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ABSTRACT
Single molecules can be used as miniaturized functional electronic components, when contacted by macroscopic electrodes. Mechanosen-
sitivity describes a change in conductance for a certain change in electrode separation and is a desirable feature for applications such as
ultrasensitive stress sensors. We combine methods of artificial intelligence with high-level simulations based on electronic structure the-
ory to construct optimized mechanosensitive molecules from predefined, modular molecular building blocks. In this way, we overcome
time-consuming, inefficient trial-and-error cycles in molecular design. We unveil the black box machinery usually connected to methods of
artificial intelligence by presenting all-important evolutionary processes. We identify the general features that characterize well-performing
molecules and point out the crucial role of spacer groups for increased mechanosensitivity. Our genetic algorithm provides a powerful way to
search chemical space and to identify the most promising molecular candidates.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0155012

I. INTRODUCTION

As the miniaturization of silicon-based electronic devices
reaches the limits of what is technically feasible,1,2 the vision of
molecular electronics becomes increasingly relevant: to build func-
tional electronic units at the molecular scale and to synthesize elec-
tronic circuity through appropriate chemistry bottom-up instead of
conventionally top-down using lithography techniques.3 Electronic
functionality in the form of diodes, transistors, and switches has
been realized at the single-molecule level early on.4,5 Switches can
function through a multitude of mechanisms,6,7 including confor-
mational, electrochemical, and spin switching. The external stimuli
for switching may vary from light to electric fields, temperature,
current, or mechanical control by electrode separation.6 While the
precise switching mechanism may not be clear in every experiment,
a recently emerging research theme is that of mechanosensitive
molecules.8–10 Such molecules change their conductance strongly by
some orders of magnitude for tiny changes in electrode displace-
ment. They may be viewed as mechanically controlled switches.

The functionality may ultimately be used in ultrasensitive quantum
distance sensors.

Mechanical control of electrode separations in single-molecule
junctions may lead to changes at the metal–molecule interface or
internally inside the molecule. We have recently studied a class
of mechanosensitive molecules, where molecule-internal changes
cause huge conductance modulations.8,11–13 Molecules may hence
be viewed as the functional unit, and they all feature two decks of π-
electron systems that can be shifted with respect to each other. The
underlying switching mechanism is a destructive quantum interfer-
ence (DQI) that is established or lifted by mechanical manipulation.
The emergence of DQI depends critically on the energetic align-
ments and shapes of the wave functions of the molecular frontier
orbitals.8,14–16 Seemingly small changes in the molecular structure,
such as para-connectivity vs meta-connectivity, may lead to the
vanishing of DQI in the vicinity of the equilibrium, ground state
molecular geometry and thus to the vanishing of mechanosen-
sitivity.11 Even if a molecule yields a DQI that can be mechan-
ically lifted, its observation may be hampered by a low overall
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electrical conductance or a small switching ratio of highest to low-
est conductance values. Finally, molecules should not be too stiff to
allow for a mechanical manipulation by the typically employed, ra-
ther soft metal electrodes. These factors differ for the molecules stud-
ied so far.8,9,11–13 Thus, while in the class of π-stacked molecules the
underlying mechanisms of mechanosensitivity are well understood,
design rules for molecular structures with enhanced mechanosen-
sitivity are lacking. Development processes so far involve time-
consuming trial-and-error cycles of molecular design.

The idea of inverse molecular design allows overcoming
such inefficient trial-and-error cycles in development processes.17,18

Genetic algorithms are nowadays routinely used in de novo molecu-
lar design studies.19–23 With the help of genetic algorithms, approx-
imate solutions can be found on an affordable time scale. While
much work has been carried out in the field of drug design,24–27

genetic algorithms can also target other applications, for instance,
photovoltaics.28,29

In order to discover optimal mechanosensitive molecules, we
present here a genetic algorithm that searches molecular candi-
dates according to predefined criteria. We combine methods of
artificial intelligence with electronic structure theory to provide
a fast and systematic way to find well-performing molecules at
a high level of accuracy. The candidates should yield (i) a DQI
with a large switching factor, (ii) the average conductance outside
of the DQI dip should be high to facilitate measurements, and
(iii) the molecules should not be too rigid to afford mechanical
manipulation through rather soft metal electrodes. A drawback of
inverse design approaches can be the poor synthesizability of pro-
posed molecules.30 We overcome this issue by constructing them
from synthesizable, modular building blocks in the multifactorial
optimization of electrical and mechanical properties.

II. THEORETICAL APPROACH
In this section, we describe the theoretical approach that we are

using. This involves the genetic algorithm that we developed, the
genetic encoding of molecules, the evolution loop, and the fitness
calculation. The fitness evaluation requires methods to analyze the
electrical and mechanical properties of the molecules. Some techni-
cal details are deferred to Appendixes A and B, including an accuracy
assessment of the estimate of the conductance and the precise fitness
evaluation. The full program code is publicly available at Zenodo,31

and the discussion in this section may be directly followed at the
code.

A. Genetic algorithm
A genetic algorithm is a randomly directed search algorithm

based on evolutionary theory.32 It is driven by natural selection and
survival of the fittest. Evolution is simulated by means of a popula-
tion, consisting of multiple individuals in each generation. The best
individuals from a population are chosen to produce offspring. We
make this choice using a selection scheme, which can be regarded as
deterministic k-tournament selection.33–35 The k fittest individuals
are chosen in each generation to fill a mating pool, from which the
parents are chosen. The basis for the selection process is the so-called
fitness value. This measure can take into account several proper-
ties, which should be weighted and optimized in an appropriate

form. We define measures for the DQI, average conductance, and
rigidity of the molecules, according to the criteria (i) to (iii) men-
tioned above. The genetic information of the parents is inherited
by the offspring to form the new generation. The individuals in the
next generation may be better with an increased chance of survival
due to a higher fitness value. Poorly performing combinations are
instead penalized by a low fitness value. This process is iterated in an
evolution loop until a convergence criterion is reached or until the
evolution is stopped for other reasons. The most important compo-
nents of a genetic algorithm are the genetic encoding, the evolution
loop with the corresponding selection scheme and genetic operators,
and the fitness evaluation.36 We will describe these aspects in the
following subsections.

B. Genetic encoding
The genetic encoding of individuals depends on the nature

of the studied problem37 and needs to capture the important
adjustment screws. In recent years, a lot of research has been
carried out on the representation of molecules for machine learning
techniques.18,26,38–40 Due to the special problem studied here, i.e., the
contacting of a molecule by macroscopic electrodes, we developed
a tailored representation. We use a fragment-based, gradient-free
approach,26,41 where we generate new molecules from relevant sub-
structures. Usually, fragmentation algorithms are applied to large
molecular databases in order to determine these components in
similar studies.42,43 For the molecules considered here, this is not
expedient because of the complexity and specificity of the features
sought.

Based on previous analysis and literature results, we have iden-
tified specific building blocks and their coupling configurations as
essential for creating mechanosensitive molecules. The molecular
building blocks are depicted in Fig. 1. The interaction of π-electron
systems44,45 has been found to be a key component of mechanosen-
sitive molecules.8,9,11,46 Thus, we build candidates from modular
molecular blocks that include such π-stacked components (see
blocks 3–7 in Fig. 1). In addition, we added simple spacer blocks,
such as acetylene, benzene, and naphthalene, to provide more flexi-
bility to the molecules (see blocks 0–2 in Fig. 1). These spacers can
separate π-stacked units from each other or increase the distance of
the functional stacks from the electrodes.

The importance of spacers for DQI features has been investi-
gated in the past,47–49 but to the best of our knowledge it has not yet
been studied much in the context of mechanosensitivity. Tsuji and
co-workers50 showed that such spacers cannot lead to a vanishing of
DQI in the energy-dependent transmission of π-conjugated hydro-
carbons but that they can alter the transmission behavior. Therefore,
we include those spacers as an additional degree of freedom.

Apart from the building blocks, the coupling among themselves
and to the electrode anchors is important. [2.2]Paracyclophane
(block 3 in Fig. 1), for example, exhibits an experimentally observ-
able DQI for the para configuration but no DQI for meta-coupling.11

For the sake of simplicity, we concentrate here exclusively on para-
and meta-substitution patterns.51

The geometric degrees of freedom must be reproduced by the
genetic encoding, and an example is given in Fig. 2. Each molecule is
encoded from the left to the right in an alternating list of couplings
and molecular blocks. The length of the molecule is determined by
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FIG. 1. Molecular building blocks used to construct mechanosensitive molecules. Green carbon atoms indicate the “left” coupling point. Red carbon atoms mark the para-
coupling position on the “right,” while cyan carbon atoms mark the meta-coupling position. Molecular blocks with just a red carbon atom on the “right,” see block 0, do not
differ in para- and meta- connections. Blocks 0–2 can be regarded as spacers and the remaining blocks 3–7 as π-stacked units.

the integer L, see the top of Fig. 2. The electrode anchors consist
of thiol groups because they form strong covalent bonds to gold
metallic electrodes and hence stable gold–molecule–gold junctions
in experiments.8,52

The number of possible combinations scales exponentially with
respect to the molecular length L. The basis is determined by the
number of molecular blocks nB and the number of couplings nC that
are available. Thus, the total number of possible combinations N is

N =
Lmax

∑

L=Lmin

(nCnB)
LnC. (1)

FIG. 2. Genetic encoding of molecules. The general scheme is shown in the top
row. The encoding consists of alternating molecular blocks and couplings. The
example demonstrates the encoding of a molecule with a length L = 3. Brown
and purple colors in the encoding distinguish couplings from molecular building
blocks. Anchors are omitted since they are always sulfur atoms, more precisely,
SH groups. Dashed gray lines indicate the encoded part of the molecular struc-
ture. Hydrogen atoms of the molecular building blocks in Fig. 1 are removed at
connection points. The red arrow displays the stretching axis. Gold tips of the
metal–molecule–metal junction are represented by faint yellow triangles, and d is
the distance between the sulfur atoms marked l and r.

We consider eight building blocks (see Fig. 1), two coupling
types (see Figs. 1 and 2), and a molecular length between 1 and
7 building blocks, i.e., Lmin = 1 ≤ L ≤ Lmax = 7. The restriction to a
maximum length of seven building blocks is motivated by the expo-
nential decay of the conductance with molecular length in the typical
off-resonant transport regime. The overall conductance should not
be too low for the molecules to be experimentally detectable. Our set-
ting leads to a search space of about N ≈ 5.73 × 108 molecules. Thus,
a brute-force approach is not feasible, and a systemic way like the
genetic algorithm is needed instead to identify the most appropriate
individuals in the ensemble of all N possibilities.

C. Evolution loop
The evolution loop is the central part of the algorithm. It is

depicted in Fig. 3. The evolutionary process starts by initializing
a population with randomly generated individuals. Each individ-
ual represents a molecule, and the population consists of multi-
ple molecules. Individuals are fully characterized by their genetic
encoding. After this initialization, the evolution cycle starts. In the
beginning, the fitness of the individuals is evaluated. Various prop-
erties can be taken into account in the fitness. We focus on the DQI
behavior, the median conductance, and the mechanical stiffness,
as detailed further below. In order to form a new population for
the next generation, the k fittest individuals are selected to form
the mating pool. Selected candidates produce offspring by so-called
crossover schemes. For each crossover, the two parents are chosen
through uniform sampling from the mating pool. Afterward, the
newly generated candidates can be altered through mutation. We
treat the best Nelite individuals from the previous generation sepa-
rately: They are directly transferred to the next generation. This is
done to preserve the best combinations and is referred to as elitism in
the literature.36 To increase computational efficiency, the new pop-
ulation is filtered so that only unique individuals occur. Genomes
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FIG. 3. Evolution loop of the genetic algorithm. Text and figural representations
adjacent to the flowchart elucidate individual steps. In the initialization step, ran-
dom individuals are created. Blue and green colors in the selection step indicate
the two selected individuals, which create two offspring in the crossover step. The
offspring may subsequently be changed by a mutation at the underlined position.
The precise action of all genetic crossover and mutation operators is presented
in Fig. 4. In the filtering step, the red-marked individual, which occurs twice, is
removed from the population. The direct connection between the selection step
and the filtering step visualizes the elitism.

that are sorted out are replaced by randomly generated individuals
to keep the population size constant and to increase genetic diver-
sity. The whole process is repeated until a convergence criterion is
reached or a maximum number of generations has been processed.
Finally, we define the result of the genetic algorithm as the best indi-
vidual of the last generation, even if the whole population has been
optimized.

The genetic operators that we use are depicted in Fig. 4. In the
single-point crossover, a single random cut in each parent string
is chosen, producing two tail and two head sections. The offspring
is created by combining the heads and tails of the two parents. To
preserve the lengths of the parents, we choose the cut at some point
of the shorter string, and the string of the other parent is cut at the
same point. In this manner, one offspring inherits the length from
parent A and the other offspring from parent B. The procedure is
depicted in Fig. 4(a). We employ this length-preserving crossover to
avoid large length fluctuations. Without this restriction, the num-
ber of building blocks for one offspring could potentially increase
to twice the length of the longest molecule in the population in
this single step. Furthermore, we use four different mutation opera-
tors, which are illustrated in Figs. 4(b)–4(e). In the mutation step,
one of the four operators is selected with an equal probability of
1/4 and applied with a probability pm. Thus, the probability for a
specific mutation operation is pm/4. Combined with the Nelite indi-
viduals from elitism, the new generation is then formed by genomes,
produced by crossover and mutation from the selected parents.

We use a population size of Npop = 26 in this work. This is
small compared to other approaches using a genetic algorithm53 but

FIG. 4. Genetic operators. The top row in each panel shows the initial genetic
information according to Fig. 2, and the outcome of each operation is given in the
lower line. Brown and purple letters in the encoding string distinguish couplings
from molecular building blocks. (a) Single-point crossover: A random position in
the shorter parent is chosen, here parent B. The longer parent, parent A, is cut at
the same point. Offsprings A and B are produced by combining heads and tails
of the two parents. (b) and (c) Block mutation and coupling mutation: A molecu-
lar block or a coupling is chosen randomly and replaced by a new one. (d) Insert
mutation: A randomly chosen pair of molecular block plus coupling are inserted
at some point of the genome, if the maximum length L ≤ Lmax is not exceeded.
(e) Truncate mutation: A pair of a molecular block plus coupling are chosen ran-
domly and removed from the string, as long as the length does not fall below one
molecular block, i.e., L ≥ Lmin.

is attributed to the computationally demanding fitness calculations.
From the Npop individuals in the population, we directly transfer
the best Nelite = 2 to the next generation, leaving Npop −Nelite = 24
remaining places in the next generation to be filled. For this purpose,
we select the k = 5 fittest from the full population of Npop entries to
form the mating pool. We now fill the remaining 24 places by select-
ing two parents from the mating pool. Since our crossover scheme
produces two offspring A and B from the two parents A and B, see
Fig. 4, we select (Npop −Nelite)/2 = 12 couples with uniform proba-
bility k−2

= 1/25 from the k2
= 25 possible combinations of parents.

The 24 individuals, generated by crossover of the 12 pairs of two
parents, may then be modified by mutation.

D. Fitness calculation
A crucial and potentially time-consuming part of the evolu-

tion loop is the fitness calculation. Each individual is ideally rated
accurately within the shortest possible time to work with a large
population. Simplified predictions of desired properties are often
used,23,54,55 hampering the validity of the computational approach.
For this reason, we rely here on high-level calculations. A well-
performing mechanosensitive molecule should have the following
properties: It should exhibit a DQI, which is tunable by stretching,
it should be highly conductive on average, it should not be too rigid
to allow for the mechanical control of DQI through rather soft metal
electrodes. The fitness value rates the performance of each candi-
date and crucially determines the predictive power of the genetic
algorithm.

To determine the fitness value, we simulate a mechanical mod-
ulation cycle for each candidate, starting from the relaxed structure.
The aim is to mimic recent experiments,8,11 where a molecule is
incorporated into an electrode–molecule–electrode junction and
where the electrical conductance is measured while the junction
is stretched or compressed. We transfer the genetic encoding to
a molecular input file, compatible with quantum chemistry soft-
ware, as illustrated in Fig. 2. The displacement direction is aligned
with the sulfur–sulfur axis of the anchors. We optimize the molecu-
lar geometry with GFN2-xTB56,57 under mechanical stretching and
compression, i.e., for different given sulfur–sulfur distances d. In the
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procedure, d is varied around the equilibrium distance by ±2.4 Å
in steps of Δd = 0.1 Å. Subsequently, we determine the electronic
structure of the relaxed molecule for each d through a self-consistent
density functional theory (DFT) calculation, yielding displacement-
resolved data. The DFT calculations are performed using TURBO-
MOLE,58 employing the def-SV(P) Gaussian basis set59 for all atoms
and the PBE exchange–correlation functional.60

Based on the mechanical and electronic properties obtained
in the previous steps, we model the charge transport characteris-
tics. We assume that the molecular candidate is connected to two
gold metallic electrodes at the sulfur anchors. Transport through
this single-molecule junction is then described in the phase-coherent
regime via the Landauer–Büttiker approach.61,62 Assuming low tem-
peratures, the electrical conductance G can be expressed through the
energy-dependent transmission τ(E), evaluated at the Fermi energy
EF, as

G = G0τ(EF). (2)

Here, G0 = 2 × e2
/h is the quantum of conductance. The transmis-

sion τ(E) depends on the retarded and advanced Green’s functions
of the central part of the junction Gr

CC(E) = [G
a
CC(E)]

† and the
corresponding linewidth broadening matrices ΓL(E) and ΓR(E) due
to the coupling to left and right electrodes via61,62

τ(E) = Tr [ΓL(E)Gr
CC(E)ΓR(E)Ga

CC(E)]. (3)

Using the wide-band limit, the linewidth broadening matrices
become independent of energy. Furthermore, they are assumed to
be structured such that they have nonvanishing entries only on
the sulfur atoms, which are directly bonded to the left and right
electrodes.63

We thus estimate the conductance in Eq. (2) with the help of the
following expression, where the indices l and r denote the anchoring
sulfur atoms, as visualized in Fig. 2:

Gest(d) = G0γ2
0 Tr [G(0)rl,r (EF, d)G(0)ar,l (EF, d)]. (4)

Note that, in this expression, we explicitly indicate the dependence
on the sulfur–sulfur distance d (see Fig. 2), and the trace runs over
the atomic orbitals (or more precisely atom-centered basis func-
tions) on sulfur atom l. The retarded Green’s function in Eq. (4) has
been further approximated to zeroth order by neglecting embedding
self-energies. By using the spectral representation,64 we can express
it as

G(0)rl,r (E, d) =∑
k

C⃗l
k(d) ⋅ [C⃗

r
k(d)]

†

E + iη − εk(d)
. (5)

The vectors C⃗l
k(d) and C⃗r

k(d) contain the expansion coefficients of
molecular orbital k in terms of atomic orbitals at the left and right
sulfur atoms l and r at each distance d, and εk(d) are the molec-
ular orbital energies. All these quantities C⃗l

k(d), C⃗r
k(d), and εk(d)

are extracted from the DFT calculations. Finally, in Eq. (4) we use
G(0)ar,l (E, d) = [G(0)rl,r (E, d)]† and set γ0 = 1 hartree to obtain the cor-
rect units, and η = 10−12 hartree in Eq. (5) is a small real value. From
Eq. (4), it is obvious that the estimated conductance depends on γ2

0.
By using a constant scalar γ0, the coupling of the sulfur atoms to

the gold electrodes is assumed to be identical for all molecules, and
Gest(d) in Eq. (4) thus characterizes genuine molecular transport
properties. While the precise value of the prefactor γ2

0 in Eq. (4) plays
a role for estimating the absolute value of the median conductance,
it does not matter for a comparison of different molecules.

Equation (2) states that we need to evaluate the transmission
at the Fermi energy of the connected gold electrodes of the molec-
ular junction to determine the zero bias-voltage conductance in the
low temperature regime. The proper level alignment between molec-
ular orbitals and the metallic electrodes is, however, challenging to
describe within DFT.65,66 For reasons of computational efficiency,
we hence neglect the metallic electrodes and concentrate only on
the molecular part. It is reasonable to assume that the Fermi energy
of gold lies inside the gap between the highest occupied molecu-
lar orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) of all rather short hydrocarbons, which are built by our
encoding.64,67 In this way, the molecules stay rather charge neutral
when contacted by the macroscopic electrodes. We thus choose the
Fermi energy to be positioned in the middle of the HOMO–LUMO
gap of each isolated molecule, i.e., EF = (ELUMO − EHOMO)/2. The
alignment of molecular orbitals with respect to EF is certainly cru-
cial for obtaining quantitative results but would also depend on the
precise contact geometry. Since we are interested in DQI features
that cross the entire gap,8,11 the mid-gap approximation appears to
be justified.

To validate the simplified calculation scheme, we have com-
pared its results for selected molecules with and without DQI
behavior to full DFT quantum transport calculations with metallic
electrodes.62 The example of block 3, modified with two different
spacers, is discussed in Appendix A. We find that the approxima-
tions made are sufficiently accurate to identify molecules exhibiting
mechanosensitivity and to compare their performance. The scheme
presented above thus constitutes a reasonable compromise to assess
the electrical conductance response of each candidate in a mechan-
ically controlled single-molecule junction experiment in a fast and
accurate way.

The final step is the assignment of a fitness value. We consider
measures for the DQI, fDQI, the median conductance, fmedG, and
the mechanical stiffness of the molecule, fstiffness. They are evalu-
ated independently, as described shortly further below and in greater
detail in Appendix B. We define the overall fitness f of a molecule
through the product

f = fDQI × fmedG × fstiffness. (6)

The DQI is evaluated through displacement-resolved data,
using Gest(d) of Eq. (4). We fit a function to Gest(d), mimicking a
possible DQI dip. The median of the estimated conductance over all
studied displacements d is used to optimize for highly conductive
molecules. In this way, we avoid difficulties in actual experiments
if, for example, the conductance would drop below measurable lim-
its. The stiffness is rated in a similar way as the DQI. The molecule
is assumed to behave like a classical spring in the harmonic limit
with the dimensionless spring constant astiffness.8 By fitting a parabola
to the total DFT energy vs displacement d, we extract the constant
astiffness. The standard deviations of the fit parameters for the DQI
and stiffness measures are used to sort out unsuitable candidates.
These may be candidates, where no DQI feature is detected or where
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the energy vs displacement data do not show a quadratic behav-
ior. If the standard deviation of the fit parameters exceeds a certain
threshold, the corresponding fitness is set to zero. Further details and
explanations with examples can be found in Appendix B.

III. RESULTS
A. Evolution runs

To study the performance of the genetic algorithm, we analyzed
a large number of evolution runs. The evolution of fitness values in
two runs are presented in Fig. 5.

Each run in Fig. 5 is characterized by a sharp increase in
mean fitness value during the first generations. This mean fitness is

FIG. 5. Fitness values of two evolution runs as a function of the generation.
The runs start from the same initial population in generation 0. The parameters
used in these fitness functions are α = 2.5, β = 1.2, γ = 2.0, and δ = 0.005 (see
Appendix B), the population size is 26, the generation limit 35, and mutation prob-
abilities are (a) pm = 0.5 and (b) pm = 0.9. For the tournament selection, the best
k = 5 individuals are taken to generate offspring. Crosses indicate individuals
evolved by selection, crossover, and mutation, while dots mark randomly gener-
ated individuals. The blue line shows the mean value, obtained as the average
fitness of the full population in each generation. We color-coded the candidates in
the plot to improve the distinction of individuals with similar fitness values.

defined as the average of fitness values of all individuals in a popula-
tion. For higher generations, the fitness tends to saturate. Regarding
the distribution of fitness values, evolved individuals, indicated by
crosses in Fig. 5, generally feature high fitness. The randomly gen-
erated individuals, marked by dots, in contrast show below-average
performance in most of the cases. This confirms the adequacy of our
genetic algorithm. It is visible that the best two individuals of a pop-
ulation remain the same for several generations. This is caused by
the elitism that transfers the best two individuals directly to the next
generation. Figure 5 furthermore shows a substantial fraction of ran-
domly generated individuals in late generations. This means that a
larger number of individuals, produced by crossover and mutation,
are identical and thus filtered out.

The initial population is the same in both evolution runs,
shown in Fig. 5, but probabilities for mutation differ. While both
evolutions show a significant increase in fitness for the first few
generations as common feature, the run in Fig. 5(b) yields a better
performance for higher generations. The life spans of the best indi-
viduals are shorter, and the fitness value of the best individual after
35 iterations is significantly larger than for Fig. 5(a). We define the
life span as the number of generations, in which the best individ-
ual, and therefore the highest fitness value, does not change. The
lower the life spans of the best individuals, the more desirable evolu-
tionary processes occur. Due to the low probability of mutation, the
evolution gets stuck for the run in Fig. 5(a). We thus conclude that
sufficiently high mutation probabilities are needed for creating the
next generation from a given population in order to prevent a quick
saturation of the evolution, to achieve short life spans and an overall
high fitness value.

We stop the evolution after 35 generations. Although this does
not fulfill a defined convergence criterion, this appears to be an
adequate number of generations, since no major increase in fitness is
observed over several generations. For each run, the best individual
of the last generation is considered as the final result of the whole
evolution.

The performance of the best individuals for the run in Fig. 5(b)
is illustrated in Fig. 6. We only focus on the electrical response, as
characterized by Gest(d). In generation 0, a suitable candidate is
found within the random population, but the DQI dip is only weak.
The performance gradually increases, and the DQI dips get deeper
for higher generations. Behavior similar to that seen in generations
2, 3, or 13 might not be desirable due to the lack of a sharp DQI
dip but gets rewarded by the chosen fitness function. These inter-
mediate stages however help to produce even better offspring. Such
molecules are found in generations 24 and 26. These molecules at
the end of our evolution exhibit a DQI dip, where Gest(d) drops by
several orders of magnitude in a narrow displacement range. This
is combined with a relatively high average conductance, which is
the desired behavior. In the end, we find an excellent candidate,
which outperforms the best molecules in our test set and which was
unknown before.

We observe that the fittest individuals with a deep DQI dip
and high switching ratio between highest Gest(d) value and lowest
Gest(d) consist of π-stacked units (blocks 3–7 in Fig. 1) combined
with spacers (blocks 0–2 in Fig. 1). The importance of spacer blocks
for the performance of mechanosensitive molecules was not stud-
ied extensively before and is pointed out as a general principle by
our genetic algorithm. We analyze the influence of spacer blocks
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FIG. 6. Gest(d) plotted against the sulfur-to-sulfur displacement d for the best
individuals of the evolution run, shown in Fig. 5(b). The distance axis is resolved in
steps of Δd = 0.1 Å. We present the best individuals only for those generation, in
which they first occur. Molecular encodings are shown above the figure in the same
color as in the legend, while the best individual is depicted both with its encoding
and molecular structure at the bottom.

in more detail in Subsection III B, where we demonstrate that the
steepness of the DQI dip and switching ratio can be enhanced by
spacers.

Unlike many other approaches of artificial intelligence, our
genetic algorithm is not a black box. Apart from the optimized
molecules, we can provide insight into the evolution processes. As
an example, we study in Fig. 7(a) the family register of the best
individual of the evolution run, shown in Fig. 5(b). Crossover and
mutation operations can clearly be seen as the driving mechanism
for the evolution. The best candidate of Fig. 5(b) is obtained after
seven crossover and eight mutation operations. A similar analysis
of the best individual of the evolution in Fig. 5(a) is represented in
Fig. 8(a). In this case, the best performing molecule is found after
four crossover and two mutation operations. The run in Fig. 5(b)
yields a higher total fitness, compared to Fig. 5(a). Due to the
increased mutation probability for evolution in Fig. 5(b) and the
higher number of mutations that lead to the best individual, one
might assign a higher importance to mutation than to crossover
operations. However, it should be noted that the offspring is identi-
cal to that of the parents for several crossover operations in Figs. 7(a)
and 8(a). For instance, [p, 3, p, 1, p] at the bottom of Fig. 7(a) is
reproduced by a crossover of [p, 3, p, 3, p] and [p, 3, p, 1, p]. This
is important because only the best two individuals are transferred
directly to the next generation by elitism. The remaining candi-
dates have to reproduce themselves by crossover. Otherwise, the

FIG. 7. Analysis of the evolution run in Fig. 5(b). (a) Family register of the best
individual of Fig. 5(b), whose geometry is plotted in Fig. 6. Each box shows the
genetic encoding of a molecule. Blue arrows indicate crossover operations and
orange arrows represent mutation operations. The family register is split into two
parts at the red star for illustrative purposes. (b) Relative frequency of molecular
blocks for each generation in the run of Fig. 5(b). Different markers are used to dis-
tinguish spacer blocks (dots) from π-stacked building blocks (crosses). Encoding
and block numbering follow Fig. 2.

genome, on which the mutation operations work, would not be part
of the considered search space anymore. In summary, both crossover
and mutations are important and their interplay is essential for the
evolution.

The idea of natural selection can be seen in the evolutions
as well. For this purpose, we analyze the relative frequency of the
building blocks in each generation. The results for the evolution

FIG. 8. (a) and (b) Same as Fig. 7 but for the evolution run shown in Fig. 5(a).
Additionally, panel (a) displays the structure of the best performing individual of
the corresponding evolution, i.e., [p, 5, p, 2, p, 5, p].
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run in Fig. 5(b) are depicted in Fig. 7(b). In the beginning, build-
ing blocks are uniformly distributed. Small deviations arise from the
limited population size. We distinguish between spacer blocks (dots)
and π-stacked building blocks (crosses). The distribution shows that
the spacer blocks become dominant in higher generations. The fre-
quency of blocks 1 and 2 fluctuates roughly between 10% and 30%.
An upward trend can be observed for block 0, consistently reaching
more than 19% after generation 15. For the π-stacked blocks, block
3 initially dominates, but around generation 20 block 5 becomes
prevalent. The doubly π-stacked building blocks 4 and 7 are rather
unimportant, similar to the stiff block 6, featuring in total four ethyl
bridges between upper and lower naphthalene units. Overall, the
individuals of this run mainly consist of spacer blocks. The π-stacked
building blocks occur significantly less frequently. However, data
analysis corroborates that in the well-performing individuals, at least
one π-stacked block occurs. A similar behavior can be observed for
the evolution run in Fig. 5(a), whose analysis is shown in Fig. 8(b).
The spacer blocks have a higher relative frequency compared to
most of the π-stacked blocks. However, block 5 exhibits the highest
relative frequency. The fact that the spacer blocks are not predom-
inant in this case is mainly due to the shorter length of the evolved
molecules [cf. the family registers in Figs. 7(a) and 8(a)].

Additionally, it should be pointed out that we observe almost
exclusively para-couplings toward the end of the two evolution runs
shown in Fig. 5. However, this is not because DQI cannot occur
when meta-configurations are part of the molecule (e.g., [m, 1, p,
3, p, 1, m] is mechanosensitive, corresponding to the ps-para-meta
[2.2]paracyclophane of Ref. 11) but rather because the average con-
ductance is too low, the DQI feature is not pronounced enough, or
mechanical manipulation of π-stacked units is hampered.

Our analysis of the relative frequency of building blocks reveals
an effective reduction of the chemical search space. A reduction from
eight blocks to five relevant ones, i.e., the spacers 0, 1, 2 and π-stacks
3 and 5, combined with just the para-configuration as relevant cou-
pling, reduces the search space according to Eq. (1) from 5.73 × 108

to around 9.77 × 104 possible combinations.
A drawback of the results presented so far may be the lack

of symmetry with respect to the central building block. In this
context, we note that our encoding always consists of an odd number
of entries, starting and ending with couplings and featuring a block
in the middle. Since a symmetry with regard to the central block is
no criterion of the fitness function, strings are generally asymmetric
[cf. the family registers in Figs. 7(a) and 8(a)]. Since the synthesiz-
ability of the molecules may be facilitated by symmetric building
blocks, let us finally discuss how a symmetrization step can be
added to the action of the genetic operators. After crossover and
mutation operations, we symmetrize candidates with respect to the
central block. The building blocks on the left side of the center are
dominant and mirrored to the right part. The couplings remain
unchanged.

An evolution run with this additional block symmetrization
step is depicted in Fig. 9. The fitness values in Fig. 9(a) show a similar
behavior as the runs displayed in Fig. 5: A sharp increase in fitness
in the first generations is followed by a saturation of the mean value,
and evolved candidates outperform the randomly generated individ-
uals. In contrast to the runs in Fig. 5, we stop the evolution after
41 generations because of the major changes in generation 34. The
performance of the best candidate is depicted in Fig. 9(b). A DQI

FIG. 9. (a) Fitness values of an evolution run with symmetrization of the molecules
as a function of the generation. Parameters used in the fitness functions are
α = 2.5, β = 1.2, γ = 2.0, and δ = 0.005, the population size is 26, the genera-
tion limit of 40, and the mutation probability is set to pm = 0.5. For the tournament
selection, the best k = 5 individuals are taken to generate offspring. Crosses indi-
cate individuals evolved by selection, crossover and mutation, while dots mark
randomly generated individuals. The blue line shows the mean value. (b) Gest(d)
plotted against the sulfur-to-sulfur displacement d for the best individual of the
evolution run, shown in panel (a). For the purposes of presentation, the stretching
resolution was increased to 0.02 Å per step compared to Δd = 0.1 Å during the
evolution. Additionally, a part of the family register of the best individual is plot-
ted in the inset. Blue arrows indicate crossover operations, while the green arrow
denotes symmetrization. The geometric structure is depicted above the family reg-
ister. (c) Relative frequency of molecular blocks for each generation in the run
of panel (a). Different symbols are used to distinguish spacer blocks (dots) from
π-stacked building blocks (crosses). Encoding and block numbering follow Fig. 2.
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dip of about 5 orders of magnitude is visible. Solely, the median of
Gest(d) is rather low. The behavior is graded by a fitness value of
around 1014, which is even higher than those of the final candidates
shown in Fig. 5. The inset of Fig. 9(b) shows an excerpt of the family
register of the best individual. The best candidate is found by a
crossover operation, where the head is taken from the left parent and
the tail from the right parent. After the symmetrization, the blocks
from the left parent are mirrored, while the central block and the
length stem from the right parent. Thus, genetic information of both
parents is transferred to the offspring, justifying the symmetrization.
The geometry of the best molecule of the evolution, displayed above
the family register of Fig. 9(b), contains two paracyclophane blocks,
block 3, interlinked by acetylene, block 0. This central structure is
connected to the anchors via naphthalene spacers, similar to previ-
ous runs (see, e.g., Fig. 6). Although not part of the symmetrization
procedure, which acts only on the blocks, all couplings are in a para-
configuration. As in Figs. 7 and 8, an analysis of frequently occurring
blocks shows that blocks 3 and 5 are apparently the most suitable
π-stacks, and spacers 0, 1, and 2 all occur with around 10% or more.
Among the spacers, block 0 is the most favored motive. Together
with these most relevant building blocks, symmetrization reduces
the chemical search space further.

B. Influence of spacer blocks
The genetic algorithm has corroborated spacers on π-stacked

blocks as a general feature of well-performing mechanosensitive
molecules. For this reason, we study their role in more detail in this
subsection.

The depth of DQI dips can be enhanced by spacers. Although
it is obvious that the minimal conductance drops with molecular
length due to the exponential decay in the tunneling regime,68 it
turns out that spacers typically enhance the contrast of the dips,
i.e., the ratio between highest and lowest conductance values during
stretching.

Let us analyze a simple model with paracyclophane (block 3 in
Fig. 1) as the central unit. As illustrated in Figs. 10(a) and 10(b),
either we equip it with phenyl spacers (block 1 in Fig. 1) on both
sides before attaching it to two semi-infinite one-dimensional gold
chains or we connect the gold chains directly without spacers. The
system studied in Fig. 10(a) resembles those of Ref. 11. For describ-
ing the electronic structure of the molecules in Figs. 10(a) and 10(b),
we use a tight-binding model, which follows Ref. 69 and considers
just a single p orbital on each carbon atom. The leads are modeled
by monoatomic gold chains, and coupling self-energy contribu-
tions are treated according to Refs. 14 and 69. During the stretch-
ing, the gold chains and covalently connected molecular parts are
displaced.

To isolate the influence of phenyl spacers, we study the model
of Fig. 10(a) in two different settings: In the first case, we consider
electronic interactions between all the parts, marked L, C, and R, as
they emerge from the tight-binding parameterization. In the second
case, we restrict the interactions between the center C and the spac-
ers L or R to just nearest neighbors, i.e., only the interaction between
the covalently connected atoms l and r is described by a nonva-
nishing matrix element β in the single-particle Hamiltonian. For
simplicity, this coupling β is assumed to have the same value as the
nearest-neighbor coupling in a ring, corresponding to benzene rings

FIG. 10. (a) Paracyclophane with phenyl spacers connected to semi-infinite
monoatomic gold chains. The gray boxes and the line connections indicate the
restricted electronic interaction range, assumed in the setting referred to as L-
C-R. Letters r and l indicate those atoms of the phenyl rings that are covalently
linked to another ring or to the electrodes. (b) Paracyclophane directly connected
to semi-infinite monoatomic gold chains. (c) Conductance G(d) or conductance
estimate Gest(d) plotted against the electrode displacement d − dmin. Conduc-
tances are normalized to the respective minimum, which occurs at the distance
dmin. (d) Gest(d)/Gest(dmin) as a function of displacement d − dmin for paracy-
clophane, equipped with various spacers. The displacement resolution is set to
Δd = ±0.02 Å per step. To save space, the encoding, used in the legend, omits
couplings, which are all in para-configuration.

of spacers and the paracyclophane, which are aligned in a plane.
Consistent with Eq. (2) and previous sections, we evaluate the trans-
mission probability at the Fermi energy, which we define through
molecular HOMO and LUMO levels as EF = (EHOMO + ELUMO)/2.

The electrical response of all model systems is summarized in
Fig. 10(c) by plotting the distance-dependent conductance, normal-
ized to the respective minimal conductance, G(d)/G(dmin). Due to
normalization, we find that the conductance–distance curve for the
model of Fig. 10(a) with only nearest-neighbor L-C-R block interac-
tions is basically identical to the paracyclophane directly attached
to the gold electrodes in Fig. 10(b). If we include the full inter-
actions of the central paracyclophane and its spacers L and R for
the system in Fig. 10(a), we find however that the switching ratio
between the highest and lowest conductance is increased by an order
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of magnitude. The enhancement originates mainly from a higher
conductance for negative displacements d − dmin. A reason might
be the increasing overlap of upper and lower decks for decreasing
displacements.

In Fig. 10(c), we also show the conductance–distance curves,
determined by Eq. (4). Since the factor γ2

0 drops out, we observe that
normalized curves Gest(d)/Gest(dmin) show an excellent agreement
with the full conductance calculations of the tight-binding model.
This holds for both systems depicted in Figs. 10(a) and 10(b). The
observations thus justify again our approximations for Gest(d) since
the relative depth of conductance dips is well reproduced.

To corroborate the aspects further, we study in Fig. 10(d) the
paracyclophane block 3 from Fig. 1 with different spacers attached.
We determine Gest(d)/Gest(dmin) in this case from DFT electronic
structure calculations. For these more advanced calculations, involv-
ing multiple orbitals on each atom, the same qualitative behavior
is apparent. The switching ratio increases with increasing length
of the spacers connected to the core structure. Although this effect
provides a more pronounced dip, the overall conductance decreases
because of the longer molecules. Therefore, a reasonable trade-off
between switching ratio and median conductance needs to be found,
which may depend on the particular measurement resolution. Over-
all, our theoretical modeling shows the crucial influence of the spacer
blocks for the contrast of the DQI dip.

IV. FURTHER DISCUSSION
Predicting DQI features in energy-dependent transmission

curves based on frontier orbitals of isolated molecules has become
a rather straightforward task.14,64 In order to produce a clearly
detectable experimental signal, the DQI dip may be tuned to cross
the Fermi energy, and we concentrate here exclusively on mechan-
ical tuning. On the theoretical side, exploration of mechanosen-
sitivity requires the simulation of stretching traces, involving
nonequilibrium molecular geometries. Mechanically controlled DQI
may however be masked by low conductance or occur at displace-
ments beyond reach by soft metallic electrodes.11

Standard calculations of quantum transport through molecu-
lar junctions include parts of the electrodes62 (see also Appendix A).
This renders structural relaxation and subsequent transport calcu-
lations time-consuming. With our approach, costly trial-and-error
cycles for the molecular design are cut short. We provide a system-
atic search in the chemical space using a fast and accurate fitness
evaluation, which considers the most important measures. The
fitness evaluation of a molecule takes about 2 h, depending on its
complexity and using on average 12 cores of an Epyc-7742 CPU.
Massive parallelization within a generation leads to fast evaluation
of the search space. An evolution run takes typically about three
days using the presented techniques and settings. The extension to a
larger database is straightforward.

All optimized molecules show a pronounced DQI dip in the
Gest(d) curves, combined with a high mechanical flexibility. Even
though some of the optimized structures might have a conductance
below the experimentally accessible range, our approach allows the
identification of robust mechanisms. Dividing building blocks into
π stacks and spacers, we find π stacks to be necessary for the desired
mechanosensitive response. Here, paracyclophane (block 3), which
is known from previous studies,8,11 and the stacked naphthalene

(block 5) are the most promising elements. Well-performing can-
didates, involving blocks 3 and 5, were consistently constructed
from para-couplings. As another robust feature, we could show that
spacer blocks lead to an enhanced mechanosensitive response. This
is evident from statistical analysis of block distributions during the
evolution [see Figs. 7(b), 8(b), and 9(c)] as well as the model results
[see Figs. 10(c) and 10(d)].

Despite the good performance of our genetic algorithm, there
are some limitations. Results depend on the fitness function and its
parameters, such as α, β, γ, δ (see Appendix B), and also the popu-
lation size and mutation probabilities matter. We constructed the
fitness function based on a test set, containing a limited number
of candidates from the literature or from internal considerations.
We attempted to reward the desired behavior and penalize poorly
performing molecules, defining balanced measures to avoid getting
stuck in particular regions of chemical space. The paracyclophane-
based structure of Ref. 8 was the best performing molecule in our
internal test set, showing outstanding performance both experimen-
tally and theoretically. The corresponding fitness value was around
f = 2.9 × 1010 for the tuning parameters used in this work (see, e.g.,
Fig. 5). Despite the excellent performance of this reference molecule,
our genetic algorithm was able to find molecules with increased
fitness [see Figs. 5(b) and 9(a)] without prior knowledge. Only the
evolution in Fig. 5(a) got stuck, creating molecules with slightly
smaller fitness values than in the test set. These encouraging results
let us assume that our fitness function has sufficient predictive power
and avoids overfitting. Based on the chosen building blocks, we
cannot expect to significantly outperform the test set.

V. CONCLUSIONS AND OUTLOOK
In this work, we presented a genetic algorithm for the design of

mechanosensitive molecules to be applied in single-molecule junc-
tion experiments. We considered important degrees of freedom of
the overall molecular structure in the genetic encoding through
modular molecular building blocks. The fitness evaluation repre-
sents a compromise between computational efficiency and accuracy.
It involves electronic structure calculations to assess the candidates
during the evolution with high precision. The developed fitness
function rewards good candidates and penalizes deviations from the
desired behavior.

The set of modular molecular building blocks that we explored
can be divided into spacer units and π-stacked units. The blocks
offered a choice in chemical space that allows us to go beyond what
has been synthesized so far. The genetic algorithm revealed that at
least one π-stacked unit is needed for molecules to be mechanosen-
sitive. The most favorable π-stacks turn out to be blocks 3 and 5,
i.e., the paracyclophane or a stack of two naphthalenes. Additionally,
the genetic algorithm highlighted the importance of spacers. The
mechanosensitivity of a central π-stacked core can be optimized by
attaching blocks 0–2, i.e., acetylene, benzene, or naphthalene, while
the direct molecule–electrode connection leads to a broader and less
deep DQI dip. We have demonstrated this general property of spac-
ers at a simple tight-binding model. Among the spacers, acetylene is
particularly well suited due to its short length and good electronic
overlap to attached building blocks.

In contrast to many approaches of artificial intelligence, we can
understand molecular design mechanisms in great detail. Evolution
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emerges from crossover and mutation. Well-performing molecular
blocks prevail, while unsuitable ones are suppressed. This can be
seen as the survival of the fittest. Thus, the search space, consist-
ing of around 5.73 × 108 combinations, is automatically reduced to
a small fraction of the original size. In this way, the important parts
of chemical space can be explored efficiently.

To conclude, using a genetic algorithm we have developed a
powerful tool for the design of functional molecules, targeted at
single-molecule junction experiments. We proved the performance
at the example of mechanosensitivity and discussed the chemical
insight that the method offers. Our method can easily be applied to
more or other molecular blocks. By a more flexible genetic encoding,
for instance through SMILES or SELFIES notations,70,71 the chem-
ical search space may be substantially extended. By choosing
appropriate fitness functions, the methodology can furthermore be
adapted to optimize other relevant properties. These might be more
sophisticated DQI features, like double dips,12 or the molecular
thermal conductance, which is of significant interest recently72 and
where general design rules are lacking at the moment.
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van der Zant, Diana Dulić, Nicolas Agraït, and their groups for
many stimulating discussions in regular meetings, where we devel-
oped experimental and theoretical concepts for mechanosensitive
molecules.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Matthias Blaschke: Conceptualization (equal); Investigation
(equal); Software (equal); Visualization (equal); Writing – orig-
inal draft (equal). Fabian Pauly: Project administration (equal);
Supervision (equal); Writing – review & editing (equal).

DATA AVAILABILITY
The data that support the findings of this study are available

from the corresponding author upon reasonable request.

APPENDIX A: CONDUCTANCE ESTIMATE

To validate the simplified calculation scheme for the conduc-
tance, explained in Sec. II D, we compare here the estimated conduc-
tance to full quantum transport calculations on the DFT level.62 As
well-studied reference molecules we use ps-para-para PCP11 [orange
box in Fig. 11(a)] and the paracyclophane core with longer oligo-
phenylene-ethynylene (OPE) spacer groups, long PCP, presented in
Ref. 8 [blue box in Fig. 11(a)]. The conductance data for long PCP
are reused,8 but those of ps-para-para PCP are recalculated. To build
the latter junction, we followed the technique described in Ref. 73.
In the extended central cluster, shown in Fig. 11(a), the outermost

FIG. 11. (a) Single-molecule junction geometries containing ps-para-para PCP
(orange)11 and long PCP (blue),8 immobilized between two gold electrodes. (b)
Comparison of full conductance–distance curves G(d) (solid lines) and estimates
Gest(d) based on Eq. (4) (dashed lines). Electrodes for the full quantum transport
calculations or the sulfur–sulfur distance in the case of the estimate are displaced
in steps of ±0.02 Å.

two layers on each side of the electrodes are kept fixed, while the
rest of the inner atoms are relaxed. For the stretching, the fixed gold
electrodes are separated in steps of ±0.02 Å, followed by a geometry
optimization. Finally, the conductance G(d) is calculated in every
step from the DFT electronic structure via Eqs. (2) and (3). We
construct the embedding self-energies according to Ref. 62 and use
a Fermi energy EF = −5.0 eV. In the DFT calculations with TUR-
BOMOLE,58 we employ the def-SV(P) Gaussian basis set59 for all
atoms, the PBE exchange–correlation functional,60 converge ener-
gies to better than 10−6 hartree (“$scfconv 6”), and relax geometries
until the gradient norm is below 10−3 a.u. (”gcart 3”).

The full conductance–distance curves, G(d), are plotted in
Fig. 11(b) together with the corresponding conductance estimate
Gest(d) for the isolated molecules. Both show the same qualitative
behavior. Quantitatively, for both examples the estimate is around
two orders of magnitude higher than the full conductance calcula-
tions including part of the electrodes in the extended central cluster.
However, it should be kept in mind that the junction conductance
depends on the precise binding geometry.

For our purposes, it is important that Gest(d) reproduces rela-
tive changes in the overall conductance between different molecules
and that the mechanosensitivity is reliably detected. Figure 11
confirms that this is indeed the case. In the end, molecules are
selected based on their fitness, which is a relative measure. It is
thus important that the DQI feature, the median conductance and
mechanical stiffness are weighted appropriately so that the genetic
algorithm ultimately yields molecules with the desired properties.

APPENDIX B: FITNESS CALCULATION

We designed the general form of the fitness function by man-
ually assessing the performance of selected molecules, including
molecules from Refs. 8 and 11. On the one hand, a particular test
set is needed for the design. On the other hand, the fitness function
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should be general enough to detect the desired properties reliably.
This means that it must have predictive power because the evolved
molecules might outperform the known candidates. The overall
fitness in Eq. (6) is split into three parts: The factors fDQI and fmedG
describe the electrical conduction behavior, while fstiffness character-
izes the mechanical elasticity. In this way, all desired properties of
good mechanosensitive molecule are addressed. Let us now discuss
the evaluation of the independent fitness measures fDQI, fmedG, and
fstiffness in detail.

For mechanosensitive molecules, the DQI should show up as a
sharp dip in Gest(d). We use a fit function to characterize the DQI
performance by the extracted fit parameters. Based on our reference
calculations, the fit function

g(d)
G0
=

Gest(dmax)

G0
− exp(−b

∣d − dmin∣

d0
)

ΔGest

G0
(B1)

turns out to be a suitable choice. As introduced in Fig. 2, d denotes
the sulfur–sulfur displacement, dmin (dmax) is the displacement at
the minimum (maximum) value of Gest(d) in the calculated dis-
tance range, ΔGest = Gest(dmax) −Gest(dmin), and d0 = 1 Å. Thus, the
DQI is assessed by the single dimensionless fit parameter b. Denot-
ing the median conductance over all computed d as med(Gest(d)),
we define the corresponding fitness value through

fDQI =
√

b
med(Gest(d))/G0

(Gest(dmin)/G0)
α . (B2)

The component fmedG of the fitness evaluation is intended to
penalize candidates with low overall conductance. However, there
is no need to strongly distinguish between molecules, whose con-
ductance surmounts a certain threshold. A suitable measure for the
desired behavior resembles the Fermi function given by

fmedG =
1

1 + exp (−β ln (med(Gest(d))/G0 − γ))
. (B3)

We determine the mechanical stiffness through a dimension-
less spring constant astiffness. It is extracted by a harmonic fit to the
DFT energies of the form

EDFT(d) =
1
2

γ0astiffness
d2

d2
0

. (B4)

The smaller the spring constant astiffness, the higher should the fitness
fstiffness be. Therefore, we choose the reciprocal relationship

fstiffness =
1

astiffness + δ
. (B5)

The dimensionless parameter δ ensures that candidates are not
overrated for being very soft.

There are several tuning parameters appearing in Eqs. (B2),
(B3), and (B5), namely α, β, γ, and δ. Their values are fixed before we
start our search with the genetic algorithm. Throughout this paper,
we use α = 2.5, β = 1.2, γ = 2.0, and δ = 0.005.

Figure 12 studies the conductance–distance behavior and cor-
responding fitness values of four different molecules. Blue and red
candidates in Fig. 12(a) are taken from the evolution in Fig. 6 and
show desired mechanosensitive properties for Gest(d), whereas the

FIG. 12. Analysis of the fitness function for four different molecules. (a) Computed
conductance–distance curves Gest(d). Dashed lines show the corresponding fit
function (B1) for each molecule. Red, blue, and green candidates originate from
the evolution in Fig. 5(b), while the purple candidate is a reference molecule
from an experimental study.8 (b) Overall fitness f shown together with the indi-
vidual fitness contributions fDQI, fmedG, and fstiffness of the four candidates. The
molecules are evaluated using the tuning parameters α = 2.5, β = 1.2, γ = 2.0,
and δ = 0.005.

green candidate features no DQI dip. Additionally, the molecule
from Ref. 8 is depicted in purple. The fitness values fDQI, fmedG,
fstiffness, and f are visualized in Fig. 12(b). The worst overall per-
formance is observed for the green candidate without a DQI dip.
The fitness value fDQI is very low, and the low median conductance
is penalized further through fmedG. Solely, the stiffness contribu-
tion is large due to the low spring constant. A better performance
is observed for the blue candidate. A weak DQI dip is visible in
the Gest(d) plot of Fig. 12(a), which leads to an enhanced fac-
tor fDQI in Fig. 12(b). The high median of Gest(d) leads to the
largest fmedG in the test set, while the stiffness part is substantially
smaller than for the green candidate. The molecule from Ref. 8 is
analyzed as a reference for an experimentally available system. A
DQI dip of about three orders of magnitude is rewarded by a high
fDQI. The high median conductance med(Gest(d)) leads to a low
median penalty. The stiffness measure is comparable to the previ-
ous candidate. Importantly, the molecule is outperformed by the red
candidate, which is the best individual of the evolution in Fig. 5(b).
It is characterized by a high value of fDQI due to the pronounced
DQI dip of about four orders of magnitude. The low median con-
ductance is penalized, but the mechanical softness is acknowledged
by a high fstiffness. Overall, the performance is rated very high, and it
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exceeds even the best performing candidates in our test set for the
construction of the fitness evaluation.

A balanced trade-off between DQI dip, median conductance,
and mechanical stiffness is important. Tuning parameters or more
generally the whole construction of the fitness evaluation can easily
be adapted to the needs of a particular design study or experimental
requirements.
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