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A concept for aortic dissection with fluid-structure-crack interaction
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In aortic dissection, the layers composing the aorta rupture, allowing blood to enter the vessel wall. This process is modeled
applying a monolithic fluid-structure interaction framework, formulating the Navier-Stokes equations for incompressible
flows as well as the mixed finite strain elastodynamics equations in the Lagrangian frame of reference. Continuous test-
and trial function spaces are employed in the whole domain, rendering the coupling straightforward. Within this contribution,
a predefined function indicating failure is used to convert solid to fluid elements, thereby mimicing tissue rupture.
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1 Introduction

Substantial advances in the computational modeling of the cardiovascular system and its pathologies were made during the past
decades. Both, chronic and acute aortic dissection are highly dangerous health conditions, requiring medication, monitoring
or immediate surgical treatment. It is expected that a proper modeling and simulation of aortic dissection may significantly
help to understand the sequence of events ultimately leading to false lumen propagation and/or complete rupture of the aorta.
Thus, the long-term aim of the present study is to develop a computational model, able to resolve the process of coupled tissue
rupture and fluid-flow, in order to lay the foundation for substantial diagnostic tools used for clinical support.
The so-called false lumen propagation, being the ongoing separation or rupture of layers composing the aorta, allows for blood
entering the vessel wall, thereby enlarging the fluid flow domain. Vice versa, the tissue displacement governs the deformation
of the fluid domain. Across this moving and evolving interface, i.e., at the joint boundary of fluid and solid sub-domains,
continuity of tractions, velocities and displacements holds. Consequently, modeling this process necessitates the formulation
of a strongly coupled fluid-structure interaction problem in a biomedical setting.

2 Governing Equations

Within this contribution, the haemodynamics are represented by the instationary Navier-Stokes equations for incompressible
flows. In the arbitrary Lagrangian–Eulerian framework, a continuous, bijective mapping Ât from the joint reference domain
Ω̂ := Ω̂f ∪ Ω̂s to the current domain Ω(t) is introduced for t ∈ It := (0, T ], with T > 0 being the end time

Ât : Ω̂× It → Ω(t) , Ât(t, x̂) := x̂+ û(t, x̂) (1)

and û being the displacement from the reference domain. Additionally defining the displacement gradient F̂ := I + ∇̂û and
the determinant Ĵ := det(F̂) the system governing velocity v̂ and pressure p̂ of the flow is, following [1],

{
Ĵ ρ̂f (∂tv̂ + [F̂

−1
(v̂ − ∂tû) · ∇̂]v̂ − f̂f )− ∇̂ · (Ĵ σ̂f F̂

−>
) = 0

∇̂ · (ĴF̂
−1

v̂) = 0 in Ω̂f × It
(2)

with the transformed fluid Cauchy stress tensor σ̂f := −p̂fI + ρ̂f ν̂f (∇̂v̂F̂
−1

+ F̂
−>

(∇̂v̂)>), the kinematic viscosity ν̂f and
density ρ̂f of the fluid and a load per unit volume f̂f , transformed from the current domain. The arterial wall is modeled as a
hyperelastic solid [2], governed by the geometrically nonlinear elastodynamics equations in mixed form, denoting by v̂ and û
the velocity and displacement of the solid respectively

ρ̂s(∂tv̂ − f̂s)− ∇̂ · (F̂Σ̂s) = 0 in Ω̂s × It with Σ̂s := 2µsÊ + λstr(Ê)I , Ê := 0.5(F̂
>

F̂− I) (3)

with Lamé coefficients µs = Es/(2(1 + νs)) and λs = 2νsµs/(1− 2νs), Young’s modulus Es and Poisson ratio νs, second
Piola-Kirchhoff stress tensor Σ̂s, Green-Lagrange strain tensor Ê and force per unit volume f̂s, defined in the reference
domain. The fluid-structure interface’s displacement is extended into the fluid reference domain utilizing a harmonic mesh
motion model with stiffening [3]

−∇̂ · (α̂uĴ
−1∇̂û) = 0 in Ω̂f with α̂u > 0. (4)
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2 of 2 Section 7: Coupled problems

Equations (2), (3) and (4) are naturally equipped with proper initial conditions, boundary- and coupling conditions, which are
omitted for the sake of brevity. Within this preliminary work, tissue failure is completely prescribed by an indicating function
of space and time. Restricting tissue failure to certain regions may be a physiologically valid assumption in the application at
hand, but crack front position must be considered an unknown in future studies.

3 Discretisation

Defining the vector-valued Hilbert spaces V̂v
D and V̂u

D on Ω̂ ⊂ Rd, incorporating the Dirichlet boundary conditions for
velocities and displacements respectively, the variational formulation of the fluid-structure interaction problem is:
Find {v̂, û, p̂} ∈ {V̂v

D} × {V̂u
D} × {L2(Ω̂)}, such that v̂(0, x̂) = v̄0, û(0, x̂) = ū0 and for almost all t ∈ It it holds

(Ĵ ρ̂f∂tv̂, ψ̂
v
)Ω̂f

+ (ρ̂f Ĵ([F̂
−1

(v̂ − ∂tû) · ∇̂]v̂ − f̂f ), ψ̂
v
)Ω̂f

+ (Ĵ σ̂f F̂
−>
, ∇̂ψ̂v

)Ω̂f

+(ρ̂s(∂tv̂ − f̂s), ψ̂
v
)Ω̂s

+ (F̂Σ̂s, ∇̂ψ̂
v
)Ω̂s
− 〈ρ̂f ν̂f Ĵ(F̂

−>∇̂v̂)F̂
−>
n̂f , ψ̂

v〉Γ̂out
= 0 ∀ψ̂v ∈ [H1

0(Ω̂)]d

(∂tû− v̂, ψ̂
u
)Ω̂s

+ (α̂uĴ
−1∇̂û, ∇̂ψ̂u

)Ω̂f
= 0 ∀ψ̂u ∈ [H1

0(Ω̂)]d

(∇̂ · (ĴF̂
−1
v̂), ψ̂

p
)Ω̂f

= 0 ∀ψ̂p ∈ L2(Ω̂).

(5)

In (5), the boundary term 〈·〉Γ̂out
enforces the do-nothing boundary condition on the fluid outflow boundary Γ̂out ⊂ ∂Ω̂f .

Moreover, spurious feedback of the mesh motion equation (4) on the balance of linear momentum is inhibited via choosing
α̂u � 1. Following [4], the variational formulation (5) is discretized in time using a shifted version of the second order
accurate Crank-Nicholson scheme and linearized using the Newton-Raphson method combined with a line-search technique
to provide robust and rapid convergence. Spatial discretization of test and trial function spaces Xh ⊂ X is carried out using
inf-sup stable Finite Element pairs Qc

k/P
dc
k−1 for the fluid velocity and pressure and equal order interpolation for velocities

and displacements in the entire domain.

4 Numerical example
The problem setup, depicted in Fig. 1, consists of a flow in a two-dimensional channel with a length of 5 cm and a width
of 2.5 cm. The walls are 3 mm thick, the upper one featuring a 0.1 mm thin layer, whose solid elements are converted to
fluid elements, whenever ϕ := x̂− 0.025− 0.0045 t ≤ 0 in the center of each element, leaving a 0.1 mm thin layer of solid.
The parameters in (5) are chosen as ρ̂f = 1 g/cm3, ν̂f = 3.5 · 10−6 m/s2, ρ̂s = 1.2 g/cm3, νs = 0.48, Es = 4 · 105 N/m2,
f̂f = f̂s = 0 N/m3 and α̂u = 1 · 10−8. Initial conditions are v̄0 = ū0 = 0, the channel walls are fixed at the in- and
outlet and feature homogeneous Neumann boundary conditions on the top and bottom boundaries. The flow is driven by the
velocity profile v̂ = (v̂1, 0)>, v̂1 ≈ −11072.66x̂2 + 348.79x̂2 − 0.95 prescribed at x̂1 = 0 m and the do-nothing boundary
condition at x̂1 = 0.025 m. The computations are performed using a timestep size of ∆t = 1 · 10−3 s in an extension of the
implementation [4] within the deal.II package [5]. As can be seen in Fig. 2, the mapping Ât remains regular even under strong
deformation, highlighting the robustness of the presented approach with respect to collapse of the narrow fluid-filled gap.

Fig. 1: Pressure p̂, in Ω̂ at t = 0.7 s. Fig. 2: Pressure p̂ and velocity v̂ in Ω(0.9).
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