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Abstract
In this study,we develop a framework, based on a global vector autoregression (GVAR)
model, to unite two perspectives on commodity markets, the commodity-specific,
single-market-centered approach, investigating themicro- andmacroeconomic drivers
of commodity prices, and the market perspective, which observes joint movements
of commodity prices on exchanges. Thereby, the GVAR model disentangles single
market from inter-market effects, while simultaneously accounting for the impact of
macroeconomic factors. We apply the framework to the six industrial metals mar-
kets, reflecting their interdependencies via their co-production, co-consumption, or
co-trading relation. In particular, the numerous significant spillover effects in the
cross-commodity dimension underline the importance of jointly modeling commodity
markets. While the strong co-movement between industrial metal prices is repre-
sented exceptionally well by our framework, the microeconomic supply and demand
attributes of the commodities have significant impact, within and across markets, even
on price variables, highlighting their relevance in modern commodity market models.
Moreover, we detect global shocks, e.g., an increase in global demand, affect each
commodity market to a similar extent.
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1 Introduction

In our study, we propose and empirically apply a framework to unite two perspectives
on commodity markets. The first one originates from the classical fundamental theory,
which states a good’s price is the result of its supply and demand equilibrium, see
Hotelling (1931) and Deaton and Laroque (2003), and therefore models commodity
markets viamicroeconomic andmacroeconomic determinants. The secondperspective
originates from the empirical observation of common patterns in commodity prices.
While commodities, in particular metals, are joint inputs in many construction and
manufacturing applications, aswell as joint outputs from individualmining operations,
see Cuddington and Jerrett (2008), empirical studies detect the joint movement of
commodity prices exceeds the co-movement allocable to the joint production and joint
consumption of related commodities, see Pindyck and Rotemberg (1990). According
to Vansteenkiste (2009), this co-movement behavior is partly driven by a common
factor, which in turn is mainly driven by macroeconomic fundamentals. However,
Tang and Xiong (2012) state the financialization of commodities increased the co-
movement significantly, revealing the importance of financial markets and their effects
for the determination of commodity prices.

To aggregate both perspectives, we apply a global vector autoregression (GVAR)
model, which was initially designed by Pesaran et al. (2004) to analyze the world
economy from an individual country level, under the limitation of small sample data
sets. In a first step, we model each commodity market separately using vector autore-
gression (VAR) models with the commodity-specific, microeconomic supply, demand
and price variables, as well as exogenous, macroeconomic attributes to account for
the impact of economic activity, exchange rates and monetary policy on commodity
prices. Subsequently, we link the individual VAR models to a global VAR (GVAR)
model, hereby reflecting interdependencies as well as spillover effects between com-
modity markets. Therefore, we represent the relation between the commodities via
information on co-production, co-consumption and co-trading of the commodities.
Further, we investigate the spillover effects within and beyond commodity markets by
applying generalized impulse response functions (GIRF) and provide more insights
into the markets via a generalized forecast error variance decomposition (GFEVD)
and correlation analysis.

In the empirical part of our study, we apply the framework to the industrial metal
markets. Hereby, we reflect the interdependencies between the markets via their co-
production, co-consumption or co-trading relation. Therefore, we estimate the GVAR
model several times, connecting the individual, commodity-specific VAR models of
the industrial metals with different weight matrices. First, we calculate a weight matrix
representing the co-production relation by the common supply concentration. Second,
aweightmatrix based on co-consumption is approximated by the demand for industrial
metals in the five largest industries, which in summary account for up to 90% of the
worldwide industrial metal demand. Finally, the co-trading of financial investors at
commodity markets is reflected by a weight matrix based on the correlation of trading
volumes on the LME Futures exchange.

Our contribution to the literature on commodity markets is twofold. First, we pro-
pose a framework which incorporates the micro- and macroeconomic based theory as
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well as interdependencies between commodity markets. Second, the empirical valida-
tion of the framework provides new insights, as it disentangles single-market effects
from inter-market effects in the industrial metal markets, while controlling formacroe-
conomic factors.

Hereby, our framework is able to represent the strong co-movement in commodity
prices, in line with the publication of Tang and Xiong (2012). Moreover, the analysis
detects strong interdependencies between the aluminum and copper market, which
most likely originate from their joint consumption. In addition, various spillover
effects between supply and demand variables within and across the commodity mar-
kets underline the importance of jointly modeling commodity markets. Further, we
reveal microeconomic variables still influence prices significantly in modern markets.
Finally, global shocks affect each commodity market to a similar extent. In particular,
an increase in the global demand leads to rising commodity-specific demand as well
as rising prices.

The remainder of this paper is structured as follows: Sect. 2 provides an overview
over previous empirical work on commodity markets. In Sect. 3, our framework is
presented in detail, while the empirical analysis and the results are described in Sect. 4,
before Sect. 5 concludes.

2 Overview of commodity markets

In a short literature overview on commodity markets, we introduce two differing, yet
valid perspectives. The first perspective relies on the classical fundamental theory
which states a good’s price is the result of the supply and demand equilibrium, while
it additionally considers further price determinants, beyond the commodity-specific
supply and demand. Within the second perspective, studies investigate the joint price
behavior of (un-)related commodities on exchanges. Hereby, the studies show the joint
production, consumption and the simultaneous impact of macroeconomic variables
are unable to fully describe the co-movement of prices and attribute this behavior
partly to the financialization of commodity markets.

2.1 Determinants of commodity prices

In general, commodities are a cornerstone of many economies, for commodity
exporters as well as for commodity importers, see Byrne et al. (2013). In particu-
lar, industrial metals play an important role, as they are commonly used across a wide
range of applications, ranging from small wires made of copper, to aircraft parts made
from aluminum. Therefore, the classical fundamental theory, which states the supply
and demand of a good determine its equilibrium price, remains valid for commodities,
see Hotelling (1931) and Deaton and Laroque (2003). Moreover, Frankel and Rose
(2010) emphasize the relevance of these factors, while they additionally account for
global demand increases.

The empirical evidence for the impact of commodity-specific supply on commodity
prices is mixed. While Ahumada and Cornejo (2014) detect significant long-run price
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effects of supply fluctuations, measured by the commodity-specific production value,
Stuermer (2018) only finds mixed evidence of supply factors on prices, which he
hypothesizes to be caused by the different elasticities of markets. Specifically, supply
shocks are of significant importance for tin and copper, whereas the impact on crude
oil prices is small to not measurable.

Due to data restrictions, the literature focusing on the impact of commodity-specific
demand on prices is limited. Among the few studies considering commodity-specific
supply as well as commodity-specific demand variables are Thomas et al. (2010) and
Chen et al. (2019), who investigate the attributes’ impact on the price of oil and copper,
respectively. Hereby, both studies underline the importance of supply and demand for
modeling commodity price fluctuations.

In contrast to these commodity-specific analyses, most of the studies approximate
commodity demand via different measures of economic activity, such as the gross
domestic product (GDP) or industrial production, see, for example, Ahumada and
Cornejo (2014), Baffes and Savescu (2014), Borensztein and Reinhart (1994), Byrne
et al. (2013), Deaton and Laroque (2003), Issler et al. (2014), Klotz et al. (2014)
and Stuermer (2018). Hereby, Baffes and Savescu (2014) state industrial production
positively affects prices, while Issler et al. (2014) provide empirical evidence of syn-
chronized cycles inmetal prices to those in industrial production.Moreover, the results
of Borensztein and Reinhart (1994) indicate the consideration of global demand in
commodity price frameworks improve the model fit as well as the forecast ability.

Using the world GDP as proxy for the global demand, Deaton and Laroque (2003)
reveal demand fluctuations influence commodity prices in the short-run, whereas
Stuermer (2018) detects global demand is themain determinant of prices, especially in
the long-run. Further, Byrne et al. (2013) account for the global demand by including
the growth rate of the US real GDP, whereas Ahumada and Cornejo (2014) as well as
Klotz et al. (2014) focus on China’s GDP and find significant effects on prices. More-
over, Helbling et al. (2008), as well as Frankel and Rose (2010) state the 2007–08
commodity price boom was caused by an increase in demand, i.e., through the growth
of emerging economies and the biofuels trend. In particular, China was responsible
for about 90% of the increase in the world consumption of copper from 2000 to 2006,
see Helbling et al. (2008). While economic activity is commonly used as a demand
proxy, it can undoubtedly also be interpreted as macroeconomic variable, indicating
the significant influence ofmacroeconomic determinants on commodity prices. There-
fore, commodity market models additionally include factors like exchange rates and
interest rates, see Vansteenkiste (2009), for example.

While most of the commodities are traded in US dollar, they are rarely mined in the
USA, which is why a decline in the dollar price would lead to an increase in the dollar
price of the commodities or to a decrease in the foreign currency price. Therefore,
exchange rates should, theoretically, be linked to future commodity prices through the
terms of trade and income channel, as outlined by Chen et al. (2010), who empirically
validate the importance of this factor by its out-of-sample predictive power on prices.
Moreover, Lombardi et al. (2012) argue commodity exporters will raise commodity
prices to ensure their purchasing power, in case the dollar looses value, and detect
a statistically significant, negative effect of exchange rates to metal prices in their
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study. Further, Akram (2009) andAhumada and Cornejo (2014) underline the negative
relation between the real dollar exchange rate in their empirical analyses.

Monetary policy, commonly represented by (short-term) interest rates, is a central
element of commodity price models, see Anzuini et al. (2013). Already in the theoret-
ical model of Hotelling (1931), interest rates play a crucial role, as future commodity
prices are hypothesized to rise by the interest rate, which is caused by the cost of
capital and the speculation on mean reverting prices. In general, lower interest rates
will lead to a portfolio shift of investors, out of bonds into other asset classes, in partic-
ular commodities, see Calvo (2008). Further, the lower interest rates will additionally
reduce the cost of capital for holding a commodity, ultimately leading to lower storage
costs and an elevated demand for commodities, while simultaneously sparking the
incentives of commodity producers to decrease the supply, as the allocation of their
revenues in bonds becomes less profitable, see Frankel (2014). Overall, lower interest
rates will lead to higher commodity prices.

Empirically, Ahumada and Cornejo (2014); Byrne et al. (2013) and Vansteenkiste
(2009) generally detect a significant negative impact of interest rate shocks on com-
modity prices, while Akram (2009) even discovers an overshooting behavior, as the
market overreacts to changes in the interest rate. With focus on the Chinese mone-
tary policy, Klotz et al. (2014) confirm this overshooting reaction for agricultural and
energy commodity markets. However, the impact of the US federal funds rate on com-
modity prices is rather limited within the studies of Anzuini et al. (2013) and Frankel
and Rose (2010), respectively, whereas the results of Baffes and Savescu (2014) sup-
port the negative relationship of interest rates and prices only for specific metals, but
state the US dollar exchange rate has a significant effect.

2.2 Co-movement of commodity prices

In general, the global demand, the exchange rates as well as the interest rates affect
all commodities simultaneously, which is why commodity prices tend to move in a
synchronized way, a phenomenon called co-movement. Hereby, Delle Chiaie et al.
(2022) highlight a substantial share of the co-movement can be described by a com-
mon factor, which is, in their case, mainly driven by the global economic activity,
while according to Vansteenkiste (2009), general macroeconomic fundamentals are
the main determinants of the common factor. Byrne et al. (2013) find a negative
relation between interest rates, risk and the common factor. Hereby, macroeconomic
determinants influence commodity prices directly and indirectly. The interest rate, for
example, impacts prices directly by stimulating the current demand, while it further
affects them indirectly through the expectations about the future demand, due to the
storability of commodities, see Pindyck and Rotemberg (1990).

Besides the simultaneous impact of macroeconomic determinants on commodity
prices, the common production as well as the common consumption of commodities
leads to further interdependencies between commodity markets. On the one hand,
commodities may substitute each other, for example, oil and bio-fuels, which in turn
links food prices to the oil price, see Krugman (2008), whereas Baffes et al. (2020)
state copper demand is highly correlated to aluminum prices, due to the substitutability
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of the two metals. On the other hand, commodities may be used collectively in alloys,
such as AlSi9Cu3, for example, see Zapp et al. (2002). Moreover, commodities may
be related through the co-mining of ores, contributing to the high correlation of prices,
see Campbell (1985). In the case of lead, 70% of its production is derived from mixed
Lead-Zinc ores, as stated by Nassar et al. (2015) and Shammugam et al. (2019).

However, the empirically observed co-movement of prices on exchanges is larger
than what would be explainable by the common production, common consumption
and the common factor of commodities, see Pindyck and Rotemberg (1990). Hereby,
the authors detect even unrelated commodities co-move, which is why they introduce
the concept of excess co-movement. Le Pen and Sévi (2017) reinvestigate the findings
of Pindyck and Rotemberg (1990) and reveal the excess co-movement is time-varying
and larger in magnitude after 2007. Overall, especially in recent times, the extent of
co-movement increased. According to Tang and Xiong (2012), the financialization
of commodity markets, especially the fast growing investment in commodity indices
after 2004, is a key determinant for this increased co-movement. Moreover, Basak and
Pavlova (2016) theoretically analyze how the financialization affects commodity mar-
kets, supporting the empirical findings of Tang and Xiong (2012), as their correlations
are higher for index futures than those of non-index futures.

Overall, the empirically observed (excess) co-movement between commodity
prices calls for jointly modeling commodities. However, the co-production and co-
consumption relations imply not only prices, but also supply and demand factors of
commodities are related, while these relations cannot be accounted for in a classi-
cal, individual commodity market model. Hereby, previous studies only focus on one
perspective, either the price determinants of commodities—including microeconomic
factors—or the joint behavior of prices. In contrast, our framework incorporates both
perspectives and the relations between commodities into one holistic model.

3 Methodological framework

Commodity prices are still determining factors on, as well as determined by, funda-
mentals. Therefore, we apply individual vector autoregression (VAR) models on all
commodities, i = 1, . . . , N , of the analysis, to model the dependencies between the
individual supply (si), demand (di) and price (pi) variables, which form the vector
xi,t = (si,t , di,t , pi,t )′, for all time periods t = 1, . . . , T :

xi,t = �ixi,t−1 + � i,0et + � i,1et−1 + εi,t (1)

where �i is the ki × ki matrix of lagged coefficients, with κ = ki = 3, denoting the
length of vector xi,t and the maximum lag length p = 1, which is applied for data
limitation reasons.1 To represent the common factor in our framework, we include

1 The Breusch-Godfrey test shows no autocorrelation for the analyzed commodity data at the 5% signifi-
cance level, indicating this restriction to lag length one is feasible.
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r macroeconomic factors as exogenous variables2 in the vector et , with � i,0 and
� i,1 as ki × r matrices of the corresponding coefficients. Further, we assume that the
ki×1 vectors of idiosyncratic commodity-specific shocks εi,t are serially uncorrelated,
independent and identically distributed, with mean zero and covariance matrix �i i .
Therefore, εi,t ∼ i id (0,�i i ).

While these individual VAR models simultaneously model the dependencies
between the commodity-specific supply, demand and price within each commodity
market, hereby taking into account the effect ofmacroeconomic factors, they are unable
to reflect the relationships betweenmarkets, inter alia the entire co-movement observed
on exchanges, as the only connection considered between the commodities is via com-
mon macroeconomic information. However, beyond the macroeconomic factors, the
commoditymarkets are interrelated through co-production, co-consumption as well as
co-trading, see Sect. 4.2, which is why individual VARmodels are not sufficient to rep-
resent the complexity of commodity markets. One solution would be the estimation of
a single VARmodel, including all commodity-specific variables as well as themacroe-
conomic determinants. Generally, such amodel consists of p·(κ ·N−1)+(pexog+1)·r
parameters, where p denotes the order of the VARmodel, N the number of commodi-
ties in the analysis, κ the number of variables per commodity and r the number of
macroeconomic determinants with pexog the corresponding lag length, see Pesaran
et al. (2004). In case of 3 commodities, κ = 3, p = 1 and r = 3, this leads to a
model of 14 parameters. However, once such an analysis is expanded to 10 or 20
commodities, the number of estimated parameters increases to 35 or 65 already.

As commodity-specific supply and demand data are only available at low frequency,
the estimation of these models is infeasible from a statistical point of view. In general,
low data frequency in conjunction with many potentially influential variables is a key
problem in econometrics. Pesaran et al. (2004) proposed a way to overcome these
data limitation issues by connecting several individual VAR models into one global
VARmodel (GVAR).3 While the GVARmodel was initially constructed for the world
economy, we adopt the idea to commodity markets. Therefore, we simultaneously
estimate several individual, commodity-specific VAR models consisting of supply,
demand and price variables, as well as the macroeconomic determinants and connect
these individual models in a GVAR model via a methodology based on the original
paper, as well as Dées et al. (2007b) and Dées et al. (2007a) in the following.

We extend the commodity-specific VAR models from Eq.1 with the k∗
i × 1 vector

x∗
i,t = (s∗

i,t , d
∗
i,t , p

∗
i,t )

′ of weighted external variables, specific to commodity i :

xi,t = �ixi,t−1 + �i,0x∗
i,t + �i,1x∗

i,t−1 + � i,0et + � i,1et−1 + εi,t , (2)

2 Since metal commodity markets are comparably small, we assume exogeneity of all macroeconomic
fundamentals and include them as exogenous variables in ourmodels.Moreover, bivariate Granger causality
tests confirmed the exogeneity of all macroeconomic variables. While oil and macroeconomic variables
are interrelated, the trading and production volumes of the individual metals are comparable small. In
particular, we include an economic activity index in the vector of exogenous variables, to account for the
impact of global demand on commodity markets, besides the impact of commodity-specific demand within
the individual VAR models.
3 We acknowledge Bayesian VAR models may also be a solution to overcome the problem of data lim-
itations. However, this study focuses on the benefits of adapting the GVAR methodology on commodity
markets, which allows for the specific modeling of the connecting channels between markets.

123



A. Schischke et al.

where�i,0 and�i,1 are ki ×k∗
i matrices of coefficients associated with the exogenous,

external specific variables, where in our case k∗
i = ki . These external commodity

variables are defined as:

s∗
i,t =

N∑

ι=1

wi,ιsι,t , d∗
i,t =

N∑

ι=1

wi,ιdι,t , p∗
i,t =

N∑

ι=1

wi,ι pι,t ,

with weightswi,i = 0 and
∑N

ι=1 wi,ι = 1, for i = 1, . . . , N , where the corresponding
individual weights wi,ι may be aggregated to a weight matrix (wi,ι)i,ι=1,...,N . While
the initial GVAR model of Pesaran et al. (2004) uses import and export data, the so
called trade weights, to link individual economies into one model, our framework
incorporates information from common supply, demand and trading activity to link
the commodities, see Sect. 4.2.

In order to set up the GVAR model, we define the (ki + k∗
i ) × 1 vector zi,t =

(x′
i,t , x

∗
i,t

′)′ and rewrite Equation 1 for i = 1, . . . , N :

Aizi,t = Bizi,t−1 + � i,0et + � i,1et−1 + εi,t , (3)

where Ai = (Iki ,−�i,0), with Iki denoting the ki × ki dimensional unit matrix, and
Bi = (�i ,�i,1) are ki × (ki + k∗

i ) dimensional matrices. Moreover, we require Ai to
have full row rank for i = 1, . . . , N .

By xt = (x′
1,t , . . . , x

′
N ,t )

′, we denote the k × 1 global vector of all commodity-

specific variables, where k = ∑N
i=1 ki . With the link matrices Wi of fixed constants,

defined in terms of the commodity-specific weights wi,ι, we can write zi,t = Wixt .
Using this in Eq.3, we get:

AiWixt = BiWixt−1 + � i,0et + � i,1et−1 + εi,t . (4)

Stacking Eq.4 together for i = 1, .., N , we get:

Gxt = Hxt−1 + �0et + �1et−1 + εt , (5)

with the k × k dimensional matrices G = ((A1W1)
′, . . . , (ANWN )′)′, H =

((B1W1)
′, . . . , (BNWN )′)′, the k×r dimensional matrices�0 = (� ′

1,0, . . . ,�
′
N ,0)

′,
�1 = (� ′

1,1, . . . ,�
′
N ,1)

′, and the k × 1 vector εt = (ε′
1,t , . . . , ε

′
N ,t )

′. In case of a

non-singular matrix G, we define F = G−1H, ϒ0 = G−1�0, ϒ1 = G−1�1 and
υ t = G−1εt . Rewriting Eq.5, we get the GVAR model in its final form:

xt = Fxt−1 + ϒ0et + ϒ1et−1 + υ t . (6)

This enables us to model the markets of all commodities simultaneously, while
accounting for the dependencies in the cross-commodity dimension.

In line with Pesaran et al. (2004), we propose to analyze the spillover effects
within and between the commodity markets by generalized impulse response func-
tions (GIRF), first proposed by Koop et al. (1996) and further developed in Pesaran
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and Shin (1998). In contrast to the frequently used orthogonalized impulse response
functions, the GIRF analysis needs, due to its invariance property, no hierarchy of
the commodities, see Dées et al. (2007b). In general, the GIRF of a shock to the j-th
element of xt , corresponding to the �-th variable of the i-th commodity, is defined as:

GIx,εi,� (n,
√

σi i,��, It−1) = E[xt+n | εi,�,t = √
σi i,��, It−1] − E[xt+n | It−1],

n = 0, 1, 2, . . . ,
(7)

where It−1 = (xt , xt−1, . . .) denotes the information set at time t − 1, including
common macroeconomic variables et .

Under the assumption ofmultivariate normal distributed εt , we can calculate GIRFs
as follows:

GIx,εi,� (n,
√

σi i,��, It−1) = 1√
σi i,��

FnG−1�ξ j ,

n = 0, 1, 2, . . . ,

(8)

where � is the k × k variance-covariance matrix of shocks εt , σi i,�� represents the
i i, ��-th element of �, ξ j denotes the k × 1 selection vector, with ξ j = 1 for the j-th
element and ξ j = 0 else. This measures the effect of a one standard error shock to
the j-th equation (corresponding to the �-th variable in the i-th commodity) at time
t on expected values of x at time t + n. In addition to analyzing commodity-specific
effects within a market, the GIRF analysis also reveals spillover effects of a shock on
the variables of the other commodity markets.

Besides the spillover effects within and between commodity markets, the impact of
shocks to the exogenous variables, e.g., a global demand shock, on commoditymarkets
can be examined via GIRFs. To analyze the effects of a shock in the i-th exogenous
variable ei,t on the commodity markets, a dynamic process for the exogenous variables
has to be specified, see Pesaran et al. (2004). Therefore, we assume the vector of
exogenous markets follows a first-order4 autoregression process:

et = μe + �eet−1 + εe,t , (9)

where μe denotes the r × 1 vector of intercepts, �e is the r × r matrix of lagged
coefficients, and εe,t is the r × 1 vector of shocks to the exogenous variables. Hereby,
we assume εe,t to be serially uncorrelated, independent and identically distributed,
with mean zero and covariance matrix �e; therefore, εe,t ∼ i id(0,�e).

Similar to the GIRFs of a shock to a commodity-specific variable, the GIRF of
the effect of a shock to the i-th exogenous variable ei on the vector of endogenous
variables x is defined by:

GIx:ei(n,
√

σe,ii, It−1) = E[xt+n | εe,t = √
σe,ii, It−1] − E[xt+n | It−1],

n = 0, 1, 2, . . . ,
(10)

4 The Breusch-Godfrey test shows no autocorrelation for the analyzed commodity data at the 5% signifi-
cance level, indicating the restriction to lag length one is feasible.
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where σe,ii is the i-th diagonal element of �e.
Using the GVAR model in its final form in Eq.6, we derive:

GIx:ei(n,
√

σe,ii, It−1)

= FGIx:ei(n − 1,
√

σe,ii, It−1)

+ ϒ0GIe:ei(n,
√

σe,ii, It−1) + ϒ1GIe:ei(n − 1,
√

σe,ii, It−1),

(11)

for n = 0, 1, 2, . . . with

GIe:ei(n,
√

σe,ii, It−1) = E[et+n | εe,t = √
σe,ii, It−1] − E[et+n | It−1]. (12)

It holds GIx:ei(n − 1,
√

σe,ii, It−1) = GIe:ei(n − 1,
√

σe,ii, It−1) = 0, for n < 1,
and GIx:ei(0,

√
σe,ii, It−1) = ϒ0GIe:ei(0,

√
σe,ii, It−1). Moreover, for multivariate

normal distributed errors εe, the following equation holds:

GIe:ei(0,
√

σe,ii, It−1) = 1√
σe,ii

�eξ i, (13)

where ξ i denotes a r × 1 selection vector, with ξ i = 1 for the i-th element and ξ i = 0
else. Using Eq.13 and the VARmodel of the exogenous variables in Eq. 9, we obtain:

GIe:ei(n,
√

σe,ii, It−1) = �eGIe:ei(n − 1,
√

σe,ii, It−1)

= 1√
σe,ii

�n
e�eξ i.

(14)

Finally, inserting Eq.14 in Eq.11, we obtain:

GIx:ei(n,
√

σe,ii, It−1) = FGIx:ei(n − 1,
√

σe,ii, It−1)

+ 1√
σe,ii

(ϒ0�e + ϒ1)�
n−1
e �eξ i.

(15)

Further, VARmodels may be analyzed via a forecast error variance decomposition.
Due to the correlated shocks between commodities in our GVARmodel, we apply the
alternative approach of generalized forecast error variance decomposition (GFEVD),
as proposed in Dées et al. (2007a). Hereby, the GFEVD represents the proportion
of the variance of the n-step forecast errors explained by the shocks of variable j ∈
{1, . . . , k}. In particular, the GFEVD, which represents the proportion of the n-step
ahead forecast error variance of the h-th element of xt , accounted for by the innovations
in the j-th element of xt , is defined as:

GFEVDxh,t ,ε j,t (n) = σ−1
j j

∑n
l=0(ξ

′
hF

lG−1�ξ j )
2

∑n
l=0 ξ ′

hFlG−1�G−1′Fl ′ξh
,

n = 0, 1, 2, . . . .

(16)
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Since the shocks of variables are correlated, leading to a non-diagonal variance-
covariance matrix �, the elements of the GFEVDxh,t ,ε j,t (n) across j do not sum
to unity, which is why we scale them to guarantee comparability. To summarize,
the GVAR methodology allows the consideration of cross-commodity dependencies
between markets, while simultaneously incorporating commodity-specific microeco-
nomic and exogenous macroeconomic variables.

4 Empirical application to industrial metal markets

4.1 Data

We analyze the spillover effects, as well as the interdependencies within and beyond
the markets of the industrial metals aluminum (Al), copper (Cu), nickel (Ni), lead
(Pb), tin (Sn) and zinc (Zn). Therefore, we use their commodity-specific annual
attributes supply, demand and price in our VAR models as endogenous variables in
the period 1970–2019. Following the idea of Fernandez (2015), we approximate each
individual global commodity demand (di) by the global, commodity-specific apparent
consumption. Therefore, we adjust the commodity-specific US apparent consump-
tion, as provided by U.S. Geological Survey (2020a), by the ratio of reported US
GDP and world GDP,5 drawn from U.S. Bureau of Economic Analysis (2022) and
The World Bank (2022).6 Moreover, we include the worldwide commodity-specific
primary production, reported by U.S. Geological Survey (2020b), as supply variable
(si). The price variable (pi) is specified as the annual mean of each daily commod-
ity price, while the daily price data of nickel and lead are only provided since July
1993. Therefore, we extend the time series backwards with prices provided in the
Mineral Commodity Summaries of the USGS, see U.S. Geological Survey (2013) and
Table 18 in the Appendix for more detailed information. The vector of exogenous,
macroeconomic variables includes the world gross domestic product, drawn from The
World Bank (2022), as proxy for economic activity, the US dollar index, drawn from
ICE Futures U.S. (2022), as proxy for the exchange rate, as well as the federal funds
rate, drawn from Board of Governors of the Federal Reserve System (U.S.) (2022) as
interest rate.

5 This study proposes a new framework to disentangle single-market effects from inter-market effects,
while controlling for macroeconomic factors. Hereby, we intend to analyze the long-term interdependencies
between commoditymarkets in the period from1970 to 2019. For this period, only the apparent consumption
data of the USA is available, provided by U.S. Geological Survey (2020a). Therefore, we approximate the
world metal consumption by the US apparent consumption, applying the ratio of reported US GDP and
world GDP. However, this approach may underestimate the metal-intense rise of emerging markets in the
past 20 years.
6 As commodity-specific inventory data is unavailable for the required sample period, we rely on the
apparent consumption. Hereby, we benefit from the consumption indicating the true consumption of the
commodity, in contrast to regular demand, which also includes demand for inventories.

123



A. Schischke et al.

In order to satisfy the central assumption of stationarity in VAR models,7 we apply
the augmented Dickey–Fuller (ADF) test8 to each of the attributes and calculate log
returns, even for interest rates, in case of non-stationary data, based on the five percent
significance level. All time series were non-stationary at first, which yields in a final
dataset of log return variables from 1971–2019. Descriptive statistics of the resulting
stationary variables, as well as the results of the ADF test for the original and log
return data are given in Table 19 in Appendix A. For our analysis, we standardize these
returns to have zero mean and standard deviation one, but use the original variable
names unadjusted, i.e., supply, demand and price.

4.2 Model and weight matrices

4.2.1 Possible linkages in industrial metal markets

In contrast to Pesaran et al. (2004), who use the GVAR model to link individual
economies via trade weights, we propose to apply the methodology to commodity
markets, estimating the GVAR model several times with different weight matrices,
each representing one relationship dimension between industrial metal markets.

First of all, industrial metals are interrelated on their supply side, as they are co-
mined together. In the case of lead, 70% of its production is derived from mixed
Lead-Zinc ores, as stated by Nassar et al. (2015) and Shammugam et al. (2019).

Second, dependencies between metals also occur on the demand-side of markets.
In particular, there are substitution, but also co-consumption links. Baffes et al. (2020)
state copper demand is highly correlated to aluminumprices, which originates from the
substitutability of copper by aluminum in certain industries, electricity, for example.
However, the use statistics of aluminum and copper show their co-consumption in
AlSi9Cu3 alloys, used for various automotive applications, see Zapp et al. (2002).

Further, the common trend in prices, observed during the last decades, can no
longer be explained via their co-production and co-consumption links only, as the
co-movement in commodity prices has significantly increased since the financial-
ization of commodities and the associated increase in index investments. In general,
commodity prices tend tomove in a synchronizedway, as they are simultaneously influ-
enced by macroeconomic determinants. However, Basak and Pavlova (2016) reveal
the increasing investments of index funds in commoditymarkets should further elevate
the co-movement. Although Hamilton and Wu (2015) find no direct effect of futures
traders positions on prices, the study of Tang and Xiong (2012) empirically detects
an increase in the co-movement of commodities, starting in the year 2004, due to
the financialization, which is stronger for indexed commodities. Additionally, Zhang
et al. (2019) highlight individual commodity prices co-move with a common liquid-
ity factor of the markets, namely the Amihud measure of Amihud (2002). Moreover,

7 Since the results of the Johansen test indicate no cointegration relationship in our data, we estimate vector
autoregression models instead of vector error correction models.
8 We thank an anonymous reviewer for the suggestion to use unit root testswith structural breaks. Therefore,
we additionally apply the Zivot and Andrews unit root test, which allows a break at an unknown point in
either the intercept, the linear trend or in both, see Zivot and Andrews (2002) and get similar results.
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Table 1 Co-production of
commodities

Al Cu Ni Pb Sn Zn

Al 0.00 0.05 0.04 0.24 0.17 0.19

Cu 0.05 0.00 0.02 0.06 0.05 0.06

Ni 0.04 0.02 0.00 0.04 0.06 0.03

Pb 0.24 0.06 0.04 0.00 0.16 0.19

Sn 0.17 0.05 0.06 0.16 0.00 0.13

Zn 0.19 0.06 0.03 0.19 0.13 0.00

This table displays the co-production of aluminum (Al), copper (Cu),
nickel (Ni), lead (Pb), tin (Sn) and zinc (Zn)

Büyüksahin and Robe (2014) detect the liquidity between spot and futures markets
is linked. Therefore, we propose to consider the co-trading behavior on commodity
exchanges as further market linking channel.

4.2.2 Weight matrices

In the original study of Pesaran et al. (2004), the authors reflect the interdependen-
cies between individual economies via trade weights. As industrial metal markets are
related to each other through their common supply and demand, we propose to esti-
mate the GVAR model several times using different weight matrices. Hereby, we also
account for the co-movement between prices due to the investors’ behavior. There-
fore, the weight matrices in our framework include information on the co-production,
co-consumption and co-trading relations between commodities.

First, we use information on the common supply concentration of the commodities
and aggregate it as a measure of co-production via:

wi,ι =
∑

c

prodc,i · prodc,ι, for i, ι = 1, . . . , N , i �= ι (17)

with wi,ι denoting the relation between commodity i and commodity ι and prodi,c
denoting the country-specific share of annual world production of country c =
1, . . . ,C for commodity i . Hereby, the production data is the averaged, per-country
breakdown of our supply (si ) variable, in the period from 2010 to 2019, again obtained
from U.S. Geological Survey (2020b) (Table 1).

Second,we analyze the sectors inwhich industrialmetals are co-consumed, approx-
imating the economy by the five industries Automotive/Transportation, Chemistry/
Pharmaceutics, Electrics, Construction and Mechanical Engineering, which in sum-
mary account for up to 90% of the worldwide demand, see Appendix B for detailed
information.

Table 2 displays the proportion of consumption per commodity and industry. We
aggregate these industry-specific values to a demand-side information matrix via the
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Table 2 Consumption of the commodities

Industry Al Cu Ni Pb Sn Zn

Automotive/Transportation 0.36 0.10 0.32 0.00 0.00 0.63

Chemistry/Pharmaceutics 0.00 0.00 0.00 0.05 0.22 0.08

Electrics 0.15 0.64 0.05 0.83 0.78 0.00

Construction 0.33 0.17 0.32 0.06 0.00 0.29

Mechanical Engineering 0.15 0.09 0.32 0.06 0.00 0.00

This table displays the aggregated consumption of aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin
(Sn) and zinc (Zn), in the industry sectors automotive/transportation, chemistry/pharmaceutics, electrics,
construction and mechanical engineering

Table 3 Joint consumption of
commodities

Al Cu Ni Pb Sn Zn

Al 0.00 0.20 0.27 0.15 0.12 0.33

Cu 0.20 0.00 0.15 0.55 0.50 0.11

Ni 0.28 0.15 0.00 0.08 0.04 0.29

Pb 0.16 0.55 0.08 0.00 0.66 0.02

Sn 0.12 0.50 0.04 0.66 0.00 0.02

Zn 0.33 0.11 0.29 0.02 0.02 0.00

This table displays the demand-side information matrix; based on
the common proportion, the commodities aluminum (Al), copper
(Cu), nickel (Ni), lead (Pb), tin (Sn) and zinc (Zn) are belong-
ing to the considered industry sectors Automotive/Transportation,
Chemistry/Pharmaceutics, Electrics, Construction and Mechanical
Engineering, according to Eq.18

following formula:

wi,ι =
∑

h

indh,i · indh,ι, for i, ι = 1, . . . , N , i �= ι (18)

where wi,ι denotes the weight between commodity i and commodity ι, whereas
indh,i denotes the proportion of consumption of commodity i in industry h =
{Automotive/ Transportation, Chemistry/Pharmaceutics, Electrics, Construction,
Mechanical Engineering} (Table 3).
Third, to represent the co-trading of investors in commodity markets, we calculate

the Pearson correlation coefficient between the daily total volume of traded contracts
from the LondonMetal Exchange (LME), see Thomson Reuters Eikon (2022g), in the
period from 2010 to 2019, see Table 4.9

9 In contrast to the observed data of co-production and (approximated) co-consumption, the co-trading
information matrix is based on estimated correlations. While the basic idea of Pesaran et al. (2004) is to
reduce the number of parameters using the observed trade weights to link the individual country-specific
models, Gross (2013) propose a procedure to estimate the weights jointly with the GVAR’s parameters. In
this line, the estimated correlations of the trading volume matrix will lead to a feasible weight matrix.
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Table 4 Futures trading
volumes correlation matrix

Al Cu Ni Pb Sn Zn

Al 1.00 0.05 −0.15 0.04 0.15 −0.01

Cu 0.05 1.00 0.35 0.37 0.20 0.42

Ni −0.15 0.35 1.00 0.35 −0.08 0.57

Pb 0.04 0.37 0.35 1.00 0.28 0.66

Sn 0.15 0.20 −0.08 0.28 1.00 0.14

Zn −0.01 0.42 0.57 0.66 0.14 1.00

This table displays the Pearson correlation matrix between the daily,
first Futures trading volumes of the commodities aluminum (Al), cop-
per (Cu), nickel (Ni), lead (Pb), tin (Sn) and zinc (Zn) from the London
Metal Exchange (LME), calculated over the period from 2009 to 2019

Table 5 Supply weight matrix
(S)

Al Cu Ni Pb Sn Zn

Al 0.00 0.08 0.06 0.34 0.25 0.27

Cu 0.21 0.00 0.10 0.26 0.19 0.24

Ni 0.19 0.12 0.00 0.21 0.32 0.16

Pb 0.34 0.09 0.06 0.00 0.23 0.28

Sn 0.30 0.08 0.11 0.28 0.00 0.23

Zn 0.32 0.10 0.05 0.32 0.22 0.00

This table displays the supply-side weight matrix of the commodities
aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn) and zinc
(Zn)

To aggregate the individual commodity markets in a GVAR model, we scale
these information tables to row sums of 1. The resulting weight matrices supply (S),
demand (D) and trading volume (T) are displayed in Tables 5, 6 and 7.10 However, as
co-production, co-consumption and co-trading occur simultaneously in practice, we
estimate a fourth, common weight matrix (C), which aggregates all three dimensions,
see Table 8. Therefore, we construct the common weight matrix by equally weighting
the previously calculated, individual weight matrices.

4.3 Empirical results

To analyze the dynamic properties of the GVAR model, we calculate generalized
impulse response functions (GIRFs), according to Eq.8. This methodology investi-
gates direct and indirect effects on the attributes to an innovation of one standard
deviation in a certain variable. Our analysis is based on the 68% confidence bounds
obtained by a sieve bootstrap procedure with 1000 replications, as proposed in Dées
et al. (2007b). Runkle (1987) and Lütkepohl (1990) both point out impulse responses
can inflate false negatives, a problem also Galesi and Lombardi (2009) suffer from, in
the analysis of their unrestricted GVAR models. Although data limitations, as caused

10 Tables 5, 6, 7 and 8 show rounded values, whereas further calculations in the model use the true values
without rounding.
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Table 6 Demand weight matrix
(D)

Al Cu Ni Pb Sn Zn

Al 0.00 0.19 0.26 0.14 0.11 0.30

Cu 0.14 0.00 0.10 0.36 0.33 0.08

Ni 0.33 0.18 0.00 0.10 0.05 0.35

Pb 0.11 0.37 0.05 0.00 0.45 0.01

Sn 0.09 0.37 0.03 0.49 0.00 0.01

Zn 0.42 0.15 0.38 0.03 0.02 0.00

This table displays the demand-side weight matrix of the commodities
aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn) and zinc
(Zn)

Table 7 Trading weight matrix
(T)

Al Cu Ni Pb Sn Zn

Al 0.00 0.12 0.37 0.11 0.39 0.02

Cu 0.03 0.00 0.25 0.27 0.15 0.30

Ni 0.10 0.23 0.00 0.23 0.05 0.38

Pb 0.03 0.22 0.21 0.00 0.16 0.39

Sn 0.18 0.23 0.10 0.32 0.00 0.17

Zn 0.00 0.23 0.32 0.37 0.08 0.00

This table displays the trading volume weight matrix of the commodi-
ties aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn) and
zinc (Zn)

Table 8 Common weight matrix
(C)

Al Cu Ni Pb Sn Zn

Al 0.00 0.13 0.23 0.20 0.25 0.20

Cu 0.13 0.00 0.15 0.30 0.22 0.20

Ni 0.21 0.18 0.00 0.18 0.14 0.30

Pb 0.16 0.23 0.11 0.00 0.28 0.23

Sn 0.19 0.23 0.08 0.36 0.00 0.14

Zn 0.25 0.16 0.25 0.24 0.11 0.00

This table displays the common weight matrix of the commodities
aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn) and zinc
(Zn)

by a small sample size, could further harm the results, our analysis detects numerous
significant responses.

Within this subsection, we first investigate the GIRFs of the individual, commodity-
specific VAR models, followed by our main results, the GIRF analysis of the global
model. Hereby, we examine the effects of the commodity-specific variables to shocks
within the commodity markets as well as the effects of global shocks, i.e., shocks
in the economic activity, exchange rates and interest rates, on commodity markets.
Subsequently, we underline our findings through a GFEVD analysis, as well as a
correlation analysis and conclude with a discussion of our results.
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Table 9 GIRF results of the
individual VAR models

Al Cu Ni Pb Sn Zn
s d p s d p s d p s d p s d p s d p

s + + + + + + + + + +

d + + + + + + + + +

p + + + + + + + + +

Results of GIRF analysis for the individual, commodity-specific VAR
models, showing the response of the column variables to a shock of
the row variables supply (s), demand (d) and price (p) of aluminum
(Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn) and zinc (Zn), where
significant positive (+) or negative (−) effects are displayed, based on
the 68%- level

4.3.1 Individual VARmodels

First,we examine the spillover effectswithin the individual industrialmetalmarkets, by
analyzing the GIRFs of the commodity-specific VAR models. Therefore, we estimate
each industrial metal market separately, with the commodity-specific variables supply,
demand and price, via individual VAR(1) models, according to Eq.1. Hereby, we
include the exogenous variables world gross domestic product (GDP), federal funds
rate (FFR) and US dollar index (FX), with one lag, to account for the impact of
macroeconomic factors on the commodity markets.11

To aggregate theGIRF results of each individual commoditymarket and to facilitate
the comparison with the corresponding results of the GVAR model, we present the
results of the GIRF analysis in Table 9, where we indicate significant positive, or
negative, responses of the column variables to a shock in the row variables, by a (+)
or (-) respectively.

Hereby, supply and demand interact positively to each other for copper and lead,
while supply and price positively interact in the nickel and tin markets. This is rather
counterintuitive, since we would expect an inverse reaction of price (demand) on
supply (price) shocks. However, we observe a synchronous behavior between demand
and price in the zinc market. As the GIRF methodology investigates direct as well as
indirect effects on the attributes to an innovation of one standard deviation in a certain
variable, the observed reactions may be caused by unobservable, indirect effects. In
contrast, we detect no significant spillover effects in the aluminum market.

11 The results of the Breusch-Godfrey test, the multivariate ARCH-LM test and the OLS-CUSUM test to
each commodity-specificVARmodel indicate neithermodel suffers fromautocorrelation, heteroscedasticity
nor structural breaks at the 5% significance level, except the nickel market, see Table 28. The Henze-Zirkler
test for normality shows the VAR models of aluminum, nickel, lead, tin and zinc have multivariate normal
distributed residuals, while the Henze-Zirkler test rejects the null hypothesis of multivariate normality for
the copper market. We estimate the VAR models via ordinary least squares, therefore, multivariate normal
distributed residuals are, in general, not required. However, we estimate the GIRFs under the assumption
of normal errors, based on Eq.8. We only provide the GIRFs of the individual VAR models as preliminary
analysis, to allow for a comparison of the GVAR model with individual commodity market models. As we
estimate the GVARmodel with one lag, we do not adjust the specifications of the VAR model of the copper
market, although the corresponding residuals show a non-normal behavior. Hereby, we keep in mind the
true GIRFs may deviate from the presented ones.
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Besides the spillover effects within the individual commodity markets, we also
investigate the impact of shocks to the exogenous variables to the commodity markets.
In particular,we examinehow the commodity-specificvariables respond to innovations
in the economic activity, the exchange rate or the interest rate. Therefore,wefirstmodel
the exogenous variables, world gross domestic product (GDP), US dollar index (FX)
and federal funds rate (FFR), via a VAR(1) model.12 Subsequently, we derive the
impact of a shock to each exogenous variable on the individual commodity markets,
using Eq.15, and display the responses in analogy to the GIRF analysis of shocks
within the commodity markets in Table 10.

Overall, theGIRF analysis reveals the shocks to themacroeconomic variables affect
each commodity market to a similar extent. Hereby, an increase in the global demand,
indicated by a positive shock in the world GDP, leads to significantly rising supply,
demand and prices, except for the copper supply. The reduction in copper supply
might be explainable via its role as leading indicator of the global economic situation.
Hence, the copper productionmight already have been cut back, although the economy
is currently still on the rise. Moreover, in line with Vansteenkiste (2009), a positive
shock to the exchange rate, reflecting an appreciation of the dollar, leads to decreasing
values in all metal markets, except for the copper supply, which responds positively,
again underlining the special position of copper.

In addition, the reactions of the supply side to a contrarian monetary policy, i.e.,
represented by a positive shock to the interest rate, are mixed.While the supply of lead
and zinc decrease, contrary to Frankel (2008), a positive shock in the interest rate leads
to an increase in the production volume of tin, probably due to the more profitable
extraction of commodities in high interest rates environments. Further, the contrarian
monetary policy implies increasing commodity-specific demand and price, which is in
contrast to the hypothesized inverse relation of Frankel (2008), who states the cost of
capital for holding a commodity should decrease in times of an expansionarymonetary
policy, while simultaneously the demand for commodities, acting as an alternative
asset class, should increase. However, Frankel (2008) can confirm his theory in the
empirical analysis of commodity prices only in the period from 1950 to 1979 (2005),
whereas the observed relation between interest rates and commodity prices is positive
in the period from 1980 (1976) to 2005, underlining the direction of relation between
monetary policy and commodity prices changed over time. Hereby, the observed,
positive correlation could indicate the central bank reacts to high commodity prices
via the interest rate, and thus, prices run ahead of the interest rate.

Overall, we detect the commodity markets react to shocks in the global economy
as well as in the individual commodity markets. However, as the aluminum market
does not exhibit any spillover effects, one may conclude microeconomic information
of supply and demand is already included in the price of aluminum, see Lutzenberger
et al. (2017), inducing their consideration is irrelevant and neglectable in modern com-
modity markets. However, the individual industrial metal market models do not reflect

12 The results of the Breusch-Godfrey test, the multivariate ARCH-LM test and the OLS-CUSUM test
to the VAR model indicate the model does not suffer from autocorrelation, heteroscedasticity or structural
breaks at the 1% significance level, see Table 28. Moreover, the Henze-Zirkler test for normality shows the
VAR model has multivariate normal distributed residuals.
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Table 10 GIRF results of the individual VAR models for shocks in exogenous variables

Al Cu Ni Pb Sn Zn
s d p s d p s d p s d p s d p s d p

GDP + + + − + + + + + + + + + + + + +

FX − − − + − − − − − − − − − − − −
FFR + + + + + + − − + + + − +

Results of GIRF analysis for the individual, commodity-specific VAR models, showing the response of the
column variables to a shock of the row variables world gross domestic product (GDP), US dollar index
(FX) and the federal funds rate (FFR), where significant positive (+) or negative (−) effects are displayed,
based on the 68%- level

spillover effects between the commodities yet, which is why we turn our attention to
the results of the GVAR models.

4.3.2 Global VARmodel

To account for interdependencies between commodity markets, we apply the GVAR
model, according to Eq.6, on the industrial metal markets, whereby we include the
impact of macroeconomic factors on the commodity markets via the exogenous vari-
ables world gross domestic product (GDP), US dollar index (FX) and federal funds
rate (FFR). Hereby, we estimate the GVAR13 model several times, using the different
weight matrices supply (S), demand (D), trading (T) and common (C), as outlined in
Sect. 4.2.2, for a comparison between the possible linkages of commodity markets.

To aggregate the GIRFs and to provide an holistic overview of the results, we
indicate significant positive, or negative, responses of the column variables to a shock
in the row variables, by a (+) or (−), in Table 11. Hereby, we differentiate between the
models with weight matrices supply (S), demand (D), trading (T) and common (C),
respectively.

The diagonal of Table 11 shows significant results for all variables and weight
matrix combinations, which is rather unsurprising, as it captures the effect of a shock
to the response variable itself. Despite the concerns of false negatives within GIRF
analyses, we obtain numerous significant GIRFs in the cross-commodity dimension,
underlining the importance of jointly modeling commodity markets and making the
findings of the framework even more pronounced.

Regarding the differences between the weight matrices, the GVARmodel using the
demand weight matrix detects more spillover effects, compared to the other mod-
els, indicating the relations between commodities may be best modeled by their

13 We estimate the GVAR models with one lag for the endogenous as well as exogenous variables, due
to data limitations. While the results of the Breusch-Godfrey test, the multivariate ARCH-LM test and the
OLS-CUSUM test indicate neither model suffers from autocorrelation, heteroscedasticity nor structural
breaks, the Henze-Zirkler test implies the residuals of the GVAR model, based on the different weight
matrices, are multivariate normal distributed, see Table 28. As the extension of the lag length to validate the
stability of the parameters is not feasible from the statistical point of view, we estimate the GVAR model
based on a reduced sample period from 1980 to 2019 for a robustness check of the parameters. Hereby,
the main findings remain valid even some significant impulse response functions vanish due to the small
sample size, indicating the stability of the model.
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co-consumption. Since the GVAR models based on the trading and common weight
matrices represent less spillover effects, the relations between commodities may be
reflected by their co-consumption or co-production, indicating the importance of sup-
ply and demand in the (relation between) commodity markets. As the common weight
matrix simultaneously represents information on co-production, co-consumption and
co-trading with equal weights, the individual effects of the consumption or production
behavior are potentially diminished to a certain extent. Therefore, we focus in the fol-
lowing on the results of the GVAR model with the weight matrix demand (D), based
on information about the co-consumption between commodities.

To start, we compare the results of the individual VAR models to the commodity-
specific results of the GVAR model, before we analyze the spillover effects in the
cross-commodity dimension in detail. Overall, the spillover effects in the individual
commoditymarkets change, as the GVARmodel connects the commoditymarkets and
therefore accounts for unobserved, indirect effects between the commodities,which are
not represented in the individual VARmodels. Hereby, the significant impact between
supply and demand in the coppermarket, aswell as between the zinc demand and price,
vanishes once the interdependence between commodities is included, whereas copper
demand and price significantly influence each other in the GVARmodel, based on the
demandweightmatrix.However, in linewith thefindings of the individualVARmodels
in Table 9, the GVAR analysis also detects no significant responses of aluminum’s
supply, demand and price to shocks on variables of the same commodity.Moreover, the
interdependencies in the nickel, lead and tinmarkets remain valid, indicating theGVAR
models also reflect the spillover effects in the individual commodity markets. Besides
these responses in the individual markets, we observe various effects in the cross-
commodity dimension. In particular, supply variables mostly affect each other, while
the GIRF analysis additionally reveals strong spillover effects between the commodity
demand variables, indicating a positive shock in the demand of one commodity leads
to increasing demand of another commodity, except for the nickel demand, which
responds negatively to a zinc demand shock. Overall, the strong interdependencies
between the commodity-specific demand underlines their demand driven relation.

Moreover, there are several spillover effects between supply and demand variables.
For example, tin demand affects aluminum supply, while copper demand influences
aluminum as well as zinc supply. In addition, the fundamentals influence prices sig-
nificantly. Hereby, the aluminum (nickel) price responds negatively (positively) to
changes in the copper (tin) supply, whereas lead demand affects the copper price.

Further, the GVAR models detect various spillover effects between the commodity
prices. Overall, an increase in one commodity’s price leads to rising prices of the
other commodities, indicating a common behavior in the metals’ prices. In particular,
aluminum, copper, nickel and zinc prices influence each other. Hereby, shocks to the
copper price affect the other commodities,while the copper price reacts only to changes
in the zinc price, indicating a strong impact of copper on the other commoditymarkets.
However, there are no spillover effects from lead and tin prices, probably because these
metals are the smallest in terms of their trading volume.

Regarding the differences between the commodities, tin, the smallest metal market
in terms of the trading volume, is least connected to the other markets, which is
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Table 11 GIRF results of the GVAR models

Al Cu Ni Pb Sn Zn
W s d p s d p s d p s d p s d p s d p

Al s S + +

D + + + −
T +

C + +

d S + + +

D + +

T + + +

C + + +

p S + − + +

D + + +

T + −
C + +

Cu s S − +

D − +

T +

C +

d S + +

D + + + − − +

T + + +

C + +

p S + +

D − + − + + + +

T +

C + +

Ni s S + + −
D +

T + +

C +

d S +

D +

T +

C +

p S + + +

D + + + −
T + + + +

C + +

Pb s S + + + +

D + + +

T +
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Table 11 continued

Al Cu Ni Pb Sn Zn
W s d p s d p s d p s d p s d p s d p

C + + +

d S + + + + + + + +

D + + + + + + +

T + + +

C + + + + + +

p S + +

D +

T + + + +

C +

Sn s S + +

D + + +

T +

C +

d S + + + + + +

D + + + +

T + +

C + + +

p S + +

D + +

T + +

C + +

Zn s S + +

D + +

T + +

C + +

d S + + +

D + − + +

T + + +

C +

p S + + +

D + +

T + +

C + + +

Results of GIRF analysis for the different weight matrices (W) supply (S), demand (D), trading volume (T)
and common (C). We analyze the response of the column variables to a shock of the row variables supply
(s), demand (d) and price (p) of aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn) and zinc (Zn).
Significant positive (+) or negative (−) effects on the 68%- level are displayed
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Table 12 GIRF results of the GVAR models to shocks in the exogenous variables

Al Cu Ni Pb Sn Zn
W s d p s d p s d p s d p s d p s d p

GDP S + + + − + + + + + + + + + + + +

D + + + − + + + + + + + + + + + +

T + + + − + + + + + + + + + + + +

C + + + − + + + + + + + + + + + +

FX S − − − + − − − − − − − − − − − − −
D − − − + − − − − − − − − − − − − −
T − − − + − − − − − − − − −
C − − − + − − − − − − − − − − − − −

FFR S + + + + + + + − − + + + − + +

D + + + + + − + + − − + + + − + +

T + + + + + + − − + + + − +

C + + + + − + + − − + + + − + +

Results of GIRF analysis for the different weight matrices (W) supply (S), demand (D), trading volume
(T) and common (C). We analyze the response of the column variables to a shock of the row variables
world gross domestic product (GDP), US dollar index (FX) and federal funds rate (FFR), where significant
positive (+) or negative (−) effects are displayed, based on the 68%- level

reasonable, as it is not co-mined with any of the remaining metals,14 nor is there a
specific, common use case. The lead and nickel markets indicate various significant
spillover effects, whereby lead affects and nickel responds to shocks in the other
commodity markets. However, the majority of spillover effects is from, or to, the
aluminum and copper market. Moreover, these two, most traded, metals also show the
strongest interrelation, albeit their link reflected by the weight matrix demand (D) is
not outstandingly large, see Table 6.

The observed strong spillover effects between these two metals most likely origi-
nate from their common applications in the field of electrical conduction, automotive
and aerospace industries. Hereby, a shock in copper demand affects aluminum’s fun-
damentals, while the aluminum price responds to copper supply and price shocks,
whereas aluminum supply and demand positively influence the copper demand. How-
ever, a shock to the supply of one metal does not lead to any significant reactions in
the supply of the other metal, as aluminum and copper are not co-mined.

Similar to the GIRF analysis of the individual commodity markets, we also exam-
ine the effects of global shocks to the commodity markets modeled by the GVAR
framework, based on the different weight matrices supply (S), demand (D), trading
(T) and common (C). In particular, we examine how the commodity-specific variables
respond to innovations in the global economic activity, reflecting the global demand,
the exchange rate or the interest rate. Therefore, we use the VAR(1) model of the
exogenous variables, world gross domestic product (GDP), US dollar index (FX) and

14 Actually, tin is not co-mined with the other industrial metals. However, as we reflect the supply weight
matrix on the common supply concentration, based on the country-specific production volumes, the weight
matrix displays a co-production relation.
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federal funds rate (FFR), specified in Sect. 4.3.1, and analyze the impacts of a shock
to each exogenous variable on the commodity markets, using the GIRFs derived in
Eq.15. In analogy to the GIRF analysis of shocks within and between the commodity
markets, we display the responses of the commodity markets to innovations in the
exogenous variables in Table 12.

Overall, similar to the analysis of the individual commodity markets, we observe
the shocks to the macroeconomic variables affect each commodity market to a similar
extent, across all models. In particular, an increase in the global demand, associated
with an expansion of the economic activity, leads to an increase in commodity mar-
kets, as production, consumption and prices rise simultaneously, which supports the
synchronized pattern of commodity markets and economic activity, see Issler et al.
(2014). However, the production of copper declines in response to a global demand
increase. Since copper is regarded as a leading indicator of the global economic sit-
uation, copper producers may reduce their supply in times of economic booms, to
prevent their losses due to the subsequent recession phases.

In addition, a positive shock to the US dollar index, representing an appreciation
of the US dollar, leads to decreasing commodity markets. In particular, since the
metals are quoted in US dollars, a stronger US dollar implies the metals become
more expensive for consumers holding other currencies, see Vansteenkiste (2009),
and therefore, the demand and ultimately, the price of the commodities decrease.
Moreover, as the profits of the producers raise, see Vansteenkiste (2009), the copper
supply increases, and therefore, the copper price declines. However, the production
volumes of the othermetals reduce, probably caused by indirect effects of the reduction
in demand, and price, which are also represented in the GIRF analysis at annual
frequency.

Further, a contrarian monetary policy, reflected via a positive interest rate shock,
leads to an increase in the production volume of aluminum, copper and tin. This under-
lines the argument of Akram (2009) and Frankel (2008), who state the extraction of
exhaustible commodities will be more profitable in high interest rates environments.
In contrast, the production volumes of nickel, lead and zinc decrease in response to
a positive interest rate shock, probably again due to indirect effects, also reflected in
the GIRF analysis. In particular, both demand and price increase in response to rising
interest rates, contrary to Frankel (2008), who argues for rising demand and prices in
times of an expansionary monetary policy, as the cost of capital for holding a com-
modity should decrease and the demand for commodities as an alternative asset class
should increase. However, in times of increasing commodity prices, and therefore, a
period of increasing inflation, the central banks raise the interest rates. This rise in
interest rates dampens the boom in commodity prices, but prices continue to rise in
the short-term, which could explain the positive reaction in the metals’ markets.

Overall, the GIRF analysis of the global VAR model of the metal markets detects
the individual commodity markets are strongly interrelated. Various spillover effects
underline innovations in the supply, demand or price of one commodity lead to changes
in the other metal markets. Moreover, shocks in the global economy affect all com-
modity markets simultaneously, where, in particular, a global demand shock leads to
increasing commodity prices.
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4.3.3 Forecast error variance analysis

We further investigate the interdependencies of the variables through a GFEVD anal-
ysis, based on the GVAR model with the demand weight matrix (D). However, the
results are similar to those of the GVAR models based on the supply (S), trading (T),
or common (C) matrix, see Figs. 1, 2, 3 and 4. In Fig. 2, we display the attributes’
forecast errors variances for the model based on the co-consumption relation, which
are decomposed by aggregated shocks of each endogenous variable as their mean of
1 to 10 years ahead.

In general, the forecast error variances are mainly influenced by each variable itself,
in particular, the supply variables’ variances are determined by the commodity-specific
attributes most, whereas demand and prices are equally driven by them, but to a lesser
extent. Hereby, the aluminum and zinc demand are outstanding, as over 50% of their
forecast error variance are explained by other commodities’ variables.

Turning to a commodity-specific perspective, we observe the forecast error vari-
ance of aluminum’s supply is particularly influenced by copper, lead and tin demand,
whereas copper demand and price, followed by lead and tin demand, describe the
forecast error variance of the aluminum demand, underlining the findings of the GIRF
analysis, where copper demand and price, as well as lead, tin, and zinc demand signif-
icantly affect the aluminum demand. Besides aluminum’s fundamentals, the copper
market mostly affects the forecast error variance of aluminum’s price, further high-
lighting the strong impact of copper on the aluminummarket, see Sect. 4.3.2. However,
the strong interdependencies between copper and aluminum are most pronounced in
case of the GVAR model based on the demand side weight matrix, as both metals
are jointly consumed in the field of electrical conduction, automotive and aerospace
industries.

For the coppermarket, the forecast error variances aremainly influenced by its own,
commodity-specific attributes.While supply is equally described by aluminum, nickel,
lead and zinc, a large proportion of the forecast error variance of copper’s demand is
determined by aluminum’s attributes, followed by lead and zinc. Hereby, the strong
impact of aluminum on the copper demand underlines the strong interrelation between
these two metals, probably caused by their co-consumption. While the GIRF analysis
reveals the copper price affects the other commodity prices and the copper price itself
reacts only to changes in the zinc price, the zinc price hast the most pronounced
influence of the external commodities on the copper price’ forecast error variance.

Nickel’s supply andprice forecast error variances aremostly described by aluminum
and copper, whereas the forecast error variance of nickel’s demand can be explained
best by the zinc demand and the lead market. For lead, the forecast error variances
of supply and demand are mainly explained by the variables of zinc, apart from the
contribution of lead’s own variables, underlining the GIRF analysis, which detects
lead’s fundamentals respond significantly to shocks in the zincmarket, probably caused
by their strong co-production relation.Moreover, the variance of lead’s price is affected
by the aluminum, copper and nickel market to a larger extent.

In case of tin, the forecast error variances of supply and price are mostly impacted
by nickel, while aluminummostly explains the forecast error variance of tin’s demand.
Hereby, tin is explained by the other commodities, but rarely contributes to the forecast
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Table 13 Correlation matrix of
spot prices

Al Cu Ni Pb Sn Zn

Al 1.00 0.84 0.76 0.88 0.83 0.29

Cu 0.84 1.00 0.92 0.68 0.90 −0.18

Ni 0.76 0.92 1.00 0.51 0.85 −0.30

Pb 0.88 0.68 0.51 1.00 0.81 0.50

Sn 0.83 0.90 0.85 0.81 1.00 −0.05

Zn 0.29 −0.18 −0.30 0.50 −0.05 1.00

Correlation matrix of adjusted spot prices, between 2010 and 2019

error variances of the other metals itself, underlining tin is least connected to the other
markets, as it is not co-mined with any of the remaining metals, nor is there a specific
common use case. Further, zinc’s supply and demand variances are mostly related to
lead, followed by tin, whereas the forecast error variance of zinc’s price is determined
by copper, in particular by the copper price, followed by lead. In line with the results of
the GIRF analysis, copper and zinc prices help explaining the metal prices’ variances,
further underlining the strong impact of copper in commodity markets.

4.3.4 Correlation matrices

To highlight our framework’s ability to represent the co-movement in commodity
prices, we compare the price correlations induced by the GVARmodel with themarket
observed correlations. Therefore, we split our dataset into an expanding in-sample
window with data from 1971 to 2009 and an out-of-sample window covering the
years 2010 to 2019. For each step in time of the out-of-sample window, we estimate
the GVAR model based on the in-sample data and forecast all commodities’ annual
prices one-step ahead. Subsequently, we calculate Pearson correlation matrices, using
the predicted or observed prices, respectively.

The correlation matrices’ comparison, presented in Tables 13, 14, 15, 16 and 17,
highlights the dependencies between the commodity markets are well modeled by our
framework, except for zinc. Hereby, our focus is on the replication’s accuracy of the
observed co-movement, where the predictive power of the models are not evaluated in
further detail. In particular, the correlations observed from the GVAR models based
on the different weight matrices supply (S), demand (D), trading (T), or common (C),
are similar. Apart from the negative relation between zinc and the other metals, which
is not reflected, the GVAR framework performs exceptionally well, with differences
in the correlations for the predicted and real prices being smaller than 10%, except for
the links between copper and lead, as well as nickel and lead.

4.4 Discussion

In general, the literature regards, inter alia, two perspectives on commodity markets.
First, the classical fundamental theory, which states a good’s price is the result of its
supply and demand equilibrium, see Hotelling (1931) andDeaton and Laroque (2003).
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Table 14 Correlation matrix of
predicted prices based on the
GVAR model with supply
weight matrix

Al Cu Ni Pb Sn Zn

Al 1.00 0.84 0.67 0.88 0.78 0.86

Cu 0.84 1.00 0.88 0.76 0.88 0.62

Ni 0.67 0.88 1.00 0.59 0.78 0.41

Pb 0.88 0.76 0.59 1.00 0.86 0.94

Sn 0.78 0.88 0.78 0.86 1.00 0.71

Zn 0.86 0.62 0.41 0.94 0.71 1.00

Correlation matrix of adjusted spot prices, using the GVAR framework
withweightmatrixS, in an out-of-sample rollingwindow forecast from
2010 to 2019

Table 15 Correlation matrix of
predicted prices based on the
GVAR model with demand
weight matrix

Al Cu Ni Pb Sn Zn

Al 1.00 0.91 0.75 0.88 0.86 0.85

Cu 0.91 1.00 0.88 0.80 0.93 0.65

Ni 0.75 0.88 1.00 0.74 0.91 0.56

Pb 0.88 0.80 0.74 1.00 0.86 0.95

Sn 0.86 0.93 0.91 0.86 1.00 0.69

Zn 0.85 0.65 0.56 0.95 0.69 1.00

Correlation matrix of adjusted spot prices, using the GVAR framework
with weight matrix D, in an out-of-sample rolling window forecast
from 2010 to 2019

Table 16 Correlation matrix of
predicted prices based on the
GVAR model with trading
weight matrix

Al Cu Ni Pb Sn Zn

Al 1.00 0.83 0.67 0.83 0.76 0.80

Cu 0.83 1.00 0.95 0.79 0.94 0.77

Ni 0.67 0.95 1.00 0.66 0.88 0.68

Pb 0.83 0.79 0.66 1.00 0.87 0.97

Sn 0.76 0.94 0.88 0.87 1.00 0.82

Zn 0.80 0.77 0.68 0.97 0.82 1.00

Correlation matrix of adjusted spot prices, using the GVAR framework
withweightmatrixT, in anout-of-sample rollingwindowforecast from
2010 to 2019

Table 17 Correlation matrix of
predicted prices based on the
GVAR model with common
weight matrix

Al Cu Ni Pb Sn Zn

Al 1.00 0.89 0.80 0.89 0.82 0.90

Cu 0.89 1.00 0.95 0.84 0.93 0.83

Ni 0.80 0.95 1.00 0.81 0.93 0.81

Pb 0.89 0.84 0.81 1.00 0.90 0.99

Sn 0.82 0.93 0.93 0.90 1.00 0.87

Zn 0.90 0.83 0.81 0.99 0.87 1.00

Correlation matrix of adjusted spot prices, using the GVAR framework
with weight matrix C, in an out-of-sample rolling window forecast
from 2010 to 2019
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Second, the analysis of the empirical observed common patterns in commodity prices,
the so-called co-movement in prices, see Pindyck and Rotemberg (1990).While Basak
and Pavlova (2016) theoretically combine the two differing, yet valid perspectives on
commodity markets, our framework provides the possibility to empirically combine
both.

The literature on the impact of microeconomic supply and demand factors on prices
is small, probably due to data restrictions. Hereby,most of the previous studies approx-
imate the demand for commodities by economic growth indicators, see, for example,
Ahumada and Cornejo (2014),Borensztein and Reinhart (1994),Deaton and Laroque
(2003),Helbling et al. (2008),Kilian (2009) andStuermer (2018). Someof the few stud-
ies with commodity-specific supply and demand variables are Thomas et al. (2010)
and Chen et al. (2019), which investigate the impact of supply, demand and specu-
lation on the price of oil and copper, respectively, but are hereby unable to account
for cross-commodity linkages. In contrast, various studies examine the common pat-
tern in commodity prices, the so-called co-movement, see Byrne et al. (2013),Chen
et al. (2014),Le Pen and Sévi (2017),Nicola et al. (2016),Pindyck and Rotemberg
(1990),Tang and Xiong (2012),West and Wong (2014) and Zhang et al. (2019), but do
hereby not account for the commodity-specific impact of supply and demand.

However, through the application of our frameworkon the industrialmetalsmarkets,
we highlight commodity-specific supply and demand still have a significant impact on
commodity prices.While previous studies on the co-production, see Jordan (2017) and
Nassar et al. (2015) among others, or the co-consumption of metals, see Shammugam
et al. (2019), only analyze their effect on prices, our framework allows for a holistic
model of commodity markets. Hence, we are able to disentangle single-market effects
from inter-market effects, while controlling for macroeconomic drivers. The relevance
of the interdependencies between commodity markets is further underlined by our
model’s ability to represent the actual co-movement between the commodities’ prices,
in line with Tang and Xiong (2012), see Sect. 4.3.4.

Overall, theGVARmodel provides an empirical framework to jointly investigate the
co-movement between prices, as well as the impact of commodity-specific supply and
demand on prices. Thereby, the GVARmodel contributes new insights to the literature,
as it disentangles single-market effects from inter-market effects, while controlling for
macroeconomic factors. In particular, the numerous significant spillover effects in the
cross-commodity dimension underline the importance of jointly modeling commodity
markets.

5 Conclusion

In this study, we develop a framework to unite two perspectives on commodity
markets, the classical fundamental theory and the empirical observation of (excess)
co-movement and detect, by the frameworks’ application on industrial metal markets,
significant responses of prices to innovations in cross-commodity, microeconomic and
price variables.

In a first step, wemodel each commoditymarket separately using vector autoregres-
sion models with the microeconomic, commodity-specific variables supply, demand
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and price, as well as the world gross domestic product, the US dollar index and the
federal funds rate, as exogenous, macroeconomic attributes. In a second step, infor-
mation on co-production, co-consumption and co-trading of the commodities is used
to link the individual VAR models into our final global vector autoregression model,
allowing us to analyze interdependencies between the markets.

In the empirical application of our framework,we are able to represent the strong co-
movement in commodity prices. Additionally, we detect a strong connection between
the aluminum and copper market, originating from their joint consumption. More-
over, we reveal the fundamentals are still important, as we observe various spillover
effects of supply and demand, both within and across commodity markets, where, in
particular, microeconomic variables still influence prices significantly. In addition, we
examine shocks to macroeconomic variables affect each commodity market to a simi-
lar extent. Especially, an increase in the global demand, associated with an expansion
of the economic activity, leads to an increase in commodity markets, as production,
consumption and prices rise simultaneously, which supports the synchronized pattern
of commodity markets and economic activity.

Further research could extend the framework on other commodity classes, such
as agricultural and energy commodities, or even model them jointly with the metal
markets in a regional GVAR framework. Moreover, an extension for time-varying
parameters might provide deeper inside in the commodity market structure and prob-
ably disentangles whether the markets are more or less connected in calm or volatile
periods.
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Appendix A Data description

Data sources for our commodity price series aswell as themacroeconomic variables
are provided in Table 18.

Further, descriptive statistics of the stationary variables included in our empirical
analysis, the results of the ADF test for stationarity of the return data, as well as the
results of the Shapiro–Wilk test for normality, are given in Table 19. In our analysis, we
further standardize these returns such that they have zero mean and standard deviation
one, but use the original variable names unadjusted, i.e., supply, demand and price.

Appendix B Calculation of weight matrix demand (D)

To define a weight matrix based on demand-sided information, we analyze the
industries the commodities are consumed in. Hereby, we approximate the world
economy by five industries, which in summary account for 75% to over 90%
of the demand for the metals considered in the analysis. These industries are
Automotive/Transportation, Chemistry/Pharmaceutics, Electrics, Construction and
Mechanical Engineering. We take worldwide consumption data from Brandtzæg
(2018) and Leder (2020), hereby implying that the proportion between the industries
remains unchanged over the investigated time period.

The consumption of aluminum per industry, provided by Brandtzæg (2018) is given
in Table 20. In order to join the different usage of the commodities, we assume that the
consumption of aluminum for Foil, Packaging, Consumer Goods and Other is zero.
The corresponding consumption per industry, displayed in Table 2, is used as input
data for the calculation of the weights according to Eq.18. We note that aluminum is
mainly used in the automotive sector as well as for construction, whereas there is no
consumption in the chemistry industry.

The worldwide consumption per industry of copper, according to Leder (2020),
is displayed in Table 21. We assign these branches, as shown in Table 26, to the
five industries and get the corresponding weights. As Trade and Other cannot be
matched to our five industries in a reasonable way, we assume that its proportion is
zero. Similar to aluminum, copper is not used in the Chemistry/Pharmaceutics sector,
while its majority is utilized for Electrics purposes.

As displayed in Table 22, more than half of the worldwide amount of nickel is
used for Stainless Steel, see Leder (2020), which we equally attribute to the industries
Automotive/Transportation, Construction andMechanical Engineering, see Table 26.
We further assume that the consumption of nickel for Nickel alloys, Platings, Steel
refiner, Foundries and Other is zero, to join the different usages of the commodities.

Table 23 displays the consumption of lead per industry, according to Leder (2020),
where we are able to assign all of the consuming branches to our five industries, as
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Table 20 Aluminum
consumption

Industry %

Automotive/Transportation 0.26

Construction industry 0.24

Mechanical and Plant Engineering 0.11

Electrical Engineering 0.11

Foil 0.08

Packaging 0.08

Consumer goods 0.06

Other 0.06

This table displays the proportion of aluminum (Al) consumption per
industry

Table 21 Copper consumption Industry %

Cables and electrics 0.57

Construction industry 0.15

Automotive 0.09

Mechanical Engineering 0.08

Trade 0.05

Other 0.06

This table displays the proportion of copper (Cu) consumption per
industry

Table 22 Nickel consumption

Industry %

Stainless steel (Automotive, Construction, Mechanical Engineering) 0.57

Electrical Engineering 0.03

Nickel alloys 0.13

Platings 0.11

Steel refiner 0.09

Foundries 0.06

Other 0.01

This table displays the proportion of nickel (Ni) consumption per industry

displayed in Table 26. The majority of lead is used in the Electrics sector, as well as
in Construction,Mechanical Engineering and Chemistry/Pharmaceutics, but none in
the Automotive/Transportation industry.

In Table 24, we display the demand for tin per industry, where we neglect the
consumption for Brass bronze, Float glass, Packaging (tinplate) as well as Other,
since no direct assignment of these usages to the five considered industries is possible.
Hereby, the main use of tin is in Electrics, followed by the Chemistry/Pharmaceutics
sector.
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Table 23 Lead consumption

Industry %

Electrical Engineering (Lead-acid batteries) 0.74

Construction (Roof, Facade) 0.06

Plant construction (Radiation Protection, Anodes) 0.06

Chemistry (Pigments) 0.05

Other (Alloys, Cable Sheath, Glass) 0.09

This table displays the proportion of lead (Pb) consumption per industry

Table 24 Tin consumption Industry %

Electronics industry (solder) 0.52

Chemical industry (PVC stabilizer) 0.15

Brass bronze 0.06

Float glass 0.02

Packaging (tinplate) 0.16

Other 0.09

This table displays the proportion of tin (Sn) consumption per industry

Table 25 Zinc consumption Industry %

Automotive Engineering (Galvanizing) 0.50

Construction (Zinc, Brass Products) 0.23

Chemistry / Pharmaceutics 0.06

Other (Zinc casting alloys) 0.21

This table displays the proportion of zinc (Zn) consumption per indus-
try

Finally, we consider the consumption of zinc by industries, displayed in Table 25.
Since the pointOther (Zinc casting alloys) is rather unspecific, we neglect it for further
calculations. The assigned branches are displayed in Table 26. Zinc is mainly used in
the Automotive/Transportation sector, whereas there is no significant application for
Electrics andMechanical Engineering, according to Leder (2020). There is also only
few consumption in the industries Chemistry/Pharmaceutics and Construction.

123



The three co’s to jointly model commodity markets...

Ta
bl
e
26

C
om

m
od

ity
—

in
du

st
ry

m
ap
pi
ng

A
ut
om

ot
iv
e/

T
ra
ns
po
rt
at
io
n

C
he
m
is
tr
y/

Ph
ar
m
ac
eu
tic
s

E
le
ct
ri
cs

C
on
st
ru
ct
io
n

M
ec
ha
ni
ca
l

E
ng

in
ee
ri
ng

A
l

A
ut
om

ot
iv
e/

T
ra
ns
po
rt
at
io
n

–
E
le
ct
ri
ca
lE

ng
in
ee
ri
ng

B
ui
ld
in
g
In
du
st
ry

M
ec
ha
ni
ca
la
nd

Pl
an
t

E
ng

in
ee
ri
ng

C
u

A
ut
om

ot
iv
e

–
C
ab
le
s
an
d
E
le
ct
ri
cs

B
ui
ld
in
g
In
du

st
ry

M
ec
ha
ni
ca
l

E
ng

in
ee
ri
ng

N
i

St
ai
nl
es
s
St
ee
l

(a
ut
om

ot
iv
e,

co
ns
tr
uc
tio

n,
m
ec
ha
ni
ca
l

en
gi
ne
er
in
g)

–
E
le
ct
ri
ca
le
ng
in
ee
ri
ng

St
ai
nl
es
s
St
ee
l

(a
ut
om

ot
iv
e,

co
ns
tr
uc
tio

n,
m
ec
ha
ni
ca
l

en
gi
ne
er
in
g)

St
ai
nl
es
s
st
ee
l

(a
ut
om

ot
iv
e,

co
ns
tr
uc
tio

n,
m
ec
ha
ni
ca
l

en
gi
ne
er
in
g)

Pb
–

C
he
m
is
tr
y

E
le
ct
ri
ca
lE

ng
in
ee
ri
ng

&
O
th
er

C
on

st
ru
ct
io
n

Pl
an
tC

on
st
ru
ct
io
n

Sn
–

C
he
m
ic
al
In
du
st
ry

(P
V
C
st
ab
ili
ze
r)

E
le
ct
ro
ni
cs

in
du
st
ry

(s
ol
de
r)

–
–

Z
n

A
ut
om

ot
iv
e

E
ng

in
ee
ri
ng

C
he
m
is
tr
y
/

Ph
ar
m
ac
eu
tic
s

–
C
on

st
ru
ct
io
n

T
hi
s
ta
bl
e
di
sp
la
ys

th
e
m
ap
pi
ng

of
th
e
in
du

st
ry

da
ta

fo
r
al
um

in
um

(A
l)
,
co
pp

er
(C

u)
,
ni
ck
el

(N
i)
,
le
ad

(P
b)
,
tin

(S
n)

an
d
zi
nc

(Z
n)

to
th
e
fiv

e
in
du

st
ry

se
ct
or
s
A
ut
om

o-
tiv

e/
T
ra
ns
po
rt
at
io
n,

C
he
m
is
tr
y/
Ph

ar
m
ac
eu
tic
s,
E
le
ct
ri
cs
,C

on
st
ru
ct
io
n
an
d
M
ec
ha
ni
ca
lE

ng
in
ee
ri
ng

123



A. Schischke et al.

Appendix C Test results

See Tables 27, 28 and 29.

Table 27 Test results for autocorrelation, heteroscedasticity, structural breaks and normality

DW ARCH CUSUM HZ
Supply Demand Price
Stat. p Stat. p Stat. p Stat. p Stat. p Stat. p

Individual VAR Al 1.96 0.43 1.88 0.34 2.17 0.70 43.51 0.18 0.88 0.42 0.59 0.64

Cu 2.05 0.56 2.02 0.53 1.90 0.37 26.96 0.86 0.90 0.39 0.94 0.04

Ni 1.74 0.18 1.88 0.34 1.99 0.48 18.79 0.99 0.58 0.90 0.72 0.29

Pb 2.04 0.57 1.76 0.22 2.04 0.57 32.48 0.64 0.80 0.55 0.60 0.60

Sn 2.18 0.73 2.05 0.58 1.95 0.45 37.72 0.39 0.90 0.39 0.80 0.16

Zn 1.97 0.46 1.79 0.25 1.80 0.25 30.11 0.74 0.83 0.50 0.63 0.52

S Al 2.15 0.69 1.92 0.40 2.21 0.76 40.63 0.27 0.48 0.98 1.00 0.35

Cu 2.23 0.77 2.01 0.51 1.91 0.39 35.15 0.51 0.68 0.74 1.00 0.35

Ni 1.86 0.33 1.88 0.34 2.22 0.76 32.12 0.65 0.57 0.90 1.00 0.35

Pb 1.96 0.50 1.77 0.28 2.24 0.81 52.35 0.04 0.61 0.85 1.00 0.35

Sn 2.01 0.52 2.28 0.81 1.98 0.47 21.04 0.98 0.55 0.92 1.00 0.35

Zn 1.98 0.44 1.90 0.34 1.53 0.06 27.57 0.84 0.75 0.62 1.00 0.35

D Al 2.00 0.49 2.01 0.50 2.20 0.72 32.86 0.62 0.42 0.99 1.00 0.15

Cu 2.20 0.74 2.05 0.57 1.90 0.37 41.32 0.25 0.71 0.70 1.00 0.15

Ni 1.95 0.42 1.84 0.30 2.31 0.83 20.21 0.98 0.69 0.72 1.00 0.15

Pb 1.94 0.44 1.73 0.21 2.24 0.79 41.94 0.23 0.57 0.91 1.00 0.15

Sn 2.04 0.55 2.24 0.78 1.99 0.49 18.05 0.99 0.57 0.90 1.00 0.15

Zn 1.97 0.47 1.78 0.24 1.70 0.17 15.63 1.00 0.69 0.73 1.00 0.15

T Al 2.06 0.58 2.16 0.69 2.20 0.73 38.56 0.35 0.47 0.98 1.00 0.54

Cu 2.20 0.74 2.09 0.61 2.07 0.59 31.22 0.70 0.64 0.80 1.00 0.54

Ni 1.90 0.37 1.86 0.32 2.22 0.76 24.84 0.92 0.77 0.59 1.00 0.54

Pb 2.08 0.64 1.88 0.39 2.13 0.70 49.08 0.07 0.69 0.73 1.00 0.54

Sn 1.93 0.41 2.37 0.88 1.96 0.45 20.86 0.98 0.61 0.85 1.00 0.54

Zn 2.00 0.46 1.81 0.23 1.53 0.06 24.11 0.93 0.91 0.38 1.00 0.54

C Al 2.01 0.51 1.94 0.41 2.23 0.76 27.66 0.84 0.36 1.00 1.00 0.22

Cu 2.30 0.83 1.96 0.44 1.91 0.38 42.37 0.22 0.68 0.75 1.00 0.22

Ni 1.96 0.43 1.90 0.36 2.37 0.87 28.55 0.81 0.64 0.81 1.00 0.22

Pb 1.96 0.49 1.87 0.38 2.33 0.87 50.31 0.06 0.51 0.96 1.00 0.22

Sn 1.94 0.43 2.26 0.79 2.02 0.52 24.51 0.93 0.60 0.86 1.00 0.22

Zn 2.01 0.47 1.85 0.28 1.66 0.12 26.59 0.87 0.78 0.58 1.00 0.22

This table displays the results of the Durbin-Watson (DW) test for autocorrelation, the multivariate ARCH-
LM (ARCH) test for heteroscedasticity, the OLS-CUSUM (CUSUM) test for structural breaks and the
Henze-Zirkler (HZ) test for normality. Hereby, the Durbin-Watson test is applied on each, individual
regression equation of the VARmodel, corresponding to the commodity-specific supply, demand and price,
whereas the multivariate ARCH-LM test and the OLS-CUSUM test are applied on the commodity-specific
VAR models, and the Henze-Zirkler test is applied on the final residuals. In particular, we report the test
results for the individual VAR models, the GVAR models based on the weight matrices supply (S), demand
(D), trading (T) and common (C)
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Table 28 Test results for autocorrelation, heteroscedasticity, structural breaks and normality

BG ARCH CUSUM HZ
Stat p Stat p Stat p Stat p

individual VAR Al 1.14 0.31 43.51 0.18 0.88 0.42 0.59 0.64

Cu 0.95 0.56 26.96 0.86 0.90 0.39 0.94 0.04

Ni 1.89 0.01 18.79 0.99 0.58 0.90 0.72 0.29

Pb 1.09 0.37 32.48 0.64 0.80 0.55 0.60 0.60

Sn 1.02 0.46 37.72 0.39 0.90 0.39 0.80 0.16

Zn 1.26 0.19 30.11 0.74 0.83 0.50 0.63 0.52

S Al 1.36 0.15 40.63 0.27 0.48 0.98 1.00 0.35

Cu 1.14 0.33 35.15 0.51 0.68 0.74 1.00 0.35

Ni 1.22 0.25 32.12 0.65 0.57 0.90 1.00 0.35

Pb 1.49 0.09 52.35 0.04 0.61 0.85 1.00 0.35

Sn 0.90 0.64 21.04 0.98 0.55 0.92 1.00 0.35

Zn 1.41 0.12 27.57 0.84 0.75 0.62 1.00 0.35

D Al 1.11 0.36 32.86 0.62 0.42 0.99 1.00 0.15

Cu 0.81 0.75 41.32 0.25 0.71 0.70 1.00 0.15

Ni 1.51 0.09 20.21 0.98 0.69 0.72 1.00 0.15

Pb 0.84 0.72 41.94 0.23 0.57 0.91 1.00 0.15

Sn 0.88 0.67 18.05 0.99 0.57 0.90 1.00 0.15

Zn 0.92 0.60 15.63 1.00 0.69 0.73 1.00 0.15

T Al 1.00 0.50 38.56 0.35 0.47 0.98 1.00 0.54

Cu 1.00 0.50 31.22 0.70 0.64 0.80 1.00 0.54

Ni 1.56 0.07 24.84 0.92 0.77 0.59 1.00 0.54

Pb 1.11 0.36 49.08 0.07 0.69 0.73 1.00 0.54

Sn 0.81 0.76 20.86 0.98 0.61 0.85 1.00 0.54

Zn 0.98 0.53 24.11 0.93 0.91 0.38 1.00 0.54

C Al 1.14 0.33 27.66 0.84 0.36 1.00 1.00 0.22

Cu 1.07 0.41 42.37 0.22 0.68 0.75 1.00 0.22

Ni 1.40 0.13 28.55 0.81 0.64 0.81 1.00 0.22

Pb 1.28 0.20 50.31 0.06 0.51 0.96 1.00 0.22

Sn 0.81 0.76 24.51 0.93 0.60 0.86 1.00 0.22

Zn 1.14 0.33 26.59 0.87 0.78 0.58 1.00 0.22

This table displays the results of the Breusch-Godfrey (BG) test for autocorrelation, themultivariate ARCH-
LM (ARCH) test for heteroscedasticity, the OLS-CUSUM (CUSUM) test for structural breaks and the
Henze-Zirkler (HZ) test for normality. Hereby, the Breusch-Godfrey test, the multivariate ARCH-LM test
and the OLS-CUSUM test are applied on the commodity-specific VAR models, and the Henze-Zirkler test
is applied on the final residuals of the GVARmodel. In particular, we report the test results for the individual
VAR models, the GVAR models based on the weight matrices supply (S), demand (D), trading (T) and
common (C)
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Table 29 Test results for
autocorrelation,
heteroscedasticity, structural
breaks and normality

BG ARCH CUSUM HZ
Stat p Stat p Stat p Stat p

1.10 0.35 18.54 0.99 0.57 0.90 0.83 0.13

This table displays the results of the Breusch-Godfrey (BG) test
with the small sample correction of Edgerton and Shukur (1999)
for autocorrelation, the multivariate ARCH-LM (ARCH) test for
heteroscedasticity, the OLS-CUSUM (CUSUM) test for structural
breaks and the Henze-Zirkler (HZ) test for normality. Hereby, the
Breusch-Godfrey (BG) test, the multivariate ARCH-LM test and the
OLS-CUSUM test and the Henze-Zirkler test are applied on the final
residuals of the VAR model for the exogenous variables world gross
domestic product (GDP), the US dollar index (FX), as well as the
federal funds rate (FFR)

Appendix D Figures

See Figs. 1, 2, 3 and 4.

Fig. 1 Aggregated GFEVDplots for weight matrix supply (S). Scaled and aggregatedGFEVDof the GVAR
with weight matrix supply by the mean of 1 to 10 steps ahead per attribute, decomposed by the shocks of
each endogenous variable
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Fig. 2 Aggregated GFEVD plots for weight matrix demand (D). Scaled and aggregated GFEVD of the
GVAR with weight matrix demand by the mean of 1 to 10 steps ahead per attribute, decomposed by the
shocks of each endogenous variable

Fig. 3 Aggregated GFEVD plots for weight matrix trading (T). Scaled and aggregated GFEVD of the
GVAR with weight matrix trading by the mean of 1 to 10 steps ahead per attribute, decomposed by the
shocks of each endogenous variable
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Fig. 4 Aggregated GFEVD plots for weight matrix common (C). Scaled and aggregated GFEVD of the
GVAR with weight matrix common by the mean of 1 to 10 steps ahead per attribute, decomposed by the
shocks of each endogenous variable
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