
Fast Dynamic Difficulty Adjustment for Intelligent Tutoring
Systems with Small Datasets

Anan Schütt
University of Augsburg
Augsburg, Germany

anan.schuett@informatik.
uni-augsburg.de

Tobias Huber
University of Augsburg
Augsburg, Germany

tobias.huber@informatik.
uni-augsburg.de

Ilhan Aslan
Huawei Technologies, Munich

Research Center
Munich, Germany

ilhan.aslan@huawei.com
Elisabeth André

University of Augsburg
Augsburg, Germany

elisabeth.andre@informatik.
uni-augsburg.de

ABSTRACT
This paper studies the problem of automatically adjusting
the difficulty level of educational exercises to facilitate learn-
ing. Previous work on this topic either relies on large data-
sets or requires multiple interactions before it adjusts prop-
erly. Although this is sufficient for large-scale online courses,
there are also scenarios where students are expected to only
work through a few trials. In these cases, the adjustment
needs to respond to only a few data points. To accommo-
date this, we propose a novel difficulty adjustment method
that requires less data and adapts faster. Our proposed
method refits an existing item response theory model to
work on smaller datasets by generalizing based on attributes
of the exercises. To adapt faster, we additionally introduce
a discount value that weakens the influence of past interac-
tions. We evaluate our proposed method on simulations and
a user study using an example graph theory lecture. Our re-
sults show that our approach indeed succeeds in adjusting
to learners quickly.

Keywords
Dynamic difficulty adjustment, Intelligent tutoring system,
Computer adaptive practice, Personalized difficulty, Knowl-
edge tracing

1. INTRODUCTION
In computer-based learning, it is important to solidify newly
learned content through exercises [16]. Appropriately tailor-
ing the difficulty level of these exercises has a positive effect
on learning gains and motivation [8, 23]. Exercises too diffi-
cult could lead to anxiety, whereas exercises too easy could
lead to boredom, thus the importance of balance, dubbed the

state of flow [10]. Consequently, there have been attempts to
automatically adjust the difficulty in computer-based learn-
ing settings. Individual works refer to this idea using differ-
ent keywords, such as computer adaptive practice [21, 29],
adaptive curriculum [4], or personalized difficulty [41]. In
this paper, we use the term Dynamic Difficulty Adjustment
(DDA) [18, 26].

Many works on DDA for educational purposes focus on large-
scale applications, similar to Massive Open Online Courses
(MOOCs). In particular, most of them rely on one of two
prerequisites. Either they require large prerecorded datasets
to pre-train their models, which can mean up to months’
worth of data [4, 21], or they require many interactions
per user until they start adapting well [21, 24, 28]. This
is not suitable for cases where students only complete a lim-
ited number of exercises, for example, when introducing a
new concept in higher math or logic. Educational DDA
approaches that do not rely on large datasets or many iter-
ations, often break down the learning objective into distinct
Knowledge Components (KCs) that students should master
[5, 9, 27]. However, defining these KCs can be a laborious
task that requires extensive expertise in the subject matter
[22]. In certain cases, it is more straightforward to identify
exercise attributes instead. For example, in arithmetic exer-
cises, key attributes might include the magnitude of numbers
involved or the number of computational steps required. In
graph theory, difficulty may hinge on the graph’s size and
complexity.

For cases where exercise attributes are easier to define than
KCs, we propose a novel DDA algorithm based on Item
Response Theory (IRT) that alleviates the aforementioned
problems of few iterations and small datasets. IRT mod-
els are used to predict students’ future success in a task
based on past interactions [20]. In DDA they can be used
to provide a user with exercises that they can solve with a
predefined success probability. Traditional IRT models as-
sume that the students have a constant ability level. To fix
this, we introduce a discount factor that weakens the influ-
ence of past interactions. Because of the lack of massive
datasets, the model cannot learn the difficulty of each exer-

A. Schütt, T. Huber, I. Aslan, and E. André. Fast dynamic difficulty
adjustment for intelligent tutoring systems with small datasets. In
M. Feng, T. Käser, and P. Talukdar, editors, Proceedings of the 16th
International Conference on Educational Data Mining, pages 482–
489, Bengaluru, India, July 2023. International Educational Data
Mining Society.

© 2023 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.8115740

482

cise individually as IRT-based approaches normally do. By
adapting the IRT model to be trained on exercise attributes,
our algorithm can generalize the difficulty between exercises.
We test our proposed method on an example graph theory
lecture with both simulations and a user study. In both ex-
periments, our algorithm succeeds in quickly adjusting the
difficulty so that the students obtain our defined success
rate.

2. RELATED WORKS
Current DDA methods for exercises in educational settings
can be divided into four major techniques. The first cate-
gory is adapting the difficulty based on handcrafted scoring
systems [3, 33, 34]. Here, the students get a score for each
completed exercise. This score is then compared to expert-
written thresholds to decide which difficulty level will be pro-
vided to the student next. The downside of such approaches
is that a lot of domain knowledge and time is needed to
handcraft good scoring systems for different topics.

The second category is based on the field of Knowledge Trac-
ing (KT). KT addresses the problem of predicting the stu-
dent’s success on an unseen future task given the history
of his learning and task attempts [1]. For DDA, KT can
be used to predict the success rate of each possible exercise
and provide the most suitable one to the student. Leyzberg
et al. [24] and Schodde et al. [36], for example, do so
by using Bayesian Knowledge Tracing (BKT) which models
how likely it is that a student already learned different KCs.
Aside from BKT, other models that require KCs to repre-
sent exercises include Performance Factor Analysis (PFA)
[27] and Additive Factor Model (AFM) [5, 6]. Based on
this, BKT, PFA, and AFM can provide exercises for KCs
that the student likely has not learned yet. However, if ex-
ercises are not distinguishable by different KCs, these mod-
els cannot select suitable exercises because all the exercises
would be equivalent to the model. In such scenarios, a KT
model that can distinguish exercises without relying on KCs
is required. The most prominent examples of this are Item
Response Theory models (IRT) like the One-Parameter Lo-
gistic (1PL) [31] or Four-Parameter Logistic (4PL) [2] model.
These models work by learning an ability value for the stu-
dent and comparing it to the learned difficulty values of each
exercise. However, these models are not suitable for DDA
since they assume that the student’s ability is constant.

The third category of DDA approaches in educational set-
tings is based on the ELO system. ELO was first introduced
for chess [14] where it assigns a rating for each player and
tries to pit players with similar ratings against each other.
After each interaction, the ratings are updated. Klinken-
berg et al. [21] were the first to use ELO for DDA. Instead of
modeling the ratings of different players, they assign a rating
to each individual exercise and each student using the ELO
system. In this way, students can be given exercises that
match their rating. Recent years saw several variations of
ELO-based DDA for education [28, 35, 40]. However, for the
scenario we envision, there are two main drawbacks. First,
these ELO-based systems require datasets with several rep-
etitions of each individual exercise to learn their individual
difficulty rating, with [28] requiring 100 interactions per ex-
ercise item. Second, the learning rate in the ELO system
is scenario-dependent. Handcrafting such a value is difficult

when the goal is fast adaptation without overshooting.

The final category of DDA approaches for education use Re-
inforcement Learning (RL). Belfer et al. [4] and Zhang et
al. [41] use RL to directly choose individual actions that
should be provided to the student next. However, both of
their approaches require extensive datasets to pre-train their
models. Clement et al. [7] used RL to decide whether there
should be another more difficult exercise for the same KC or
an exercise for another KC. This requires experts to design a
carefully crafted curriculum with multiple paths that covers
all possible scenarios, which is not feasible for many appli-
cations. Another drawback of RL-based DDA approaches is
that they require long sequences of interactions to be able to
explore different state-action pairs before they can adapt to
the student. This makes them unsuitable for scenarios with
a limited number of interactions.

In addition to education, there is also a large amount of work
on DDA in games. Because of the quick pace of games, many
DDA techniques in games can afford to use large amounts
of interactions and data [39].For example, Moon et al. [25]
used 60.2M data points for pre-training. However, there
also have been works on DDA for games that focus on fast
adaptation using little data. One group of work here used
procedural content generation [11, 12, 17]. These methods
rely, at least in part, on the ability to procedurally gener-
ate game levels based on the previous game level. This is
not possible for many educational scenarios where exercises
are handcrafted by experts. Finally, Fernandes and Levieux
[15] aim to quickly adapt to players without using any pre-
recorded data points. To this end, they use the first 20
interactions of each new player to generate a dataset for lo-
gistic regression. While this is feasible for fast-paced games,
it requires too many interactions to work with topics like
math or logic, where each exercise may take minutes.

We propose a new DDA approach to address the drawbacks
of the aforementioned approaches for cases where it is hard
to define KCs and only a limited number of exercises and
prerecorded data is available. We use an IRT model based
on attributes to learn the difficulty values for all exercises
based on a limited set of prerecorded data points. To quickly
adapt to new students, we add a discount value to the model
update to weaken IRT’s assumption of constant skill.

3. APPROACH
To adjust the difficulty, we need a model that describes the
student’s behavior, and then a method to decide on the dif-
ficulty based on that. We describe this process in the fol-
lowing.

3.1 Student Model
The student model contains a set of student attributes and
provides the probability of observing each possible student
action. In our case, the set of possible actions is the suc-
cess of or failure to solve an exercise. For our educational
scenario, we find that the 4PL model [2] is a good fit. It
is feasible to train on small-scale datasets. It also models
the guess and slip probabilities - the chances of accidentally
getting the exercise right or wrong - which is an inherent fea-
ture of the kind of exercises we work with. The original 4PL
model, describing the probability of a student ui solving an

483

exercise qj , is written in Equation 1.

psolve(ui, qj) = c+ (d− c) 1

1 + e−aj(θi−bj)
(1)

where θi describes the student’s ability, aj defines the dis-
criminatory power of the exercise, i.e. how sharply the ex-
ercise can distinguish students of different ability levels, bj
the exercise difficulty, c the probability that the user guesses
the correct answer, and d the probability that the user does
not slip with a wrong answer. In our scenario where all the
exercises are of the same nature, we find that every exer-
cise should have the same discriminatory power. Therefore,
we learn a single value of a that applies to every exercise
j. The difficulty bj will also not be learned separately for
each exercise, as each exercise in our dataset has far too few
samples. Instead, we calculate bj from the attributes of our
exercises which will be explained in Section 4.1. This is done
by learning weights w⃗ for the attributes:

bj = ⃗attrj · w⃗ (2)

where ⃗attrj is the vector listing the attributes of the exercise,
for example, the number of vertices and edges of a graph.
Through this, we learn a shared set of weights for all the
exercises instead of learning bj for each exercise individually.

3.2 Training Exercise Parameters
We separate the training process of our model into two steps.
The first step is fitting the global parameters of the exercises
on prerecorded data. The second step is to fit the student
ability of each student during deployment. This two-step
training is inspired by Xu et al. [38] and has been shown to
work well and efficiently. The model we train in the first
step is the original 4PL model. The parameters we want
from this are the attribute weights w⃗ and the a, c, d values
from the 4PL model introduced in Section 3.1. Naturally,
we do need to include the student ability θ for the training
to work, but we will not use this θ further after training. We
optimize the joint maximum likelihood of all student’s past
actions using gradient descent, similar to Warm et al. [37]:

L =
∑

(ui,qj ,ysolve,t)∈D

l(ysolve, psolve(ui, qj)), (3)

where the tuple (ui, qj , ysolve, t) represents the event of stu-
dent ui making an attempt on exercise qj with success out-
come ysolve ∈ {0, 1} at time step t ∈ N and l(·, ·) is the
cross-entropy loss. This describes the first step of training,
which uses prerecorded data.

3.3 User Ability Update & Difficulty Adjust-
ment

When deploying the DDA model to a new student, we fix
the exercise parameters w⃗, a, c, and d learned in Section 3.2.
We only learn the student’s ability value θ. Every time
the student finishes an exercise, we run gradient descent on
all observed attempts by this student until it converges or
reaches a maximum number of 1,000 iterations.

One caveat of the original 4PL model is that it assumes that
students have an unchanging ability level. This does not
reflect how students learn a new concept. To remedy this, we
add a discount value γ ∈ (0, 1) to our maximum likelihood
function (Equation 3). With this, we weigh the past actions

Figure 1: The user interface of the graph theory exercises in
our study. This contains the graph, the relevant buttons, and
the counter of currently selected vertices.

by γT−t, where T is the current time step and t is that
action’s time step. By giving less weight to past evidence,
we make the change in ability level more fluid and more
reliant on recent outcomes. The loss function we optimize
for becomes

L =
∑

(ui,qj ,ysolve,t)∈D,t<T

γT−tl(ysolve, psolve(ui, qj)). (4)

After the ability value is updated, the probability of solving
psolve is calculated for each exercise. The exercise with psolve
closest to a desired success rate is chosen and provided to the
student next. For this, we need to pick the success rate that
the students should get. Gonzalez-Duque et al. [11] suggest
a success rate between 50% and 70%, while Klinkenberg et
al. [21] suggest 75%. Therefore we tested our DDA approach
using smaller pilot studies with a target success rate of 70%,
65%, and 60%. Since both 70% and 65% provided too easy
exercises, we opted for 60% for our final study.

4. EXPERIMENTS
4.1 Task
For our experiments, we use an example graph theory lec-
ture, where students are introduced to the Maximum Inde-
pendent Set (MIS) of a graph (i.e., the largest set of vertices
such that none of the selected vertices are adjacent to one
another). It is a concept in graph theory that students need
to be familiar with, therefore the setting simulates a real
learning scenario. Furthermore, most people have not heard
of MIS before, so it is a newly introduced concept. Finally,
the definition of the MIS is simple, yet finding an MIS for a
given graph is difficult. It requires an intuition that is best
built through exercises. To this end, we generate a pool of
191 exercises that can be provided to the students. Figure
1 shows an example of such an exercise during our study.

4.2 Training the DDA Model
We trained our model as described in Section 3. To learn
the difficulty bj of each exercise we use the attributes ⃗attr =
(|VMIS |, palg, |V |, |E|, |I|), where |V | and |E| are the num-
ber of vertices and edges in the graph, |VMIS | is the size of
the MIS, palg is the success rate of a stochastic solver algo-
rithm on this graph (see Appendix A), and |I| is the number
of intersections of edges. To pre-train our DDA model, we
collected data from 80 users without using DDA. For de-
tails of the training parameters and the data collection see
Appendix B.

484

4.3 Simulation Design
Before starting the user study, we carry out experiments
with simulations to verify that our algorithm works in ad-
justing to simulated students’ behavior. We handcrafted
simulated students that interact with the DDA algorithm.
Our simulated students have an internal ability value. If the
ability value plus a Gaussian noise is greater than the ex-
ercise’s difficulty, then the attempt is a success. Otherwise,
it is a failure. The ability value is increased by learning,
which happens when the exercise is given at the right level
of difficulty in accordance with Vygotsky’s zone of proximal
development [32]. The student also has a boredom and anx-
iety value, which increase when an exercise is too easy or
too hard, respectively. Learning only occurs when the sum
of boredom and anxiety values is lower than a set threshold.
For details refer to the repository that contains our imple-
mentation and data 1. To emulate our user study (see Sec-
tion 4.4), the simulation starts with three fixed pre-test ex-
ercises, where the DDA algorithm updates its student model
but does not choose the exercises. Then it loops through 12
training exercises that are chosen by the DDA algorithm.

4.4 User Study Design
Procedure: In our user study, the participants are presented
with a sequence of MIS exercises, divided into three phases:
pre-test, training, and post-test. Before the experiment,
there is a questionnaire for the participant’s demograph-
ics and their general interest in puzzles, computer science,
and mathematics. After that, the students are provided
with a tutorial that resembles the part of a graph theory
lecture that introduces Maximum Independent Sets (MIS).
This also includes a tutorial exercise to make sure that the
participants understood the task correctly. The pre- and
post-test phases are fixed and each contains one exercise of
easy, medium, and hard difficulty based on a handcrafted
difficulty metric (see Appendix A). The tests provide bonus
payments and are used to motivate participants to practice.
The training phase consists of 12 exercises where our pro-
posed algorithm (see Section 3) runs in the background to
estimate the student’s ability and provides exercises that the
student is estimated to have a 60% probability of solving.
After the post-test, there is another free-text questionnaire
asking about the task difficulty and the student’s feelings
about the task. For each exercise, the participant sees the
graph and the number of vertices that need to be selected
(Figure 1). The exercise will not be declared solved auto-
matically once the correct vertices are chosen, but the par-
ticipant has to manually click “Submit”. They are told that
there is a time limit on each exercise but do not know how
long it is (90 seconds). This is done to reduce the sensation
of time and enable flow. We display a red flag 5 seconds
before the time runs out to remind them to submit the so-
lution if they think they have one. After submitting, there
is a pop-up saying if the solution was correct. The median
time the experiment took was 23 minutes.

Participants & Compensation: We recruited 30 participants
using the online platform Prolific. They were required to
be fluent in English. For some participants, the training
exercises were too difficult overall and they failed to solve
more than one training exercise. Removing those partici-

1https://github.com/hcmlab/fast-dda-for-its.

pants from the analysis left us with 25 participants. The
participants included 15 males and 10 females, with ages
ranging from 20 to 47 years old and a mean of 29.2. Each
participant was paid £3.9 for successful participation. Ad-
ditionally, for each correctly solved pre- and post-test exer-
cise, they were paid £0.1 - 0.2, depending on the time they
needed. This totals up to a potential bonus of £1.2.

Research Questions & Hypotheses: The main research ques-
tion for our study was whether our DDA approach adapts as
intended. For this, we hypothesized that there is no signif-
icant difference between the desired success rate (60%) and
the actual success rate of the participants during the training
phase. As a secondary research question, we are interested
in investigating if our adapted IRT model is still useful for
knowledge tracing. That would be the case if there is a
correlation between the ability level that the student model
within our DDA approach assigns to each participant after
training and their performance in the post-test. This work
presents the first part of a bigger study that we preregis-
tered online. 2 To keep the scope of this work focused on
the adaptation, we will describe the results of the remaining
study in future work after a thorough analysis.

5. RESULTS
5.1 Result of the Simulations
During the simulation, we used three groups of 50 simu-
lated students where each group simulated students with a
different initial ability level (low, medium, and high). To
visualize how the DDA algorithm performs, we designed a
handcrafted metric for the difficulty of each exercise (see Ap-
pendix A). Figure 2 shows the trajectory of the student’s
ability and the difficulty of the exercises provided to them
in each time step. Right up from the first time step of the
training phase, there was a difference in the difficulties that
the different students get because of the different pre-test
results. The students with higher initial abilities got harder
exercises. The difficulty was slightly lower than the stu-
dent’s ability because we want to have a 60% success rate.
As the users increased in their ability level with training,
the difficulty of the exercises provided to the students also
increased, showing the system can detect the change and
adapt itself accordingly. Taking a look at the success rate
of exercise solves during the training phase, the simulated
students were able to solve 61.1% ± 12.4% of the exercises.
Using a one sample t-test, we find no significant difference
from 60%; t(df) = 1.08, p = 0.28, Cohen’s d = 0.09. Also,
DDA yielded higher learning than random and predefined
difficulty curve baselines. Simulated students on DDA im-
proved by a mean of 12.5 difficulty units between pre- and
post-test, while predefined difficulty curve and random im-
prove by 9.6 and 6.9 difficulty units, respectively.

5.2 Results of the User study
For our main research question, we wanted to verify that
our approach was capable of providing exercises with a 60%
success rate. Our participants successfully solved on aver-
age 7.0 ± 1.2 out of 12 training exercises, which translates
to a success rate of 58 ± 10%. Using a one sample t-test, we
find that the success rate was not significantly different from
our aimed 60% with a very small effect size; t(df) = -0.86,

2https://aspredicted.org/i6zm7.pdf

485

Figure 2: Mean ability level (orange) of simulated students throughout the simulation and difficulty levels (blue) provided to
them by DDA. The figures show curves for different initial ability levels, low to high from left to right. The fixed pre-test exercises
are not shown here, so some adaptation is visible already from the beginning. Our algorithm correctly provided exercises that
are slightly below the student’s ability level since we aim for a 60% success rate. The error band shows the 90% CI.

Figure 3: Mean success rate (left) and exercise difficulty
(right) at each time step during the training phase of the
human participants. We omit the pre- and post-test phases.

p = 0.40, Cohen’s d = 0.17. For context, when collecting
training data without DDA, the mean success rate was 49
± 20%. In Figure 3 we show the mean success rate and
exercise difficulty during the training phase. To see if our
DDA approach can infer the student’s post-test performance
from the training session, we calculated the Spearman cor-
relation between the fitted ability value θ after the training
phase and the post-test score. We found significant correla-
tions for the data collected without DDA ((r2 = 0.599, p =
0.003) for predefined difficulty and (r2 = 0.522, p = 0.006)
for self-determined difficulty). For the data collected with
DDA we found no significant correlation (r2 = 0.144, p =
0.49).

6. DISCUSSION
The main goal of this paper was to introduce a DDA algo-
rithm that is able to quickly adapt to students after only
a few interactions. During both our simulated and human
user experiments we did not find a significant difference from
the desired success rate of 60%, with very small effect sizes
in both experiments. This indicates that there is no large
difference between our outcome and the desired success rate.
For simulated users, it also did so while staying in the zone
of proximal development where our simulated users learned
the most. This shows that it did not simply give very easy
and very hard exercises to get the given quota but actually
estimated the student’s chance of success for each exercise.
For real users, the mean success rate hovered around 60%
throughout the course of the experiment while the average
difficulty increased towards the end (see Figure 3). This
shows that the participants improved and that our DDA al-
gorithm adapted to them correctly. As an example for indi-
vidual students, we show and discuss the progression of two
students in Appendix C. While previous user studies with
many interactions managed to achieve their desired success
rate [21], Schadenberg et al. [35] showed that this is not
a trivial task for scenarios with limited numbers of interac-

tions. In their user study, which used a similar amount of
interactions as our study, they were not able to change the
success rate compared to their baseline.

We also took a closer look at the 5 participants that we ex-
cluded from the initial evaluation because they did not get
more than one exercise correct during training. Our DDA
algorithm was correctly providing them with the easiest pos-
sible puzzle in each time step, but could not give them eas-
ier exercises because there just were no easier exercises in
the pool. To alleviate this limitation, future applications
could utilize this ability of the DDA algorithm to identify
situations where students are struggling. Based on this au-
tomatic detection, a human teacher or tutor could intervene
and provide further help individually.

We checked whether the participant’s θ inferred during the
training phase correlates with their post-test performance.
We found that this correlation exists when the DDA does
not choose the exercises, but not when we enforce a 60%
success rate. This is in line with the findings by Eggen and
Verschoor that the further the success rate is from 50%, the
worse the IRT models estimate the performance [13].

Our work has some limitations. First, our approach is only
suitable for problems that can be parameterized by attributes.
Second, our modeling of student learning might be less nu-
anced than models based on KCs that can show how well the
students know each KC. Finally, a direct comparison with
algorithms like ELO or BKT as well as an investigation of
the learning performance of the students is needed to fully
grasp the contribution of our method. This was not within
the scope of this work.

7. CONCLUSION & FUTURE WORK
In this work, we proposed a novel DDA algorithm for intelli-
gent tutoring systems with a limited number of interactions
and small datasets. We showed in simulations and a user
study that our approach is able to achieve the desired suc-
cess rate after limited interactions. In the future, we plan to
evaluate how this influences the students’ learning process.
Furthermore, future work should investigate the potential of
DDA algorithms to detect situations where students require
additional support.

8. ACKNOWLEDGMENTS
This research was partially supported by the Affective Com-
puting & HCI Innovation Research Lab between Huawei
Technologies and the University of Augsburg.

486

References
[1] G. Abdelrahman, Q. Wang, and B. P. Nunes. Knowl-

edge tracing: A survey. ACM Comput. Surv.,
55(11):224:1–224:37, 2023.

[2] M. A. Barton and F. M. Lord. An upper asymptote for
the three-parameter logistic item-response model. ETS
Research Report Series, 1981(1):i–8, 1981.

[3] K. N. Bauer, R. C. Brusso, and K. A. Orvis. Using
adaptive difficulty to optimize videogame-based train-
ing performance: The moderating role of personality.
Military Psychology, 24(2):148–165, 2012.

[4] R. Belfer, E. Kochmar, and I. V. Serban. Rais-
ing student completion rates with adaptive curriculum
and contextual bandits. In International Conference
on Artificial Intelligence in Education, pages 724–730.
Springer, 2022.

[5] H. Cen, K. Koedinger, and B. Junker. Learning factors
analysis–a general method for cognitive model evalua-
tion and improvement. In Intelligent Tutoring Systems:
8th International Conference, ITS 2006, Jhongli, Tai-
wan, June 26-30, 2006. Proceedings 8, pages 164–175.
Springer, 2006.

[6] H. Cen, K. Koedinger, and B. Junker. Comparing two
irt models for conjunctive skills. In Intelligent Tutor-
ing Systems: 9th International Conference, ITS 2008,
Montreal, Canada, June 23-27, 2008 Proceedings 9,
pages 796–798. Springer, 2008.

[7] B. Clement, D. Roy, P. Oudeyer, and M. Lopes. Multi-
armed bandits for intelligent tutoring systems. In Pro-
ceedings of the 8th International Conference on Educa-
tional Data Mining, EDM 2015, Madrid, Spain, June
26-29, 2015, page 21. International Educational Data
Mining Society (IEDMS), 2015.

[8] G. Corbalan, L. Kester, and J. J. Van Merriënboer. Se-
lecting learning tasks: Effects of adaptation and shared
control on learning efficiency and task involvement.
Contemporary Educational Psychology, 33(4):733–756,
2008.

[9] A. T. Corbett and J. R. Anderson. Knowledge trac-
ing: Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction, 4(4):253–
278, 1994.

[10] M. Csikszentmihalyi. Flow: The psychology of optimal
experience, volume 1990. Harper & Row New York,
1990.

[11] M. G. Duque, R. B. Palm, D. Ha, and S. Risi. Find-
ing game levels with the right difficulty in a few trials
through intelligent trial-and-error. In IEEE Conference
on Games, CoG, pages 503–510, 2020.

[12] M. G. Duque, R. B. Palm, and S. Risi. Fast game
content adaptation through bayesian-based player mod-
elling. In IEEE Conference on Games, CoG, pages 1–8.
IEEE, 2021.

[13] T. J. Eggen and A. J. Verschoor. Optimal testing
with easy or difficult items in computerized adaptive
testing. Applied Psychological Measurement, 30(5):379–
393, 2006.

[14] A. E. Elo. The Rating of Chessplayers, Past and
Present. Arco Pub., New York, 1978.

[15] W. R. Fernandes and G. Levieux. \delta -logit : Dy-
namic difficulty adjustment using few data points. In
Entertainment Computing and Serious Games - First
IFIP TC 14 Joint International Conference, ICEC-
JCSG 2019, Arequipa, Peru, November 11-15, 2019,
Proceedings, volume 11863 of Lecture Notes in Com-
puter Science, pages 158–171. Springer, 2019.

[16] J. Hattie. Visible learning for teachers: Maximizing
impact on learning. Routledge, 2012.

[17] T. Huber, S. Mertes, S. Rangelova, S. Flutura, and
E. André. Dynamic difficulty adjustment in virtual
reality exergames through experience-driven procedu-
ral content generation. In IEEE Symposium Series on
Computational Intelligence, SSCI 2021, Orlando, FL,
USA, December 5-7, 2021, pages 1–8, 2021.

[18] R. Hunicke. The case for dynamic difficulty adjustment
in games. In Proceedings of the International Confer-
ence on Advances in Computer Entertainment Technol-
ogy, ACE, pages 429–433, 2005.

[19] B. E. John and D. E. Kieras. The goms family of user
interface analysis techniques: Comparison and contrast.
ACM Transactions on Computer-Human Interaction
(TOCHI), 3(4):320–351, 1996.

[20] M. M. Khajah, Y. Huang, J. P. González-Brenes, M. C.
Mozer, and P. Brusilovsky. Integrating knowledge trac-
ing and item response theory: A tale of two frameworks.
In CEUR Workshop proceedings, volume 1181, pages 7–
15. University of Pittsburgh, 2014.

[21] S. Klinkenberg, M. Straatemeier, and H. L. van der
Maas. Computer adaptive practice of maths ability
using a new item response model for on the fly abil-
ity and difficulty estimation. Computers & Education,
57(2):1813–1824, 2011.

[22] V. Kodaganallur, R. R. Weitz, and D. Rosenthal. A
comparison of model-tracing and constraint-based in-
telligent tutoring paradigms. Int. J. Artif. Intell. Educ.,
15(2):117–144, 2005.

[23] D. Kostons, T. van Gog, and F. Paas. Self-assessment
and task selection in learner-controlled instruction: Dif-
ferences between effective and ineffective learners. Com-
puters & Education, 54(4):932–940, 2010.

[24] D. Leyzberg, S. Spaulding, and B. Scassellati. Person-
alizing robot tutors to individuals’ learning differences.
In 2014 9th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 423–430. IEEE,
2014.

[25] H. Moon and J. Seo. Dynamic difficulty adjustment via
fast user adaptation. In UIST ’20 Adjunct: The 33rd
Annual ACM Symposium on User Interface Software
and Technology, Virtual Event, USA, October 20-23,
2020, pages 13–15. ACM, 2020.

487

[26] O. Pastushenko. Gamification in assignments: Using
dynamic difficulty adjustment and learning analytics to
enhance education. In Extended Abstracts of the An-
nual Symposium on Computer-Human Interaction in
Play Companion Extended Abstracts, CHI PLAY ’19
Extended Abstracts, page 47–53, New York, NY, USA,
2019. Association for Computing Machinery.

[27] P. I. Pavlik, H. Cen, and K. R. Koedinger. Performance
factors analysis - A new alternative to knowledge trac-
ing. In V. Dimitrova, R. Mizoguchi, B. du Boulay, and
A. C. Graesser, editors, Artificial Intelligence in Ed-
ucation: Building Learning Systems that Care: From
Knowledge Representation to Affective Modelling, Pro-
ceedings of the 14th International Conference on Arti-
ficial Intelligence in Education, AIED 2009, July 6-10,
2009, Brighton, UK, volume 200 of Frontiers in Artifi-
cial Intelligence and Applications, pages 531–538. IOS
Press, 2009.

[28] R. Pelánek. Applications of the elo rating system in
adaptive educational systems. Computers & Education,
98:169–179, 2016.

[29] R. Pelánek, J. Papoušek, J. Řihák, V. Stanislav, and
J. Nižnan. Elo-based learner modeling for the adap-
tive practice of facts. User Modeling and User-Adapted
Interaction, 27(1):89–118, 2017.

[30] E. Poromaa. Crushing candy crush : Predicting human
success rate in a mobile game using monte-carlo tree
search. 2017.

[31] M. D. Reckase. Unifactor latent trait models applied to
multifactor tests: Results and implications. Journal of
educational statistics, 4(3):207–230, 1979.

[32] M. M. Rohrkemper. Self-regulated learning and aca-
demic achievement: A vygotskian view. In Self-
regulated learning and academic achievement, pages
143–167. Springer, 1989.

[33] C. Romero, S. Ventura, E. L. Gibaja, C. Hervás, and
F. Romero. Web-based adaptive training simulator sys-
tem for cardiac life support. Artificial Intelligence in
Medicine, 38(1):67–78, 2006.

[34] R. J. Salden, F. Paas, and J. J. Van Merriënboer. Per-
sonalised adaptive task selection in air traffic control:
Effects on training efficiency and transfer. Learning and
Instruction, 16(4):350–362, 2006.

[35] B. R. Schadenberg, M. A. Neerincx, F. Cnossen, and
R. Looije. Personalising game difficulty to keep children
motivated to play with a social robot: A bayesian ap-
proach. Cognitive systems research, 43:222–231, 2017.

[36] T. Schodde, K. Bergmann, and S. Kopp. Adaptive
robot language tutoring based on bayesian knowledge
tracing and predictive decision-making. In Proceedings
of the 2017 ACM/IEEE International Conference on
Human-Robot Interaction, pages 128–136, 2017.

[37] T. A. Warm. Weighted likelihood estimation of ability
in item response theory. Psychometrika, 54(3):427–450,
1989.

[38] L. Xu and M. A. Davenport. Dynamic knowledge em-
bedding and tracing. In A. N. Rafferty, J. Whitehill,
C. Romero, and V. Cavalli-Sforza, editors, Proceed-
ings of the 13th International Conference on Educa-
tional Data Mining, EDM 2020, Fully virtual confer-
ence, July 10-13, 2020. International Educational Data
Mining Society, 2020.

[39] S. Xue, M. Wu, J. Kolen, N. Aghdaie, and K. A. Zaman.
Dynamic difficulty adjustment for maximized engage-
ment in digital games. In Proceedings of the 26th Inter-
national Conference on World Wide Web Companion,
pages 465–471, 2017.

[40] A. Yazidi, A. Abolpour Mofrad, M. Goodwin, H. L.
Hammer, and E. Arntzen. Balanced difficulty task
finder: an adaptive recommendation method for learn-
ing tasks based on the concept of state of flow. Cognitive
Neurodynamics, 14(5):675–687, 2020.

[41] Y. Zhang and W.-B. Goh. Personalized task diffi-
culty adaptation based on reinforcement learning. User
Modeling and User-Adapted Interaction, 31(4):753–784,
2021.

488

Table 1: The Spearman’s rank correlation coefficients be-
tween human participants’ performance and the different at-
tributes of our graph theory exercises.

Exercise Attributes Time Correctness
Difficulty Metric 0.2778 -0.2672
Stochastic Solve Probability -0.2007 0.1841
Number of Vertices 0.2422 -0.2059
MIS Size 0.2541 -0.1651
Number of Edges 0.2217 -0.2427
Number of Intersections 0.1518 -0.2249

APPENDIX
A. DETAILS OF STOCHASTIC SOLVER &

HANDCRAFTED DIFFICULTY METRIC
To infer the difficulty score of the generated MIS exercise,
we use a stochastic solver, similar to Poromaa [30]. The
stochastic solver tries to find an MIS of the provided graph
by choosing vertices in a non-deterministic way. The more
often this solver finds a correct solution, the easier we con-
sider the graph to be.

The stochastic algorithm starts with no selected vertices. In
each step, each free vertex (i.e., an unselected vertex with-
out selected neighbors) is given a probability of being chosen
into the set. The probability that a vertex is chosen is in-
versely proportional to the number of its neighbors that are
also free vertices. The algorithm samples from this categor-
ical distribution and adds one vertex to the set of selected
vertices. The algorithm loops until there is no free vertex
left. To verify whether a stochastic solution is maximum,
we calculate the correct size of the MIS, denoted |VMIS |, for
each graph by brute force beforehand. We run the stochastic
algorithm 10,000 times and count the number of successful
solves to get the success rate palg.

The handcrafted difficulty metric of an exercise is |VMIS |
palg

+

|V |+ |E|, where |V | and |E| are the number of vertices and
edges in the graph respectively. This value tries to mimic
the number of elements a human needs to consider and the
average required number of clicks to solve the exercise, in
a similar vein to John et al. [19]. To make sure that the
handcrafted difficulty metric, which we use for our evalua-
tion (see Section 4.1), works as intended, we verified that
it actually reflects the difficulty for real users. To this end,
we calculated Spearman’s rank correlation between each at-
tribute of an exercise, including our difficulty metric, and
the participants’ solving outcome, i.e. whether the attempt
was correct, and the time taken for each exercise. These
correlations are shown in Table 1. Out of all the attributes
we considered, our handcrafted difficulty metric correlates
best with the outcome in both aspects.

B. DDA MODEL TRAINING DETAILS & HY-
PERPARAMETERS

To pre-train our DDA model, we used data from our pi-
lot studies and collected additional user data without using
DDA. For this purpose, we used two other methods to select
the difficulty of training exercises for 30 participants each.
The first is a predefined difficulty curve, where training ex-
ercises start easy and gradually get more difficult, regardless

Figure 4: Progression during training of two human partic-
ipants, A (left) and B (right). The y-axis shows our hand-
crafted difficulty metric. The dots are green for successes
and red for failures.

of the outcome of training. The second method is the self-
determined difficulty, where the first training exercise has a
medium difficulty. After each exercise, the student is asked
whether he wants an exercise with the same difficulty, a
more difficult one, or an easier one. The next exercise is
provided accordingly. Altogether, we obtained 1,200 data
points from 80 users after removing users that did not get
any exercise correct during training and removing post-test
exercises. Pre-training is done using 90% train and 10% vali-
dation split. We use the Adam optimizer with a learning rate
0.005, batch size 64, and 5,000 epochs. After pre-training on
the prerecorded data is done, the DDA model is deployed to
adapt to each student. During this adaptation, we apply a
discount factor γ = 0.7 in the loss function as described in
Section 3.3. Because of implementation reasons, we use gra-
dient descent with a learning rate of 0.001 to fit the student’s
ability value θ.

C. EXAMPLE STUDENTS
To get an in-depth view of how our algorithm performs, we
show the progression of two individual participants in Fig-
ure 4. We list the training exercises they received and plot
the difficulty of each exercise according to the handcrafted
difficulty metric. Student A had the easy pre-test exercise
correct and thus got assigned a medium exercise at first. In
the beginning, it seems like they are staying in their zone of
flow which can be seen by the zigzagging between slightly
too easy and too hard exercises. Then they seem to im-
prove which our algorithm picks up on and provides harder
exercises. Towards the end, the adaptation again seems to
reach the student’s flow zone. Student B also solved the
easy pre-test correctly. After some successes, the DDA al-
gorithm tried to give them a harder exercise but sees that
the student could not work with it. After this, the diffi-
culty stays quite level. Even when the student slips with
exercises of a difficulty level they evidently solved before,
the algorithm does not immediately decrease the difficulty.
This seems to have been the correct procedure as student
B stated in the post-questionnaire: “I felt like the difficulty
level of the puzzle was just right as it made you think twice
before answering.”.

489

	Proceedings of the 16th International Conference on Educational Data Mining
	ISBN
	Frontmatter
	Preface
	Organizing Committee
	Sponsors

	Table of Contents
	Abstracts
	Keynotes
	JEDM Presentations
	Best Paper AIED 2022 Presentation

	Long Papers
	A Data Mining Approach for Detecting Collusion in Unproctored Online Exams
	Automated Search for Logistic Knowledge Tracing Models
	KC-Finder: Automated Knowledge Component Discovery for Programming Problems
	Learning Problem Decomposition-Recomposition with Data-driven Chunky Parsons Problem within an Intelligent Logic Tutor
	An Analysis of Diffusion of Teacher-curated Resources on Pinterest
	Semantic Topic Chains for Modeling Temporality of Themes in Online Student Discussion Forums
	Analysis of an Explainable Student Performance Prediction Model in an Introductory Programming Course
	Is Your Model "MADD"? A Novel Metric to Evaluate Algorithmic Fairness for Predictive Student Models
	Evaluating Quadratic Weighted Kappa as the Standard Performance Metric for Automated Essay Scoring
	How to Open Science: Debugging Reproducibility within the Educational Data Mining Conference
	Investigating the Importance of Demographic Features for EDM-Predictions
	Scalable and Equitable Math Problem Solving Strategy Prediction in Big Educational Data
	Exploring the effectiveness of Vocabulary Proficiency Diagnosis Using Linguistic Concept and Skill Modeling
	Unfolding Learners’ Response to Different Versions of Automated Feedback in a MOOC for Programming – A Sequence Analysis Approach
	Can the Paths of Successful Students Help Other Students With Their Course Enrollments?
	Visual representation of co-authorship with GPT-3: Studying human-machine interaction for effective writing
	To speak or not to speak, and what to speak, when doing task actions collaboratively
	Generalizing Predictive Models of Reading Ability in Adaptive Mathematics Software

	Short Papers
	Partner Keystrokes can Predict Attentional States during Chat-based Conversations
	Meta-Learning for Better Learning: Using Meta-Learning Methods to Automatically Label Exam Questions with Detailed Learning Objectives
	Clustering to define interview participants for analyzing student feedback: a case of Legends of Learning
	The Predictiveness of PFA is Improved by Incorporating the Learner’s Correct Response Time Fluctuation
	The Right To Be Forgotten and Educational Data Mining: Challenges and Paths Forward
	Variational Temporal IRT: Fast, Accurate, and Explainable Inference of Dynamic Learner Proficiency
	Session-based Course Recommendation Frameworks using Deep Learning
	In Search of Negative Moments: Multi-Modal Analysis of Teacher Negativity in Classroom Observation Videos
	Can’t Inflate Data? Let the Models Unite and Vote: Data-agnostic Method to Avoid Overfit with Small Data
	Knowledge Tracing Over Time: A Longitudinal Analysis
	Towards Generalizable Detection of Urgency of Discussion Forum Posts
	Optimizing Parameters for Accurate Position Data Mining in Diverse Classrooms Layouts
	Effective Evaluation of Online Learning Interventions with Surrogate Measures
	Early Prediction of Student Performance in a Health Data Science MOOC
	Self-Assessment Task Processing Behavior of Students in Higher Education
	Using Markov Matrix to Analyze Students’ Strategies for Solving Parsons Puzzles
	Towards Scalable Adaptive Learning with Graph Neural Networks and Reinforcement Learning
	Auto-scoring Student Responses with Images in Mathematics
	Generating High-Precision Feedback for Programming Syntax Errors using Large Language Models
	Modeling and Analyzing Scorer Preferences in Short-Answer Math Questions
	Mining Detailed Course Transaction Records for Semantic Information
	Predicting Bug Fix Time in Students’ Programming with Deep Language Models

	Posters
	Tool Usage and Efficiency in an Online Test
	A Conceptual Model for End-to-End Causal Discovery in Knowledge Tracing
	LECTOR: An attention-based model to quantify e-book lecture slides and topics relationships
	Course Concepts: How Readable Are They for ESL Learners?
	Pre-selecting Text Snippets to provide formative Feedback in Online Learning
	Exploring the Implementation of NLP Topic Modeling for Understanding the Dynamics of Informal Learning in an AI Painting Community
	Timing Matters: Inferring Educational Twitter Community Switching from Membership Characteristics
	Understanding Revision Behavior in Adaptive Writing Support Systems for Education
	Towards Automated Assessment of Scientific Explanations in Turkish using Language Transfer
	Automated Identification and Validation of the Optimal Number of Knowledge Profiles in Student Response Data
	The impact of online educational platform on students’ motivation and grades: the case of Khan Academy in the under-resourced communities
	Measuring Similarity between Manual Course Concepts and ChatGPT-generated Course Concepts
	Explainable models for feedback design: An argumentative writing example
	Fast Dynamic Difficulty Adjustment for Intelligent Tutoring Systems with Small Datasets
	Discovering prerequisite relationships between knowledge components from an interpretable learner model
	"Can we reach agreement?": A context- and semantic-based clustering approach with semi-supervised text-feature extraction for finding disagreement in peer-assessment formative feedback
	Sequencing Educational Content Using Diversity Aware Bandits
	A comparative analysis of the cognitive levels of Science and Mathematics secondary school board examination questions in India
	Can ChatGPT Detect Student Talk Moves in Classroom Discourse? A Preliminary Comparison with Bert

	Demonstrations
	A Multimodal Language Learning System for Chinese Character Using Foundation Model
	Help Me Read! Expanding Students' Reading with Wikipedia Articles
	Characterizing Learning Progress of Problem-Solvers Using Puzzle-Solving Log Data

	Doctoral Consortium
	A Trace-Based Generalized Multimodal SRL Framework for Reading-Writing Tasks
	Analyzing Team Cognition and Combined Efficacy In Makerspaces Using Multimodal Data
	Exploring students’ learning processes by logging and analyzing their interaction behavior in a Virtual Reality learning environment
	Data Driven Online Training Program for Education Robotics Competition
	Investigating teams’ Socially Shared Metacognitive Regulation (SSMR) and transactivity in project-based computer supported collaborative learning environment
	Fostering Interaction in Computer-Supported Collaborative Learning Environment
	Analyzing the impact of metacognition prompts on learning in CBLE
	Designing a Learning Environment to Foster Critical Thinking
	Response Process Data in Educational and Psychological Assessment: A Scoping Review of Empirical Studies
	Understanding Learners Alternate Conceptions through Interaction Patterns During analogical reasoning

	Tutorials
	Learning through Wikipedia and Generative AI Technologies
	Introduction to Neural Networks and Uses in EDM
	How to Open Science: Promoting Principles and Reproducibility Practices within the Educational Data Mining Community
	Data Efficient Machine Learning for Educational Content Creation

