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Abstract. Most of the currently available pain datasets use two types
of pain stimuli - people with clinically diagnosed conditions (e.g. surgery)
performing tasks that cause them pain (we call this clinical pain) and
pain caused by external stimuli such as heat or electricity (we call this
experimental pain). In high-risk domains like healthcare, understanding
the decisions and limitations of various types of pain recognition models
is pivotal for the acceptance of the technology. In this paper, we present
a process based on Explainable Artificial Intelligence techniques to inves-
tigate the differences in the learned representations of models trained on
experimental pain (BioVid heat pain dataset) and clinical pain (UNBC
shoulder pain dataset). To this end, we first train two convolutional neu-
ral networks - one for each dataset - to automatically discern between
pain and no pain. Next, we perform a cross-dataset evaluation, i.e., eval-
uate the performance of the heat pain model on images from the shoulder
pain dataset and vice versa. Then, we use Layer-wise Relevance Propa-
gation to analyze which parts of the images in our test sets were relevant
for each pain model. Based on this analysis, we rely on the visual inspec-
tion by a human observer to generate hypotheses about learned con-
cepts that distinguish the two models. Finally, we test those hypotheses
quantitatively utilizing concept embedding analysis methods. Through
this process, we identify (1) a concept which the clinical pain model is
more strongly relying on and, (2) a concept which the experimental pain
model is paying more attention to. Finally, we discuss how both of these
concepts are involved in known pain patterns and can be attributed to
behavioral differences found in the datasets.
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1 Introduction

Expressing pain is an important social component as it triggers social reactions
such as empathy and care [3]. In clinical practice, recognizing pain facial expres-
sion helps in pain diagnosis and eliminates the need for verbalization. This is
especially important for patients who cannot provide verbal pain reports like
people with dementia, infants, and ventilated patients [3]. So, assessing facial
expressions is crucial for many healthcare applications and also a valuable skill
for medical staff [3,18]. In many of these cases, caregivers have to routinely mon-
itor the pain levels of a patient for optimal pain management. However, this is
often not possible due to practical issues like a lack of available clinical staff. As
a consequence, there has been an increasing interest in developing methods to
automatically detect pain from facial expressions.

Many works [22,26] have proposed models for automatic pain recognition.
These models are shown to achieve good performances but are usually trained
and tested on the same dataset. Cross-database evaluations are not very com-
mon. According to Othman et al. [16], this could be because well-trained models
tend to perform poorly on other databases. This was observed in [6], where the
authors found that a model trained using one pain dataset performed poorly
on another dataset. Real-world scenarios like hospitals or nursing homes will
inevitably be different from the settings used to collect the training datasets.
Therefore, cross-database evaluation is important to ensure the robustness of
the models and verify that they are not learning database-specific patterns.

Another drawback of many state-of-the-art pain recognition models is that
they come in the form of deep neural networks whose decisions are usually incom-
prehensible to humans. The research area of Explainable Artificial Intelligence
(XAI) aims to make such “black-box” models more understandable. Explainabil-
ity is crucial for deploying pain recognition models to support therapy, as patients
and therapists should be able to understand the system’s decisions in order to
achieve successful treatment [3]. Petyaeva et al. [17], for instance, showed that
briefly training medical staff on pain observation scales and therefore increasing
the staff’s understanding of the scales, led to more frequent and more confident
use of the scales in everyday care. This indicates that similar improvements can
be expected from increasing the comprehensibility of automatic pain recogni-
tion models. A second benefit of increasing the explainability of pain recognition
models is that it can help to mitigate some of the problems of the models that do
not perform well on cross-database evaluations. On the one hand, understand-
ing the reasoning and biases of models trained on different datasets can help to
create less biased models and datasets in the future. On the other hand, pain
recognition models are often employed in ensembles of several pain recognition
models. Here, it is crucial to understand the reasoning and biases of each model
to judge which models can be trusted in a given situation.

As a first step to solve the aforementioned problems, we study two pain
recognition models in this paper - one trained on clinical pain images from
the UNBC shoulder pain database and the other on experimental pain images
from the BioVid heat pain database. In addition to the typical within-database
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evaluation, we perform cross-database evaluation of these models. Furthermore,
we utilize XAI techniques to find more detailed differences between the models’
reasoning and biases. As far as we know, this is the first time that XAI is used
for cross-database evaluation of pain models. First, we generate saliency maps
that highlight which areas of input images were important for the decision of
each model. Based on a manual inspection of these saliency maps, we formulate
hypotheses about the concepts learned by the models. Then, we use concept
embedding analysis to test our hypotheses. Finally, we discuss our results in
light of underlying behavioral differences between the datasets.

2 Related Work

2.1 Cross-database Evaluation of Pain Datasets

Cross-database evaluations involve evaluating a model on samples from differ-
ent databases than the one used for training. Such evaluations are crucial for
building robust models and testing the generalization capabilities of a model.
In [16], the authors used the BioVid heat pain database and the X-ITE pain
database (thermal pain) to train pain recognition models. They trained pairs of
pain recognition models using facial activity descriptors based on random forest
classifiers and CNNs. They performed cross-database evaluation of the models
using the two datasets. They found that models trained using both methods per-
formed well in cross-database evaluations. It can be noted that both BioVid and
X-ITE databases use the same stimuli (varying temperatures) to induce pain.

Dai et al. [6] studied various combinations of emotion datasets and the UNBC
shoulder pain dataset to train a real-time pain detection model. They also tried
CNNs and SVMs based on Action Units (AUs) - visible indicators of the activity
of individual facial muscles. In addition to the within-dataset evaluations, they
tested the models on datasets consisting of posed emotion and pain expressions.
They found that even though the CNN models performed extremely well in
within-database evaluations, all posed pain images were classified as no-pain.
They concluded that CNNs learned database-specific features which enabled
them to predict pain in subjects from the UNBC database. The only model
that performed well in real-time posed pain recognition was an AU-based SVM
trained on AffectNet and UNBC shoulder pain images. They tested this model
on images of 20 randomly chosen participants from the BioVid heat database.
The model performed poorly which prompted the authors to examine their test
images. They found that many of the participants closed their eyes for most parts
of the experiment. Some even had closed eyes for the entire experiment. Since
closed eyes are an indicator of pain in the UNBC dataset, they attribute the
poor performance of the model to this difference in behavior between datasets.

2.2 Explainable Artificial Intelligence

In scenarios where neural networks are used to support medical therapy, patients
and therapists must be able to understand the system’s decisions in order to
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achieve successful treatment. A common way of analyzing the predictions of
neural networks trained on images is the creation of so-called saliency maps that
highlight how important each pixel of an input image was for the prediction. For
the specific use-case of pain recognition, Weitz et al. [23] applied and compared
two different saliency map methods: Layer-wise Relevance Propagation (LRP)
[15] and Local Interpretable Model-agnostic Explanations (LIME) [19]. While
the authors found that the salience maps generated in their work provide some
initial insights into the reasoning of the network, they concluded that saliency
maps in their current form are often ambiguous and hard to interpret for end-
users. Besides saliency maps, another promising explanation approach is the
generation of counterfactual images that show how an input image could be
modified to change the network’s prediction. For medical applications, Mertes
et al. [13] generated such counterfactual explanations for a pneumonia detection
network and found in a user study that those counterfactual explanations were
easier to interpret than LRP and LIME saliency maps. However counterfactual
explanations still heavily rely on the final interpretation by human users.

To reduce the amount of interpretation that has to be done by the user, recent
work on concept embedding analysis investigates which human-comprehensible
concepts were learned by a given network. Bau et al. [4] show that semantic con-
cepts are often embedded in individual neurons of the latent space of a neural
network. For example, Khorrami et al. [8] demonstrate that certain neurons in
the final convolutional layer of a network trained to analyze facial expressions
learned to recognize specific AUs. To extend this method to concepts that might
be embedded in multiple neurons within the latent space, Kim et al. [9] trained a
binary linear classifier that takes as input the output of an intermediate layer of
the network and learns to recognize a predefined concept. If the linear classifier
can recognize the concept, then it is likely that the concept is embedded in the
intermediate layer that acts as input to the linear classifier. They tested their
approach on multiple image classification networks and a network for predict-
ing diabetic retinopathy. A common challenge for the aforementioned concept
embedding analysis techniques is that the potential concepts have to be exter-
nally identified by human experts. To mitigate this effort, Prajod et al. [18]
utilized LRP saliency maps to facilitate the identification of potential concepts.

3 Approach

3.1 Datasets

UNBC-McMaster Shoulder Pain Expression Database [12] - This
database contains image sequences of 25 participants with shoulder pain per-
forming a range of arm movements. Each image is annotated with a Prkachin
and Solomon Pain Intensity(PSPI) score on a scale of 0 (no pain) to 15 (extreme
pain). Since these images are from a video, many of them are similar. We remove
the redundant images through the approach followed in [26]. For each image
sequence, whenever the pain intensity doesn’t change for more than five consec-
utive images, we keep only the first image. From the down-sampled dataset, we
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reserve images belonging to four participants, who gave consent to publish their
images, as test set. The images belonging to one randomly chosen participant are
used for validation and the images of the remaining 20 participants for training.

BioVid Heat Pain Database [21] - We use the part A of this database that
contains short videos showing facial expressions of 87 participants reacting to
heat pain stimuli. Each participant has 20 short videos (5.5s long) for each
of five conditions (no pain + four pain intensities). In [25], the authors found
that the initial two pain intensities failed to trigger a facial response in many
participants and use only the highest intensity for discerning pain vs. no pain.
Based on their findings, we only consider videos that are labeled as baseline (no-
pain) and highest pain level. The authors also found that the facial activity for
the highest pain level starts at around 2s and peaks around the 4s mark. So, we
choose the frame at 4s in the video as a representative image. As suggested by
the creators of the BioVid dataset [1], we exclude 20 participants who did not
have a visible reaction to the stimuli. Among the remaining 67 participants, 15
participants were reserved for testing, five participants were used for validation
and the images of the remaining participants formed the training set.

3.2 Pain Training

After selecting representative images from the videos or image sequences (see
Sect. 3.1), the resulting datasets are relatively small with around 1000–2000
images. This is typical for pain datasets [22], but deep learning usually requires
larger amounts of training data. To mitigate this problem, deep learning models
are often trained using transfer learning. This involves re-using the knowledge
that the model learned for a specific task A, for training an adjacent task B.
In this paper, we adopt the transfer learning process from [18]. The idea is to
fine-tune an emotion recognition model to discern between pain and no-pain
images. We use the same emotion recognition model as Prajod et al. [18] which
is a VGG-16 based convolutional neural network (CNN) trained on the Affect-
Net dataset [14]. This dataset consists of 420299 face images that are manually
annotated with 11 emotions. As described by Prajod et al. [18] we remove images
belonging to ‘None’, ‘Uncertain’ and ‘Non-face’. Afterward, we modify the pre-
diction layer of the model to predict pain vs. no-pain. To train the model for
pain recognition, we fine-tune all layers of this model. We train two pain models
- one trained on clinical pain images (UNBC shoulder pain dataset) and one on
experimental pain images (BioVid heat pain dataset). Both models are trained
using SGD optimizer (learning rate = 0.01) and focal loss [11] given by:

focal loss = (1− pt)γ × cross entropy loss. The variable pt is the predicted
probability of a sample belonging to its true class (t) and we set the hyperpa-
rameter γ = 2.

Before passing an image through our models, we detect and crop the face
using OpenCV. We also scale them to the default VGG16 input dimensions
(224× 224). While training both the models, we use Keras data augmenta-
tion options: rotation ([−25o, 25o]), height shift ([−10%, 10%]), width shift
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([−10%, 10%]), shear ([−10%, 10%]), zoom ([−10%, 10%]) and horizontal flip.
We train the models using NVIDIA GeForce GTX 1060 6GB GPU.

Unlike the BioVid dataset, the UNBC dataset is imbalanced. So, for the
clinical pain model, we use weighted focal loss. We follow the weighting scheme
proposed in [5], where weights of classes are computed as (we set the hyperpa-
rameter β = 0.99): weighted loss = 1−β

1−βsamples per cls × focal loss.

3.3 Cross-database Evaluation

Many works propose automatic pain recognition models that achieve good per-
formances on the datasets they are trained on. However, cross-dataset evalua-
tions are less explored. One reason for this might be that well-trained models
may not perform well on other datasets [16]. So, in addition to the typical perfor-
mance evaluation, we perform a cross-dataset evaluation of both our models and
determine the generalization capabilities of these models. The generalizability of
a model is particularly important when deploying it in real-world applications.
First, we evaluate the performance of the models in terms of f1-score, recall,
precision, and accuracy. Since the UNBC dataset is not balanced, we compute
the macro-average of these metrics - compute the metric for each class and aver-
age them. In this step, the evaluation is within-database i.e., training and test
images come from the same database. After the within-database evaluation, we
perform the cross-database evaluation. Here we compute the same performance
metrics as before, but for the test set derived from the other database. If the
model’s cross-database performance is comparable to its initial performance, we
say the model learned generic pain features and not dataset-specific features.

3.4 Visual Analysis

After determining if the models learned generic pain features, we explore the
differences in the features that were relevant for each model. We follow the
technique proposed in [18] to visually inspect these differences. To this end,
we generate saliency maps highlighting the areas of the input image which,
according to each model, are indicators of pain (i.e. were important for the pain
prediction neuron). For generating the saliency maps, we use the iNNvestigate [2]
implementation of LRP with the z-rule for fully connected layers and the z+-rule
for convolution layers. This composite LRP method is relatively robust to sanity
checks [20] and retains the conservation property of LRP which states that the
relevance values of all pixels sum up to the prediction value. The conservation
property is important for an accurate comparison of different saliency maps. We
use our test sets from both the UNBC and BioVid datasets as input images.
For each input image, we obtain two saliency maps - one from the clinical pain
model and the other from the experimental pain model. To better highlight
the differences between these models, we subtract the raw saliency maps from
each other and normalize the differences between 0 and 1. With this method,
we obtain saliency maps that highlight the areas that the experimental pain
model payed more attention to than the clinical pain model and vice versa. We
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manually inspect these images to derive hypotheses about potential differences
in the concepts that were relevant for the clinical and experimental pain models.

3.5 Concept Embedding Analysis

In this section, we describe our method of verifying the hypothesis that the
concepts identified with the method described in Sect. 3.4 actually distinguish
the models trained on clinical and experimental pain. To this end, we follow the
approach of Prajod et al. [18] and Kim et al. [9] and train binary linear classifiers
on the output of an intermediate layer of each model to investigate how well these
concepts are embedded. We use our test sets of both UNBC and BioVid datasets
as training data for the linear classifiers. For each image in the combined test
set, two of the authors manually annotate whether the concept is present or
not. Afterward, we check where the two annotators disagree. Those images are
additionally labeled by a third annotator, who is not involved with the paper,
and the final label is chosen by majority vote.1 The authors have experience with
facial affect recognition models which was sufficient for annotating the specific
concepts we identified in our experiment. By computing the output of the last
pooling layer of each pain model for all images within our combined test set,
we obtain an experimental pain and a clinical pain feature-set that represent
the latent space of the respective pain recognition models. We then train a
linear Support Vector Machine (SVM) on the task of detecting the concept
candidate on each of those two feature sets. For this training, we use 2-fold
cross-validation and compute the average f1-score of the two folds. This training
process is repeated for 500 iterations using different random seeds for fold image
selection and weight initialization. Finally, we run a paired t-test between the
500 averaged F1 scores of each feature-set. This comparison method is suggested
in [7] for five iterations as 5×2 cross validation paired t-test and we extend it to
500 iteration as suggested by Kim et al. [9]. The result of this test shows whether
there is a significant difference between the performance of SVMs trained on the
clinical pain feature-set and the SVMs trained on the experimental pain feature-
set. If there is a significant difference then it is likely that there is a difference in
the quality of the embedding of the concept candidate between the latent spaces
of the two pain models.

4 Results

As described in Sect. 3.2, we train two pain recognition models based on a clinical
pain dataset (UNBC shoulder pain) and an experimental pain dataset (BioVid
heat pain). Tables 1 and 2 show the results of within-database and cross-database
evaluations of the clinical pain model and the experimental pain model, respec-
tively. The within-database accuracy of both our models are comparable to other
papers (clinical pain: 85% [6], experimental pain: 66% [16]).

1 The final annotations are available upon request to the authors.
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Table 1. Performance of clinical pain model

Test images Precision Recall F1-score Accuracy

No pain Pain Avg. No pain Pain Avg. No pain Pain Avg.

Clinical pain 0.74 0.87 0.80 0.71 0.88 0.80 0.72 0.88 0.80 0.83

Experimental pain 0.74 0.56 0.65 0.28 0.90 0.59 0.41 0.69 0.55 0.59

Table 2. Performance of experimental pain model

Test images Precision Recall F1-score Accuracy

No pain Pain Avg. No pain Pain Avg. No pain Pain Avg.

Clinical pain 0.48 0.87 0.68 0.80 0.61 0.71 0.60 0.72 0.66 0.67

Experimental pain 0.65 0.80 0.73 0.87 0.54 0.70 0.74 0.64 0.69 0.70

Fig. 1. Saliency maps of some images belonging to our experimental pain (BioVid)
and clinical pain (UNBC) test sets. Each row shows the original input image and the
result of subtracting the saliency maps generated for both models. The images under
‘Clinical > Experimental’ highlight the areas that the clinical pain model pays more
attention to than the experimental pain model. The images under ‘Experimental >
Clinical’ highlight the areas that are more relevant for the experimental pain model
than for the clinical pain model.
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Looking at the within-database evaluation, the clinical pain model yields bet-
ter overall performance and seems better at recognizing pain images. However,
the performance of the clinical pain model is considerably lower in cross-database
evaluation. The experimental pain model has comparable performance on both
datasets. To draw insights about the differences in the features that were relevant
for the two models, we generate saliency maps for both models and manually ana-
lyze them as described in Sect. 3.4. Figure 1 shows some of the input images and
the corresponding saliency map differences. We noticed that the clinical pain
model pays more attention to the eye area, especially on closed eyes. In con-
trast, the experimental pain model pays attention to the mouth area, especially
on visible teeth. So, we hypothesize that the clinical pain model is more biased
towards closed eyes whereas, the experimental pain model is biased towards
detecting visible teeth. We use concept embedding analysis (see Sect. 3.5) to test
our hypothesis. We choose closed eyes and visible teeth as the concepts for our
analysis. For analyzing the concept of closed eyes, we divide the images from
test sets into two sets - images where the participants closed both their eyes and
images where they did not. We use the clinical pain model and experimental
pain model as feature extractors. We trained pairs of SVMs (one on clinical pain
features and the other on experimental pain features) to recognize the concept of
closed eyes. We found that the SVMs trained using clinical pain model features
significantly outperformed the ones trained on experimental pain model features
(clinical mean F1 = 81.6%, experimental mean F1 = 78.38%, t-statistic: 92.2,
p-value: < 0.001). We follow the same procedure to analyze the concept of vis-
ible teeth. This time the images are divided into two sets based on whether
the teeth were at least partially visible or not. In this case, the SVMs trained
using experimental pain features were significantly better in discerning visible
teeth images (clinical mean F1 = 73.47%, experimental mean F1 = 82.54%,
t-statistic: −131.43, p-value: < 0.001).

To ensure that our findings are indeed based on differences in the datasets
and not due to our specific models, we repeated fined-tuning the models and the
concept embedding analysis four more times (using different seeds). In all the
iterations, the models differed significantly on closed eyes and visible teeth.

5 Discussion

One interesting finding is that the clinical pain model doesn’t perform well in
cross-database evaluation, although it performs well on the clinical pain dataset.
In contrast, the experimental pain model performs well on both datasets. It can
be seen from Table 1 that misclassification of no-pain images from the experi-
mental pain dataset is a key reason for the drop in performance of the clinical
pain model. As the results of our concept analysis show, the clinical pain model
pays more attention to the eye area, especially the closed eyes. In [24], the
authors studied various facial activity descriptors from the BioVid database to
predict pain. They found that eye closure is less relevant in predicting pain than
other features. They attributed this to their observation that some participants
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close their eyes even during no-pain videos. When we annotated the test sets for
concept embedding analysis, we noticed that around 20% of the no-pain images
from the experimental pain test set were annotated as closed eyes. This could
be a plausible reason for the misclassification of no-pain images by the clinical
pain model. Our result is also in line with [6], where the authors observed that
it was difficult for a model trained on the UNBC dataset to recognize pain in
inputs from the BioVid dataset. They chose the videos of 20 random participants
from the BioVid database and found that many of them closed their eyes for
most of the experiment. In contrast, the participants from UNBC database look
at the camera and usually close their eyes while in pain. The authors attribute
the poor performance of their model to this difference in behavior. Our results
reinforce their hypothesis by, for the first time, analyzing the trained models
themselves through XAI and empirically showing that the model trained on the
UNBC dataset is paying more attention to closed eyes.

The experimental pain model pays more attention to the mouth area, espe-
cially the visibility of teeth (see Fig. 1). This concept can be associated with the
pain pattern of ‘open mouth’ - one of the four facial pain patterns identified in
[10]. They associate AUs 25, 26, 27 with the open mouth pattern. However, as
noted in [24], these AUs are absent in the calculation of PSPI scores. The clinical
pain dataset (UNBC database) is annotated based on PSPI scores whereas the
experimental pain dataset (BioVid database) is annotated based on the temper-
ature applied. Therefore, it is plausible that an image in the clinical pain dataset
with an open mouth is labeled as no-pain (if PSPI AUs are absent). Moreover,
from our manual annotations, we found that around 90% of visible teeth images
were from the experimental pain dataset. While the total number of images with
visible teeth is low our results show that this bias is reflected in the trained mod-
els. Hence, future works that use the BioVid dataset and medical personal that
employ models based on this dataset should be aware of this bias.

6 Conclusion

In this paper, we explored the differences between models trained on clinical
and experimental pain datasets. We used the UNBC shoulder pain database for
clinical pain facial expressions and the BioVid heat pain database for experi-
mental pain expressions. Using these datasets, we trained a clinical pain and an
experimental pain model. In addition to the typical within-database evaluations,
we evaluated the models on cross-database test sets. We found that the clinical
pain model performed poorly on cross-database evaluation whereas the experi-
mental pain model performed similarly on both datasets. This prompted us to
use XAI techniques to explore the features that each model prioritizes in its pre-
dictions. We found that the concept of closed eyes is more important for clinical
pain models and an open mouth with visible teeth is important for experimental
pain models. We also found that these differences are rooted in the difference
in the behavior of the participants in these datasets. Knowing these biases will
aid researchers and medical personal when working with these datasets or when
they employ models trained on those datasets.
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The insights from this work show the potential merits of cross-database eval-
uations of pain recognition models with both performance metrics as well as XAI
techniques. However, one limitation of our work is that we only tested one spe-
cific pair of pain datasets. People in real-life scenarios express various emotions
other than pain. Therefore, our next step is to train models that can recognize
other emotions like anger, fear, etc., along with pain and investigate those models
in XAI-assisted cross-database evaluations based on different pain and emotion
datasets. It will also be interesting to study the generalization performance of
the models for different levels of pain (e.g. trace, weak, and strong pain).
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3. André, E., Kunz, M.: Digitale gesichts- bzw. schmerzerkennung und ihr potential
für die klinische praxis. In: Digitalisierung und Gesundheit. G.IP - Gesundheits-
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