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Universitätsstraße 14, 86159 Augsburg, Germany

                                                                       

Abstract—In this note we introduce the V-shaped action functional with delay in a symplecti-
zation, which is an intermediate action functional between the Rabinowitz action functional and
the V-shaped action functional. It lives on the same space as the V-shaped action functional, but
its gradient flow equation is a delay equation as in the case of the Rabinowitz action functional.
We show that there is a smooth interpolation between the V-shaped action functional and the
V-shaped action functional with delay during which the critical points and its actions are fixed.
Moreover, we prove that there is a bijection between gradient flow lines of the V-shaped action
functional with delay and the ones of the Rabinowitz action functional.

                          
                             

                                                                  

1. INTRODUCTION

V-shaped symplectic homology was introduced in [2] by the author jointly with Cieliebak and
Oancea, where it was shown that it is isomorphic to the Rabinowitz –Floer homology [1] and fits
into a long exact sequence with symplectic homology and cohomology. This in particular allowed
computations of the Rabinowitz – Floer homology of cotangent bundles. It turned out that these
computations coincide with computations in Tate Hochschild cohomology by Rivera and Wang
in [7], where they conjectured a connection with the algebraic structures discovered in V-shaped
symplectic homology by Cieliebak and Oancea in [3]. That there is a close connection between
the Tate homology and the Rabinowitz –Floer homology is, in fact, to be expected, given that the
Rabinowitz action functional is antiinvariant under time reversal. On the other hand, the V-shaped
action functional is not antiinvariant under time reversal and therefore the Poincaré duality that
holds on the homology level gets lost on the chain level.

The isomorphism between the Rabinowitz – Floer homology and the V-shaped symplectic
homology in [2] is based on a nonlinear deformation of the Lagrange multiplier in the Rabinowitz
action functional and does not look very suitable to compare algebraic structures on the Rabinowitz
side and on the V-shaped side. In view of this difficulty we introduce in this note an intermediate
action functional, the V-shaped action functional with delay, which shares some features of the
Rabinowitz action functional and some features of the V-shaped action functional. We hope that
this intermediate action functional will be able to shed some light on the ongoing scientific debate
about algebraic structures in the Rabinowitz – Floer homology and their connection with the Tate –
Hochschild homology.

We are considering the symplectization R× Σ of a contact manifold (Σ, λ). We are fixing the
following V-shaped function

h : (0,∞) → [0,∞), ρ �→ ρ(ln ρ− 1) + 1
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whose derivative is the logarithm so that the function h attains all slopes in a monotone increasing
way. We abbreviate

L = C∞(S1,R× Σ)

the free loop space of the symplectization where S1 = R/Z denotes the circle. The V-shaped action
functional with respect to the V-shaped function h

A0 : L → R

for a loop v = (r, x) ∈ L is defined as

A0(v) = −
∫
S1

v∗λ+

∫ 1

0
h(er)dt.

For the V-shaped action functional with delay

A1 : L → R

we simply interchange the order of integration and application of h in the second term

A1(v) = −
∫
S1

v∗λ+ h

(∫ 1

0
erdt

)
.

The reason for the name is that, in contrast to the Floer equation which is a PDE, its gradient flow
equation is a delay equation as we explain soon. We can interpolate between the two functionals
as follows by defining for θ ∈ [0, 1] the functional

Aθ : L → R

by

Aθ(v) = −
∫
S1

v∗λ+ θ · h
(∫ 1

0
erdt

)
+ (1− θ) ·

∫ 1

0
h(er)dt.

Our first lemma tells us that the critical points as well as their actions do not depend on the
parameter θ and are in natural one-to-one correspondence with generalized periodic Reeb orbits
on Σ, where the generalization corresponds to the fact that the period might as well be negative,
meaning that the orbit is traversed backward or zero, meaning that the orbit is a constant point
on Σ. We abbreviate by R the Reeb vector field.

Lemma 1. Assume that v = (r, x) is a critical point of Aθ. Then r is constant and x is a solution
of the ODE

∂tx(t) = rR(x(t)), t ∈ S1, (1.1)

i.e., x is a periodic Reeb orbit of generalized period r. Moreover, the action of the critical point is
given by

Aθ(v) = 1− er. (1.2)

The proof is postponed to the next section. Although the functionals have the same critical
points their gradient flow lines are different. We fix a smooth family Jt for t ∈ S1 of SFT-
like almost complex structures and take the gradient with respect to the L2-metric obtained
from the family Jt. Gradient flow lines of the V-shaped action functional A0 are solutions
v = (r, x) ∈ C∞(R× S1,R× Σ) of the PDE

∂sv(s, t) + Jt(v(s, t))
(
∂tv(s, t)− r(s, t)R

(
v(s, t)

))
= 0. (1.3)

On the other hand, gradient flow lines of the V-shaped action functional with delay are solutions
of the problem

∂sv(s, t) + Jt
(
v(s, t)

)(
∂tv(s, t)− ln

(∫ 1

0
er(s,t

′)dt′
)
R(v(s, t))

)
= 0. (1.4)

                             



              

In contrast to (1.3), this is not a PDE anymore since the integral in front of the Reeb vector field
is not local anymore, but depends on the whole loop, i. e., this problem is a delay equation and
that is the reason why we refer to A1 as the V-shaped action functional with delay. We rewrite the
above equation equivalently as

∂sv(s, t) + Jt(v(s, t))

(
∂tv(s, t)− τ(s)R

(
v(s, t)

))
= 0,

τ(s) = ln

(∫ 1

0
er(s,t

′)dt′
)
.

We have the following lemma, proved in the next section.

Lemma 2. Suppose that v is a nonconstant solution of the gradient flow Eq. (1.4) converging
asymptotically to critical points v± = lims→±∞ v(s). Then for every s ∈ R it holds that

0 > ∂sτ(s) � −A1(v−)−A1(v+)

1−A1(v+)
> −1.

In particular, τ is strictly monotone decreasing.

It follows from Lemma 2 by standard arguments (see, for instance, [2]) that, if v = (r, x) is as
in the lemma, then

Δr � −A1(v−)−A1(v+)

1−A1(v+)
> −1, (1.5)

i. e., the Laplacian of r is uniformly bounded from below. This guarantees an upper bound on r
just in terms of asymptotic data of r.

We also recall the Rabinowitz action functional on a symplectization

A2 : L× R → R

which for (v, τ) = (r, x, τ) ∈ L × R is given by

A2(v, τ) = −
∫
S1

v∗λ+ τ

∫ 1

0
erdt− τ.

If one interprets τ as a Lagrange multiplier, then A2 is the Lagrange multiplier functional of the
negative area functional with respect to the constraint given by the mean value of the function
er − 1. By the theory of Lagrange multipliers, critical points of A2 correspond to critical points of
the restriction of the negative area functional to

L =

{
v = (r, x) ∈ L :

∫ 1

0
erdt = 1

}
,

namely,

A3 : L → R, v �→ −
∫
S1

v∗λ.

This functional was discussed by the author in [6].

The gradient flow equations of the Rabinowitz action functionals A2 and A3 are delay equations
as well. For A2 they are solutions (v, τ) = (r, x, τ) ∈ C∞(R× S1,R×Σ)×C∞(R,R) of the problem

∂sv(s, t) + Jt(v(s, t))
(
∂tv(s, t)− τ(s)R(v(s, t))

)
= 0, (1.6)

∂sτ(s) +

∫ 1

0
er(s,t

′)dt′ = 1,

                             



                                   

and for A3 solutions v = (r, x) ∈ C∞(R× S1,R× Σ) of the problem

∂sv(s, t) + Jt(v(s, t))
(
∂tv(s, t) +A3(vs)R(v(s, t))

)
= 0, (1.7)

∫ 1

0
er(s,t

′)dt′ = 1,

where we abbreviate by vs ∈ L the loop t �→ v(s, t), see [6].

All the Eqs. (1.3), (1.4), (1.6), and (1.7) have the form

∂sv + J(v)
(
∂tv − τR(v)

)
= 0, (1.8)

i. e., are perturbed Cauchy –Riemann equations where the perturbation is in the Reeb direction.
In the last three equations, τ only depends on s and is independent of t, while in the first equation
it depends on both variables. We see that the t-independence of τ is a feature the gradient flow
equation for the V-shaped action functional with delay has in common with the gradient flow
equations of the Rabinowitz action functionals. On the other hand, we have the following ascending
chain of spaces:

L ⊂ L ⊂ L× R,

where the codimension in each step is one. Both V-shaped action functionals live on the intermediate
space, whereas the Rabinowitz action functionals live on the two extremal spaces.

We have a natural projection

Π: L → L, (r, x) �→
(
r − ln

∫ 1

0
erdt, x

)
.

In the case of A3, i. e., the restriction of the negative area functional to the constraint L, the
Lagrange multiplier τ(s) is uniquely determined by the loop vs ∈ L. Therefore, the set of solutions
of Eq. (1.7) can be uniquely characterized as the set of solutions of the perturbed Cauchy –Riemann

equation (1.8) where τ only depends on s, but not on t and vs ∈ L for every s ∈ R. We abbreviate
by Mi for 0 � i � 3 the moduli spaces of finite energy solutions of the gradient flow lines of the
four functionals Ai. We have natural maps

Π∗ : M1 → M3, Π∗ : M2 → M3, v �→ Πv.

This is not true for M0 as domain since in this case τ usually depends on t as well. In [6] it was
shown that Π∗ : M2 → M3 is a bijection, i. e., there is a natural bijection between finite energy
gradient flow lines of the two Rabinowitz action functionals. The following theorem tells us that
the same is true for the gradient flow lines of the V-shaped action functional with delay.

Theorem 1. The map Π∗ : M1 → M3 is a bijection.

In particular, we see from the theorem combined with [6] that there is a natural bijection between
the finite energy gradient flow lines of the V-shaped action functional with delay and the ones of
the Rabinowitz action functional A2.

2. PROOF OF LEMMA 1 AND DERIVATION OF THE GRADIENT FLOW EQUATION

Before embarking on the proof of Lemma 1 we recall some notation. We assume that Σ = Σ2n−1

is a closed odd-dimensional manifold of dimension 2n− 1 and λ ∈ Ω1(Σ) is a contact form on Σ,
i. e.,

λ ∧ (dλ)n−1 > 0

is a volume form on Σ. We abbreviate by ξ the contact structure, i. e., the hyperplane distribution

ξ = ker λ,

                             



              

and by R the Reeb vector field on Σ implicitly defined by the conditions

λ(R) = 1, dλ(R, ·) = 0.

By abuse of notation we use the same letter λ for the extension of the one-form to the
symplectization R× Σ of Σ, namely, we set

λr,x = erλx, (r, x) ∈ R× Σ.

The exterior derivative of λ

ωr,x = dλr,x = erdr ∧ λx + erdλx

is then a symplectic form on R× Σ. We extend the bundle ξ and the Reeb vector field R trivially
to the symplectization and use there by abuse of notation the same letters again.

Proof (of Lemma 1). Suppose that v = (r, x) ∈ L and v̂ is a vector field along v, i. e., a tangent
vector

v̂ = (r̂, x̂) ∈ TvL = Γ
(
v∗T (R× Σ)

)
= C∞(S1,R)× Γ(x∗TΣ).

In the following computation we denote by Lv̂ the Lie derivative in the direction of v̂ and use
Cartan’s formula Lv̂ = dιv̂ + ιv̂d:

dAθ(v)v̂ = −
∫
S1

v∗Lv̂λ+ θ · h′
(∫ 1

0
er(t)dt

)∫ 1

0
er(t)r̂(t)dt

+ (1− θ) ·
∫ 1

0
h′
(
er(t)

)
er(t)r̂(t)dt

= −
∫
S1

v∗dιv̂λ−
∫
S1

v∗ιv̂dλ

+ θ · ln
(∫ 1

0
er(t)dt

)∫ 1

0
er(t)λx(t)

(
R(x(t))

)
r̂(t)dt

+ (1− θ) ·
∫ 1

0
ln

(
er(t)

)
er(t)λx(t)

(
R(x(t))

)
r̂(t)dt

= −
∫
S1

dv∗ιv̂λ−
∫
S1

v∗ιv̂ω + θ · ln
(∫ 1

0
erdt

)∫ 1

0
ω
(
v̂, R(v)

)
dt

+ (1− θ) ·
∫ 1

0
rω

(
v̂, R(v)

)
dt

= −
∫ 1

0
ω(v̂, ∂tv)dt+

∫ 1

0
ω

(
v̂, θ · ln

(∫ 1

0
erdt

)
R(v)

)
dt

+

∫ 1

0
ω
(
v̂, (1 − θ) · rR(v)

)
dt

=

∫ 1

0
ω

(
∂tv − θ · ln

(∫ 1

0
erdt

)
R(v)− (1− θ) · rR(v), v̂

)
dt.

For later reference we summarize this to

dAθ(v)v̂ =

∫ 1

0
ω

(
∂tv −

(
θ · ln

(∫ 1

0
erdt

)
+ (1− θ) · r

)
R(v), v̂

)
dt. (2.1)

In particular, we infer from (2.1) that v ∈ crit(Aθ) if and only if v is a solution of the problem

∂tv =

(
θ · ln

(∫ 1

0
erdt

)
+ (1− θ) · r

)
R(v). (2.2)

                             



                                   

Since dr(R) = 0 we infer from (2.2) that r is constant. Therefore, the scaling factor in front of the
Reeb vector field simplifies as follows:

θ · ln
(∫ 1

0
erdt

)
+ (1− θ) · r = θ · ln er + (1− θ) · r = θ · r + (1− θ) · r = r.

This shows that problem (2.2) is equivalent to (1.1) and the first assertion of the lemma is proved.
It remains to prove the second assertion, namely, the formula (1.2) for the action of a critical

point. Plugging (1.1) into the definition of Aθ, we compute using that r is independent of time

Aθ(v) = −
∫ 1

0
erλx

(
rR)dt+ θh

(
er
)
+ (1− θ)h

(
er
)

= −rer + h
(
er)

= −rer + er(r − 1) + 1

= 1− er.

This shows (1.2) and hence the lemma is proved. �
We now derive the gradient flow equation for the functionals Aθ simultaneously for every

θ ∈ [0, 1]. The gradient flow equations (1.3) and (1.4) then follow by specializing to the cases θ = 0
and θ = 1, respectively. To write down the gradient flow equation we have to choose a metric on the
free loop space. For that purpose we choose a smooth family of SFT-like almost complex structures
Jt and take the L2-metric with respect to this family. SFT-like almost complex structures are used
in Symplectic Field Theory [4] and we recall their definition. The contact condition implies that
the vector bundle (ξ, dλ|ξ) → Σ is symplectic. Hence, we choose a family of dλ|ξ compatible almost
complex structures Jt on ξ, i. e., dλ|ξ(·, Jt·) is a bundle metric on ξ. We extend this family canonically
to a family of R-invariant almost complex structures on the tangent space of the symplectization
by requiring that Jt interchanges the Reeb vector field R and the Liouville vector field ∂r, namely,

JtR = −∂r, Jt∂r = R.

In particular, Jt is compatible with the symplectic form ω in the sense that ω(·, Jt·) is a Riemannian
metric on R×Σ. Following Floer [5], we use this family of ω-compatible almost complex structures
to define an L2-metric g = gJ on the free loop space L. If v ∈ L and v̂1, v̂2 ∈ TvL are tangent vectors
at v, i. e., vector fields along v, we define the L2-inner product of v̂1 and v̂2 by

g
(
v̂1, v̂2

)
=

∫ 1

0
ω
(
v̂1(t), Jt

(
v(t)

)
v̂2(t)

)
dt.

We define the L2-gradient ∇Aθ(v) of Aθ at v ∈ L implicitly by the requirement that

dAθ(v)v̂ = g
(
∇Aθ(v), v̂

)
, ∀ v̂ ∈ TvL.

We claim that

∇Aθ(v)(t) = Jt(v(t))

(
∂tv −

(
θ · ln

(∫ 1

0
erdt

)
+ (1− θ) · r

)
R(v)

)
(t), t ∈ S1.

To see this we rewrite (2.1) using J2 = −id,

dAθ(v)v̂ =

∫ 1

0
ω

(
v̂, J(v)2

(
∂tv −

(
θ · ln

(∫ 1

0
erdt

)
+ (1− θ) · r

)
R(v)

))
dt

= g

(
v̂, J(v)

(
∂tv −

(
θ · ln

(∫ 1

0
erdt

)
+ (1− θ) · r

)
R(v)

))
,

which implies the formula above for the gradient. A gradient flow line is formally a smooth map
v ∈ C∞(R,L) solving the “ODE” on L

∂sv(s) +∇Aθ(v)(s) = 0, s ∈ R,

                             



              

which we interpret as a smooth map v ∈ C∞(R× S1,R× Σ) solving the problem

∂sv + J(v)

(
∂tv −

(
θ · ln

(∫ 1

0
erdt

)
+ (1− θ) · r

)
R(v)

)
= 0. (2.3)

Let us spell out in detail the extremal cases θ = 0 and θ = 1. For θ = 0 the problem (2.3) becomes

∂sv(s, t) + Jt(v(s, t))
(
∂tv(s, t) − r(s, t)R(v(s, t))

)
= 0, (s, t) ∈ R× S1. (2.4)

This is a PDE on the cylinder. In contrast to (2.4) the problem (2.3) is not a PDE anymore for
positive θ, since in this case the factor in front of the Reeb vector field not just depends on s and t,
but on the whole loop

rs : S
1 → R, t′ �→ r(s, t′).

For θ = 1 this becomes for (s, t) ∈ R× S1

∂sv(s, t) + Jt(v(s, t))

(
∂tv(s, t)− ln

(∫ 1

0
er(s,t

′)dt′
)
R(v(s, t))

)
= 0. (2.5)

For every θ ∈ [0, 1] the problem (2.3) is a perturbation of the Cauchy –Riemann equation in the
direction of the Reeb vector field. In the case of (2.5) the scaling factor in front of the Reeb vector
field only depends on s and not on t. We abbreviate this scaling factor for (s, t) ∈ R× S1 by

τ(s, t) = θ · ln
(∫ 1

0
er(s,t

′)dt′
)
+ (1− θ) · r(s, t).

With this notion we can write (2.3) more compactly as

∂sv + J(v)
(
∂tv − τR(v)

)
= 0.

3. PROOF OF LEMMA 2

Suppose that v is a gradient flow line of the V-shaped action functional with delay A1

∂sv +∇A1(v) = 0,

i. e., v = (r, x) ∈ C∞(R × S1,R× Σ) is a solution of (1.4). We abbreviate

T (s) :=

∫ 1

0
er(s,t)dt

and

τ(s) := ln(T (s)) = ln

(∫ 1

0
er(s,t)dt

)
.

Since Jt is SFT-like we obtain from (1.4)

∂sr − λx(∂tx) + τ = 0.

Abbreviating further vs, the loops obtained by evaluating v at time s, we compute

∂sT (s) =

∫ 1

0
er(s,t)∂sr(s, t)dt

=

∫ 1

0
er(s,t)

(
λx(s)

(
∂tx(s, t)

)
− τ(s)

)
dt

=

∫
S1

v∗sλ− τ(s)T (s)

= −A1(vs) + h

(∫ 1

0
er(s,t)dt

)
− ln(T (s))T (s)

                             



                                   

= −A1(vs) + h(T (s)) − ln(T (s))T (s)

= −A1(vs) + T (s) ln(T (s))− T (s) + 1− ln(T (s))T (s)

= −A1(vs)− T (s) + 1

and therefore
∂sτ(s) =

1−A1(vs)

eτ(s)
− 1. (3.1)

It follows from (3.1) that at every local extremum we have

eτ(s) = 1−A1

(
v(s)

)
.

Since asymptotically the derivatives vanish, we further have for the asymptotics τ± = lims→±∞ τ(s)

eτ+ = 1−A1(v+), eτ− = 1−A1(v−).

Since τ is continuous, it either has to attain its supremum or converge to it asymptotically. Using
that A1 decreases along v, we therefore conclude that

eτ(s) � 1−A1(v+). (3.2)

Since

1−A1(vs) � 1−A1(v−) > 0,

we obtain from (3.1) and (3.2)

∂sτ(s) �
1−A1(vs)

1−A1(v+)
− 1 = −A1(vs)−A1(v+)

1−A1(v+)
� −A1(v−)−A1(v+)

1−A1(v+)
> −1.

We next show that τ is strictly monotone decreasing when the gradient flow line is nonconstant.
To see this we first show that τ does not have any local minima. In fact, assume that s0 is a local
extremum of τ . Then

∂sτ(s0) = 0

and we infer from (3.1) that

∂2τ(s0) = −∂sA1(vs0)

eτ(s0)
> 0,

where the inequality follows from the fact that A1 is strictly decreasing along its nonconstant
gradient flow line. This excludes local minima of τ as well as inflection points. We next explain
that τ cannot have local maxima either. Since τ attains its supremum asymptotically, a local
maximum cannot be a global maximum, and therefore the existence of local maxima would imply
the existence of local minima which do not exist, as we have just explained. Therefore, τ has to be
strictly monotone. This finishes the proof of the lemma.

4. PROOF OF THEOREM 1

We construct a map R : M3 → M1 inverse to Π∗ : M1 → M3. Suppose that v = (r, x) ∈ M3,
i. e., a finite energy solution of (1.7). We are looking for ρ ∈ C∞(R,R) such that

w = ρ∗v = (r + ρ, x)

is a solution of (1.4), i. e., a gradient flow line of A1. Since Jt is SFT-like and in particular R-
invariant, w is a solution of the problem

∂sw + J(w)
(
∂tw +

(
A3(v) + ∂sρ

)
R(w)

)
= 0.

In order that this becomes a solution of (1.4), we need that for every s ∈ R it holds that

A3(vs) + ∂sρ(s) = ln

(∫ 1

0
er(s,t)+ρ(s)dt

)

= ln

(
eρ(s)

∫ 1

0
er(s,t)dt

)

                             



              

= ρ(s) + ln

(∫ 1

0
er(s,t)dt

)

= ρ(s),

where in the last equality we have used that vs ∈ L, since v ∈ M3. We see that ρ has to be a
solution of the ODE

∂sρ(s) = ρ(s)−A3(vs). (4.1)

Abbreviate

σ(s) = ρ(s)−A3(vs).

From (4.1) we obtain

∂sσ(s) = ∂sρ(s)− ∂sA3(vs) = ρ(s)−A3(vs)− ∂sA3(vs) = σ(s)− ∂sA3(vs),

so that σ is a solution of the ODE

∂sσ(s) = σ(s)− ∂sA3(vs). (4.2)

Since v is a gradient flow line of A3 we have ∂sA3(v) � 0, and since the gradient flow line has finite
energy the integral of ∂sA3(v) is finite. In particular,

∂sA3(v) ∈ L1(R).

Since it is smooth as well we also have

∂sA3(v) ∈ L2(R).

The linear operator

D : W 1,2(R) → L2(R), σ �→ ∂sσ − σ

is an injective Fredholm operator of index zero, i. e., an isomorphism between the two Hilbert
spaces. Therefore, there exists a unique σ ∈ W 1,2(R) solving (4.2), namely,

σ = D−1
(
− ∂sA3(v)

)
.

Now set
ρv := A3(v) +D−1

(
− ∂sA3(v)

)
,

then w := (ρv)∗(v) is a finite energy solution of (1.4), i. e., an element of the moduli space M1, and
we have a well-defined map

R : M3 → M1, v �→ (ρv)∗v.

It remains to check that R is inverse to Π∗. We carry this out in two steps.

Step 1: We have Π∗ ◦ R = id: M3 → M3, i.e., R is right inverse to Π∗.
This is the same argument as the proof of Step 1 of Theorem5.1 in [6]. Assume that v =

(r, x) ∈ M3. Since Π∗ and R are both t-independent translations in the R-direction there exists
ρ ∈ C∞(R,R) such that

w := Π∗ ◦ R(v) = ρ∗v = (r + ρ, x).

Since both v and w belong to M3 we must have for every s ∈ R∫ 1

0
er(s,t)dt = 1,

∫ 1

0
er(s,t)+ρ(s)dt = 1,

implying that
ρ = 0.

Therefore, w = v so that we have

Π∗ ◦ R(v) = v.

Since v ∈ M3 was arbitrary, Step 1 follows.

                             



                                   

Step 2: We have R ◦ Π∗ = id: M1 → M1, i.e., R is left inverse to Π∗.

Assume that v = (r, x) ∈ M1. Again, since R and Π∗ are both t-independent translations in the
R-direction, there exists ρ ∈ C∞(R,R) such that

w := R ◦Π∗(v) = ρ∗v = (r + ρ, x).

Since v solves (1.4) we have

0 = ∂sw + J(w)

(
∂tw +

(
∂sρ− ln

∫ 1

0
erdt′

)
R(w)

)

= ∂sw + J(w)

(
∂tw +

(
∂sρ+ ρ− ln

∫ 1

0
er+ρdt′

)
R(w)

)
.

Since w is a solution of problem (1.4) as well, we must have

∂sρ+ ρ = 0

i. e.,

ρ(s) = ρ0e
−s.

Since w has finite energy, it follows that ρ0 = 0 and therefore

ρ = 0.

This proves that w = v and hence

R ◦ Π∗(v) = v.

Since v ∈ M3 was arbitrary, Step 2 follows and the theorem is proved.
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