as we increase α. Conversely, when using the BVS this is not an issue, since the pressure satisfies 
appropriate BCs derived from the momentum equation.
14
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Fig. 4. Carreau channel flow: centreline pressure for different stabilisation factors α, showing the zero Neumann BCs induced by PSPG.

Fig. 5. Geometry used for the backward-facing step benchmark.

6.1.2. Carreau–Yasuda fluid past a backward-facing step
We now consider the classical backward-facing step benchmark (cf. Fig. 5) with a Carreau–Yasuda fluid [36,105]. This 

model generalises the Carreau rheology with the law

η (γ̇ ) = μ∞ + (μ0 − μ∞)
[
1 + (λγ̇ )a] ζ−1

a . (75)

The hemodynamic parameters used in this example are [36]: ρ = 1060 kg/m3 , μ∞ = 3.45 mPa·s, μ0 = 56 mPa·s, ζ = 0.22, 
λ = 3.804 s and a = 1.25. We prescribe a parabolic inflow at x1 = 0, zero pseudo-traction at the outlet x1 = L and no-slip 
on the remainder of the boundary. For this example, we can write the Reynolds number as Re = ρ Q /μ∞ , with Q being 
the inflow rate. Results for Re = 25 have been reported by Masud and Kwack [36] for widths of H = 0.5, 5 and 50 mm. We 
compare them with respect to the normalised wall shear stress τw downstream of the step along the line x2 = 0:

τw :=

[
η (γ̇ ) ∂u1

∂x2

]∣∣∣
x2 =0

6μ∞ Q /(2H)2
,

whose denominator corresponds to the wall shear stress of a developed Newtonian flow.
For the numerical solution, we use α = 0.1 and a uniform mesh with 50,000 bilinear square elements in all three cases. 

Fig. 6 shows the comparison between our solutions and those attained by Masud and Kwack [36] through a variational 
multiscale (VMS) method. The results reveal good agreement, especially for the narrower channels. For the widest one there 
is a discrepancy of around 2%. Fortunately, there is a way to compute the exact wall shear stress of the developed flow due 
to equilibrium of forces:

τ∞
w = −2H

2

∂ p

∂x1

∣∣∣∣
x1→∞

. (76)

Although the pressure gradient is not known right away, it is possible to find it in terms of the flow rate Q (this requires 
an iterative procedure, which we omit here for concision). Then, using the known value, we are able to verify that our 
solution differs in less than 0.5% from the exact one, while the VMS approximation differs in around 3%. For completeness, 
we present in Table 2 the comparison for the other geometries, along with the maximum and minimum values of the wall 
shear stress in each case.
15
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Fig. 6. Backward-facing step with Carreau–Yasuda fluid: wall shear stress (x2 = 0) for the BVS (lines) and VMS (markers [36]) methods.

Table 2
Backward-facing step with Carreau–Yasuda fluid: key wall shear stress values τw along the lower wall (x2 = 0).

H [mm] min {τw } max {τw } τw |x1 = L τ∞
w (analytical)

0.5 −0.5394 1.147 1.087 1.099
5 −0.4048 4.180 4.139 4.167
50 −0.6814 16.115 15.839 15.897

6.2. Instationary problems

6.2.1. Manufactured solution
In the following, an exact solution to the system (1)–(4) as constructed in Appendix B is used for quantifying conver-

gence. The convective term is not linearised, i.e., vn+1
h = un+1

h , and the nonlinear system is solved until the relative criterion

|xk+1 − xk|/|xk+1| ≤ 10−6 (77)

is met. To reduce the ambiguity coming from linear solver tolerance and start-up strategy, a parallel direct solver is em-
ployed [103] and the analytical solution for the pressure is simply interpolated at t = 0. Further, relative error norms with 
respect to some solution component are defined, exemplarily taking uh , as

eu
Q = ||uh − u||L2(0,T ;L2(�))

||u||L2(0,T ;L2(�))

and eu
� =

( ||(uh − u)||L2(�)

||u||L2(�)

)∣∣∣∣∣
t = T

. (78)

For comparison, also the LBB-stable Taylor–Hood pair using Q 2/Q 1 elements for the velocity-pressure sub-system is in-
cluded in the studies. For viscosity, Q 1 elements are used in any case.

Temporal convergence rates In a first numerical test of the time-dependent case, we solve the incompressible flow problem 
(1)–(2) in � = (0, 0.1)2 for t ∈ (0, 1] with the parameters μ0 = 10 mPa·s, μ∞ = 1.0 mPa·s, ρ = 103 kg/m3 , ζ = 0.5 and 
λ = 1 s. Spatial discretisation is carried out using a uniform grid of 256 × 256 BVS-stabilised Q 1/Q 1 elements to study 
temporal convergence rates. So, the number of (macro) time steps used is doubled from level to level, starting from a single 
one. The results are depicted in Fig. 7a, omitting Q 1/Q 1 (PSPG) and Q 2/Q 1 elements for brevity, which give identical results 
up to the spatial discretisation error.

Regarding the time discretisation, we aim to compare the pressure-corrected Crank–Nicolson integrator, pressure-
corrected fractional step θ -method and Rannacher time-stepping scheme, denoted by CN, FS and R respectively. The R 
scheme is based on the CN method, but introduces intermediate backward Euler steps every N∗ steps. Only with a fixed 
number of intermediate Euler steps can the observed convergence rates be achieved. Thus, when using the R scheme, we 
start with 4 steps in total and N∗ = 2, which is doubled when halving the time step size. This leads to linear convergence 
in the pressure (+) and a shift in the velocity error (×) comparing R (−) with the optimally-convergent CN (- -) scheme. 
However, the temporal stability is noticeably improved compared to the CN scheme.
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Fig. 7. Error eQ (a) using CN, R or FS schemes and error e� (b) obtained with Q 2/Q 1 or Q 1/Q 1 elements stabilised via PSPG or BVS.

Those observed convergence rates match the error bounds established in [85], yet, fully implicit pressure time integration 
was employed therein. In our case, even a pressure-corrected form of Rannacher stepping did not improve the pressure error 
observed, while the velocity error convergences quadratically. A comparable approach was taken by [65–67], where instead 
of intermediate Euler steps, averaging steps were introduced – a stabilizing effect was observed, which is one possibility 
to counteract the ringing phenomenon when using CN with too large time steps. Introducing intermediate backward Euler 
steps instead is a worthwhile alternative which additionally dampens possible pressure oscillations in time. In practical 
applications, though, the parameter N∗ controls the amount of numerical diffusion added also when using variable time 
step sizes, increasing the error.

Another important aspect is the order reduction in the pressure approximation (+) for the FS scheme (−·). Considering 
the stiff problem at hand, as laid out in [106,79], this is to be expected – a decrease in the convergence rate of the pressure 
is traded for some increased stability. Note at this point, however, that variable time step sizes lead to linear convergence 
in the pressure variable even for the CN scheme [107]. The FS scheme suffers from order reduction, also leading to linear 
convergence of pressure in time [79,107]. Consequently, one ends up with linear convergence in time for pressure using any 
of the above mentioned methods when adaptively choosing the time step size without including any postprocessing. For the 
R scheme, a fixed N∗ leads to linear convergence of pressure and velocity in the observed norms; in practical applications, 
though, one rather thinks of an error corresponding to N∗ .

Spatial convergence rates Within the second numerical test of the time-dependent case, we aim to showcase the spatial 
convergence rates. Therefore, the scenario is changed slightly by letting t ∈ (0, 0.1], resolved by 100 time steps of the CN 
scheme to diminish the influence of time integration errors. The spatial approximation error in the relative L2(�) norm as 
defined in (78) at the final time T is obtained, while dividing the domain � = (0, 0.3)2 into a sequence of uniformly refined 
grids starting from a 4 × 4 grid up to a 256 × 256 grid of rectangles. The rheological parameters are chosen as μ0 = 10
mPa·s, μ∞ = 1 mPa·s, ρ = 10 kg/m3 , ζ = 0.5 and λ = 1 s, while the stabilisation parameter is defined setting α1 = 2α3 = 4
and α2 = 0 in (25).

The expected convergence rates are recovered, as seen in Fig. 7b, with the BVS and PSPG stabilisations giving almost 
identical errors using these settings. Moreover, the difference between stabilised and LBB-stable finite element pairs is also 
influenced by the physical parameters.

6.2.2. Adaptive time-stepping
The next numerical example demonstrates the solver performance with regards to time step selection in two scenarios 

resulting from different scaling of the inlet velocity profile in time. Both of the presented scenarios are based on the flow 
through a straight pipe with radius R = 5 mm and length L = 50 mm discretised as in Fig. 8a. As initial condition we choose 
the quiescent state, u(x, 0) = u0 = 0, and start with a single implicit Euler step of size �t0 = 1 · 10−5 to circumvent the 
computation of the initial pressure field. On the inlet, i.e., at x1 = 0, we enforce the ramped parabolic inflow profile by 
setting

u1(x, t) = ηu1 û1

[
1 −

( r

R

)2
]

(79)

with ηu1 = ηr ηp , ηr =
{

sin2
(

πt
2Tr

)
if t < Tr ,

1 otherwise,
(80)

and ηp = 1 + αp

[
cos10

(
t − Tr

T p
π

)
− 1

]
. (81)
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Fig. 8. Meshes considered for the first testcase in two (a) and three (b) space dimensions.

Fig. 9. Time step size (left axis, blue) and linear solver iterations (right axis, red). (For interpretation of the colours in the figure(s), the reader is referred to 
the web version of this article.)

On the cylinder wall we enforce no-slip BCs and on the outlet x1 = L the do-nothing condition t̃ = 0. The rheological 
parameters of the shear-thinning fluid are selected as μ0 = 2.5 · 10−1 Pa·s, μ∞ = 3.5 · 10−3 Pa·s, ρ = 1060 kg/m3 , ζ = 0.25
and λ = 25 s. The linearisation (35) is employed and the FGMRES solver to tackle the velocity-pressure system uses a 
(rather crude) relative convergence tolerance of 10−4 using the last computed solution as an initial guess, while the time 
step selection safety factor ξ = 0.98 is used.

Quasi-stationary solution In the first scenario, a quasi-stationary solution in two space dimensions is generated by setting 
û1 = 0.01 m/s, Tr = 0.5 s and αp = 0. Therefore, time step selection merely controls how fast the final solution is achieved 
with a tolerance of εv = 1 · 10−3 on the velocity error. Additionally, we switch off the re-computation of any time step, 
regardless of time step reduction factor and allow a maximum of 200 iterations in the linear solvers.

First, the stabilizing effect of the R scheme in comparison to CN is shown. Both schemes are combined with the explicit 
AB2 predictor to give what we refer to as the CN-AB2 and R-AB2 schemes, respectively. With the R-AB2 scheme, N∗ = 10
sets the number of stabilisation steps introduced. These stabilisation steps allow the integrator to surpass a certain limit 
in the time step size encountered with CN-AB2, which for this scenario lies at �tn ≈ 0.018 s. The maximum step size 
reached in the interval of interest with R-AB2 is �tn ≈ 0.82 s. At the same time, the iteration counts stay nicely bounded 
independent of the time step size, with typical values for the velocity-pressure system around Nu,p = 10 and the viscosity 
solve Nμ = 12. Corresponding graphs in Fig. 9 depict the time step size in logarithmic scale (left axes, blue) together with 
the iteration counts (right axes, red) in the linear solvers over the physical time t .

Secondly, the predictor-corrector scheme R-AB2 is compared to the FS scheme with PI-controller using the same problem 
parameters, but with Q 1/Q 1 elements stabilised via BVS. In Fig. 10, graphs again show time step size and iteration counts 
of the linear solvers when computing a considerably longer time interval of 200 s. Due to the aggressive pseudo-time 
incrementation and tolerances, time steps grow fast and are cut back regularly. These reductions in the time step size are 
triggered by instabilities resulting from time integration, when the time step control recommends step sizes above the 
stability limit as a result of a constant solution. Approaching this constant solution, the relative convergence criterion based 
on the last time step value becomes increasingly hard to satisfy, while the initial guess gives almost zero absolute error. The 
18
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Fig. 10. Time step size (left axis, blue) and linear solver iterations (right axis, red).

Fig. 11. Time step size and scaling ηu1 (left axis, blue) and linear solver iterations (right axis, red).

resulting non-convergence, together with temporal instabilities encountered when using large time steps lead to increasing 
error estimates, which results in a reduction of the time step size again. Nonetheless, after some non-converging linear 
solves, the suggested time steps tend to rise again, repeatedly reaching the same limit.

Comparing the R-AB2 with the FS scheme, we observe here a maximum time step size to be around �tn ≈ 4.77 s for the 
R-AB2 and around �tm ≈ 23.04 s for the macro time step of the FS scheme, respectively. Looking at the sub-steps, rather 
comparable sizes are obtained. Yet, the FS scheme results in a smoother time step growth (Fig. 10b), whereas the graph 
corresponding to the R-AB2 integrator (Fig. 10a) clearly shows an increasing step size every N∗ = 10 steps and slightly 
oscillatory behaviour in-between. The number of total solves needed until passing the termination time T is higher for the 
FS scheme, since the macro time step size is controlled every three fractional steps and the stability limit of time integration 
is reached more often.

Periodic solution In a second scenario, a periodic inlet velocity profile in three space dimensions is enforced with parameters 
û1 = 0.05 m/s, Tr = 0.5 s, αp = 0.25 and T p = 1.0 s. Defining the Reynolds number as in the Newtonian case, one arrives at 
Re = ρumean2R/μ∞ ≈ 75. The tolerance on the velocity error is chosen as εv = 1 · 10−4 . Conversely to the first scenario, we 
now recompute time steps leading to a time step reduction of more than 30% with simply halved (macro) time step size. 
As before, Q 1/Q 1 elements using BVS stabilisation are employed, but this time in the three-dimensional mesh depicted in 
Fig. 8b. In Fig. 11 the obtained results using both the FS and R-AB2 (N∗ = 15) time-stepping schemes are depicted. For the 
FS scheme, every solve, i.e., sub-step within the FS scheme is plotted, but regarding the time step size, the macro time step 
is considered for an overall better comparison with R-AB2. Additionally, the temporal scaling ηu1 of the inlet velocity profile 
is included.

Comparing Figs. 11a and 11b, we see that both time step selection schemes adapt to the present flow conditions. The 
R-AB2 scheme with N∗ = 15 appears rather jumpy, which is caused by the tolerance (εv = 1 · 10−4) and the resulting time 
step size. The depicted macro time step size of the FS scheme is much smoother, but of course adapted every third step 
only. In total, using the FS scheme 996 solves were completed, whereas with the R-AB2 scheme, 827 solves were performed. 
Depending on the tolerance set, either one of the presented approaches might come out on top, but the observations made 
remain unaltered.
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Fig. 12. Subdomains in artificical aneurysm mesh using 6 processors.

Table 3
Fourier coefficients fit to experimental data [109].

k 0 1 2 3 4 5 6 7
ak 33.29 −5.27 −5.10 −2.81 −2.15 −0.12 0.79 0.27
bk – 9.52 0.72 0.29 −3.25 −0.95 −1.17 −0.50

Regarding linear solver performance, it is observed that for both time-stepping schemes the iteration counts Nμ ≈ 17
are constant throughout the entire simulation and the velocity-pressure sub-system solve does mildly depend on the (sub-) 
step size, with values around Nu,p ≈ 50. Iteration counts are higher after some initial steps due to (i) largely varying time 
step sizes and consequently worse extrapolations used as initial guess, combined with (ii) the relative convergence criterion, 
taking the last solution as reference, which becomes increasingly difficult as �tn → 0. Smoother variations in time step size 
and iteration counts would result from using a smaller tolerance εv .

In general, the same trends as reported in [52,48] are observed: the PCD preconditioner – and thus the variantion 
presented herein – suffers from a dependence on the Reynolds number when applied to stationary problems, but this effect 
is not significant or at least largely reduced, when time dependent flows are considered, i.e., a large enough reaction term 
is present.

6.2.3. Flow through idealised aneurysm
Finally, solver performance in a more realistic scenario, namely, the flow through an idealised cerebral aneurysm in the 

internal carotid artery under physiological conditions is showcased to serve as a computational test of practical relevance. In 
order to construct the geometry, a straight cylinder of length L = 160 mm and radius R = 2.5 mm is bent and additionally 
“inflated”: the cross-section remains circular at the inlet and outlet, but is transformed to an ellipse with variable axis 
lengths of up to a = 15 mm at some point along the centerline. In Fig. 12, the final mesh is depicted, which consists of 
173,600 hexahedra distributed to 6 subdomains. The number of nodes in the mesh is around 1.8 · 105 , which is equal to 
the number of pressure and viscosity DOFs, and results – due to the equal-order interpolation – in ≈ 5.4 · 105 velocity 
unknowns. The overall system consists of ≈ 9.0 · 105 DOFs, whereas using Q 2/Q 1 elements would result in over five times 
as many.

No-slip conditions are enforced on the vessel walls, whereas a do-nothing condition is enforced on the outlet. While 
the latter choice is not suitable with regards to patient-specific simulations, we restrict ourselves to this simpler choice for 
the sake of brevity. More sophisticated models incorporating the downstream vasculature resistance and capacitance, e.g., 
variants of the Windkessel model or 3D-1D couplings (see e.g. [108]) can be straightforwardly considered. Starting from a 
quiescent state, i.e., u = 0, the inflow is scaled similarly to (79)–(81), but replacing the periodic scaling ηp in (81) with a 
truncated Fourier series

ηp = 1

50

{
a0 +

7∑
k=1

[
ak cos

(
2πk

t

T p

)
+ bk sin

(
2πk

t

T p

)]}
. (82)

The coefficients ak and bk , given in Table 3, fit cross sectional peak velocity measurement data [109] and completely describe 
the inflow velocity profile together with T p = 0.917 s, Tr = T p/2 and peak velocity û1 = 0.49886 m/s. Rheological param-
eters are based on physiological measurements [110], setting μ0 = 45 mPa·s, μ∞ = 3.2 mPa·s, λ = 10.03 s and ζ = 0.344. 
The Reynolds number computed as in the Newtonian limit, i.e., Re = ρumean2R/μ∞ is then Re ≈ 414. As a consequence, 
the periodic solution features complex – yet still laminar – flow and recirculation regions with the dynamic viscosity vary-
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Fig. 13. Snapshot of recirculating flow in aneurysm at final third peak systole at time t = 1.988 s.

Fig. 14. Time step size and scaling ηu1 (left axis, blue) and linear iterations (right axis, red) using linearisation (top row) or Picard scheme (bottom row).

ing vastly in the aneurysm. A representative snapshot of the solution is depicted in Fig. 13, showing selected streamlines 
coloured by velocity magnitude (13a) and dynamic viscosity (13b) at peak systole in the third cardiac cycle considered, i.e., 
at t = 1.988 s.

Regarding the solver settings, we use the tolerance εv = 5 · 10−3 for the FS and the R-AB2 (N∗ = 15) time-stepping 
scheme, initial step size �t0 = 1 · 10−5 , safety factor ξ = 0.98 and recompute steps leading to a step size reduction of more 
than 30%. The last computed solution is taken as initial guess for the linear solver which reduces the relative residual by 
a factor of 10−4 within a maximum of 200 iterations, or the step is recomputed with halved step size. Q 1/Q 1 elements 
with BVS-stabilisation are employed. The convective velocity vn+1

h is either extrapolated via (35) or kept nonlinear, in which 
case the Picard scheme with Aitken relaxation is needed. In the latter case, we use a relative tolerance of 10−3 in the 
convergence criterion of the nonlinear solver (77) and get away with a comparably higher relative convergence criterion in 
the linear solver of 10−2 .

In Fig. 14, the obtained results are summarised. There, time step sizes and linear iteration counts or the mean linear 
iteration counts of the nonlinear steps per time step are depicted. Comparing the linearised versions (top row) with their 
nonlinear counterparts (bottom row), an almost identical number of time steps is performed. Furthermore, the chosen time 
step as well as the maximum step size matches well in pattern. The linear iteration counts are slightly higher for the 
21
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Table 4
Performance comparison of (non-)linear R-AB2 (N∗ = 15) and FS schemes, format: total (mean).

R-AB 2 (linearised) FS (linearised) R-AB 2 (nonlinear) FS (nonlinear)

time steps Nt 2336 2568 2354 2554
system solves 2336 (1.00) 2568 (1.00) 8525 (3.62) 8676 (3.40)
Nu,p 68425 (29.29) 73004 (28.43) 190972 (22.40) 159966 (18.44)
Nμ 39318 (16.83) 43141 (16.90) 138714 (16.27) 138359 (15.95)
mean time/u-p system 39.95 s 30.72 s 21.94 s 18.27 s
relative computing time 1.03 1.00 2.90 2.83

linearised scheme, since a smaller tolerance 10−4 is used, whereas the Picard scheme wrapping the linear systems allows 
for a bigger tolerance 10−2 . Moreover, it can be seen that strong gradients in the prescribed inlet velocity scaling ηu1 lead 
to higher linear iteration counts at certain points in time due to a worsening of the computed initial guess.

To further compare the performance of those four schemes, Table 4 lists the mean number of nonlinear and linear 
iterations over all time steps and the total number of solves performed together with the mean time spent on solving 
the velocity-pressure systems and overall computing time. The linearised schemes have similar overall computing times 
with comparable mean number of linear iterations. However, the nonlinear variants have a computing time close to 3 times 
longer: despite profiting from a less strict convergence criterion used in the linear solves, performing several nonlinear steps 
is costly – depending of course on the tolerances set. Altogether, the use of linearised schemes can result in considerable 
speedup, especially if the error tolerance εv and the CFL condition limit the time step size drastically, but accuracy and 
stability are of course affected.

7. Conclusion and outlook

Within this contribution, we have presented a new stabilised framework for generalised Newtonian fluid flows preserving 
consistency even for lower equal-order velocity-pressure pairs. The stabilisation is based on adding to the continuity equa-
tion a consistent pressure Poisson equation, and is the centrepiece of fast and easy-to-implement finite element solvers using 
standard continuous finite element spaces. Comparisons between our stabilisation method and more classical approaches 
have shown a substantial increase in accuracy, as a result of improving mass conservation and eliminating spurious pressure 
boundary layers.

To further improve performance, we presented several modifications for the time-dependent setting. Extrapolating the 
velocity field enables linearising the linear momentum balance and further decouples the viscosity from the main system. 
As a consequence, the rheological law is effortlessly exchanged and the resulting sub-problems – a simple projection and 
the usual velocity-pressure system – are only solved once per time step. The time step size is chosen adaptively using either 
a stabilised Adams–Bashforth predictor with a corrector based on Rannacher time-stepping or, alternatively, by a fractional 
step θ -scheme interpreted as a generalised θ -method including an embedded scheme. Both methods allow an efficient time 
step selection in quasi-stationary and transient problems. To solve the resulting velocity-pressure system, we adapt the PCD 
preconditioner (originally devised for Newtonian fluids) to non-Newtonian flows with highly varying viscosity. We tested 
our methods on two- and three-dimensional numerical examples, comparing them with existing approaches from literature 
and highlighting their potential in challenging scenarios.

Future and ongoing work is centred around applying the present framework to patient-specific datasets accounting for 
non-Newtonian hemodynamics and using our methods to construct efficient fluid-structure interaction solvers. Moreover, a 
recently published work comparing the performance of our framework with that of state-of-the-art non-Newtonian split-
step schemes demonstrates that the present coupled solvers are indeed competitive with fast projection-like methods [34].
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Appendix A. Element matrices and vectors

The discretisation of Equations (32), (37) and (34) naturally leads to the decoupled (scaled) viscosity and velocity-
pressure sub-systems

Mμ̃ = h and

(
A B
B̃ C

)(
un+1

pn+1

)
=
(

f
g

)
, (A.1)
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with scaled viscosity μ̃ = μn+1/μ∞ and entries of matrices and vectors defined as

[Mμ]i j = 〈ϕi,ϕ j
〉
, (A.2)

[h]i =
〈
ϕi,1 + (μ0/μ∞ − 1)

(
1 + 0.5λ2∇svn+1

h : ∇svn+1
h

) ζ−1
2

〉
, (A.3)

[A]i j =
〈
ψ i,ρψ j + θ̃

[(
ρ∇ψ j

)
vn+1

h − (∇ψ j)
�∇μn+1

h

]〉
+
〈
∇ψ i, θ̃μn+1

h ∇ψ j

〉
+

Ne∑
e=1

〈
γ̃e∇ · ψ i,∇ · ψ j

〉
�e

, (A.4)

[B]i j = −
〈
∇ · ψ i, θ̃φ j

〉
, (A.5)

[f]i =
〈
ψ i,ρ(un

h + θ̃gn+1) − θ̃ ′ [(ρ∇un
h

)
un

h − ρgn − (∇un
h)

�∇μn
h

]〉
−
〈
∇ψ i, θ̃

′μn
h∇un

h

〉
+
〈
∇ · ψ i, θ̃

′ pn
h

〉
+ 〈ψ i, θ̃ t̃n+1 + θ̃ ′ t̃n〉	N , (A.6)

[B̃]i j = 〈τi∇φi × n, θ̃μn+1
h ∇ × ψ j〉	 +

〈
τi∇φi,ρψ j + θ̃

[
(ρ∇ψ j)vh − 2(∇ψ j)

�∇μn+1
h

]〉
+

Ne∑
e=1

〈
τi

δe
φi,∇ · ψ j

〉
�e

,

(A.7)

[C]i j = 〈τi∇φi,∇φ j
〉
, (A.8)

[g]i =
〈
τi∇φi,ρ(un

h + θ̃gn+1) − θ̃ ′ [(ρ∇un
h)un

h − ρgn + ∇pn
h − 2(∇un

h)
�∇μn

h

]〉
− 〈τi∇qh × n, θ̃ ′μn

h∇ × un
h〉	 .

(A.9)

In the rows corresponding to the pressure test functions, a rescaling is performed by the element-averaged factors τi defined 
per node as

τi =
⎛
⎝ Ni∑

e=1

|�e|
⎞
⎠

−1
Ni∑

e=1

δe|�e| with |�e| =
∫
�e

d� (A.10)

and the number of elements Ni touching vertex i to counteract resulting numerical difficulties when δe → 0 as he → 0.

Appendix B. Manufactured solution

An exact solution to the system comprised of (1)–(4) is constructed by specifying

u1(t,x) = sin x1 cos x2 cos t and p(t,x) = cos(x1x2) cos t , (B.1)

inserting u1 into the continuity equation (2) to obtain for the second velocity component

u2(t,x) = − cos t cos x1 sin x2 and γ̇ (t,x) = cos t cos x1 cos x2 (B.2)

for the corresponding shear rate, which is further inserted into the rheological law (4) giving μ(t, x) = η(γ̇ ). Then, in a final 
step, those expressions are inserted into the balance of linear momentum (1) to determine the (rather lengthy) analytical 
expression for the body force vector g(t, x) = (g1, g2)

� with components defined via

ρg1 = 2 cos t cos x2 sin x1

(
μ∞ + (μ0 − μ∞)

[
1 + (λγ̇ )2

] ζ−1
2

)

− ρ cos x2 sin t sin x1 − x2 sin(x1x2) cos t + ρ cos2 t cos x1 sin x1

+ 2ρ(n − 1) (λγ̇ )2 cos t cos x2 sin x1(μ0 − μ∞)
[

1 + (λγ̇ )2
] ζ−3

2
, (B.3)

ρg2 = − 2 cos t cos x1 sin x2

(
μ∞ + (μ0 − μ∞)

[
1 + (λγ̇ )2

] ζ−1
2

)

+ ρ cos x1 sin t sin x2 − x1 sin (x1x2) cos t + ρ cos2 t cos x2 sin x2

− 2ρ(n − 1)(λγ̇ )2 cos t cos x1 sin x2(μ0 − μ∞)
[

1 + (λγ̇ )2
] ζ−3

2
. (B.4)
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[67] H. Elman, M. Mihajlović, D. Silvester, Fast iterative solvers for buoyancy driven flow problems, J. Comput. Phys. 230 (10) (2011) 3900–3914.
[68] Y.I. Cho, K.R. Kensey, Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows, Biorheology 28 (3–4) 

(1991) 241–262.
[69] D.R.Q. Pacheco, T.S. Müller, O. Steinbach, G. Brenn, On outflow boundary conditions in finite element simulations of non-Newtonian internal flows, 

Int. J. Comput. Vis. Sci. Eng. (2021), https://doi .org /10 .51375 /IJCVSE .2021.1.6.
[70] J. Donea, A. Huerta, Finite Element Methods for Flow Problems, John Wiley & Sons, Chichester, 2003.
[71] V. John, Finite Element Methods for Incompressible Flow Problems, Springer International Publishing, Basel, 2016.
[72] J.-J. Droux, T.J.R. Hughes, A boundary integral modification of the Galerkin least squares formulation for the Stokes problem, Comput. Methods Appl. 

Mech. Eng. 113 (1–2) (1994) 173–182.
[73] K.E. Jansen, S.S. Collis, C. Whiting, F. Shaki, A better consistency for low-order stabilized finite element methods, Comput. Methods Appl. Mech. Eng. 

174 (1–2) (1999) 153–170.
[74] P. Bochev, M. Gunzburger, An absolutely stable pressure-Poisson stabilized finite element method for the Stokes equations, SIAM J. Numer. Anal. 42 (3) 

(2004) 1189–1207.
[75] J. Hinz, J. Helmig, M. Möller, S. Elgeti, Boundary-conforming finite element methods for twin-screw extruders using spline-based parameterization 

techniques, Comput. Methods Appl. Mech. Eng. 361 (2020) 112740.
[76] J.G. Heywood, R. Rannacher, S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations, Int. J. 

Numer. Methods Fluids 22 (5) (1996) 325–352.
[77] G. Arbia, I.E. Vignon-Clementel, T.-Y. Hsia, J.-F. Gerbeau, Modified Navier–Stokes equations for the outflow boundary conditions in hemodynamics, Eur. 

J. Mech. B, Fluids 60 (2016) 175–188.
[78] D.R.Q. Pacheco, O. Steinbach, A continuous finite element framework for the pressure Poisson equation allowing non-Newtonian and compressible 

flow behavior, Int. J. Numer. Methods Fluids 93 (2021) 1435–1445.
[79] J. Rang, Pressure corrected implicit θ -schemes for the incompressible Navier-Stokes equations, Appl. Math. Comput. 201 (1–2) (2008) 747–761.
[80] D. Meidner, T. Richter, A posteriori error estimation for the fractional step theta discretization of the incompressible Navier-Stokes equations, Comput. 

Methods Appl. Mech. Eng. 288 (2015) 45–59.
[81] L. Failer, T. Wick, Adaptive time-step control for nonlinear fluid–structure interaction, J. Comput. Phys. 366 (2018) 448–477.
[82] J.C. Simo, F. Armero, Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations, 

Comput. Methods Appl. Mech. Eng. 111 (1–2) (1994) 111–154.
[83] R. Ingram, A new linearly extrapolated Crank-Nicolson time-stepping scheme for the Navier-Stokes equations, Math. Comput. 82 (284) (2013) 

1953–1973.
[84] M. Olshanskii, G. Lube, T. Heister, J. Löwe, Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations, Comput. 

Methods Appl. Mech. Eng. 198 (49–52) (2009) 3975–3988.
[85] J.G. Heywood, R. Rannacher, Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: error analysis for second-order time 

discretization, SIAM J. Numer. Anal. 27 (2) (1990) 353–384.
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